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Abstract In 2005, Wyckoff and coworkers described a

surprisingly strong correlation between Ka/Ks and Ks in

several data sets using the LPB93 algorithm. This finding

indicated the possibility of a paradigm shift in the way

selection strength can be measured using the Ka/Ks ratio.

We carried out a calculation of Ka and Ks using six dif-

ferent algorithms on three cross-species orthologous data

sets and found a highly variable correlation among the

algorithms and lineages. Algorithms based on the

GY-HKY substitution model exhibit a weaker positive

correlation or a stronger negative correlation than those

based on the K2P and JC69 substitution model. Even if one

algorithm shows a positive correlation between Ka/Ks and

Ks in a warm-blooded lineage, it may show no correlation

in a cold-blooded lineage. This algorithm-related and

evolutionary lineage-related correlation indicates the need

for great caution in drawing conclusions when using only

one Ka and Ks algorithm in a genomewide analysis ofJun Li, Zhang Zhang and Søren Vang contributed equally to this work.
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selection strength. Our results indicated that currently used

algorithms for Ka and Ks calculations are flawed and need

improvements.

Keywords Ka/Ks � Substitution model �
Evolutionary lineage related

Introduction

The nonsynonymous substitution rate (Ka), the synony-

mous substitution rate (Ks), and their ratio (Ka/Ks;

sometimes termed dN/dS) are commonly used to aid in

understanding the direction of evolution and its selective

strength in a coding sequence (Fay and Wu 2001; Kimura

1983; Li 1997; Nei and Kumar 2000; Ohta 1995; Yang and

Bielawski 2000). Ka/Ks [ 1 indicates a positive selection,

Ka/Ks \1 indicates a negative selection, and Ka/Ks &1

indicates a neutral evolution.

A recent study described a surprisingly strong positive

correlation between Ka/Ks and Ks in several data sets

using the LPB93 algorithm (Wyckoff et al. 2005). This

finding indicated the possibility of a paradigm shift in the

way selection strength can be measured using the Ka/Ks

ratio. The authors proposed that the Ka/Ks value reflects

not only selective strength but also neutral mutation rate. A

later study (Liao and Zhang 2006) did not show a strong

correlation between Ka/Ks and Ks within mammalian

orthologues using PAML and suggests that the correlation

might be sensitive to the method or substitution model

used.

Algorithms for estimating Ka and Ks normally involve

three steps: counting the number of synonymous and

nonsynonymous sites, counting the numbers of synony-

mous and nonsynonymous substitutions, and correcting for

multiple substitutions (Yang and Nielsen 2000). These

algorithms adopt different substitution or mutation models

based on different assumptions that take various sequence

features into account: this gives rise to varied estimates of

evolutionary distance (Muse 1996). Thus, the estimation of

Ka and Ks is sensitive to the underlying assumptions or

mutation models (Zhang and Jun 2006).

Table 1 provides details on the characteristics of sev-

eral of these types of algorithms, how their authors

Table 1 Characteristics and application of commonly used KaKs algorithms

Method Ti/Tva Codon/

nucleotide

frequencies

Evaluation method Applied to

genome project
Sites Substitutions Computer simulation Real data

NG86 No No No Use nucleotide frequencies from

pseudogenes and test for a specific

case for purifying selection with

Ka/Ks = 0.2

Globin genes (human

b vs. rabbit b, human b vs.

chicken b, human b vs.

human a1)

Mycobacterium
avium,
Tetrahymena
thermophila,
Plasmodium
yoelii yoelii

LWL85 No Yesa No – 40 genes from mammals

(human, rodents, and

artiodactyls)

Betaherpesvirinae 6B

LPB93 Yes Yes No – 14 pairs of mouse and rat

genes, 45 genes from human

and mouse

Plasmodium vivax,
Rickettsia

GY94 Yes Yes Yes – All pairwise comparisons of

mammalian a- and b-globin

genes

Pan troglodytes,
Canis familiaris

YN00 Yes Yes Yes Consider effects of codon frequencies,

transition/transversion rate ratio,

divergence time, and sequence

length, respectively

Concatenated sequences of

the 12 protein-coding genes

on the H-strand of the

mitochondrial genome from

human and orangutan

Mus musculus, Rattus
norvegicus

MYN Yesb Yesb Yes Consider effects of codon frequencies,

two ratios of transitional rates between

purines and between pyrimidines over

the transversional rate, divergence

time, and sequence length, respectively

Concatenated sequences on three

genome-wide orthologous data

sets (human-mouse, human-

dog, mouse-rat)

