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The capacity for isopentenyl pyrophosphate (IPP) synthesis,

the common precursor of isoprenoids, is universally dis-

tributed among photosynthetic and heterotrophic eukaryotes

(Lange et al. 2000; this study). Land plants harbor two

unrelated metabolic routes with specific substrates, inter-

mediates, and sets of enzymes (Grauvogel and Petersen

2007). The cytosolic mevalonate-dependent MVA pathway,

which is also present in metazoa and fungi, has been known

since the 1960s (Katsuki and Bloch 1967; Lynen 1967),

whereas the plastidial MEP (2-C-methyl-D-erythritol 4-

phosphate) pathway was discovered just 10 years ago

(Rohmer et al. 1993; Lichtenthaler et al. 1997). Plastid IPP

generation was inherited from the cyanobacterial endosym-

biont and subsequently spread to complex algae and

Apicomplexa (e.g., Plasmodium falciparum) via eukaryote-

to-eukaryote endosymbioses (Delwiche 1999). The ‘‘raison

d’être’’ for plastids in heterotrophic parasites is their indis-

pensable metabolic capacity, and the respective pathways

are promising drug targets. A prime example is 1-deoxy-D-

xylulose-5-phosphate reductoisomerase (DXR), an essential

enzyme of plastid isoprenoid biosynthesis (MEP) that is

inhibited by the natural antibiotic fosmidomycin (Jomaa

et al. 1999; Wiesner et al. 2003), a promising weapon for

malaria treatment (Borrmann et al. 2005).

Mass mortalities of oysters along the East Coast of the

United States are caused by the eukaryotic parasite Perk-

insus marinus (formerly Dermocystidium marinum), while

several other species in this genus infect marine mollusks

worldwide (Villalba et al. 2004). The agent of the so-called

‘‘Dermo’’ disease was initially described as a fungus and is

now eponymous for the class Perkinsea. As part of the

superensemble Alveolata, which was originally defined

based on molecular data such as 18S rDNA (van de Peer

and De Wachter 1997), Perkinsea are closely associated

with dinoflagellates, to the exclusion of Apicomplexa (e.g.,

the malaria parasite) and the basal branching ciliates

(Fig. 1b) (Saldarriaga et al. 2003; Grauvogel et al. 2007).

The genome of Perkinsus marinus, whose size is estimated

to be 28 MB, is currently being sequenced by The Institute

of Genomic Research due to its evolutionarily key position

and ecologic and economic relevance.

We analyzed the genetic distribution of the plastid iso-

prenoid pathway (MEP) after primary and secondary

endosymbioses and identified nuclear-encoded genes for

plastid DXR from land plants, green algae, rhodophytes, all

photosynthetic orders with complex red plastids (hapto-

phytes, cryptophytes, diatoms, dinoflagellates), and,

surprisingly, also Perkinsus (Fig. 1a). Ten novel DXR

clones were identified by experimental work (library

screening, PCR-approach; see Supplementary Material S1)

and the remaining sequences were extracted from public
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databases (Supplementary Table S1). We searched for the

presence of 12 isoprenoid biosynthesis genes in the

unfinished P. marinus genome (TIGR) and detected 6 of

the 7 genes for the plastid MEP pathway, whereas repre-

sentatives of the cytosolic MVA pathway appear to be

absent (Supplementary Table S2). The presence of splice-

osomal introns in all preliminary sequences confirms the

eukaryotic origin of these genes and excludes putative

bacterial contaminants. We verified our findings by iden-

tifying and determining several MEP-related sequences

from five Perkinsus species (P. marinus, P. chesapeaki, P.

olseni, P. honshuensis, P. mediterraneus) (Fig. 2; Supple-

mentary Material S1; EF140866–EF140873) and could

even identify the missing seventh gene (MCT) from P.

olseni (EF140871). The plastid localization of the MEP

pathway has been previously documented for land plants,

chlorophytes, and Apicomplexa (Lichtenthaler et al. 1997;

Schwender et al. 2001; Gardner et al. 2002), and it is also

evident for rhodophytes, diatoms, and haptophytes since

these algae contain both pathways for IPP biosynthesis

(this study; data not shown). In contrast, aplastidial

eukaryotes exclusively harbor the cytosolic MVA pathway

and there is no hint that it was ever replaced by the

cyanobacterial counterpart. Thus, we propose that the

presence of the complete MEP pathway in Perkinsus is a

reliable indicator for a so far hidden plastid (‘‘perkinsup-

last’’). The distribution of the isoprenoid metabolism in

Perkinsus species is conspicuously similar to that of the

evolutionarily closely related malaria parasite Plasmodium

falciparum, where isoprenoids are exclusively synthesized

within the apicoplast (Gardner et al. 2002). Our data and

interpretations are consistent with novel ultrastructural data

from Perkinsus atlanticus (Teles-Grilo et al. 2007) and the

very recent findings by Stelter and colleagues (2007) of

plant-type ferredoxin (ptFd) and ferredoxin NADP+

reductase (ptFNR) genes in Perkinsus marinus. The latter

also performed pharmacological inhibitor studies, which

support the presence of a plastid. However, the mature ptFd

is a very small protein, about 95 amino acids long, and the

ptFNR phylogeny is difficult to interpret (Stelter et al.

2007) since it exhibits a complex distribution including

gene duplications and horizontal gene transfers (HGT). In

contrast to that, the nuclear-encoded genes for the MEP-

dependent isoprenoid biosynthesis represent promising

markers for phylogenetic analyses since the corresponding

metabolic pathway is exclusively located within plastids.

