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Abstract 5S rRNA is the smallest nucleic acid component

of the large ribosomal subunit, contributing to ribosomal

assembly, stability, and function. Despite being a model for

the study of RNA structure and RNA–protein interactions,

the evolution of this universally conserved molecule remains

unclear. Here, we explore the history of the three-domain

structure of 5S rRNA using phylogenetic trees that are

reconstructed directly from molecular structure. A total of 46

structural characters describing the geometry of 666 5S

rRNAs were used to derive intrinsically rooted trees of

molecules and molecular substructures. Trees of molecules

revealed the tripartite nature of life. In these trees, super-

kingdom Archaea formed a paraphyletic basal group, while

Bacteria and Eukarya were monophyletic and derived. Trees

of molecular substructures supported an origin of the mole-

cule in a segment that is homologous to helix I (a domain), its

initial enhancement with helix III (b domain), and the early

formation of the three-domain structure typical of modern 5S

rRNA in Archaea. The delayed formation of the branched

structure in Bacteria and Eukarya lends further support to the

archaeal rooting of the tree of life. Remarkably, the evolution

of molecular interactions between 5S rRNA and associated

ribosomal proteins inferred from a census of domain structure

in hundreds of genomes established a tight relationship

between the age of 5S rRNA helices and the age of ribosomal

proteins. Results suggest 5S rRNA originated relatively

quickly but quite late in evolution, at a time when primordial

metabolic enzymes and translation machinery were already

in place. The molecule therefore represents a late evolu-

tionary addition to the ribosomal ensemble that occurred

prior to the early diversification of Archaea.

Keywords Ribosome � 5S rRNA � Secondary structure �
Molecular evolution � Cladistic analysis

Introduction

5S ribosomal RNA (rRNA) is an integral component of the

large subunit of the ribosome. It harbors fundamentally

important functions during protein synthesis. Results of

cross-linking studies suggest that 5S rRNA may serve as a

signal transducer between the peptidyl transferase center

and domain II of the large rRNA subunit that is responsible

for translocation (Bogdanov et al. 1995; Dokudovskaya

et al. 1996), and between regions of 23S rRNA responsible

for principal ribosomal functions (Kouvela et al. 2007). 5S

rRNA may also be a determinant of stability for the large

subunit (Holmberg and Nygard 2000). Evolutionarily,

SINE3, a class of short interspersed elements (SINEs), are

derived from 5S rRNA (Kapitonov and Jurka 2003).

However, detailed functions of 5S rRNA are still lacking
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(Bogdanov et al. 1995; Barciszewska et al. 2000, 2001;

Szymanski et al. 2003) and the origins and evolutionary

history of the molecule have not been explored.

5S rRNA is the smallest RNA component of the ribo-

some (*120-nucleotides long) and associates not only with

the large rRNA subunit but also with several ribosomal

proteins. Studies of the 5S rRNA molecule began in the

1980s, when Fanning and Traut (1981) attempted to purify

cross-linked 5S-protein complexes. 5S rRNA interacts in

the ribosome with various ribosomal proteins to form a

stable complex, three (L15, L18, and L25) in Bacteria

(Christiansen and Garrett 1986), one or two in Archaea

(Smith et al. 1978; McDougall and Wittmann-Liebold

1994), and one in Eukarya (Deshmukh et al. 1993; Wool

1986). 5S rRNA has been used as a model molecule for

studies on RNA structure, RNA–RNA, and RNA–protein

interactions, and as a phylogenetic marker (Hunt et al. 1984;

Hori et al. 1985; Hori and Osawa 1987; Küntzel et al. 1981,

1983; Nearhos and Fuerst 1987; Villanueva et al. 1985).

The molecule appears to act as a seventh domain in the large

ribosomal subunit, conferring stability to the entire 3-

dimensional (3D) structure (the structure of 23S rRNA

contains six domains). In fact, genetic deletions in 5S rRNA

decrease substantially cell viability, especially when com-

pared to the 16S and 23S rRNA subunits (Ammons et al.

1999). This stability is most notable in interactions with

domains II and V of 23S rRNA, which are involved in

translocation and peptide bond formation, respectively.

Experiments performed using 5S rRNA mutants indicate

that the molecule might also be involved in signal trans-

mission during the translation process (Sergiev et al. 2000).

Due to its universally conserved structure, 5S rRNA

molecules can be substituted by molecules in other species,

restoring in every case the biological activity of the ribosome

(Erdmann et al. 1986; Teixido et al. 1989). Because the

nucleotide sequences of 5S rRNA are highly conserved

throughout nature, phylogenetic analysis alone provided an

initial model for its secondary structure (Fox and Woese

1975). This model was later on refined (Luehrsen and Fox

1981; but see Hannock and Wagner 1982). Structurally, 5S

rRNA can always be folded into a common secondary

structure. This structure contains five helices (I–V) (labeled

S1–S5 in this study), two hairpin loops (C, D), two internal

loops (B, E), and a multiloop (hinge) region (A) connecting

helices I, II, and V. This 3-branched general structure has

been confirmed by a number of structural studies and com-

parative sequence analyses. The three branches are occa-

sionally addressed collectively as the a, b, and c domains

(Joachimiak et al. 1990). Limited tertiary interactions exist

that are centered on loop A and the domain containing

helices II and III. Furthermore, the crystal structure of the

large subunit from Haloarcula marismortui (Ban et al. 2000)

allowed verification of the secondary structure of 5S rRNA

inferred from phylogenetic analysis and structural studies in

solution. Most of the base pairs predicted by comparative

sequence analysis were detected in the crystal structure.