a Ti/Tv (transition/transversion) has a stronger influence on the number of sites than do substitutions. In general, the number of substitutions is

less than that of the total number of sites, which results in similar trends between NG86 and LWL85 (as shown in Fig. 1)
b MYN considers unequal transition/transversion rate ratios, stemming from the assumption of different transitional rates between purines and

between pyrimidines
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evaluated them, and to which genome projects they were

applied. The NG86 algorithm (Nei and Gojobori 1986),

based on the Jukes–Cantor model (JC69; Jukes and

Cantor1969), assumes substitutions with equal frequency

and considers different evolutionary pathways between

pairwise sequences. In contrast, the LWL85 algorithm

(Li et al. 1985) introduces nondegenerate, twofold

degenerate, and fourfold degenerate sites to count sites

and substitutions, which is based on the two-parameter

model of Kimura (K2P; Kimura 1980). Although K2P is

used for correction of multiple substitutions, the LWL85

algorithm allows for different rates between transitions

and transversions only by counting substitutions and

considers that twofold degenerate sites are one-third

synonymous and two-thirds nonsynonymous. In compar-

ison with the LWL85 algorithm, LPB93 (Li 1993) takes

into account such bias by counting sites, and the differ-

ences between the LWL85 and the LPB93 algorithms

mainly focus on their Ka and Ks formulas. The GY94

algorithm (Goldman and Yang 1994) is a maximum-

likelihood method that adopts a codon-based model

(GY-HKY) considering more features of DNA sequence

evolution, e.g., transition/transversion rate bias and

nucleotide/codon frequency bias. The YN00 algorithm

(Yang and Nielsen 2000) is a simplified version of the

GY94 algorithm (Hasegawa et al. 1985) and gives a close

approximation of this more time-consuming maximum-

likelihood method. The MYN algorithm (Zhang et al.

2006) is a modification of YN00 and adopts the Tamura/

Nei (1993) model, which considers unequal transitional

rates between purines and pyrimidines, as well as con-

sidering transversional rate and nucleotide (codon)

frequencies. Beside these methods, Ina’s (1995) method

and the modified NG method (Zhang et al. 1998) are also

frequently used. Ina’s method does not partition sites

according to site degeneracy. However, it takes into

account the transition/transversion rate bias by counting

synonymous and nonsynonymous sites in proportion to

synonymous and nonsynonymous substitution rates. The

modified NG method considers the transition/transversion

rate bias and estimates the number of synonymous and

nonsynonymous site with the K2P model.

Most of these algorithms were introduced and evaluated

using either simulated or small-scale real data (Table 1)

but, as yet, have not been evaluated in a large-scale, gen-

ome-wide evaluation of real data. In this report, we show

that there is a highly variable correlation among the above

six Ka and Ks algorithms in calculations on three complete

orthologue data sets. Our results indicate that the correla-

tion between Ka/Ks and Ks is affected not only by the

algorithms used, but also by different evolutionary lineages

of the DNA sequences analyzed.

Data and Methods

Orthologue Data and Alignment

To define the orthologue genes and the alignments of

human-mouse and mouse-rat, we retrieved orthologous

gene data from NCBI Homologueene database (ftp://ftp.

ncbi.nih.gov/pub/HomoloGene/; version 44.1) and all

sequences of the Refseq data from the NCBI genome (ftp://

ftp.ncbi.nih.gov/genomes/). Refseq orthologues in a one-

to-many or many-to-many relationship were excluded to

avoid creating ambiguous orthologue pairs. A total of

15,065 and 14,198 orthologous pairs, respectively, were

defined for human-mouse and mouse-rat; 15,743 fugu-tet-

raodon one-to-one orthologue relationships were defined

using the InParanoid database (http://inparanoid.cgb.ki.se).

Each pair of orthologous proteins was aligned using the

blastp program in the NCBI BLAST2 package and their

final nucleotide alignment for the Ka and Ks calculation

was created according to the protein alignment.

Calculation of Ka, Ks, and Divergence

The NG86, LWL85, LPB93, GY94, YN00, and MYN

algorithms, implemented in KaKs_Calculator (Zhang

Zhang 2006), were used on all data sets to calculate Ka and

Ks. For GY94 we used an F3x4 codon frequency model

and default values for other parameters. Model weight was

also calculated using KaKs_Calculator. Divergence (D)

between orthologue pairs was calculated according to the

proportion distance (p-distance) of each orthologue at the

nucleotide level.

