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Abstract In the RNA world hypothesis, RNA(-like) self-

replicators are suggested as the central player of prebiotic

evolution. However, there is a serious problem in the

evolution of complexity in such replicators, i.e., the prob-

lem of parasites. Parasites, which are replicated by catalytic

replicators (catalysts), but do not replicate the others, can

destroy a whole replicator system by exploitation.

Recently, a theoretical study underlined complex formation

between replicators—an often neglected but realistic pro-

cess—as a stabilizing factor in a replicator system by

demonstrating that complex formation can shift the viable

range of diffusion intensity to higher values. In the current

study, we extend the previous study of complex formation.

Firstly, by investigating a well-mixed replicator system, we

establish that complex formation gives parasites an implicit

advantage over catalysts, which makes the system signifi-

cantly more vulnerable to parasites. Secondly, by

investigating a spatially extended replicator system, we

show that the formation of traveling wave patterns plays a

crucial role in the stability of the system against parasites,

and that because of this the effect of complex formation is

not straightforward; i.e., whether complex formation sta-

bilizes or destabilizes the spatial system is a complex

function of other parameters. We give a detailed analysis of

the spatial system by considering the pattern dynamics of

waves. Furthermore, we investigate the effect of

deleterious mutations. Surprisingly, high mutation rates

can weaken the exploitation of the catalyst by the parasite.

Keywords Prebiotic evolution � RNA world �
Complex formation � Spatially extended replicator

dynamics � Mesoscale pattern � Traveling wave �
Stochastic reaction diffusion model

Introduction

In the so-called RNA world hypothesis (Gilbert 1986;

Gesteland et al. 2006), an RNA self-replicator (Pace and

Marsh 1985; Sharp 1985; Cesh 1986) has been suggested

as the central player of prebiotic evolution both in genetic

and functional aspects, preceding a system involving

protein translation. The hypothesis is based on the fact

that RNA molecules are capable of replication through

complementary base-paring (Joyce 1987; Orgel 2004) and

can also have catalytic activity for various chemical

reactions (Joyce 1998) through various catalytic strategies

(Ke and Doudna 2006). The hypothesis is also supported

by strong circumstantial evidence such as the essential

role ribozyme plays in protein translation (Steitz and

Moore 2003), and, a large number of roles played by

RNA cofactors in metabolism (White 1976). If an RNA

molecule—or any alternatives (Joyce et al. 1987; Joyce

and Orgel 2006)—can indeed replicate itself with varia-

tion in its progeny through mutation, it will be the

simplest system capable of Darwinian evolution in a self-

sustained manner (Muller 1966; Crick 1968; but see also

Segré et al. 2000).

A question naturally arises with respect to this hypoth-

esis: can such an RNA(-like) replicator exist? Many

experimental efforts have been made in attempt to
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synthesize RNA replicators in the laboratory (Bartel 1998;

Chen et al. 2006; Joyce and Orgel 2006, for review).

Although no complete RNA replicator has been synthe-

sized yet, progress has been made that has significant

implications; e.g., Johnston et al. (2001) succeeded in

producing a ribozyme that can polymerize a short stretch of

RNA on RNA templates, which was recently improved by

Zaher and Unrau (2007) to polymerize a little more.

If we suppose such replicators exist, another question

arises, with which the current study is concerned. How can

a system of RNA-like replicators increase its complexity

through evolution, approaching a current form of life? In

more general terms, what are the potential dynamics of the

ecology and evolution of RNA-like replicators? Theoreti-

cal research has been conducted to examine these questions

(Stadler and Stadler 2004; Szathmáry 2006, for review).

Interestingly, these studies showed that the evolution of

complexity in a system of simple replicators is not

expected to happen with ease. Firstly, the evolution of

complexity through the accumulation of information con-

tained in the genome of a single replicator (quasi-)species

is limited by too a high mutation rate1, which is naturally

assumed in RNA-based replication (Eigen 1971; Küppers

1983; Eigen et al. 1989). Secondly, the evolution of com-

plexity via the cooperation of several replicator species—

e.g., via the hypercycle (Eigen and Schuster 1979)—is

hindered by parasitic replicators, which do not contribute to

the replication of the other replicators but still benefit from

(or exploit) cooperative replicators (Maynard Smith 1979;

Bresch et al. 1980).

Solutions to these problems—and problems in these

solutions—have been suggested in the literature (e.g.,

Michod 1983; Szathmáry and Demeter 1987; Károlyi et al.

2000; Hogeweg and Takeuchi 2003; Lehman 2003; Sche-

uring et al. 2003; Altmeyer et al. 2004; Santos et al. 2004;

Takeuchi et al. 2005; Kun et al. 2005; and the references

therein). The result that is especially relevant here is the

consideration of a spatially extended system: in a spatial

system, local interactions and/or spatial pattern formation

can greatly circumvent the exploitation by parasites (Bo-

erlijst and Hogeweg 1991a,b; McCaskill et al. 2001; Szabó

et al. 2002; Hogeweg and Takeuchi 2003). This point

illustrates that the consideration of a spatially extended

system is crucial in prebiotic evolution. In this context,

Füchslin et al. (2004) recently underlined the importance of

the formation of reaction complexes between replicators—

an often-neglected, but natural, process in RNA-like re-

plicators—from a chemical point of view. They found that

complex formation shifts the range of diffusion intensity

for which a replicator system is viable to higher values in

the presence of moderate parasites that are mutated from

catalysts, and thereby it was argued that complex formation

enhances the stability of a spatial replicator system for

greater diffusion intensity. The current study aims to

extend this research.

With respect to the problem of parasites, the crucial

aspect of complex formation is its effect on the resistance

of catalysts against parasites. We focus on this point and

ask what effect complex formation has on the stability of

replicator systems under strong exploitation by parasites.

We firstly investigate a well-mixed system and then extend

the study to a spatial system. It might seem odd to study a

well-mixed system, since the consideration of a spatial

system is crucial in prebiotic evolution. Nevertheless, we

study a well-mixed system to simplify the elucidation of

one of the principles involved in the general dynamics of

replicators with complex formation. We then examine the

(more complex) effect of complex formation on a spatial

system, taking local interactions and spatial pattern for-

mation into consideration.

In the latter part of this study, we shift our focus to the

effect of deleterious mutations, which has not been paid a

great deal of attention in this context. We report that

deleterious mutations can alleviate the problem of

parasites.

Simple Trans-Acting Replicators

This section summarizes some well-known results of the

dynamics of a replicator system without complex forma-

tion under the mean-field assumption (Joyce 1983,

footnote; McCaskill et al. 2001).

The model is formulated as follows. The simplest

reaction scheme of trans-acting replicators is

2X�!kx
3X;

XþY�!
ky

Xþ 2Y;
ð1Þ

where X is the catalyst, and Y is the parasite, and kx and ky

are the reaction rate constants. For simplicity, the substrate

for replication (active monomer) is not explicitly

designated. Furthermore, it is assumed that the system

contains only one type of catalyst and one type of parasite.

A simple ordinary differential equation (ODE) model of

the population dynamics with the above scheme is

_x ¼ kxx2h � dx;

_y ¼ kyxyh � dy;
ð2Þ

where x and y are the concentration of X and that of Y

respectively ( _x and _y are the time derivatives); h = 1 – (x +

1 This problem is often referred to as the error threshold or

information threshold, although the problem does not necessarily

exhibit threshold-like behavior (Takeuchi and Hogeweg 2007).
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y)/H, which phenomenologically represents limited multi-

plication (e.g. due to the finite supply of substrates); H is a

parameter representing the capacity of the system (H[0);

and d is the decay rate, which, for simplicity, is assumed to

be the same for X and Y. Note that Eq. (2) is valid only for

x, y ‡ 0, and 0 £ h £ 1. This completes the formulation of

the model.

It can be shown through a stability analysis that Eq. (2)

has an asymptotically stable equilibrium in which the

catalyst survives—i.e., �x [ 0 where the bar denotes the

equilibrium value—if and only if kxH[4d and kx [ ky. If

these two conditions are not satisfied, the only stable

equilibrium is ð�x; �yÞ = (0, 0), i.e., the replicators die out.

This equilibrium is present and stable for all relevant

parameter values because of the Allee effect (Allee 1931).