Furthermore, several 3D structural models of 5S rRNA have

been proposed (reviewed in Barciszewska et al. 2000), but

all differ in many aspects from the model derived from the H.

marismortui 50S subunit (Ban et al. 2000). Although pro-

graming algorithms for 5S rRNA secondary structure pre-

dictions have been improved, the predicted structures are not

always satisfactory (Azad et al. 1998; Mathews et al. 1999;

Ding and Lawrence 1999). However, the generic 3-domain

structure of 5S rRNA has been consistently recovered and

confirmed. Finally, Gabashvili et al. (2003) revealed the

structural dynamics of 5S rRNA with alternative confor-

mations complementary or additional to those observed by

crystallography (Yusupov et al. 2001; Brodersen et al. 2002;

Ramakrishnan 2002; Yonath 2002; and references therein)

and other experimental methods (Lodmell and Dahlberg

1997; Frank and Agrawal 2000).

In the present study, we apply an award-winning phylo-

genetic method that reconstructs evolutionary history

directly from molecular structure to study the evolution of 5S

rRNA (Caetano-Anollés 2002a). This novel cladistic

approach produces intrinsically rooted trees that ‘‘embed

structure and function directly into phylogenetic analysis’’

(Pollock 2003). The method has been applied widely to study

the structural evolution of two crucial molecules, rRNA

(Caetano-Anollés 2002a, b) and tRNA (Sun and Caetano-

Anollés 2008a, b, c), has been improved during studies of

other functional RNA molecules (Caetano-Anollés 2005;

Sun et al. 2007), and has been extended to the study of

molecular repertoires of protein domains at both the fold and

the fold superfamily levels (Caetano-Anollés and Caetano-

Anollés 2003; recently reviewed in Caetano-Anollés et al.

2009). Here we dissect for the first time the structure of 5S

rRNA, reconstructing intrinsically rooted phylogenetic trees

of molecules and substructures (Fig. 1). These trees not only

reveal the evolutionary history of the molecule, but also

identify ancestral functional and structural components that

were crucial for its workings during early life.

Materials and Methods

Data

The entire set of 1,371 5S rRNA sequences was retrieved

from the 5S rRNA Database (http://rose.man.poznan.pl/

5SData/; September 2005 edition; Szymanski et al. 2002).

We used the program RNAfold in the Vienna RNA package

(Hofacker 2003) to fold the RNA molecules and predict the

minimum free energy (mfe) structure among alternative

structural topologies. Like many other currently available
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RNA-folding programs, RNAfold cannot fold each indi-

vidual molecule in the dataset into the 3-domain mfe

structure typical of 5S rRNA, even if many 3-armed

structural topologies are found at higher (unstable) free

energy levels. We therefore selected for further study

approximately one half of the available sequences (666),

which folded into 3-armed mfe structures and were com-

patible with 5S rRNA phylogeny and known 3D crystallo-

graphic models. These sequences represent a comprehen-

sive sampling of molecules in the three superkingdoms of

life (89 Archaea, 168 Bacteria, and 409 Eukarya).

Phylogenetic Characters, Character Coding, and Taxa

Selection

Forty-six structural characters were scored (Table 1).

Character homology was determined by the relative position

of substructures in the secondary structures and coded

character states were based on the length (number of bases

or base pairs) and number of these substructures. Character

states were defined in alphanumerical format with numbers

from 0 to 9 and letters from A to E. Missing substructures

were given the minimum state (0). Partitioned data matrices

were constructed based on taxonomy (Archaea, Bacteria, or

Eukarya) or types of characters (stabilizing characters, i.e.,

stems, or de-stabilizing characters, including bulges, hair-

pins, and other single-stranded regions). The data matrix of

coded characters is provided in Table S1 as Supplementary

Online Material.

Character Argumentation

Structural features were treated as linearly ordered multi-

state characters that were polarized by invoking an evolu-

tionary tendency toward molecular order. The validity of

character argumentation and the use of maximum parsimony

(MP) has been discussed in detail elsewhere (Caetano-

Anollés 2001; 2002a, b; 2005; Sun and Caetano-Anollés

2008a, b, c; Sun et al. 2009). Operationally, polarization was

determined by fixing the direction of character state change

using a transformation sequence that distinguishes ancestral

states as those thermodynamically more stable. Maximum

character states were defined as the ancestral states for stems

and G � U base pairs (i.e., structures stabilizing the 5S

rRNAs). Minimum states (0) were treated as the ancestral

states for bulges, hairpin loops, and other unpaired regions

(i.e., structures de-stabilizing the 5S rRNAs).

Phylogenetic Analysis

All data matrices were analyzed using equally weighted MP

as the optimality criterion in PAUP* (Swofford 2003). Note

that a more realistic weighting scheme should consider for

example the evolutionary rates of change in structural fea-

tures. However, this requires the measurement of evolu-

tionary parameters along individual branches of the tree and

the development of an appropriate quantitative model. In the

absence of this information, it is most parsimonious and
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Fig. 1 General methodological approach of phylogenetic analysis.

The structure of 5S rRNA molecules with its 3 domains (a, b, and c)

and its five helical segments (I–V) can be decomposed into

substructures, such as coaxial stem tracts and unpaired regions that

can be studied using features (characters) that describe molecular

geometry (e.g., length of stems or unpaired regions). These ‘shape’

characters are coded and assigned ‘character states’ according to an

evolutionary model that polarizes character transformation towards an

increase in molecular order (character argumentation). Coded char-

acters (s) are arranged in data matrices, which can be transposed and

subjected to cladistic analyses to generate rooted phylogenies of

either molecules or substructures. Phylogenetic trees of molecules

describe how the structure of entire molecules diversifies. Trees of

substructures describe how substructures in molecules have evolved

and can be used to generate evolutionary heat maps of secondary

structure that color secondary structures with molecular ancestries

derived directly from the trees. Tracing of ancestry information on 3D

structural models provides information on the age of inter- and intra-

molecular contacts that exist in molecular complexes, such as the

ribosome. Helical stems and loops of the secondary structure of 5S

rRNA molecules are portrayed by bars and circles, respectively
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preferable to give equal weight to the relative contribution

of each character. The use of MP (the preference of solutions

that require the least amount of change) is particularly

appropriate and can outperform maximum likelihood (ML)

approaches in certain circumstances (Steel and Penny 2000).