Computer Simulation Method

We used the simulation program evolver in PAML (Phylo-

genetic Analysis by Maximum Likelihood [Yang 2007];

available at: http://abacus.gene.ucl.ac.uk/software/paml.html)

to get simulation data. All evolution parameters were

extracted from human-mouse orthologue alignments in this

study. Codon usage was extracted from human Refseq.

Transition/transversion rate (average value, 3.820), Ka/Ks

(average value, 0.182 and 0.136 for LPB93 and YN00,

respectively), and substitution rate t (average value, 0.589

and 0.657 for LPB93 and YN00, respectively) were extracted

from each pair of human-mouse orthologue pairs in this

study. The average nucleotide frequencies are 0.257, 0.219,

0.260, and 0.264 for A, T, C, and G, respectively. The codon

frequency used for simulation can be found at http://

evolution.genomics.org.cn/dNdS_corre/human.codon-usage.

Each simulated orthologue pair was assigned a series of
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parameters, including Ka/Ks, transition/transversion rate, and

t, from its trained parameters and then evolved using the

GY-HKY and K2P substitution model.

Orthologue Filtering Method

After calculating divergence (D), the orthologue pairs with

the largest divergence (upper 5%) were also removed to

prevent inaccurate or ambiguously-defined alignments.

After cleaning, there were a total of 14,311, 13,488, and

14,954 orthologue pairs defined for human-mouse, mouse-

rat, and fugu-tetraodon, respectively.

Statistical Methods

GSL (GNU Scientific Library, www.gnu.org/software/gsl/)

was used for statistical analyses with standard C.

Results

The Algorithm and its Underlying Substitution Model

Impact Ka/Ks, Ks, and the Correlation Between Ka/Ks

and Ks

We first used the six algorithms (NG86, LWL85, LPB93,

GY94, YN00, and MYN) to assess the correlation between

Ka/Ks and Ks in three vertebrate cross-species orthologues

(Fig. 1a–c). The data show that these analyses provide

different degrees of correlation between Ka/Ks and Ks.

After calculating t-values for each case with H0: r = 0 (r is

the correlation coefficient), we calculate p-values for each

case under a t distribution (Bernstein 1999). To make the

original distribution of Ka/Ks vs Ks easily observable, we

randomly selected 2000 original points with the YN00

algorithm for the fugu-tetraodon lineage (Fig. 1d), which

shows a distinct correlation when Ks is low.
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Fig. 1 Correlation between Ka/Ks and Ks for six different

algorithms on three orthologue data sets. a Orthologues (15,065) of

human-mouse with average Ks values of 0.610 (NG86), 0.606

(LWL85), 0.496 (LPB93), 0.748 (GY94), 0.755 (YN00), and 0.798

(MYN). Average Ka/Ks ratios are 0.136 (NG86), 0,140 (LWL85),

0.182 (LPB93), 0.131 (GY94), 0.136 (YN00), and 0.128 (MYN). b
Orthologues (14,198) of mouse-rat with average Ks values of 0.223

(NG86), 0.231 (LWL85), 0.184 (LPB93), 0.217 (GY94), 0.219

(YN00), and 0.224 (MYN). Average Ka/Ks values are 0.155 (NG86),

0.151(LWL85), 0.202 (LPB93), 0.187 (GY94), 0.183 (YN00), and

0.176 (MYN). c Orthologues (15,743) of fugu-tetraodon with average

Ks values of 0.433 (NG86), 0.439(LWL85), 0.379 (LPB93), 0.564

(GY94), 0.648 (YN00), and 0.624 (MYN). Average Ka/Ks values are

0.187 (NG86), 0.185 (LWL85), 0.224 (LPB93), 0.174 (GY94), 0.165

(YN00), and 0.158 (MYN). d Random selection of 2000 original

points with the YN00 algorithm for the fugu-tetraodon lineage. All

original Ka/Ks and Ks values for each orthologue pair were sorted by

their Ks value in a, b, and c, and 300 consecutive points were placed

in one bin. Subsequently, the mean values of Ka/Ks and Ks were

calculated in each bin as representative Ka/Ks and Ks values for each

bin
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The NG86, LWL85, and LPB93 algorithms applied to

the human-mouse and mouse-rat orthologues indicate there

is a relatively strong positive correlation (r2 [ 0.5 and

p \ 1e-7, for both human mouse and mouse-rat) between

Ka/Ks and Ks (Table 2), whereas GY94 shows a much

weaker correlation (human-mouse lineage, r2 = 0.28

and p = 5.88e-4; mouse-rat lineage, r2 = 0.035 and

p = 1.24e-1). YN00 and MYN yield a weak negative

correlation in human-mouse lineages (r2 \ 0.3 and p [ 1e-

2) and a relatively strong negative correlation in mouse-rat

lineages (r2 [ 0.4 and p \ 1e-6). For fugu-tetraodon lin-

eages, NG86, LWL85, and LPB93 show almost no

correlation between Ka/Ks and Ks (r2 \ 0.05 and p [ 0.1).