The first condition for the survival of the catalyst, kxH [
4d, means that the replication activity of the catalyst, kx,

and the capacity of a system, H, must be high enough to

compensate for the decay, d. The second condition, kx [
ky, means that the catalyst must be a better template for

replication than the parasite. This condition can be

understood as follows: from Eq. (2), the replication rate

per unit amount of catalysts and that of parasites are kxx

and kyx, respectively, so if kx \ ky (and also y [ 0 and

kxH [ 4d), the parasite outgrows the catalyst indefinitely.

This results in a decrease of the total concentration to

zero, because the parasite does not replicate the other

molecules. In consequence, if ky [ kx, the system col-

lapses. If, however, kx [ ky, then the catalyst can outgrow

the parasite indefinitely; the parasite goes extinct. If kx =

ky, coexistence between the catalyst and the parasite is

possible; however, coexistence is a pathological case, for

the exact equivalence between the two rate constants is

unrealistic.

It is natural to conceive that a parasite can be a better

template than the catalyst (Maynard Smith 1979; Bresch

et al. 1980). Thus, the parasite poses a problem in pre-

biotic evolution: it impedes the origin and persistence of a

cooperative replicator system (but see Hanczyc and Dorit

1998, for an interesting discussion). However, it is well

known that the problem of parasites is alleviated in a

spatial system, where local interaction and/or spatial

pattern formation can enable catalysts to persist even if

parasites are better templates than the catalysts (Boerlijst

and Hogeweg 1991a,b; McCaskill et al. 2001; Szabó et al.

2002; Hogeweg and Takeuchi 2003). As is clear from

this, the consideration of a spatial system is crucial in

prebiotic evolution, and in fact Füchslin et al. (2004)

underlined the importance of the effect of complex for-

mation in a spatial system. Nonetheless, we next study the

effect complex formation in a well-mixed system to make

a clearer elucidation of a principle involved in the repli-

cator dynamics.

Replicators with Complex Formation in a Well-Mixed

System

Model

We consider the following reaction scheme for replicators

with complex formation (Stadler et al. 2000; Füchslin et al.

2004):

2X�
ax

bx

Cxx!
kx

3X;

Xþ Y�
ay

by

Cxy!
ky

Xþ 2Y;
ð3Þ

where Cxx and Cxy are the complexes formed by an X-X

pair and an X-Y pair, respectively; and ai, bi, and ki (i = x,

y) are reaction rate constants. A simple ODE model to

describe the population dynamics with this scheme is

_x ¼ �2axx2 þ ð2bx þ 3kxhÞcxx � ayxy

þ ðby þ kyhÞcxy � dx;

_y ¼ �ayxy þ ðby þ 2kyhÞcxy � dy;

_cxx ¼ axx2 � ðbx þ kxhÞcxx � dcxx;

_cxy ¼ ayxy � ðby þ kyhÞcxy � dcxy:

ð4Þ

To reduce the number of parameters, we assume the

following: ax = 1 – exp(G) and bx = 1 – ax; ay = 1 –

exp(bG), and by = 1 – ay, where G £ 0 and b ‡ 0. The

parameter G represents a sort of binding energy between X

and X. The parameter b represents the binding energy

between X and Y relative to that between X and X; thus, if

b[1, then Y is recognized as a template by X better than

X is. This assumption is motivated by the fact that the

affinity constant of the reaction 2X�Cxx is calculated as an

exponential function of the binding energy, as Kx = ax/bx =

exp(–G) – 1 [for XþY�Cxy; as Ky = exp(–bG) – 1].

Besides the above simplification, we make the important

assumption that b and G are independent of each other (we

come back to this point later). Moreover, it is assumed that

jx = jy for simplicity, which means that the rate of

polymerization is the same for X and Y, once a catalyst has

recognized a template (this does not affect our results).

Bifurcation Analysis

In Eq. (4), if b [ 1, then the stable equilibrium is only

ð�x; �y; �cxx; �cxyÞ = (0, 0, 0, 0) (see below; cf. Füchslin et al.

2004, Appendix A). This result parallels the result from Eq.

(2) that if ky[kx, the stable equilibrium is only ð�x; �yÞ = (0,

0). Also, as in Eq. (2), this equilibrium is always present

and stable due to the Allee effect, and it can be reached if

the initial value of x is too small or that of y is too large

(this equilibrium is not depicted in Fig. 1).
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In contrast, if b £ 1, Eq. (4) exhibits various behavior

different from that of Eq. (2) depending on the value of b.

For various values of b, we numerically calculated the

stable/unstable equilibria of Eq. (4), as shown in Fig. 1 (see

the Methods section for the details of calculation). As seen

from Fig. 1, the behavior of the system qualitatively

changes when b crosses some critical values (bifurcation

points) designated by F, T, H, and h. Let us denote these

critical values by bF, bT, bH, and bh, respectively. In the

following, we explain the behavior of Eq. (4) for each

parameter region divided by these critical b values, from a

small to large value (bF \ bT \ bH \ bh).

For b \ bF, the catalyst always out-competes the para-

site. This result parallels the result from Eq. (2) for ky\kx.

If, however, b becomes greater than bF, a stable equilib-

rium in which the catalyst and the parasite coexists (i.e.,

�x; �y[0) emerges (via fold bifurcation), as shown by the F-

H line in Fig. 1. This means that the coexistence is possible

although the parasite is a worse template than the catalyst

in this region of b (note that bF\1). However, for a system

to reach this equilibrium, the initial value of y must be

sufficiently large. This can be seen by noticing that the

equilibrium in which the catalyst out-competes the parasite

(i.e., �x[0 and �y = 0) is also stable in the same region of b
(the solid horizontal line left of T in Fig. 1). If b becomes

greater than bT, the latter equilibrium, however, becomes

unstable (via transcritical bifurcation). Thus, the parasite

can now always invade the catalyst as long as initially y[
0. In other words, the equilibrium in which the catalyst and

the parasite coexist can be reached even if the initial value

of y is very small.

The above results are in sharp contrast with those from

Eq. (2): if complex formation is taken into account, the

catalyst and the parasite can coexist even in a well-mixed

system. The coexistence is possible because of the

advantage of the parasite, which originates from the fact

that: (i) complexes are formed, and that (ii) the parasite

does not replicate other molecules. The details are

explained in the following.

If the total concentration of the catalyst and parasite is

sufficiently high, the parasite can outgrow the catalyst:

firstly, the multiplication rate of the catalyst per unit

amount of molecules is proportional to cxx/xt (the subscript

t denotes the total concentration), and that of the parasite is

proportional to cxy/yt. Secondly, to make one molecule of

Cxx, two molecules of the catalyst are required, whereas to

make one molecule of Cxy, one molecule of the catalyst and

one molecule of the parasite are required. This means that

to form an equal amount of the two complexes, the amount

of catalysts required is three times more than that of par-

asites. Therefore, the parasite has an advantage over the

catalyst; hence, the parasite can outgrow the catalyst.

If the total concentration of the catalyst and parasite is

sufficiently low, the catalyst can outgrow the parasite.

Firstly, if xt and yt are sufficiently small, it holds that xt & x

and yt & y because x � cxx , cxy and y � cxy. Secondly,

under the quasi-steady state assumption (e.g., see Segel

1984), the values of cxx and of cxy are calculated as cxx =

axx
2
t /(bx + jh + d) and cxy = axxtyt/(by + jh + d) respec-

tively, where j = jx = jy. Then, cxx/xt can be greater than

cxy/yt if ax/bx [ ay/by (i.e., b \ 1). Thus, the catalyst can

outgrow the parasite.

Fig. 1 The stable and unstable equilibria of Eq. (4) are plotted

against b (bifurcation diagram). The coordinate of the left graph is the

equilibrium value of x (�x); that of the right graph is the equilibrium

value of y (�y). The solid lines represent the stable equilibria; the

broken lines represent the unstable equilibria; and the dotted lines

represent the maximum/minimum of stable oscillatory solutions (limit

cycle). The lines in the two graphs correspond to each other. A

thinned solid line above (resp. below) the point T in the left (resp.

right) graph is not relevant because �y \ 0. The points F (fold

bifurcation), T (trans-critical bifurcation), H (Hopf bifurcation) and h

(homoclinic bifurcation is suspected) designate critical points at

which the system’s behavior qualitatively changes. An apparent

crossing of the lines in the right graph is due to the projection in two-

dimensions. The parameters are as follows: G = –5, H = 1, d = 0.02,

jx = jy = 1. Note that some equilibria are not depicted in the graphs

(see text). One can see from this figure that X and Y can coexist for bF

\b \bh, but the system inevitably collapses for b [bh (bh \ 1)
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In summary, if the concentrations of the replicators are

sufficiently high, the parasite outgrows the catalyst, which

results in a decrease in the total concentration. If the con-

centrations are low, the system behaves as if there is no

complex, and thus the catalyst will increase its concentra-

tion because b\ 1. In essence, the coexistence is possible

because of the frequency-dependent selection between the

catalyst and the parasite.