MP is precisely ML when character changes occur with

Table 1 Structural characters

used in the phylogenetic

analyses of 666 5S rRNA

molecules (89 Archaea, 168

Bacteria, and 409 Eukarya).

Characters were scored along

the 50- to 30-end direction of the

molecules. Character states of

these polymorphic characters

are indicated as numbers 0–9

and letters A–F

Mean ± SD are indicated in

parentheses

Characters Character states

1. Number of unpaired bases of 50 free end on arm 1 0–B (0.6 ± 1.2)

2. Number of unpaired bases of 30 free end on arm 1 0–9 (1.6 ± 1.3)

3. Number of stems on arm 1 1–3 (1.1 ± 0.3)

4. Length of stems (number of base pairs) of arm 1 3–D (8.6 ± 1.4)

5. Number of weak G � U pairings on arm 1 0–3 (1.1 ± 0.8)

6. Number of bulges on 50 side on arm 1 0–2 (0.2 ± 0.4)

7. Length of bulges (number of bases) of 50 side on arm 1 0–2 (0.2 ± 0.6)

8. Number of bulges on 30 side on arm 1 0–2 (0.1 ± 0.3)

9. Length of bulges (number of bases) of 30 side on arm 1 0–5 (0.2 ± 0.6)

10. Number of unpaired bases along multiloop A between arm 1 and arm 2 0–9 (4.4 ± 1.5)

11. Number of unpaired bases along multiloop A between arm 2 and arm 5 0–A (1.9 ± 2.2)

12. Number of unpaired bases along multiloop A between arm 5 and arm 1 0–8 (1.3 ± 1.7)

13. Number of stems on arm 2 1–2 (1.1 ± 0.3)

14. Length of stems (number of base pairs) of arm 2 2–C (7.6 ± 1.3)

15. Number of weak G � U pairings on arm 2 0–3 (0.4 ± 0.6)

16. Number of bulges on 50 side on arm 2 0–2 (0.1 ± 0.3)

17. Length of bulges (number of bases) of 50 side on arm 2 0–3 (0.2 ± 0.5)

18. Number of bulges on 30 side on arm 2 0–2 (0.8 ± 0.5)

19. Length of bulges (number of bases) of 30 side on arm 2 0–4 (0.9 ± 0.8)

20. Number of unpaired bases on 50 side of loop B 1–7 (3.3 ± 1.8)

21. Number of unpaired bases on 30 side of loop B 1–8 (4.0 ± 1.9)

22. Number of stems on arm 3 1–4 (2.1 ± 0.7)

23. Length of stems (number of base pairs) of arm 3 4–E (7.8 ± 1.6)

24. Number of weak G � U pairings on arm 3 0–1 (0.3 ± 0.5)

25. Number of bulges on 50 side on arm 3 0–3 (1.1 ± 0.7)

26. Length of bulges (number of bases) of 50 side on arm 3 0–5 (2.0 ± 1.4)

27. Number of bulges on 30 side on arm 3 0–3 (1.6 ± 0.6)

28. Length of bulges (number of bases) of 30 side on arm 3 0–6 (3.1 ± 1.4)

29. Length of hairpin loop (number of bases) of arm 3 (loop C) 3–D (7.3 ± 3.3)

30. Length of hairpin loop (number of bases) of arm 4 (loop D) 4–9 (4.1 ± 0.6)

31. Number of stems on arm 4 1–2 (1.4 ± 0.5)

32. Length of stems (number of base pairs) of arm 4 3–8 (7.3 ± 1.3)

33. Number of weak G � U pairings on arm 4 1–4 (1.5 ± 1.0)

34. Number of bulges on 50 side on arm 4 0–2 (0.9 ± 0.6)

35. Length of bulges (number of bases) of 50 side on arm 4 0–2 (1.0 ± 0.7)

36. Number of bulges on 30 side on arm 4 0–1 (0.4 ± 0.5)

37. Length of bulges (number of bases) of 30 side on arm 4 0–1 (0.5 ± 0.6)

38. Number of unpaired bases on 50 side of loop E 1–8 (4.1 ± 2.1)

39. Number of unpaired bases on 30 side of loop E 1–9 (3.5 ± 1.8)

40. Number of stems on arm 5 1–3 (1.4 ± 0.5)

41. Length of stems (number of base pairs) of arm 5 2–A (6.1 ± 1.8)

42. Number of weak G � U pairings on arm 5 0–2 (1.1 ± 0.7)

43. Number of bulges on 50 side on arm 5 0–2 (0.5 ± 0.5)

44. Length of bulges (number of bases) of 50 side on arm 5 0–6 (0.8 ± 1.1)

45. Number of bulges on 30 side on arm 5 0–2 (0.5 ± 0.5)

46. Length of bulges (number of bases) of 30 side on arm 5 0–4 (0.5 ± 0.7)
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equal probability but rates vary freely between characters in

each branch. This model is useful when there is limited

knowledge about underlying mechanisms linking characters

to each other (Steel and Penny 2000). Furthermore, the use

of large multi-step character state spaces decreases the

likelihood of revisiting a same character state on the

underlying tree, making MP statistically consistent.