In contrast, GY94, YN00, and MYN exhibit a stronger

negative correlation (r2 [ 0.2 and p \ 1e-3).

Figure 1 shows that the correlation between Ka/Ks and

Ks is not consistent for all algorithms within a particular

evolutionary lineage. Compared to the GY94, YN00, and

MYN algorithms, NG86, LWL85, and LPB93 show a

relatively strong positive correlation between Ka/Ks and

Ks in human-mouse and mouse-rat lineages. In the fugu-

tetraodon lineage, however, GY94, YN00, and MYN show

a much weaker negative correlation than NG86, LWL85,

and LPB93 do. The analyses here show that there is a

general similarity in the correlation of NG86, LWL85, and

LPB93, as there is also a similarity in the correlation of

GY94, YN00, and MYN. The two groups, however, differ

from each other.

If we consider the substitution models at the nucleotide

level of these algorithms, we can group the six algorithms

into three model groups (Posada and Crandall 2001). The

first group, JC69 (Jukes and Cantor 1969), includes the

NG86 algorithm. The second model group, K2P (Kimura

1980), includes the LWL85 and LPB93 algorithms. The

third model group, GY-HKY (Goldman and Yang 1994),

includes the GY94, YN00, and MYN algorithms.

To further test the substitution model’s influence on the

correlation between Ka/Ks and Ks, we carried out the fol-

lowing computer simulation to evaluate the correlation

differences between group K2P (represented by LPB93) and

group GY-HKY (represented by YN00). We did not assess

JC69 because it contains an algorithm that performed simi-

larly to those algorithms in K2P (Fig. 1; Table 2). The

purpose of computer simulations is to examine whether

different substitution models do or do not affect the corre-

lation between Ka/Ks and Ks in simulation data.

Table 2 Correlation coefficient (r) and statistical significance for each algorithm under different evolutionary lineages

Method Human-mouse Mouse-rat Fugu-tetraodon

r r2 p-value r r2 p-value r r2 p-value

NG86 0.937 0.878 \1e-17 0.758 0.575 1.73e-8 –0.136 0.018 1.71e-e-1

LWL85 0.962 0.925 \1e-17 0.846 0.716 6.22e-12 0.052 0.003 3.58e-e-1

LPB93 0.935 0.874 \1e-17 0.800 0.640 4.91e-10 0.032 0.001 4.12e-e-1

GY94 0.533 0.284 5.88e-e-4 0.187 0.035 1.24e-e-1 –0.464 0.215 3.40e-e-4

YN00 –0.545 0.297 2.95e-e-1 –0.706 0.498 3.75e-e-7 –0.560 0.314 1.81e-e-5

MYN –0.356 0.127 2.47e-e-2 –0.768 0.590 9.06e-e-9 –0.610 0.372 3.47e-e-6
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Data generated with K2P model Data generated with GY-HKY model

Fig. 2 Computer simulation for two substitution-model groups. K2P

includes the LWL85 and LPB93 algorithms, and GY-HKY includes

the GY94, YN00, and MYN algorithms. All simulated data were

generated using a the K2P substitution model and b the GY-HKY

substitution model. Ka and Ks calculations were carried out using

both the LPB93 algorithm and the YN00 algorithm, and then the

results were sorted by their Ks value, and 300 consecutive points were

put in one bin. Subsequently, the mean value of Ka/Ks for each bin

was used as a representative Ka/Ks for each bin
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We first used the K2P substitution model to generate

simulation data and then used LPB93 and YN00 to eval-

uate the correlation between Ka/Ks and Ks. The result

(Fig. 2a) shows that YN00 provides a much stronger

negative correlation than LPB93 does. The correlation

coefficients for LPB93 and YN00 are –0.590 (p = 3.87e-5)

and –0.917 (p = 7.77e-16), respectively. We then used the

GY-HKY substitution model to generate our simulation

sequences and calculated Ka and Ks using the LPB93 and

YN00 algorithms (Fig. 2b). The difference in the correla-

tion between the two algorithms is similar to the first

simulation result. LPB93 shows a much stronger positive

correlation than YN00. The correlation coefficients for

LPB93 and YN00 are 0.401 (p = 6.3e-3) and 0.04

(p = 3.96e-1), respectively. Our simulation results confirm

that data generated from LPB93 (the K2P model) will

achieve a totally different correlation with YN00 (the

GY-HKY model), and vice versa. For a detailed description

of the simulation data, see Data and Methods. These results

are supported by previous simulation studies (Tzeng et al.