For a yet-greater value of b, such that b [ bH, a

stable oscillatory solution (limit cycle) appears (via Hopf

bifurcation) accompanied by the destabilization of the

equilibrium in which the catalyst and the parasite sta-

tionary coexist, as shown by H in Fig. 1. As b increases,

the amplitude of the oscillation increases till its lower

bound of y reaches zero at b = bh, and then the oscil-

latory solution disappears. After the disappearance of the

oscillatory solution (b [ bh), the stable equilibrium is

only ð�x; �y; �cxx; �cxyÞ = (0, 0, 0, 0). Thus, bh is the max-

imal severity of the parasite the catalyst can tolerate

(denoted by bmax hereafter). The fact that bmax is smaller

than one means that the parasite kills the catalyst by

exploitation, even if the parasite is a worse template than

the catalyst. This makes a sharp contrast with the result

from Eq. (2).

How Does Complex Formation Affect a Replicator

System?

We give here a more detailed account of the effect of

complex formation on the replicator system. For simplicity,

let us assume that Cxx and Cxy do not decay. Under the

quasi-steady state assumption on _cxx and _cxy; cxx and cxy are

determined from the equations

0 ¼ ax ðxt � 2cxx � cxyÞ2 � ðbx þ jxhÞcxx;

0 ¼ ay ðxt � 2cxx � cxyÞðyt � cxyÞ � ðby þ jyhÞcxy;

ð5Þ

where xt = x + 2cxx + cxy; and yt = y + cxy.

For simplicity, let us assume that bi� ji (i = x or y) for

a moment—we will come back to this point later. On one

hand, if bi� ai (i.e., Ki � 1), the solutions of Eq. (5) can

be approximated by cxx = Kxx
2
t and cxy = Kyxtyt. Since the

growth of xt and yt is calculated as jcxxh and jcxyh,

respectively, one obtains the equations

_xt ¼ jxKxx2
t h � dxt;

_yt ¼ jyKyxtyth � dyt;

which are, in fact, identical to Eq. (2); i.e., the current

system can be approximated by the system without

complex formation if bi � ai. On the other hand, if bi �
ai (i.e., Ki � 1), one can similarly obtain the equations

_xt ¼
1

2
jx

xt

xt þ yt

xth � dxt;

_yt ¼ jy
xt

xt þ yt

yth � dyt:

In this system, Y always out-competes X unless jx [
2jy. This factor of 2 originates from the advantage of the

parasite discussed before. It is now easy to see that if Kx�
1 (and jx = jy), then bmax & 1 (the former equations), but

if Kx � 1, then bmax & 0 (the latter equations). When Kx

increases from 0 to infinity, bmax decreases from 1 to 0 (but

note that Kx cannot be too close to zero, because the system

collapses if the growth is too slow to compensate the

decay). In other words, as the equilibrium of 2X�Cxx is

shifted more to the right side, the catalyst will be killed

more easily by the parasite.

The above argument is confirmed by numerical calcu-

lation (without assuming bi� j). In Fig. 2, three measures

of the maximal tolerable strength of parasites are plotted as

a function of G: the maximal relative binding energy bmax;

the maximal absolute binding energy bmaxG; the maximal

relative association constant Ky/Kx, where b = bmax. As

shown in Fig. 2(i), decreasing G decreases bmax. Further-

more, as shown in Fig. 2(ii), decreasing G decreases

log(Ky/Kx), without saturation. In addition, we note that the

above result holds when other parameters (H, d, jx, and jy)

are different or when jx = jy, provided that X is viable

when y = 0 (data not shown).

The above results mean that under the mean-field

assumption (i.e., in a well-mixed system), the replicator

system becomes increasingly unstable as the binding

affinity between the catalysts increases. This point can be

further elaborated as follows. It is natural to conceive that

trans-acting molecular replicators have (or had) some kind

of motifs—whether a structure or a sequence—that func-

tion either to recognize other molecules to replicate

(recognizing motif) or to be recognized by other molecules

to be replicated (tag motif2). Some mutations can destroy

the recognizing motif while preserving the tag motif, giv-

ing rise to a parasite of which tag motif has an activity

comparable to that of the original catalyst (see also Alt-

meyer et al. 2004). Then, the binding affinity between the

catalyst and a so created parasite is likely to be positively

correlated to the binding affinity between the catalysts.

Therefore, from the result that bmax decreases as G

decreases, it can be concluded that the greater becomes the

binding affinity between the catalysts, the more vulnerable

the catalyst becomes to the parasite.

Finally, if ji � bi, from Eq. (5) one can obtain the

approximation as follows:

2 In the genomic tag hypothesis, Maizels and Weiner (1998)

suggested a tRNA-like structure as such a tag motif in ancient

RNA genomes.
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cxx ¼
axx2

t

h
;

cxy ¼
ayxtyt

h
:

Although this approximation cannot be used to obtain

the population dynamics of the replicators3, it tells that the

advantage of Y disappears in the limit of j ? ?
irrespective of the value of Kx. This can also be

numerically confirmed as shown in Fig. 3.

Dynamics in a Spatially Extended System

In a spatial system, pattern formation of populations plays

an important role in the survival of catalysts under strong

exploitation by parasites (Boerlijst and Hogeweg 1991a).

Thus, we next ask whether the advantage of parasites due

to complex formation still plays any significant role in a

spatial system with respect to the survival of catalysts.

Cellular Automata Model

We have constructed a stochastic cellular automata (CA)

model for a replicator system with complex formation. The

model is a spatially extended, individual-based, Monte

Carlo simulation model. It consists of a two-dimensional

square grid and replicators (X or Y) located on the grid.

One square in the grid, called a ‘cell’ hereafter, holds at

most one replicator. The complex Cxx is represented by two

molecules of X’ located in two contiguous cells, where a

prime designates a molecule forming a complex (respec-

tively, Cxy is represented by one of X’ and one of Y’). The

size of the grid is 512 · 512 cells, and the boundary of the

grid is toroidal.

(i) (ii)

Fig. 2 (i) bT and bmax (i.e., bh) as a function of G (the continuation of

bifurcation points). The solid line represents bmax; the broken line

represents bT. The parameters are the same as in Fig. 1 except for G,

which is the abscissa. In the region designated by A, Y cannot invade

X (unless the initial value of y is sufficiently large). In region B, Y can

invade X if initially y [ 0. In region C, the system collapses

(�x ¼ �y ¼ 0). Numerical calculation suggests that the two lines

collide at a large value of G (& –0.133), above which X is not viable

even in the absence of Y. The inset shows bTG and bmaxG as a

function of G. The notations are the same as before. One can see from

these graphs that as G decreases (i.e., as the binding affinity becomes

stronger), the catalyst becomes more vulnerable to the parasite. (ii)
The ratio of affinity constants, Ky/Kx, as a function of G when b =

bmax (solid line) or b = bT (broken line). Ky/Kx = [exp(bG) – 1]/

[exp(G) – 1]. The parameters are the same as in (i). One can see from

this graph that decreasing G steadily decreases log(Ky/Kx).

Fig. 3 bmax from Eq. (4) as a function of j. The parameters are the

same as in Fig. 1 except for G, which is designated in the graph. One

can see from this figure that bmax approaches to 1 when j??. This

means that, in the limit of j??, bmax approaches to that of the

system without complex formation; i.e., the catalyst can tolerate the

parasite of which template activity is less than or equal to that of the

catalyst

3 If it were used to obtain the dynamics of the replicators, h would

cancel out in the growth term jcxxh, and thus there would be no

limitation to the growth, which is not sensible. According to

numerical solutions of Eq. (5), when j� bi, cxxh suddenly becomes

zero at h = 0 (i.e., xt + yt = 1) in a singular-like manner. This behavior

cannot be captured if one takes the limit of ji ? ? (i = x, y) because

the term jih appears in Eq. (5).
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The state of the model system is fully specified by the

type and location of all replicators. The temporal dynamics

of the model are run by the consecutive application of an

algorithm representing the five types of reaction: complex

formation, complex dissociation, replication, decay as in

Reaction (3); and diffusion.

The algorithm runs as follows:

1. Randomly choose one cell. According to the content of

the cell, a subset of the reactions can happen.