Depending on the number of taxa in each matrix, MP tree

reconstructions were sought using either exhaustive,

branch-and-bound, or heuristic search strategies. When the

heuristic search strategy was used, 1,000 heuristic searches

were initiated using random addition starting taxa, with tree

bisection reconnection (TBR) branch swapping and the

MULTREES option selected. One shortest tree was saved from

each search. Hypothetical ancestors were included in the

searches for the most parsimonious trees using the ANC-

STATES command. A ‘‘total evidence’’ approach (Kluge

1989; Kluge and Wolf 1993), also called ‘‘simultaneous

analysis’’ by Nixon and Carpenter (1996), was applied in

phylogenetic analyses to combine both sequence and

structure data of the complete and partitioned matrices.

Sequences were aligned using Clustal X (Jeanmougin et al.

1998) and manually adjusted as necessary. The goal of this

analysis was to provide stronger support for the phyloge-

netic groupings recovered from analyses of structural data.

Bootstrap support (BS) values (Felsenstein 1985) were

calculated from 105 replicate analyses using ‘‘fast’’ stepwise

addition of taxa in PAUP*. The g1 statistic of skewed tree

length distribution calculated from 104 random parsimony

trees was used to assess the amount of nonrandom structure

in the data (Hillis and Huelsenbeck 1992).

Evolutionary relationships derived from trees of sub-

structures were traced in generic 2D and 3D models of 5S

rRNA secondary structure that we here call evolutionary

heat maps of ancestry. Because reconstructed trees were

intrinsically rooted, we established the relative age (ances-

try) of each substructure by measuring a distance in nodes

from the hypothetical ancestral substructure on a relative 0–

1 scale (node distance, nd). To do this, we used a PERL script

that counts the number of nodes from the base of the tree to

its leaves and divides this number by the maximum number

of nodes that is possible in a lineage of the tree (Caetano-

Anollés 2002b). Ancestry values were divided in classes,

giving them individual hues in a color scale that was then

used to color substructures in a generic 3-domain secondary

structure model of 5S rRNAs or 3D crystallographic models.

Phylogenomic Analysis of Protein Architecture

A census of the genomic sequence of 584 organisms,

including 46 Archaea, 397 Bacteria, and 141 Eukarya,

assigned protein structural domains corresponding to 1,453-

fold superfamilies to protein sequences using advanced

linear hidden Markov models of structural recognition in

SUPERFAMILY and a probability cutoff E of 10-4. Fold

superfamilies were defined according to the STRUCTURAL

CLASSIFICATION OF PROTEINS (version 1.69; Murzin et al.

1995). The census was used to build data matrices of

genomic abundance of domains, which were coded as lin-

early ordered multistate phylogenetic characters. Data

matrices were used to build universal trees of protein

architectures with established methodology (Caetano-A-

nollés and Caetano-Anollés 2003). The reconstruction of

these large trees is computationally hard and their visuali-

zation challenging. We used a combined parsimony ratchet

(PR) and iterative search approach to facilitate tree recon-

struction (Wang and Caetano-Anollés 2009). A recent

review summarizes the general approach and the progres-

sion of census data and tree reconstruction in recent years

(Caetano-Anollés et al. 2009). The ages of individual

domains were given as nd values and were derived directly

from the tree of architectures.

Results

Phylogenetic Trees of 5S rRNA Molecules

Phylogenetic analysis of combined structure and sequence

data of 666 5S rRNA molecules resulted in 10,000 preset

MP trees, each of 11,481 steps. The strict consensus of these

trees of molecules showed that superkingdoms Bacteria and

Eukarya were both monophyletic and sister to each other,

while Archaea was paraphyletic and basal in the tree (Fig. 2;

Fig. S1). We re-run the analysis with structure characters

treated as linearly ordered but non-polarized (excluding the

hypothetical ancestor in the search). The resulting unrooted

trees recovered the monophyly of each of the three super-

kingdoms of life. The topology of many branches was

congruent with trees derived from structure or sequence

separately (see below). BS values were generally low

(\50%) in deep branches of the tree, but many branches

closer to the leaves were supported by high bootstrap values.

This is an expected result given the size of these trees.

Phylogenetic reconstructions of trees of molecules

derived from either sequence or structure showed distinct

phylogenetic signal in these datasets (Fig. S2). Phylogenetic

analysis of sequence data resulted in 10,000 preset unrooted

MP trees each of 4,909 steps. The strict consensus of these

trees revealed the three superkingdoms. BS values were

generally low (\50%), but many branches that were close to

the leaves were well supported. Phylogenetic analysis of

structural characters resulted in 10,000 preset MP trees each

of 4,905 steps. The strict consensus of these trees did not

show the three superkingdoms being monophyletic. Instead,

a paraphyletic group containing 14 archaeal taxa, including

434 J Mol Evol (2009) 69:430–443
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Thermococcus (2), Pyrococcus (5), Sulfurococcus (1),

Sulfolobus (5), and Desulfurococcus (1), was found at basal

positions. The other archaeal taxa were found in a largely

unresolved clade. Again, BS values were generally low

(\50%) in basal branches, while values were higher closer

to the leaves of the tree.

Data matrices of sequence, structure, or combined

sequence and structure data were partitioned according to

superkingdoms (89 Archaea, 168 Bacteria, or 409 Eukarya).

Strict consensus trees showed phylogenetic relationships of

taxa were largely maintained in each superkingdom.

Statistics of these trees are described in Table S2 and trees

can be retrieved from the MANET database (http://manet.

illinois.edu). Two partitioned data matrices based on stabi-

lizing (stems and G � U pairs) or de-stabilizing characters

(single strands, hairpins, bulges, and multiloops) were also

generated but resulted in incongruent phylogenies, indicat-

ing that these two types of structures contain different his-

tories and phylogenetic signals. Overall, trees derived from

de-stabilizing characters were more resolved than those

derived from stabilizing characters. However, the incon-

gruent nodes were all weakly supported (BS \ 50%) and

the relationships of many groups close to the leaves of the

tree were generally congruent. Statistics of these trees are

described in Table S3 and trees can be retrieved from

MANET. Finally, neighbor-joining (NJ) trees were also

generally congruent with those derived from MP analyses;

so were trees derived from the data matrices partitioned

according to superkingdom.