2004), which show that when the evolutionary parameters

are similar to those of the human-mouse lineage (CDS size,

* 400 codons; j * 2; t * 0.4), Ks estimated by the GY-

HKY model is larger than that estimated by the K2P

model, and Ka/Ks estimated by the GY-HKY model is

smaller than that by the K2P model (for details see Table 1

of Tzeng et al. 2004). Thus, the relative correlation

between Ks and Ka/Ks for the same data set is very

different and will result in different conclusions concerning

selection direction and strength. We discuss the possible

explanation of different degrees of correlation among these

algorithms in detail in the Discussion.

Correlation Dependent on Evolutionary Lineage

We next compared the correlation between Ka/Ks and Ks

in fixed algorithms for different evolutionary lineages

Although NG86, LWL85, and LPB93 show a relatively

strong positive correlation in human-mouse and mouse-rat

lineages (r2 [ 0.5 and p \ 1e-7), the correlation is lost in

fugu-tetraodon (r2 \ 0.05 and p [ 0.1) (Fig. 1; Table 2).

GY94 shows a weak positive correlation in human-mouse

(r2 = 0.28 and p = 5.88e-4), no correlation in mouse-rat

(r2 = 0.035 and p = 1.24e-1), and a weak negative corre-

lation in fugu-tetraodon (r2 = 0.215 and p = 3.40e-4).

YN00 and MYN show almost no correlation (or very weak

negative correlation) in the human-mouse lineage (r2 \ 0.3

and p [ 1e-2) but stronger negative correlations in mouse-

rat (r2 [ 0.4 and p \ 1e-6) and fugu-tetraodon (r2 [ 0.3

and p \ 1e-4).

Figure 1 and Table 2 show that the correlation between

Ka/Ks and Ks is related to lineages for a given algorithm,

indicating that the correlation is also sensitive to the

orthologue data. We used the following procedure to test

the assumption: the correlation is related to the orthologue

data for a specific algorithm. First, we calculated the
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Fig. 3 Correlation between

Ka/Ks and Ks for six different

algorithms on three orthologue

data sets after filtering the top

5% of divergent orthologues.

a Orthologues (14,311) of

human-mouse. b Orthologues

(13,488) of mouse-rat. c
Orthologues (14,954) of fugu-

tetraodon. d Random selection

of 2,000 original points using

the YN00 algorithm for the

fugu-tetraodon lineage. All

original Ka/Ks and Ks values

for each pair of orthologue pairs

were sorted by their Ks value,

and 300 consecutive points were

put in one bin in a–c.

Subsequently, the mean values

of Ka/Ks and Ks were

calculated for each bin as

representative Ka/Ks and Ks

values for each bin
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divergence level for each orthologous pair. Then we dis-

carded the orthologues with the greatest divergence (top

5%) to avoid using incorrect and ambiguously defined

alignments or orthologous relationships. For the remaining

95% of the orthologues, we recalculated the correlation

coefficient and p-value for each algorithm.

Figure 3 and Table 3 show that, after this filtering pro-

cedure, almost all the algorithms present weaker positive

correlations or stronger negative correlations than they do

in the original orthologue data (in Fig. 1; Table 2). The

changes in correlation using this procedure support the

assumption that the correlation between Ka/Ks and Ks is

also sensitive to evolutionary lineage and orthologue data.

Correlation values for a particular algorithm can vary in

different evolutionary lineages or in different data subsets

(as shown in Figs. 1 and 3).

Alignment Quality Check

Table 4 presents data for the quality of the alignment in

this study. All three evolutionary lineages were divided

into two parts, according to their Ks value. For Ks \ 0.25,

the percentages of mismatches in the alignments are

6.16%, 6.30%, and 7.15% for human-mouse, mouse-rat,

and fugu-tetraodon, respectively. For Ks [ 0.25, the per-

centages of mismatches in the alignments are 14.99%,

9.93%, and 13.05% for human-mouse, mouse-rat, and

fugu-tetraodon, respectively. The divergence for all three

lineages is still in the region where Ka and Ks can be

calculated accurately (Tzeng et al. 2004). We also assessed

the gap rate for the whole alignments and the presence or

absence of gaps at the ends of the alignments. Table 4

shows that for all three evolutionary lineages, the gap rates

of both measurements are no more than 1%, except for

human-mouse orthologues when Ks \ 0.25 (slightly more

than 1%). This indicates that the alignment qualities are

still reliable for all lineages.