2. Choose a type of reaction according to certain

probabilities, which are calculated from the rate

constants of the possible reactions. These probabilities

are referred to as the probabilities of reactions (see

below).

3. If the chosen reaction is first order (i.e. complex

dissociation or decay), it happens. If it is second-order,

then randomly choose one of the eight cells neighbor-

ing to the cell chosen first (Moore neighborhood). If

the cell chosen second contains a molecule of the right

type for the chosen reaction to happen4 (the order of

choices does not matter), then the reaction happens.

The diffusion is implemented as a simple random walk,

and it is a second-order reaction in the model, where one of

the two chosen cells must be empty. When a complex

molecule diffuses, the two replicators composing the

complex tag along with each other so that they do not

dissociate.

The parameters specifying the rate constants are denoted

by ai, bi (i = x or y) and j as in Reaction (3) and by D for

the diffusion intensity. It is assumed that ax + bx = c, where

c is some constant (in contrast to the ODE model, c is not

necessarily 1). Furthermore, ax is calculated as c[1 –

exp(G)], where G has the same meaning as in the ODE

model (similarly, ay = c[1 – exp(bG)]). The probabilities of

reactions are calculated from the rate constants such that in

the limit of D ? ? the CA model behaves, on average,

identical to Eq. (4), with the same rate constants and H
scaled to one.5 The details of the algorithm is described in

the Methods section.

For comparison’s sake, another CA model was con-

structed for a replicator system without complex formation

as in Reaction (1). The difference from the previous model

lies in the fact that replication reaction is third order here

(i.e., the third cell is chosen from the seven cells that are

the neighbors of the cell chosen second, excluding the cell

chosen first). In other words, replication does not involve

complexes.

To compare the above two models, it is important to

note the following. In a well-mixed system, we observed

that whether the catalyst survives in the system without

complex formation depends only on the ratio between kx

and ky (given kxH[4d), whereas in a spatial system, as we

shall see later, the absolute value of the rate constants also

play an important role for the survival of the catalyst. Then,

to compare the two systems (with/without complex for-

mation), one must somehow normalize ki (i.e., the

replication rate constant of the system without complex

formation) with respect to G, ax + bx, j, and b. As a means

of normalization, we employ ki = jai/(bi +j) here, which

would be the overall rate of replication without competition

between replicators. In addition, we have also examined

two other normalization methods: ki = ai and ki = aij/bi: the

results were consistent with those presented in this study

(not shown).

Effect of Complex Formation on bmax as a Function of

Diffusion Intensity D

The results of Füchslin et al. (2004) showed that complex

formation shifts, to higher values, the region of diffusion

intensity D for which RC [ 0, where RC is the maximum

tolerable mutation rate from catalysts to moderately strong

parasites.6 In other words, complex formation stabilizes the

system for greater diffusion intensity (while destabilizing it

for smaller diffusion intensity). From this result, one may

expect that a similar result should hold with respect to

bmax. However, from the results of the ODE model we can

also expect that for a very large value of D, complex for-

mation should destabilize the system by decreasing bmax.

In this section, we examine how complex formation affects

the stability of the system as a function of D, taking bmax as

a measure.

We measured bmax as a function of D for the system

with and without complex formation (see the Methods

section for details). In so doing, we introduced mutation to

the parasite, i.e., the reaction Cxx�!
Rj

2Xþ Y; to prevent

the extinction of the parasite due to the finiteness of the

population. The mutation rate R was set to a very small

value (R = 10–4).7 The results of the measurements are

shown in Fig. 4, where bmax is plotted as a function of D

for various parameter sets. The results show that whether

complex formation increases or decreases bmax depends not

only on D, but also on the other parameters such as ax + bx4 E.g. for the replication reaction to happen, one cell must be empty,

and the other must be a complex.
5 Strictly speaking, h = 1–x–y–2cxx–2cxy in the CA model because a

complex occupies twice as much space as a single molecule, but this

hardly affects the results.

6 The template activity of parasites was 1% higher than that of the

catalyst.
7 See also footnote 8.

674 J Mol Evol (2007) 65:668–686

123



and d, except for very large values of D, for which complex

formation is always a destabilizing factor. In particular,

complex formation does not necessarily increase bmax for

greater values of D (= 0.1, 1) in contrast to the implication

from the results of Füchslin et al. (2004). Thus, we con-

clude that the effect of complex formation on bmax depends

on the parameters. Before discussing this result, let us first

look at particular simulation runs in more detail.

Figure 5 shows snapshots of the simulations of the

model with complex formation for various values of D.

From this, one can see that spatial patterns form in the

system, in particular, traveling wave patterns. The front of

a wave is composed of catalysts and its back is composed

of parasites. In the wave front, the catalysts propagate

into an empty area, while in the wave back the parasites

outgrow the catalysts and leave an empty area behind by

local extinction (this will be referred to as parasite

propagation). In this way, a wave travels and rotates. It

turns out that bmax depends heavily on the possibility and

stability of wave patterns, which makes it necessary to

consider the dynamics of spatial patterns in order to

understand the effect of complex formation in more

detail. Thus, we next take a closer look at the wave

patterns.

Dynamics of Wave Patterns

The wave patterns observed in the simulations are

dynamic:

(i) The size of a wave can grow due to an asymmetry

between the propagation speed of the wave front and

that of the wave back. For this to happen, a wave

pattern must travel a sufficiently long distance before

colliding to form other patterns.

(ii) A wave can be annihilated when the catalysts are

completely outgrown by the parasites. This happens

more often if the wave is smaller, or the parasite is

stronger (i.e., b is greater), or the propagation of the

catalyst is slower.

(iii) A wave can be split into two (or more) waves when

the catalysts are partially outgrown by the parasites.

This split is promoted by the rotation of the wave and

Fig. 4 bmax as a function of D in the spatial systems. The solid lines

with circles are for the system with complex formation. The dashed

lines with triangles are for the system without complex formation [ki

= aij/(bi + j)]. The parameters are as follows: j = 1; G = –0.5; R =

10–4 (the rest are indicated in the graphs). A dotted line is placed at

bmax = 1 for convenience. One can see from this figure that bmax

depends heavily on D, and the effect of complex formation on bmax

depends on the other parameters
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by the mutation of the catalyst to the parasite (i.e., R

[ 0).8

Moreover, upon the collision of multiple waves, the

interactions between them give rise to various outcomes:

(i) The parasites can completely enclose the catalysts,

which can results in wave annihilation.

(ii) Waves can merge into one.

(iii) Waves can be split. This happens often when two

colliding waves greatly differ in their size (while

annihilated, the smaller wave splits the larger one

into two).

In order to understand the behavior of the current system, it

turns out to be crucial to consider the population dynamics

of wave patterns (see also Savill et al. 1997). Let us explain

how the birth and death of waves is manifested in our

model system:

(i) The death of a wave can happen when the catalysts

are completely enclosed by parasites. This enclosing

occurs when the parasites at the back of the wave

catch up with the catalyst at the wavefront or when

multiple waves collide.

(ii) The birth of a wave happens mainly via the splitting

of waves, but it can also happen via the escape of the

catalyst, as explained in Fig. 6.

The relative frequency of the birth and death of waves

determines the number of individual waves in the system,

and the size thereof. This greatly affects the stability of the

system and thus bmax. For instance, if the birth of waves

happens more frequently, the number of waves becomes

greater, and their spatial size becomes smaller. In this case,

the annihilation of a single wave has a smaller effect on the

whole system, and thus the system becomes more stable,

and hence bmax will be greater.

The stability of the system depends heavily on the

possibility and stability of wave patterns, which depend on

the two properties of the system: (1) the relationship

between the size of the patterns (or D as explained soon)

and the size of the grid; and (2) the relationship between

the speed of catalyst propagation and the speed of parasite

propagation—the former corresponds to the propagation of

wave fronts, and the latter to the contraction of wave backs.

With respect to the first point, Fig. 4 shows that increasing

D decreases bmax (this is a very general result as it holds for

all the cases examined). To understand this, one must

consider the relationship between the size of the patterns

and the size of the grid. As shown in Fig. 5, increasing D

increases the spatial size of the wave patterns relative to the

grid, and as a result, the system becomes less stable.