Phylogenetic Trees of 5S rRNA Substructures

Phylogenetic trees of substructures were reconstructed from

geometrical characters describing the complete 5S rRNA

dataset (Fig. 3). The tree of stem substructures revealed S1

was the most basal helical segment, followed in order by S3,

S2, and S5 and S4. Because RNA structures are defined by a

frustrated conformational interplay of stems and loops, this

tree of helical stems defines the fundamental scaffold of

structural evolution of the entire molecule. Consequently,

structural diversification of related substructures had to

occur once individual supporting secondary structures had

developed. Analyses of G � U pairs placed GU4 at the base of

the tree, followed in order by GU1, GU5, and GU2 and GU3.

This pattern of G � U pairs was also revealed by phylogenetic

analyses of datasets partitioned according to superkingdom

(Fig. S3). Analyses of bulges and unpaired regions com-

plemented information derived from other substructures.

Remarkably, the 50 free end was the most ancient unpaired

substructure, while the 30 free end was derived. Phylogenetic

analyses of stem substructures derived from partitioned

datasets of Bacteria and Eukarya 5S rRNAs, respectively,

revealed the same topology as that derived from the complete

dataset (Fig. 4). However, the tree of stem substructures

derived from the partitioned matrix of 89 Archaea 5S rRNAs

showed that stem S5 predated S2. Statistics of partitioned

analysis is given in Table S3, and the complete set of trees of

substructures is shown in Fig. S3.

The Age of Ribosomal Proteins Associated with

5S rRNA

In order to study the evolution of the ribosomal protein

complement that associates with 5S rRNA, we established

A
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a
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a
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a

Fig. 2 A global phylogenetic

tree of 5S rRNA molecules

reconstructed from sequence

and structure. MP analysis of

data from 666 5S rRNA

molecules found in

superkingdoms Archaea,

Bacteria, and Eukarya resulted

in 10,000 preset trees, each of

11,481 steps. Consistency index

(CI) = 0.074 and 0.072, with

and without uninformative

characters, respectively;

Retention index (RI) = 0.772;

Rescaled consistency index

(RC) = 0.057; g1 = -0.131.

Terminal leaves are not labeled

since they would not be legible

(see Fig. S1 for a tree with

labeled taxa). Nodes labeled

with closed circles have BS

values [50%
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the age of individual proteins by tracing their ancestries in

a global phylogeny of protein architectures that was

reconstructed from a genomic census of protein domain

structures in 584 completely sequenced organisms (Caet-

ano-Anollés et al. 2009). This tree describes the history of

1,453 domains defined at fold superfamily level (Fig. S4).
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Fig. 3 Phylogenetic trees of

molecular substructures

reconstructed from characters

describing the geometry of

structure in 5S rRNAs. Trees of

substructures describe the

evolution of stems (S) (7,355

steps; CI = 0.869; RI = 0.570;

RC = 0.495; g1 = -0.861),

bulges (B) (4,455 steps;

CI = 0.791; RI = 0.536;

RC = 0.424; g1 = -0.418), 50

and 30 bulge sections of the

molecules (B) (3,183 steps;

CI = 0.692; RI = 0.713;

RC = 0.494; g1 = -1.419),

loops and free ends (4,626 steps;

CI = 0.635; RI = 0.685;

RC = 0.435; g1 = -0.522),

and G � U pairs (GU) (3,158

steps; CI = 0.837; RI = 0.630;

RC = 0.528; g1 = -0.915).

One minimal-length tree was

retained in each case using

exhaustive searches derived

from equally weighted MP

analyses. Bootstrap values

[50% are shown for individual

nodes. Evolutionary heat maps

of secondary structure describe

inferences of structural

evolution derived directly from

the trees. The relative scale

describes the number of nodes

from the hypothetical ancestor

at the base of the tree
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The age of fundamental 5S rRNA-linked domains ranged

from nd = 0.236 for the translation proteins SH3-like

domain (b.34.5) typical of ribosomal protein L21e to

nd = 0.328 for the ribosomal protein L5 domain (d.77.1)

typical of ribosomal protein L10e. All domain architectures

of ribosomal proteins originated during the architectural

diversification epoch of the protein world (Wang et al.

2007; Caetano-Anollés et al. 2009). The evolution of 5S

rRNA-associated proteins was finally traced on 2D or 3D

representations of the 5S rRNA ensemble (Fig. 5). This

helped to identify how the history of the 5S rRNA mole-

cule related to the discovery of function and its interactions

with protein molecules as the shape of the molecule and its

structural domains changed in evolution.

Discussion

An Archaeal Rooting of the Universal Tree of Life

It is now generally accepted that the world of cellular

organisms is tripartite and consists of superkingdoms Ar-

chaea, Bacteria, and Eukarya. This view, heralded by the

school of Carl Woese in Urbana (Woese et al. 1990), is

fundamentally derived from the study of the small subunit

of rRNA, an ancient ribosomal molecule that is central to

translation. Recent advances in genomic biology have also

revealed this tripartite scheme. Phylogenetic analysis of the

content and order of genes and the structure of gene

products (nucleic acid and protein molecules) uncovered

the existence of only three cellular superkingdoms (Doo-

little 2005; Caetano-Anollés et al. 2009). However, the root

of the universal tree remains controversial and so is the

nature of the universal ancestor of all life that this root
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defines (Woese 1998; Penny and Poole 1999; Glansdorff

et al. 2008; Forterre 2009).