To check whether the top 5% orthologues are really

divergent from the other 95% of the orthologues, we fur-

ther investigated the indel number, indel length, Ka, Ks,

and Ka/Ks for the top 5% and the other 95% in all three

evolutionary lineages. Table 5 shows that the indel number

per gene and indel length per gene in the top 5% of the

orthologues are about two to four times larger than those in

Table 3 Correlation coefficient (r) and statistical significance for each algorithm under different evolutionary lineages after removing the top

5% of the divergent orthologue data

Method Human-mouse Mouse-rat Fugu-tetraodon

r r2 p-value r r2 p-value r r2 p-value

NG86 0.753 0.567 3.81e-8 –0.437 0.191 3.40e-e-3 –0.399 0.159 2.24e-e-3

LWL85 0.901 0.812 5.92e-15 0.354 0.125 1.58e-2 –0.313 0.098 1.33e-2

LPB93 0.868 0.753 8.981e-13 0.264 0.070 5.69e-2 –0.249 0.062 4.06e-2

GY94 0.138 0.019 2.23e-1 –0.628 0.394 1.22e-5 –0.566 0.320 1.39e-5

YN00 –0.4418 0.195 5.08e-3 –0.931 0.867 \1e-17 –0.633 0.401 9.06e-7

MYN –0.599 0.358 1.90e-4 –0.947 0.897 \1e-17 –0.661 0.436 3.94e-7

Table 4 Quality of alignment

% mismatches % gaps % terminal gaps GC content GC3 content Ts/Tv

Ks \ 0.25

Human-mouse 6.157 0.064 1.010 0.485 0.482 6.087

Mouse-rat 6.304 0.058 0.000 0.514 0.571 5.014

Fugu-tetraodon 7.565 0.148 0.000 0.533 0.611 3.556

Ks [ 0.25

Human-mouse 14.987 0.131 0.088 0.510 0.557 3.912

Mouse-rat 9.930 0.126 0.000 0.521 0.612 3.678

Fugu-tetraodon 13.048 0.220 0.081 0.527 0.631 2.453

Note. ‘‘% mismatches’’ indicates the average percentage of mutations in the alignment; lengths of gaps were excluded in the total length of the

alignment. ‘‘% gaps’’ indicates the average percentage of gaps in all alignments and was calculated using the formula, % gaps = (total gap

number/total alignment length) 9 100. ‘‘% terminal gaps’’ indicates the percentage of orthologues that contain a gap at either end of their

alignment and was calculated using the formula, % terminal gaps = (number of alignments that contain a gap at either end of the alignment/

number of total alignments) 9 100. Ts/Tv, which was measured with jHKY85 (Hasegawa et al. 1985), indicates the average transition/

transversion rate ratio between mutations. GC and GC3 refer to GC content and GC content at the third position of all codons, respectively
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the rest of the orthlogues. Ka, Ks, and Ka/Ks in the top 5%

of the divergent orthologues are significantly larger

(p \ 0.005, Wilcoxon rank sum test) than those in the rest

of the orthologues. These results indicate that the top 5% of

the divergent orthologues have more unreliable alignments

than those of the other 95%.

In addition, to check whether the pattern observed in

fugu-tetraodon was not an alignment artifact of our align-

ment procedure, we used another method for creating this

alignment: global alignment with software ‘‘needle’’ based

on the Needleman-Wunsch algorithm in EMBOSS (Rice

et al. 2000). Using this method we obtained the same Ka/

Ks vs. Ks pattern, and this appears at both low and high Ks

values (data not shown). This concordance provides evi-

dence to support the quality of our results, and that they are

not related to the use of low-quality orthologue data or

alignment artifacts.

Due to the potential influence of GC, GC3 content (GC

content at the third position of all codons), and transition/

transversion ratio on Ks estimation (Chamary et al. 2006),

we examined the GC, GC3 content, and transition/trans-

version rate ratio (Ts/Tv) in each group of orthologues

(Table 4). Our results show that when Ks [ 0.25, the dif-

ference in GC (0.017) or GC3 (0.074) content between

human-mouse and fugu-tetraodon orthologues is much

smaller; in contrast, when Ks \ 0.25, differences in GC

(0.048) or GC3(0.129) content between human-mouse and

fugu-tetraodon are larger. See the Discussion for more

details about the influence of these parameters on Ks.