Therefore, bmax decreases as D increases. The second point

will be developed further in the following section.

bmax and the Dynamics of Spatial Patterns

In this section, we study bmax as a function of various

parameters (d, j, and G) to understand the dynamics of the

spatial system in more detail. Although the combinations of

the parameter sets and the systems (with or without com-

plex formation) investigated here are by no means

exhaustive, it will become clear that the method of analysis

developed here is generally applicable to the current rep-

licator system.

bmax as a Function of Decay Rate d

bmax was measured as a function of d. As shown in Fig. 7,

the results show that bmax is a non-monotonic function of d.

Fig. 5 Snapshots of the simulations of the system with complex

formation for various values of D. b is set to bmax for each simulation.

The parameters are as follows: j = 1; G = –0.5; ai + bi = 1; d = 0.015;

and R = 10–4 (the values of b and D are indicated above each

snapshot). The color coding is as follows: the catalyst is white; the

parasite is black; empty cells are gray. The snapshots depict the whole

CA field

8 R was set small in attempt to make bmax comparable to that for R =

0. However, it turns out that a slight mutation can significantly

increase bmax when a parameter set allows the formation of wave

patterns. An increase can be as much as 20% for D = 0.01. This

increase of bmax can be understood in the light of pattern dynamics of

waves, which is developed later in this paper. Mutation inoculates a

small number of parasites in the traveling front of waves (see Fig. 5,

D = 0.1), and thereby, the parasite can split a wave in a few parts,

giving rise to more waves. Thus, a slight mutation can enhance the

stability of the system.
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Fig. 8 depicts snapshots of the simulations of the system

without complex formation for various values of d. The

most noticeable observation from these is that wave pat-

terns do not form for d = 0.01, for which bmax is the lowest.

Furthermore, if wave patterns form (d ‡ 0.015), then

increasing d decreases their width. These observations can

be understood as follows. Firstly, increasing d slows down

the propagation of the catalyst as easily expected. Sec-

ondly, increasing d speeds up the propagation of the

parasite, because it increases the turn-over rate of popula-

tions. It is worth noting that the speed of parasite

propagation is, in fact, mostly determined by d as long as b
is sufficiently large. This is because the parasite does not

directly kill the catalyst in the current system.9 If the width

of waves decreases, the waves become destabilized. Con-

sequently, increasing d decreases bmax for d for which

wave patterns form. However, if d is too small (d £ 0.01),

the speed of parasite propagation is so much slower than

that of catalyst propagation that the wave patterns do not

form anymore (Fig. 8). In other words, because of too large

an asymmetry between the two propagation speeds, the

wave pattern becomes too large to fit to the grid. In this

case, it is easy for parasites to surround catalysts as it can

be seen from Fig. 8. Hence, if d becomes too small to form

wave patterns, then bmax decreases. In fact, this decrease of

bmax is quite abrupt, and this shows the importance of wave

pattern formation to the stability of the system.

bmax as a Function of Replication Rate j

bmax was measured as a function of j for the system with

complex formation as shown in Fig. 9. Interestingly, the

result shows that increasing j can decrease bmax if D is

sufficiently small (£1), which is the opposite of the results

from the ODE model (cf. Fig. 3). To explain this result,

snapshots of the simulations are shown in Fig. 10 for

various values of j. As seen from this, the wave patterns

form only for a moderate range of j. If j is too small, the

propagation speed of the catalyst is much too slow com-

pared to that of the parasite; thus, no sooner are waves

formed than they disappear. If j is too great, the propa-

gation speed of the catalyst is too much faster than that of

the parasite; thus, waves are too large to fit to the grid.

Since wave patterns do not form for extreme values of j,

bmax becomes low for such cases.

The above situation is, however, reversed if the diffu-

sion intensity is sufficiently great: For a sufficiently large

D, increasing j increases bmax (Fig. 9, D = 1 and 10). For

D = 10, the result is easily understood: spatial patterns do

not form for D = 10 and j = 0.3, as shown in Fig. 11. Then,

the result must be the same as that of the ODE model. For

D = 1, however, wave patterns do form as shown in

Fig. 11. However, the size of the waves is so large and the

distance between them is so small that the asymmetry in

Fig. 6 Consecutive snapshots of the simulation of the system with

complex formation. Time goes from left to right. The parameters are

as follows: j = 1, G = –0.5, ai + bi = 1, d = 0.015, D = 0.01, and R =

10–4. The color coding is the same as in Fig. 5. The snapshots depict

only a part of the whole CA field (75 · 75 cells) at the same position.

One can see from this figure how the birth of a wave can happen via

the escape of catalysts: a small number of catalysts are left behind a

propagating layer of parasites, and then the catalysts left behind can

develop a new wave. The Allee effect plays an important role for this

to happen

Fig. 7 bmax as a function of d in the spatial systems. The solid line

with circles is for the system with complex formation. The dashed

line with triangles is for the system without complex formation.

The parameters are as follows: j = 1; G = –0.5, ai + bi = 2.5, d =

0.015, D = 0.01, and R = 10–4. One can see from this figure that there

is an optimal d maximizing bmax

9 In a standard predator–prey (host–parasite) system predators

(parasites) can directly kill preys (host), whereas in the current

model, such a direct killing does not happen. To replace a catalyst

population, parasites must wait until the catalysts disappear via

intrinsic decay.
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the two propagation speeds does not have a significant

effect. What is more, increasing j apparently increases the

chance of the catalyst escape (Fig. 6) because of a reduc-

tion in the Allee effect. Because of these two reasons,

increasing j increases bmax for D = 1.

bmax as a Function of Binding Energy G

bmax is measured as a function of G as shown in Fig. 12.

The result shows that as the affinity between the catalysts

increases (i.e., as G decreases), bmax decreases for a very

large value of D (= 10), whereas bmax increases for

sufficiently small values of D (£ 1). Note that the latter

result is opposite to the result from the ODE model (cf.

Fig. 2). These results are explained as follows. For a great

value of D (= 10), pattern formation does not play a sig-

nificant role, and hence bmax behaves in the same way as in

the well-mixed system. For D = 1, however, spatial patterns

do form, but the patterns are so large that the asymmetry in

the two propagation speeds, which could be enhanced by

decreasing G, does not have a significant effect. Moreover,

decreasing G increases the chance of catalyst escape by

reducing the Allee effect (see the previous section). In

consequence, bmax increases as G decreases. Furthermore,

the result showed that, for D = 0.01, decreasing G still

increases bmax, although patterns forming in the system are

clearly traveling waves (for G = –1, bmax becomes greater

than 9.99; data not shown in Fig. 12). This is because

although decreasing G does increase the asymmetry in the

two propagation speeds, its extent is much less than that of

increasing j. This can be understood by realizing that the

effect of decreasing G quickly saturates as seen from the

approximation

jcxx � jx2
t =ð4xt þ

bx þ jh
ax

Þ;

where the quasi-steady state assumption and yt = 0 is

assumed. Thus, decreasing G does not increase the

asymmetry to the extent that it can destroy the wave

patterns. Moreover, decreasing G reduces the possible

difference between the overall replication rate of the

Fig. 8 Snapshots of simulations of the system without complex formation for various values of d. D = 0.01; the other parameters are the same as

in Fig. 7 (the values of d and b are indicated above each snapshot). The snapshots depict the whole grid

Fig. 9 bmax as a function of j for the spatial system with complex

formation. The parameters are as follows: G = –0.5, ai+bi = 1, and d =

0.015, and R = 10–4 (the value of D is indicated in the graph)

Fig. 10 Snapshots of the simulations in Fig. 9 for various values of j. D = 0.01; the other parameters are the same as in Fig. 9 (the values of j
and b are indicated above each snapshot). The color coding is the same as in Fig. 5. The snapshots depict the whole grid.
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parasite and that of the catalyst (for a very small G, ax & 1,

and bx & 0). In consequence, decreasing G increases bmax

for D = 0.01.

Effect of Complex Formation on the Stability of the

Spatial System

With the notion of pattern dynamics developed above, we

can now analyze the effect of complex formation on the

stability of the spatial replicator system under strong

exploitation by parasites by considering how complex

formation affects the speed of catalyst propagation and that

of parasite propagation. In general:

• If the asymmetry between the two speeds plays a

significant role in the system’s stability (i.e., the wave

patterns travel a sufficiently long distance before

colliding with the other patterns), and if complex

formation decreases/increases the asymmetry, then

complex formation will stabilize/destabilize the system.

• If the asymmetry does not play a significant role (i.e.,

wave patterns do not form, or they do not travel a long

distance), and if complex formation decreases/increases

the Allee effect by increasing/decreasing the overall

rate of replication, then complex formation can stabi-

lize/destabilize the system.