Although 5S rRNA sequences have been used to study

phylogenetic relationships between organisms at various

levels of taxonomical classification, its utility at super-

kingdom level has been curtailed by the limited phyloge-

netic signal that is present in the short nucleic acid

sequence of these molecules. Furthermore, phylogenetic

trees reconstructed from 5S rRNA sequence can only be

rooted by inclusion of outgroup taxa, i.e., external

hypotheses of relationship, when these can be found. In

contrast, analysis of structure has generally deep phylo-

genetic signal and produces intrinsically rooted trees that

can be used to root the universal tree of life (Caetano-

Anollés 2002a; Sun and Caetano-Anollés 2008b). In this

study, we applied the total evidence approach to combine

sequence and structural data in 5S rRNA molecules and

infer a universal tree. Remarkably, this tree is rooted pa-

raphyletically in Archaea, and shows that both Bacteria and

Eukarya are monophyletic and derived (Fig. 2). Interest-

ingly, a paraphyletic archaeal root of the tree of life has

also been suggested by studies of tRNA paralogs (aloac-

ceptors) and other evidence (Xue et al. 2003, 2005; Di

Giulio 2007; Wong et al. 2007), tRNA and ribonuclease P

(RNase P) structure (Sun and Caetano-Anollés 2008b;

F.-J. Sun and G. Caetano-Anollés, unpublished), and phy-

logenomic studies of protein domains (Wang et al. 2007)

and protein domain organization at fold and fold super-

family levels (Wang and Caetano-Anollés 2006, 2009).

While the canonical view is that the root of the tree of life

lies between the Bacteria and the Archaea, with eukaryotes

represented as a long-branched sister group to the Archaea

(Brown and Doolittle 1995; Gribaldo and Cammarano

1998; Zhaxybayeva et al. 2005), our results provide addi-

tional support to already compelling arguments in favor of

the early appearance of Archaea in a diversified world.

These arguments are based on an analysis of entire protein

repertoires and ancient RNA molecules.

Why is the rooting in Archaea paraphyletic? At first

glance, paraphyly could result from loss of phylogenetic

signal in the secondary structure of 5S rRNA, or from

primordial homoplasy-enhancing processes operating dur-

ing evolutionary stages prior to the differentiation of the

three superkingdoms. However, a more plausible expla-

nation, given that global analyses of protein domains and

several non-coding RNA molecules congruently support

archaeal paraphyly, is that early diversification of an eu-

karyal-like communal ancestor involved spatial coloniza-

tion of unchartered environments unique to the individual

primordial lineages. This divergence-by-isolation scenario

is particularly plausible close to deep vents in an ancient

auxinic ocean, where diverse and more demanding envi-

ronments were up for grabs. Molecules that were

discovered during these early times (e.g., ancient protein

domains and tRNA, RNase P, and rRNA molecules) wit-

nessed these processes and recorded their history. This

probably occurred before primordial lineages widely ven-

tured into oceans and other environs, processes of pri-

mordial lineage homogenization (horizontal transfer,

recruitment, etc.) erased unique signals in these ancient

molecules, and new molecules and protein architectures

established themselves on the evolving primordial world.

We note that we have identified three epochs in evolution

(Wang et al. 2007; Sun and Caetano-Anollés 2008b), (i) an

early architectural diversification epoch in which ancient

molecules (including 5S rRNA) emerged and diversified,

(ii) a superkingdom specification epoch in which these

molecules sorted in emerging archaeal and eukaryal-like

lineages, and (iii) an organismal diversification epoch in

which increasing numbers of lineage-specific variants of

already existing molecules and new molecules and archi-

tectures appeared in an increasingly diversified tripartite

world. We contend these epochs have left indelible sig-

natures in the make up of ancient molecules such as 5S

rRNA. As we will show below, trees of substructures

recover a historical timeline that is buried in the structure

of the RNA molecule and provides clues on early organ-

ismal diversification.

Origin and Evolution of the 5S rRNA Molecule

Phylogenetic trees of substructures revealed clear patterns

of evolutionary diversification in the structure of 5S rRNA

molecules (Fig. 3). These patterns were summarized in

consensus 2D and 3D evolutionary heat maps (Fig. 5A, B)

and allowed elaboration of a model for the origin and

evolution of 5S rRNA (Fig. 6). This model considers that

the modern 3-domain 5S rRNA structure evolved by

gradual addition to the growing molecule of structural

components (homologous to present day helical and

unpaired regions), either by insertion of single or multiple

nucleotides or by partial or total duplications. Several

salient features are noteworthy:

1. The tree of stem substructures showed that helix I (S1)

was the most ancient helical segment of 5S rRNA and

that it was evolutionarily linked to a 50-terminal free

end. The evolutionary importance of these primordial

hairpin structures was originally proposed for tRNA

(Bloch et al. 1985; Di Giulio 1992; Dick and Schamel

1995; Eigen and Winkler-Oswatitsch 1981; Hopfield

1978; Tanaka and Kikuchi 2001; Widmann et al. 2005;

Woese 1969) and was later emphasized by the

genomic tag hypothesis (Weiner and Maizels 1987;

Maizels and Weiner 1994). Its significance is also

highlighted by recent molecular evolution studies of
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tRNA (Sun and Caetano-Anollés 2008a) and SINE

RNA (Sun et al. 2007), and two undergoing studies

that focus on the entire ribosome and RNase P

complexes (A. Harish, F.-J. Sun, G. Caetano-Anollés,

unpublished). These studies demonstrate that all of

these molecules may be modern derivatives of a

primitive hairpin structure that probably harbored a

multitude of non-specific structural and catalytic

functions. Since these primordial structures currently

associate with very ancient protein domains, present

for example in aminoacyl tRNA synthases, ribosomal

proteins, and RNase P proteins (Caetano-Anollés et al.