Discussion

Recently, Wyckoff and coworkers found a surprisingly

strongly positive correlation between Ka/Ks and Ks using

several data sets (Wyckoff et al. 2005) and suggested a

paradigm shift in the application of Ka/Ks as a measure of

selective strength, indicating that the Ka/Ks value reflects

not only selective strength but also neutral mutation rate. In

short lineages, the positive correlation between Ka/Ks and

Ks is not observed (Wyckoff et al. 2005). However, after

correcting the stochastic noise of Ks in short lineages, the

positive correlation can still be observed with the LPB93

algorithm (Vallender and Lahn 2007). Although some

earlier studies have shown some correlation between Ka

and Ks (Domazet-Loso and Tautz 2003; Lynch and Conery

2000), so far, only Wyckoff et al. have presented a strong

systematic correlation between Ka/Ks and Ks. In consid-

eration of Wyckoff and coworkers’ findings, we analyzed

three orthologue data sets with six different algorithms for

evolutionary distance in three evolutionary lineages.

Comparing NG86, LWL85, LPB93, GY94, YN00, and

MYN, we found some correlations between Ka/Ks and Ks.

However, those correlations had a highly variable strength

and a dependence on the lineage used in these calculations.

Which factors might contribute to the cause of the

phenomenon that different algorithms present different

levels of correlation for the same data set? The following

are possible interpretations: (1) transition/transversion rate

bias, (2) codon usage bias, (3) the estimation difference

among different substitution models increasing with

increasing substitution rate, and (4) estimation error and

imperfect computation for these KaKs algorithms. As dis-

cussed previously, the lack of incorporation of transition/

transversion rate bias, NG86 will overestimate Ks and

underestimate Ka/Ks (Yang 2006; Yang and Bielawski

2000). Ignoring codon-usage bias in NG86, LWL85, and

LPB93 will result in underestimation of Ks and overesti-

mation of Ka/Ks. When divergence increases, the

estimation error will increase dramatically (Nei and Kumar

2000). That is, the percentage difference in Ks estimation

between two substitution models will increase sharply

Table 5 Divergence between the top 5% and the other 95% of orthologues

Human-mouse Mouse-rat Fugu-tetraodon

Top 5% Other 95% Top 5% Other 95% Top 5% Other 95%

Mean no. of indels 7.9 2.0 4.8 1.0 9.7 3.1

Mean length of indels 114.8 27.0 102.4 26.1 199.0 72.0

GY94

Mean Ka 0.404 0.077 0.195 0.031 0.293 0.069

Mean Ks 1.314 0.718 0.438 0.205 1.580 0.507

Mean Ka/Ks 0.378 0.118 0.622 0.164 0.283 0.167

LPB93

Mean Ka 0.387 0.080 0.190 0.032 0.289 0.074

Mean Ks 0.821 0.478 0.340 0.175 0.788 0.356

Mean Ka/Ks 0.562 0.162 0.618 0.180 0.415 0.214

Note. According to the p-distance, all orthologues in the three lineages can be divided into two parts: top 5% and other 95%

J Mol Evol (2009) 68:414–423 421

123



when the synonymous substitution rate increases

(Ks [ 0.3). Because the nonsynonymous substitution rate

is much lower than the synonymous substitution rate, the

estimation difference between two substitution models is

very small and will have little impact on the correlation.

For comparison between LPB93 and YN00, when the

synonymous substitution rate is low (\0.2), YN00 will

show a little higher Ks and a little lower Ka/Ks than LPB93

does. When the synonymous substitution rate is higher

([0.3), YN00 will present a much higher Ks and much

lower Ka/Ks than LPB93 (Yang 2006; Yang and Bielawski

2000). Therefore, assuming that LPB93 presents a straight

line (strong positive correlation between Ka/Ks and Ks),

YN00 will be like a parabola beneath the LPB93 straight

line, which is consistent with our result in Figs. 1 and 3.