Moreover,

• With respect to the speed of catalyst propagation, it

turns out that, under the current normalization method

kx = jax/(bx + j), if ax + bx[j, then complex formation

decreases the speed of catalyst propagation (i.e., the

overall rate of replication), but if ax + bx \ j, then it

increases the speed of catalyst propagation.

• With respect to the speed of parasite propagation,

although complex formation can increase the speed

(since it gives the parasite a replication advantage), it

has much less effect than the decay rate d, as long as b
is large enough to ensure local extinction. (But note that

complex formation does decrease the value of b for

which the parasite causes local extinction, which

illustrates that complex formation does strengthen the

parasite in a spatial system).

In summary, complex formation is one out of many other

factors affecting the dynamics of spatial patterns, and its

effect on the stability of the spatial replicator system is not

as straightforward as in the well-mixed system.

Comparison with the previous study

Our result, that complex formation does not necessarily

increase bmax for greater values of D, may seem contra-

dictory to the results of Füchslin et al. (2004) who found

that complex formation increases the maximal tolerable

mutation rate from the catalyst to the parasite (RC) for

greater values of D. To understand the gap between these

two results, we investigated the model of Füchslin et al.

(2004).

The model was implemented with a square grid of two

different sizes (60 · 60 or 300 · 300 cells) with toroidal

boundary. The value of RC was measured with the

parameters for which Füchslin et al. (2004) found that

Fig. 12 bmax as a function of G for the spatial system with complex

formation. The parameters are as follows: j = 1, ai + bi = 1, and d =

0.015, R = 10–4 (the value of D is indicated in the graph). For D = 1

and G = –2.5, bmax is greater than 9.99. This means that b can take an

arbitrary large value, because whether b is 9.99 or more does not have

any significant difference in the CA model (for, ax & 1 and bx & 0,

anyway)

Fig. 11 Snapshots of the

simulations of the system with

complex formation for various

values of j for higher values of

D. The parameters are the same

as in Fig. 10 (the values of j, D,

and b are indicated above each

snapshot). The color coding is

the same as in Fig. 5. The

snapshots depict the whole grid
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complex formation enables a system to have a greater RC

than the case otherwise.10 The results were as follows: if

the size of the grid was 60 · 60 cells, complex formation

increased RC, as is consistent with the result of Füchslin

et al. (2004), who used a cubic grid of 60 · 60 · 60 cells.

However, if the size of the grid was increased to 300 · 300

cells, complex formation actually decreased RC. This can

be understood as follows. Firstly, the size of wave patterns

forming in this system was typically about 50 · 50 cells or

larger. Secondly, under the normalization of the rate con-

stants employed by Füchslin et al. (2004), complex

formation greatly decreases the overall replication rate,

which decreases the concentration of replicators in the

system. From these two points, one can see the following.

On one hand, if the grid is too small to hold wave patterns,

complex formation stabilizes the system because it

decreases the concentration of replicators, which can

weaken the exploitation by parasites under a limited dif-

fusibility by making it difficult for parasites to gain access

to catalysts. On the other hand, if the grid is large enough

to hold a sufficiently large population of waves, complex

formation destabilizes the system because it increases the

asymmetry between the two propagation speeds by

reducing the speed of catalyst propagation. In conclusion,

if the population dynamics of wave patterns can be estab-

lished, complex formation does not stabilize the replicator

system for the parameters reported by Füchslin et al. (2004)

with respect to RC. (The same domain dependency also

holds for the effect of complex formation on the maximal

strength of parasites the system can tolerate).

Although we have not examined a three-dimensional

system, it seems highly likely that the size of the grid

Füchslin et al. (2004) used was indeed too small to hold a

sufficiently large population of wave patterns. This can also

explain why their simulation results agreed with their

results for an infinite-dimensional system, where the for-

mation of spatial patterns is, by definition, impossible. In

contrast, the current study showed that the consideration of

spatial pattern formation is important to understand the

stability of a replicator system.

Alleviating Effect of Mutation

So far, we have investigated the effect of complex formation

on the stability of replicator systems. We now shift our focus

to the effect of mutation; in particular, the mutation that

destroys both replication and template activity of replicators.

The purpose of this section is to show that high rates of such

mutation weaken the exploitation by the parasite, and

therewith it can stabilize the replicator system to a certain

extent. For shortness’ sake, this type of mutation is referred

to as a deleterious mutation (it should be distinguished from

the mutation converting a catalyst to a parasite mentioned

earlier). It seems likely that deleterious mutations happen

frequently in RNA-like replicators (see also Altmeyer et al.

2004). Thus, the alleviating effect of deleterious mutations

should be a relevant factor in the replicator dynamics.

The reaction scheme considered here is

2X�
ax

bx

Cxx !
kð1�MÞ

3X;

2X�
ax

by

Cxx!
kM

2Xþ Z;

Xþ Y�
ay

by

Cxy !
kð1�MÞ

Xþ 2Y;

Xþ Y�
ay

by

Cxy!
kM

Xþ Yþ Z;

Zþ X�
ex

fx
Czx;

Zþ Y�
ey

fy
Czy;

where M represents the probability of deleterious mutation

per replication [M must be distinguished from R defined in

the model of Füchslin et al. (2004)]. Z denotes the mole-

cule that arises through the deleterious mutations, which is

referred to as a junk molecule for shortness’ sake. It is

assumed that all molecules decay at a constant rate d (not

designated above). In the following sections, we first

investigate the effect of deleterious mutations in a well-

mixed system, and then examine it in a spatial system.

Well-Mixed System with Deleterious Mutations

The ODE model was constructed by taking deleterious

mutations into account. In this model, two parameters were

newly introduced: Gz, the binding energy between X and Z;

and M, the deleterious mutation rate (the details of the

model are explained in the Methods section). bmax was

numerically calculated as a function of M for various val-

ues of Gz and G as shown in Fig. 13 (see the Methods

section for details of the calculation). As Fig. 13 shows, if

the binding affinity between the junk molecule and the

other molecules is sufficiently weak (i.e., Gz is sufficiently

large), increasing M increases bmax for all values of G

examined until M reaches a certain limit. This can be

understood as follows: increasing M produces more Z and

reduces the amount of X in the system, so that the system is

effectively diluted. Thus, the complexes are formed less,

and consequently the advantage of Y is reduced.

10 The following two sets of parameters were examined: (1) log10 D?

= –1.15 (D2 & 0.053), k2 = 1, k1 = 0.085, k–1 = 0.001, d = 0.00125;

and (2) log10 D? = –1.075 (D2 & 0.063), k2 = 1, k1 = 0.085, k–1 =

0.001, d = 0.015. See Füchslin et al. (2004) for the notation.

680 J Mol Evol (2007) 65:668–686

123



In addition, if M becomes greater than the critical value

(denoted by Mmax)11, X goes extinct even in the absence of

Y (Garcı́a-Tejedor et al. 1987; Nuño et al. 1993; Campos

et al. 2000), as indicated by the discontinuity of the lines in

Fig. 13, Thus, it can be said that the catalyst in a well-

mixed system is the most resistant against parasites when

M is just below Mmax. (However, it must be noted that the

system cannot have M too close to Mmax in reality because

the stochasticity, which is ignored in the current model,

would drive the system to extinction).

If the binding affinity between the junk molecule and the

other molecules is too strong (i.e., Gz is too small), the

increase of M does not increase bmax anymore (Fig. 13).

This can be understood as follows: decreasing the amount

of X reduces the advantage of Y. However, this mechanism

is nullified if there is too great an amount of Czx and Czy

because these complexes act as a sort of a reservoir for X

and Y through the buffering effect of the reactions

ZþY�Czy and ZþY�Czy: This can be seen from the

fact that if the decay rate of Czx and Czy is increased suf-

ficiently, increasing M can increase bmax (data not shown).

In contrast to the system with complex formation, del-

eterious mutations do not weaken the parasite in the system

without complex formation. This is because deleterious

mutations weaken the parasite by reducing the amount of

complexes.

Spatial System with Deleterious Mutations

The CA model with complex formation was extended by

taking deleterious mutations into account. bmax was mea-

sured as a function of M, where Gz = 0 and R = 10–4, as

shown in Fig. 14. The results show that the effect of del-

eterious mutations in the spatial system is more complex

than in the well-mixed system. The general behavior of the

model can be seen from snapshots of simulations depicted

in Fig. 15. As M increases, the wave patterns become

thinner, and if M becomes too great, wave patterns do not

form anymore. This can be understood as follows. Firstly,

increasing M slows down the speed of catalyst propagation.