2009; A. Harish, F.-J. Sun, and G. Caetano-Anollés,

unpublished; see analysis of proteins associated with

S1 below), these associations could have been oper-

ating very early in an ancient ribonucleoprotein world.

Alternatively, these hairpins could have acted alone,

with proteins interactions appearing later in evolution

perhaps to enhance the specificity of the original

function.

2. Diversification of unpaired regions (e.g., bulges and

loops) somehow followed the growth of stems in the

evolving molecule, with the 50-terminal free end being

the most ancient and the 30-terminal free end being

more derived. Remarkably, these same patterns were

observed in the evolution of tRNA (Sun and Caetano-

Anollés 2008a). Its 50-terminal end was the most

ancient unpaired region, while its 30-terminal sequence

(including the CCA terminus) was added after the

entire cloverleaf structure was formed. This observa-

tion is important as it matches statistical analyses of

tRNA sequences (Tanaka and Kikuchi 2001). In the

case of tRNA, it also suggests an evolutionary timing

for the establishment of tRNA interactions with CCA-

adding enzymes. The fact that tRNA and 5S rRNA

share this same evolutionary pattern is more than a

coincidence and merits future investigation.

3. Phylogenetic trees suggest the use of weak G � U base

pairs in stem regions of the 5S rRNA molecule

occurred only after the 3-domain structure was fully

realized in evolution (Fig. 3). Consequently, non-

canonical base-pairing interactions represent structural

features that were introduced late in evolution, prob-

ably to help stabilize helical structures. A similar

pattern was also observed in the analysis of tRNA

molecules (Sun and Caetano-Anollés 2008a). Interest-

ingly, the most ancient G � U substructures in rRNA

were associated with S4 and S1 (Fig. 3), helical

structures that are unique because they have tandem

G � U motifs that stack guanosines (e.g., Gautheret

et al. 1995) or stabilize water interactions and mediate

nucleotide interactions necessary for helix stability

(Betzel et al. 1994).

4. Addition of stem substructures to the evolving mole-

cule was different for Archaea than for Eukarya and

Bacteria when analyzing data matrices partitioned

according to superkingdom (Fig. 4). Stem S1 was

followed by S3 and S5 (in that order) in trees derived

from archaeal substructures, while S1 was followed by

S3 and S2 (in that order) in trees reconstructed from

bacterial or eukaryal molecules. This suggests that

primordial 5S rRNA segments homologous to helices I

and III extended their helical structure by stacking an

additional helical segment (helix II) in the lineage

leading to ancestors of Bacteria and Eukarya or added
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a segment homologous to helix V to produce a

branched structure in ancestors of Archaea (Fig. 6).

The early generation of a 3-domain structure in the

archaeal lineage at the onset of organismal diversifi-

cation is remarkable and has important implications.

When combined with the basal placement of Archaea

in the tree of 5S rRNA molecules (Fig. 2), it suggests

an early split of the archaeal lineage, which is

compatible with a comprehensive analysis of sequence

and structure of the tRNA molecule that supports the

ancestrality of Archaea (Sun and Caetano-Anollés

2008b), and whole-genome analysis of complements

of protein domains and domain combinations that

suggest an early split of the archaeal lineage from a

architecture-rich communal world (Wang et al. 2007;

Wang and Caetano-Anollés 2009). This primordial

split is linked to reductive evolutionary tendencies in

the make up of archaeal (and then bacterial) genomes

that were protracted and ultimately led to the three

superkingdoms of life (Wang et al. 2007).

It is particularly noteworthy that the evolutionary history

of the tRNA cloverleaf structure also exhibits two distinct

evolutionary routes, one delimiting Archaea and the other

superkingdoms Bacteria and Eukarya (Sun and Caetano-

Anollés 2008a). A similar pattern was also obtained in an

ongoing analysis of RNase P RNA (F.-J. Sun and G.

Caetano-Anollés, unpublished). In phylogenetic analysis,

congruence provides the strongest support that is possible

to an evolutionary hypothesis, especially when congruent

phylogenetic reconstructions are derived from different

kinds of molecular evidence. The fact that now three dis-

tinct and ancient RNA molecules produce congruent evo-

lutionary patterns suggests strongly an early rooting of the

universal tree of life in Archaea.

Evolution of 5S rRNA Interactions with Ribosomal

Proteins and Other Molecules

Protein–RNA interactions are fundamental for the assem-

bly and function of the ribosomal ensemble. 5S rRNA is

the only known rRNA species that binds ribosomal proteins

before it is incorporated into the ribosome both in pro-

karyotes and eukaryotes (Szymanski et al. 2003; Smirnov

et al. 2008). Central interactions include contacts to

eukaryotic ribosomal protein L18, and proteins L5, L18,

and L25 in bacteria. The molecule also interacts with non-

ribosomal proteins such as the transcription initiator

TFIIIA, HSP70, and p43 (Szymanski et al. 2003). Figure 5

describes fundamental RNA–protein interactions, with

some interactions traced in a 3D model of structure.

In order to determine when protein–RNA contacts were

established in evolution, we timed the appearance of the

3D structure of 5S rRNA-associated ribosomal protein

molecules in a tree of protein architectures (Fig. S4)

derived from phylogenomic analysis of domain structure at

fold superfamily level of structural classification (Caetano-

Anollés et al. 2009). A timeline of domain discovery was

obtained directly from the tree of domain structure and the

age of each domain was given as the number of nodes from

the base of the tree in a relative 0–1 scale (node distance,

nd), with 0 representing the first domain architecture that

originated in the protein world. These timelines are useful.

They have been used recently to establish how functions

were discovered in evolution of proteins (Caetano-Anollés

et al. 2009) or how domain combinations establish in the

protein world (Wang and Caetano-Anollés 2009).