Our simulation results further confirm that the systematic

differences between the LPB93 and the GY94 algorithms

exist for simulation data produced by either the K2P or the

GY-HKY model. LPB93 will yield a more positive corre-

lation between Ka/Ks and Ks, and GY94 will yield a more

negative correlation for the same data set. One interesting

result is that there is a small difference between GY94 and

YN00: the negative correlation between Ka/Ks and Ks in

YN is a little stronger than that in GY94, although they

adopt the same underlying substitution model. This small

difference can be explained by the numerical calculation

difference between the maximum-likelihood and the

approximate method. The approximate method (YN or

MYN) will usually yield a little larger estimation of Ks and

a little lower estimation of Ka/Ks (Yang and Bielawski

2000; Yang and Nielsen 2000), thus leading to a little more

negative correlation than the maximum-likelihood method

does (GY94). And these correlation differences between

two very similar methods suggest that the impact of sto-

chastic variance and imperfect computation on the

correlation cannot be ignored. Additionally, the impact of

stochastic noise on the correlation between Ka/Ks and Ks

was also considered in recent studies (Vallender and Lahn

2007).

Why does a given KaKs algorithm lead to positive

correlations for some data sets but negative correlations for

other data sets? Two possible causes are as follows. (1) The

change in ‘‘real’’ substitution will cause different degrees

of correlation for different data sets even for the same

algorithm. This interpretation can be confirmed by our

simulation results in Fig. 2. (2) Evolutionary traits, such as

codon frequency, transition/transversion rate bias, and

divergence at the nucleotide level, will yield another con-

junct impact on the correlation difference among different

data sets. Different heterogeneity in the gene region, such

as codon frequency, transition/transversion rate, CpG

islands, and isochores (long stretches of compositionally

homogeneous DNA), can also affect the Ka and Ks

calculation performance. As for the comparison of warm-

blooded and cold-blooded lineages, different compositional

patterns of isochore structure exist. Additionally, cold-

blooded vertebrate genomes have fewer GC regions and

lack GC-rich isochores, which are widespread in warm-

blooded vertebrate genomes. The GC3 content in a gene is

highly correlated with the GC content of the isochore in

which it is embedded in mammals (Chamary et al. 2006).

Such a compositional difference in nucleotides may lead to

codon usage bias and to different modes of genome evo-

lution: conservative mode and transitional mode (Bernardi

1993). Our results also show that the difference in GC (or

GC3) levels between human-mouse and fugu-tetraodon

orthologues (we compared these two lineages due to their

similar divergence) is much smaller when Ks [ 0.25 than

when Ks \ 0.25: the correlation between Ka/Ks and Ks for

human-mouse and fugu-tetraodon is different when

Ks \ 0.25 (negative correlation in fugu-tetraodon and

positive correlation in human-mouse), whereas the corre-

lation is similar between the two lineages when Ks [ 0.25.

This indicates that the isochore effect may result in dif-

ferent codon usage and selection bias on synonymous sites,

as suggested previously (Chamary et al. 2006).

Although previous studies (Liao and Zhang 2006;

Wyckoff et al. 2005) have employed correlation coeffi-

cients to measure the trend of Ka/Ks with Ks, our fugu-

tetraodon results indicate that the trend or dependence of

Ka/Ks on Ks is very complicated and very dependent on

the regions (low or high Ks region) and calculation method

used. Therefore, single statistics of measurement, such as

correlation coefficient, may not provide a completely reli-

able or complete picture of the dependence of Ka/Ks on

Ks. To ensure confidence in the current correlation

assessment, it is necessary to avoid using global calculated

correlations and also to consider the local dependence

(correlation) of Ka/Ks and Ks.

Summary

Wyckoff and coworkers (2005) have shown a strong

positive correlation between Ka/Ks and Ks with the LPB93

algorithm for human-mouse orthologues, which we have

reproduced in this current study. However, when we cal-

culated the correlation using several other algorithms

(GY94, YN00, and MYN) and used more evolutionary

lineages, including the cold-blooded fugu-tetraodon line-

age, the positive correlation became less significant from

warm-blooded to cold-blooded lineages using the NG86,

LWL85, and LPB93 algorithms. At the same time, we

found a weak or no significant negative correlation using

GY94, YN00, and MYN in a warm-blooded lineage and

stronger negative correlation using GY94, YN00, and
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MYN in a cold-blooded lineage. In each evolutionary

lineage, the correlation was variable among algorithms that

are based on different DNA substitution models. Previ-

ously, algorithms to compute Ka and Ks were justified by

how well they fit some arbitrarily defined mutation models.

Given the algorithm-specific and evolutionary lineage-

related correlations shown in this work, great caution

should be taken when using only one Ka and Ks algorithm.

A data set calculation with an improperly chosen algorithm

may produce an inaccurate finding, which may then be

interpreted as a biological trait but probably is an artifact of

the calculation.
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