Secondly, increasing M weakens the parasite (see the

previous section and also the next paragraph). This can

slow down the speed of parasite propagation, but its effect

is a minor one, as we saw previously that the speed of local

extinction is mostly determined by d if b is sufficiently

large. Therefore, increasing M increases the asymmetry in

the two propagation speeds, which results in thinning the

waves. For a small value of M, the effect of weakening the

parasite apparently overcompensates for the effect of

thinning the waves, since the wave patterns become more

stable than the case of M = 0. Consequently, bmax becomes

greater. For a moderate value of M, however, the waves

become so narrow that they become less stable (see

Fig. 15); hence, bmax becomes smaller. These are the

Fig. 13 bmax as a function of M for various values of Gz and G in the

well-mixed system. From top to down, the thin solid lines are for G =

–1.5; the broken lines are for G = –3; and the thick solid lines are for

G = –5. Among the lines with the same G value, from top to down, the

value of Gz is 0, 0.25G, 0.5G, 0.75G and G. For G = –1.5 (the thin

solid lines), however, the lines for Gz = 0, 0.25G and 0.5G are almost

on top of each other (but the same trend as the other plots holds such

that the greater is Gz, the greater is bmax at a certain value of M). The

parameters are as follows: H = 1, d = 0.02, j = 1. The graph shows

that the increase of M can increase bmax if Gz is sufficiently small. In

addition, all lines suddenly stop at a certain large value of M (denoted

by Mmax in text), above which the catalyst cannot survive even in the

absence of the parasite

Fig. 14 bmax as a function of M in the spatial system with complex

formation. The parameters are as follows: j = 1, G = –0.5, Gz = 0,

ai+bi = 1, d = 0.015, and R = 10–4 (the value of D is indicated in the

graph). bmax for D = 0.01 and M = 0.4 is outside of the figure, and its

value is 8.19, as indicated in the graph

11 Note that Mmax is not exactly the same as the error threshold: while

the error-threshold phenomenon—or the breakdown of Darwinian

optimization—happens because of the competition between the fittest

and the mutants (Eigen et al. 1989; see also Takeuchi and Hogeweg

2007), Mmax exists because X cannot grow faster than it decays for a

sufficiently large M.
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common behaviors for different values of D. However, for

a large value of M the results depend on D: for a suffi-

ciently large D (‡0.1), bmax continues to decrease as M

increases. However, for a small D (= 0.01), bmax increases

if M is sufficiently increased. This result is explained as

follows. If D is sufficiently small, the population of the

catalyst is subdivided into small patches due to a large

production of junk molecules. The subdivision localizes the

exploitation by the parasite as shown in Fig. 16. This

makes it possible for the system to tolerate a quite large

value of b, but if D is sufficiently great, the subdivision of

the population does not happen (at least not in the current

grid size).

Although deleterious mutations do not necessarily

increase bmax in the spatial system, we show here that they

do always weaken the parasite. So far, bmax has been used

as a measure of a system’s resistance against parasites, but

we next examine a system’s resistance by measuring the

minimum value of b (bmin) for which the parasite can

invade and sustain its population without any mutational

influx from the catalyst (i.e., R = 0). bmin was measured in

the system with complex formation as shown in Fig. 17.

The result shows that bmin increases consistently as M

increases. Moreover, the same result also holds for the

system without complex formation (data not shown). This

is in contrast with the results from the well-mixed system,

where the effect of deleterious mutations is valid only in

conjunction with complex formation. This difference is

explained by the spatial structure of populations. Because

replication happens locally in a spatial system, the distri-

bution of replicators is inhomogeneous (wave patterns do

not form for b as small as bmin). This inhomogeneity

reduces the chance that a parasite ‘meets’ a catalyst, rela-

tive to the chance that a catalyst meets a catalyst. Hence,

the production of junk molecules, which reduces the

chance that a molecule meets a catalyst, has a greater effect

on the survival of the parasite than on that of the catalyst.

In conclusion, deleterious mutations weaken the parasite

in a spatial system not only by reducing complex formation

Fig. 15 Snapshots of the simulations in Fig. 14 for various values of

M. The color coding is as follows: the catalyst is white; the parasite is

black; junk molecules are dark gray; the empty cell is light gray. D =

0.01; the other parameters are the same as in Fig. 14. The values of b
and M are indicated above each snapshot. The snapshots depict the

whole grid

Fig. 16 Consecutive snapshots of the simulation of the system with

complex formation for a high value of M. The parameters are as

follows: b = 8.17, M = 0.4, and the others are the same as in Fig. 14.

The time goes from left to right. The color coding is the same as in

Fig. 15. The snapshots depict a part of the grid (65 · 65) at the same

position. The figure shows how the exploitation by parasites is

localized by the subdivision of catalyst populations due to a large

production of junk molecules and a small value of D

Fig. 17 bmin as a function of M in the spatial system with complex

formation. bmin is defined as the minimum b for which the parasite

can invade and sustain its population (bmax [ bmin in all the cases

examined). The parameters are as follows: j = 1, G = –0.5, ai + bi = 1,

and d = 0.015. The value of D is indicated in the graph. bmin for D =

0.01 and M = 0.4 is outside of the figure, and its value is 2.51, as

indicated in the graph
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but also by inhibiting the contact between parasites and

catalysts.

Discussion

The current study has established that complex formation

gives an advantage to parasites, while deleterious muta-

tions disadvantage them. Moreover, the study showed that

the effects of these two processes on the stability of a

replicator system are significantly dependent on whether

the system is well-mixed or not. In a well-mixed system,

complex formation makes the system more vulnerable

against parasites, whereas deleterious mutations make a

replicator system with complex formation more resistant

against parasites. However, in a spatial system, complex

formation does not necessarily destabilize the system, nor

do deleterious mutations necessarily stabilize the system.

This is because it is the dynamics of spatial patterns that is

crucial to the stability of the spatial system, on which

complex formation and deleterious mutations can have

various effects depending on the parameters. In fact, the

dynamics of spatial patterns can reverse the behavior of the

system in many ways relative to expectation based on a

well-mixed system.

Our result with respect to deleterious mutations reveals

an interesting relationship between the two problems of

prebiotic evolution, i.e., the error-threshold and parasites

(see the Introduction). On one hand, as the error-threshold

indicates, high mutation rates are disadvantageous for the

maintenance and accumulation of information. On the

other hand, as our study showed, high mutation rates are

actually advantageous for the protection against parasites.

Hence, high rates of mutation have an opposing effect on

the stability of a replicator system with respect to the error-

threshold and to parasites.

In addition, we mention important aspects of a replicator

system that was not covered in the current study. In the

current models, a replicator system was simplified by the

assumption that there are only a few predefined categories

of replicators (labeled X or Y), while the population of

replicators is actually composed of a collection of geneti-

cally diverse sequences (quasi-species). Our assumption

greatly simplifies mutation processes in the model, which

on one hand helps us to investigate the system with ease,

but on the other hand, ignores some of the significant

aspects of mutations. One such aspect is that high mutation

rates increase the diversity of catalysts, which can constrict

the exploitation by parasites to the subset of the catalysts

(Kaneko and Ikegami 1992; Huynen and Hogeweg 1994;

Hogeweg and Takeuchi 2003). Thus, high mutation rates

can alleviate the problem of parasites in yet another way.

Considering the evolution toward a target instead of the

maintenance of the system, there is yet another advantage

of high mutation rates: it can speed up evolution to a cer-

tain extent (e.g., Eigen and Schuster 1979; Orr HA 2000;

Van Nimwegen and Crutchfield 2001).

Finally, we note that spatial pattern formation and the

dynamics of mesoscale patterns are the recurrent theme of

the spatial population dynamics in general (e.g., Boerlijst

and Hogeweg 1991a,b; Savill et al. 1997; Pagie and Hog-

eweg 1999, 2000; Van Ballegooijen and Boerlijst 2004).