Interestingly, the most ancient 5S rRNA-associated

protein domain, the translations protein SH3-like domain

(b.34.5) present in ribosomal protein L21e of the archaeal

molecule (Fig. 5C), appeared quite early in the evolution of

proteins (nd = 0.236), but rather late during the ‘archi-

tectural diversification’ epoch defined by Wang et al.

(2007). This domain associates with helix I (stem S1), the

most ancient segment of 5S rRNA molecule. The second

most ancient 5S rRNA-associated protein domain was the

translational machinery components domain (c.55.4) of

ribosomal protein L18 (nd = 0.287). Remarkably, this

domain associates with helix III (S3), the second most

ancient RNA substructure. Domains associated with more

derived helices in the 5S rRNA molecule (d.59.1, d.41.4,

and d.77.1) and present in ribosomal proteins L30, L10e,

and L5, were all more derived (nd = 0.301–0.328), but

closely related in age. This tight relationship between the

age of 5S rRNA helices derived from analysis of RNA

structure (Fig. 3) and the age of ribosomal proteins

obtained from a census of domains in proteomes (Fig. S4)

is highly significant (see inset of Fig. 5A). First, it estab-

lishes that the 5S rRNA molecule originated quite late in

evolution, at a time (nd * 0.2) when metabolic enzymes

(Caetano-Anollés et al. 2007) and translation machinery

(Caetano-Anollés et al. 2009; A. Harish and G. Caetano-

Anollés, unpublished) were already in place in the protein

world. Second, it shows that the development of the 5S

rRNA molecule occurred within a relative short time frame

(0.1 nd). Third, it supports the gradual growth of 5S rRNA

by addition of helical structural components to the mole-

cule and the model of structural evolution we have pro-

posed (Fig. 6).

Other 5S rRNA-associated domains linked to proteins

known to be important for ribosomal function were either

more ancient (e.g., p43; b.40.4; nd = 0.019), similar in age

to main fundamental ribosomal proteins (e.g., HSP70;

b.130.1; nd = 0.347), or more derived, appearing during

the ‘organismal diversification’ epoch (e.g., TFIIIA; g.37.1;

nd = 0.986) (Fig. S4). For example, the contemporary heat-
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shock HSP70 binds transiently to 5S rRNA and promotes

correct folding of the polypeptide chain (Okada et al. 2000).

TFIIIA is involved in initiation of 5S rRNA transcription

and forms a 7S RNP complex with the molecule that is

exported from the nucleus to the cytoplasm in eukaryotes

(Szymanski et al. 2003). The complex acts as a storage

particle for 5S rRNA until it is required for ribosomal

assembly. Interestingly, protein markers for the nuclear

envelope involve proteins (e.g., constituents of the nuclear

pore complex) that appeared very late in evolution

(nd = 0.82–1.00) (Caetano-Anollés et al. 2009), suggesting

they are contemporary to TFIIIA. In amphibian oocytes, 5S

rRNA is also stored in larger 42S RNP particles called

‘‘thesaurisomes’’. Thesaurin b (p43) is an ancient nine-zinc-

finger protein component of this complex that shares with

TFIIIA RNA-binding activity. Finger-swapping experi-

ments have shown zinc fingers can be exchanged between

these proteins without affecting RNA binding (Hamilton

et al. 2001). When coupled with our evolutionary genomic

analyses, these results suggest recruitment of ancient and

use of new domain architectures has enhanced the func-

tional role of the 5S rRNA complex in evolution.

Although most of free energy and specificity of 5S RNA

binding to the large ribosomal subunit depend on extensive

interactions with proteins, few RNA–RNA interactions do

occur and involve the backbones of helical domain c (stems

S4 and S5) (Ban et al. 2000). Our study shows these sub-

structures are derived in the molecule, suggesting 5S rRNA

was a late evolutionary addition to the ribosomal ensemble.

This is especially so because many ribosomal proteins

associated with the small and large subunits of the ribo-

some are more ancient than the ones here described

(Fig. 5), supporting the contention that the 5S rRNA

component is indeed derived.

Conclusions

The cladistic method used in this study embeds structure

directly in phylogenetic analysis and generates intrinsically

rooted phylogenies without the need of outgroups. We have

exemplified the potential of this novel phylogenetic

approach by focusing on several fundamental molecules

that are functionally linked to protein synthesis (reviewed

in Sun et al. 2009). The evolutionary analyses of these

molecules provide novel insights into important questions

surrounding the emergence of cellular life and the origins

and evolution of the protein biosynthetic machinery. Here

we unveil patterns of origin and diversification in the

molecular history of 5S RNA, a molecule that forms a

small complex that is at the center of ribosomal assembly

and function. Because trees of life generated from these

non-coding RNA molecules establish evolution’s arrow, it

becomes possible to identify the location of the root on the

tree of life. We here show that a common topology

emerges from phylogenetic analysis of 5S rRNA that is

congruent with topologies generated from other modern

RNA molecules and phylogenomic analysis of proteomes.

This topology indicates Archaea is the most ancient lineage

on Earth. This result is important because the root of the

tree of life has been debated over decades, with contro-

versy largely stemming from the various rooting approa-

ches that have been used and the alternative evolutionary

scenarios that had been derived (Forterre 2009). We

anticipate future studies of molecular structure will focus

on all kinds of RNAs, clarifying further questions sur-

rounding origins of modern biochemistry and diversified

life. Phylogenetic analyses of molecular structure will also

impact the study of function and structure of RNA in

interaction with protein molecules, as these are placed

within an evolutionary context. Together with evidence

derived from molecular, genetic, and biochemical studies,

evolutionary insights will enhance our understanding of

biological functions and how these are linked to mecha-

nisms embodied in molecular repertoires.
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