We investigated the distribution of the DXR sequences

and our phylogenetic analyses indicate that Plantae includ-

ing green and red algae (Rodrigues-Ezpeleta et al. 2005)

recruited this gene from the cyanobacterial endosymbiont

and donated it in the course of secondary endosymbiosis

(Fig. 1a; Supplementary Fig. S1). Haptophytes, diatoms, the

cryptophyte Hanusia, and the peridinin-containing dinofla-

gellate Pyrocystis probably obtained their DXR genes via a

single endosymbiotic gene transfer from a red alga, in

agreement with the evolutionary origin of their complex
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Fig. 1 a Phylogenetic

maximum likelihood (PhyML)

tree (WAG + F + C4 model)

based on 44 DXR sequences and

335 amino acid positions.

Sequences identified in this

study are shown in boldface.

The statistical support values for

the internal nodes were

determined by Treefinder (TF)

and PhyML bootstrap analyses

and values C40% are shown.

The horizontal length of the

triangles is equivalent to the

average branch length. b
Evolutionary relationships

among members of the

Alveolata. A, B, and C indicate

possible common origins of

plastids
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plastids (Delwiche et al. 1999; Petersen et al. 2006; Teich

et al. 2007), and the same explanation may also apply to the

Perkinsus species. The extremely divergent Apicomplexan

DXR sequences are obviously subjected to long-branch

attraction (LBA [Brinkmann et al. 2005]) (Supplementary

Fig. S1), but they most likely also have a red algal affiliation

(Fig. 1a) (Foth and McFadden 2003). The relationship

between the Perkinsus and the Pyrocystis DXR genes is not

resolved, but a common origin would be compatible with the

phylogeny of the host cell (Fig. 1b) (Saldarriaga et al. 2003;

Grauvogel et al. 2007).

The presented findings may improve the understanding

of alveolate evolution. Many dinoflagellates are heterotro-

phic and the phototrophic species exhibit a broad spectrum

of different plastids with characteristic accessory pigments

that originated via independent secondary and tertiary en-

dosymbioses (Chesnick et al. 1997; Tengs et al. 2000;

Saldarriaga et al. 2001; Hackett et al. 2003; Patron et al.

2006). The prevalent type of dinoflagellates, including Py-

rocystis lunula, contain peridinin, but it was hitherto

disputed if they represent the ancestral lineage and it was

also unclear if the primordial dinoflagellates were photo-

synthetic (Taylor 1980, 2004; Saldarriaga et al. 2001; Yoon

et al. 2002; Inagaki et al. 2004; Sanchez-Puerta et al. 2007).

Under the assumption that the plastid specific MEP pathway

represents a shared trait, as indicated by the DXR genes

identified and described above, these dinoflagellates and

Perkinsea have a common photosynthetic ancestry (Fig. 1b;

scenario A), whereas heterotrophic representatives lost their

plastids secondarily. Moreover, a common origin of plastids
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Fig. 2 a Structure of the DXR genes from various Perkinsus species.

Exons and introns are shown with gray and white boxes, respectively.

Introns are named with roman numerals. Arabic numerals indicate the

deduced amino acid position of the established clones using the DXR
of Arabidopsis (NP_201085) as a reference for numbering. The

conservation of nine intron positions in phase -0, -1, or -2 (I, 109-0; II,

154B-2; III, 210-1; IV, 241-0; V, 268-2; VII, 317-0; VIII, 401-1; IX,

431-0) is shown in bright gray. All clones with the exception of the

partial TIGR sequence (P. marinus Contig: 16110) were determined

for this study. The stippled box of the merged P. marinus DXR gene

assumes the presence of an N-terminal presequence equivalent to the

transit peptide found in the Arabidopsis reference sequence. b
Phylogenetic maximum likelihood (phyML) tree (WAG + F + I +

C4 model) based on eight DXR sequences and 249 amino acid

positions. The statistical support for the internal nodes was deter-

mined by bootstrap analyses (TF, PhyML). Support values[40% are

shown. Clones sequenced for this study are shown in boldface
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in the ancestor of dinoflagellates and Apicomplexa was

previously proposed (Fig. 1b; scenario B) (McFadden and

Waller 1997). The Perkinsus genome may represent the

ideal reference system for testing this hypothesis, especially

since complete genome sequencing of dinoflagellates is

largely prohibited due to their huge genome size (3000 to

215,000 MB) (Spector 1984). Concerning the evolution of

the superensemble Alveolata as a whole, a common plas-

tidial origin of all classes including ciliates is the most far-

reaching scenario (Fig. 1b; C). It is a sine qua non for the

so-called chromalveolate hypothesis (Cavalier-Smith

1999), which is subject to continuous controversial dis-

cussion (Harper and Keeling 2003; Bodyl 2006; Teich et al.

2007). However, the recently released genome of Tetrahy-

mena thermophila gives no hint of a photosynthetic

ancestry of ciliates (Eisen et al. 2006) and therefore argues

against an endosymbiotic event at the origin of alveolates.

Taken together, the identification of all seven genes for

the strictly plastid specific MEP pathway in the alveolate

parasite Perkinsus gives strong support for the lately pre-

dicted (Stelter et al. 2007; Teles-Grilo et al. 2007) presence

of a so far unknown ‘‘perkinsuplast.’’ The phylogenetic

position of Perkinsus within the Alveolata distinguishes it

as the connecting link between dinoflagellates and api-

complexans, including the malaria pathogen Plasmodium,

and therefore, this key species will be an ideal reference

taxon for the study of alveolate biology, evolution, and

infection strategies.
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