Methods

The ODE model with deleterious mutations

_x ¼ �2axx2 þ f2bx þ ð3�MÞjhgcxx � ayxy

þ fby þ jhgcxy � exzx þ fxczx � dx;

_y ¼ �ayxy þ fby þ ð2�MÞjhgcxy � xyzy

þ fyczy � dy;

_z ¼ Mjcxxh þ Mjcxyh� exzx

þ fxczx � eyzy þ fyczy � dz;

_cxx ¼ �axx2 þ ðbx þ jhÞcxx � dcxx;

_cxy ¼ �ayxy þ ðby þ jhÞcxy � dcxy;

_czx ¼ exzx � fxczx � dczx;

_czy ¼ eyzy � fyczy � dczy;

ð6Þ

where h = 1–(x + y + z + cxx + cxy + czx + czy)/H, and M is

the mutation rate to the junk molecule per replication. It is

assumed that ax = 1 – exp(G), ay = 1 – exp(bG) ex = 1 –

exp(Gz) and ey = 1 – exp(bGz), where Gz(£0) represents the

binding energy between X and Z. Moreover, it is assumed

that bx = 1 – ax, by = 1 – ay, fx = 1 – ex and fy = 1 – ey.

Methods of Calculating Equilibria in the ODE Models

For Fig. 1, the bifurcation diagram was obtained by using

CONTENT (Kuznetsov 1999).

For Fig. 2, bT as a function of G was obtained as fol-

lows: Firstly, for a value of G, an equilibrium with �x [ 0

and �y = 0 was obtained by numerically integrating Eq. (4)

with x = 0.9 and cxx = 0.1, y = cxy = 0 as the initial con-

dition. Secondly, the minimum value of b for which the

largest eigenvalue of Jacobian at the equilibrium is positive

was obtained by conducting a binary search within 0\b\
1 (this value is bT). Thirdly, the above process was repe-

ated for various values of G. On the other hand, bh as a

function of G was calculated as follows: firstly, for a value

of G, an equilibrium with �x[0 and �y = 0 was obtained in

the same way as above. Secondly, Eq. (4) is numerically

integrated for a value of b ([bH) for the duration of t to

record the value of x(t) after initially setting y to y0
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(inoculating the parasite) while initially setting the other

variables at the previously obtained equilibrium. Thirdly,

through gradually increasing b, the minimum value of b for

which x(t)\xmin, which is the criteria of the collapse of the

system, is obtained (this value is bh). Fourthly, the above

process was repeated for various values of G. The param-

eters used in the figure were as follows: t = 107, xmin = 10–7,

y0 = 10–5. Several sets of t, y0, and xmin were used, and the

results did not change as long as t–1, xmin, and y0 were

sufficiently small. The computation was done by using

GRIND (De Boer and Pagie 2005) modified by the authors

for the above calculation.

For Fig. 13, bmax is calculated by almost the same

method as that of calculating bh in Fig. 2. The difference is

that the binary search for bmax was conducted within the

range of 0 \ b \ 1. The parameters (t, y0, and xmin) were

the same as the previous paragraph.

Details of the CA Model

The algorithm has been already described in the main text.

Here we explain how the rate constants of the ODE models

are related to the probabilities of reactions in the CA

models. For a first-order reaction, its rate constant was used

as the probability of the reaction after dividing by a com-

mon normalizing factor denoted by a. For a second-order

reaction, say Xþ Y �!k ; the reaction rate is calculated as

k[X][Y] in the ODE model, where the square brackets

denote concentrations. In the CA model, there are two

possibilities: A is chosen first and B is chosen second, or

vise versa. To make the rate constant k have the same

meaning as in the ODE model, the probability of reaction is

calculated as a(k/2). If the reaction is XþX�!k ; then the

probability of reaction is similarly calculated as ak. [In a

similar manner, the probability of a third-order reaction,

such as XþYþZ�!k ; is calculated as a(k/6)]. Moreover,

since a complex molecule in the CA model is represented

by two molecules occupying two cells, the chance that a

complex molecule is chosen for reaction is twice as much

as a single molecule. To cancel this effect, the factor 0.5 is

multiplied to the probability of all reactions involving a

complex molecule. By defining the probabilities of reac-

tions in the above way, they have the same magnitude

relationship as the rate constants in the ODE model (see

also Gillespie 1976).

The current algorithm is closely related to the Gillespie

algorithm (Gillespie 1976) in the following sense. For

simplicity, let us assume that there are two cells, c1 and c2,

in the system, and two possible reactions, r1 and r2. Let

prx;ci
denote the probability that rx happens in ci given that

ci is chosen for reaction. In the current algorithm, the

probability that c1 is chosen is 1/2, and that c2 is chosen is

1/2. The probability P(r1, c1, i + 1) that r1 happens in c1 at

the (i + 1)-th choice of the cells and no other reactions have

not happened is calculated as

Pðr1;c1; i þ 1Þ ¼ Probðc1 ischosen;and r1 happensÞ
� Probðnothinghappens till the i�thchoiceÞ

¼ 1

2
pr1;c1

�
Xi

r¼0

i

r

 !

f1
2
ð1� pr1;c1

� pr2;c1
Þgr

f1
2
ð1� pr1;c2

� pr2c2
Þgi�r

¼ 1

2
pr1;c1
ð1� 1

2

X

j;k

prj;ck
Þi

The probability P(r1, c1) that the first reaction happening

in the system is r1 that occurs in c1 is

Pðr1; c1Þ ¼ lim
n!1

Xn

i¼0

Pðr1; c1; i þ 1Þ

¼ lim
n!1

1

2
pr1;c1

Xn

i¼0

ð1� 1

2

X

j;k

prj;ck
Þi

¼ pr1;c1P
j;k prj;ck

:

Therefore, the current algorithm is similar to the

Gillespie algorithm.

Furthermore, under the mean-field assumption (i.e., in

the limit of D ? ?), the current algorithm becomes the

same as the Gillespie algorithm. Let us calculate the

probability P(r1) that the first reaction happening in the

system is r1 under the mean-field assumption. Let us

assume that the system has now a lot of cells. Suppose r1

represents the reaction XþY�!
ay

Cxy; then pr1;ci
is calcu-

lated as 2 · a(ay/2)[X][Y], where the square brackets

denote the number of the focal molecules divided by the

total number of cells in the grid, which equals the proba-

bility that the randomly chosen cell contains that molecule;

the multiplying factor 2 comes from the two possibilities in

the order of choices (X and then Y, or Y and then X); the

dividing factor 2 is explained in the first paragraph of this

section. Suppose r2 represents the reaction XþX�!ax
Cxx;

then one similarly obtains pr2;ci
= aax[X]2. Under the mean-

field assumption, the diffusion process can be excluded

from the consideration, and moreover, prx;ci
= prx;cj

holds.

Thus, P(r1) is calculated as

Pðr1Þ ¼
X

i

Pðr1; ciÞ

¼ ay½X�½Y�
ay½X�½Y� þ ax½X�2

;

which is the same as in the Gillespie algorithm.
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Finally, a is set so as to make Rx p(rx, ci) smaller than

one, which is required to make the algorithm behave in the

desired manner. (The source code of the above algorithm is

available upon request.)

Method of Measuring bmax and bmin in the CA Models

bmax in Figs. 7, 9, 12, and 14 is defined as the maximum

value of b for which the system is viable. bmax was mea-

sured by a binary search method on a predefined range of b
with an interval of 0.01. A system was considered viable if

it survived for sufficiently long time steps (typically, in the

order of 1011 choices of cells for a = 0.5). The initial

condition of the first run of a measurement was set such

that a half-circle with radius of 10 cells was filled by X, and

the other half was filled by Y, which should promote the

formation of wave patterns. When a system was viable with

a certain value of b, then the initial condition to examine

the next value of b—which would be greater than the

previous b—was taken from the final state of the system

with the previous b (unless Y had gone extinct). When the

system was not viable, then the initial condition for the

next b—which would be smaller than the previous b—was

the same as the previous initial condition. Thus, the initial

conditions were presumably stable at least for a value of b
smaller than the current value (except for the very first

simulation). Furthermore, after binary search has stopped,

the system is reexamined by incrementally increasing b in

order to reduce the effect of mismatch between the initial

condition and the value of b.12 Such care with respect to

initial condition is necessary to examine the resistance of

the system against the parasite. This is because the for-

mation of wave patterns is critical for the stability of a

system, and it depends on the initial condition.

bmin in Fig. 17 is defined as the maximum value of b for

which Y can invade the system and sustain its population.

bmin is measured by binary search method as before.

However, since the formation of wave patterns does not

happen with b close to bmin, the initial condition here is

always set such that the grid is filled with X except for a

circle of radius 40 cells, which is filled with Y. Y is con-

sidered to be able to invade if it survives for sufficiently

many time steps (typically on the order of 1011 choices of

cells for a = 0.5). If extinction of a whole system happens,

then it is considered that Y can invade.
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