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Abstract. We examine the impact of likelihood
surface characteristics on phylogenetic inference.
Amino acid data sets simulated from topologies with
branch length features chosen to represent varying
degrees of difficulty for likelihood maximization are
analyzed. We present situations where the tree found
to achieve the global maximum in likelihood is often
not equal to the true tree. We use the program cov-
SEARCH to demonstrate how the use of adaptively
sized pools of candidate trees that are updated using
confidence tests results in solution sets that are highly
likely to contain the true tree. This approach requires
more computation than traditional maximum likeli-
hood methods, hence covSEARCH is best suited to
small to medium-sized alignments or large alignments
with some constrained nodes. The majority rule
consensus tree computed from the confidence sets
also proves to be different from the generating
topology. Although low phylogenetic signal in the
input alignment can result in large confidence sets of
trees, some biological information can still be ob-
tained based on nodes that exhibit high support
within the confidence set. Two real data examples are
analyzed: mammal mitochondrial proteins and a
small tubulin alignment. We conclude that the tech-
nique of confidence set optimization can significantly
improve the robustness of phylogenetic inference at a
reasonable computational cost. Additionally, when
either very short internal branches or very long ter-
minal branches are present, confident resolution of

specific bipartitions or subtrees, rather than whole-
tree phylogenies, may be the most realistic goal for
phylogenetic methods.

Key words: Phylogenetics — Maximum likelihood
— Confidence sets — Robustness — Majority con-
sensus

Introduction

The maximum likelihood (ML) method of phyloge-
netic inference puts the determination of evolutionary
relationships among taxa within a well understood
statistical framework. ML estimators have the lowest
variance of any estimation method. Also, the ML
estimated tree has been shown to converge on the true
tree in the limit of infinite data for some substitution
models (Chang 1996; Rogers 2001). For these reasons
the ML estimated (ML*) tree found for a given se-
quence alignment is sometimes presented as the sole
candidate phylogeny. However, the given tree may in
fact be an unreliable estimate for at least two reasons:
the purportedML tree may be only a local, rather than
a global, maximum in tree space that was found by a
particular search algorithm and the amount of infor-
mation in the sequence alignment may not be sufficient
to unambiguously determine the ML tree (Mossel and
Steel 2005; Rokas et al. 2003; Pollock et al. 2002;
Bininda-Emonds et al. 2001; Cummings et al. 1995).

The problem of how to search effectively in tree
space is a formidable one, as the number of possibleCorrespondence to: Christian Blouin; email: cblouin@cs.dal.ca
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trees grows factorially with the number of taxa.
Typically, searching is performed via systematic
rearrangement of the current best tree. Commonly
available topological rearrangement algorithms in-
clude nearest-neighbor interchange (NNI), subtree
pruning and regrafting (SPR), and tree bisection and
reconnection (TBR). These are implemented in the
popular programs PAUP* (Swofford 2002) and
Phylip (Felsenstein 2004). NNI-based search explores
a relatively small neighborhood of the current best
tree and thus tends to converge to local maxima. SPR
and TBR will search tree space more broadly, though
it is a challenge to design algorithms that are practical
for large trees. Recent algorithms (see, e.g., Hordijk
and Gascuel 2005; Stamatakis et al. 2004) use limited
SPR moves and can sometimes ‘‘escape’’ local max-
ima and still converge rapidly on an estimated ML
tree. It is a fact, however, that for the problem of
phylogenetic inference, a local maximum that a pro-
gram ‘‘escaped’’ from may be the true solution. For
sequence alignments of finite length, stochastic devi-
ations from the asymptotic likelihood may be greater
than the difference in values for two or more trees.
This leads to the wrong topology exhibiting the ML.

This problem can be handled in a hypothesis
testing context by considering confidence sets of trees.
A (1 – a) · 100% confidence interval for topologies
specifies a set of trees for which the calculated like-
lihood differences are insignificant at the given a level.
This means that the false rejection rate when evalu-
ating hypotheses is a · 100%. To construct such a set,
one usually begins with a set of potential ML trees
and uses their site likelihood differences to pare the
set down to those topologies that cannot be rejected
as a possible best tree. A bootstrap method for doing
so was first suggested by Felsenstein (1985). Sub-
sequent methodologies have been put forth by vari-
ous authors; for an overview, see Felsenstein (2003).
In general, one endeavors to construct a set that is as
small as possible yet still contains the true tree most
of the time. Confidence tests are sometimes applied to
the results of a number of independent tree searches
begun from random initial starting trees. Clearly, the
better an algorithm is at finding a global likelihood
maximum, the less likely it is that alternative
hypotheses will be present in the set of output
topologies. For this reason, it is desirable to retain
information on local maxima encountered during the
tree search.

The program TRExML (Wolf et al. 2000), written
with this goal in mind, retains the k most likely trees
during its search, then applies a confidence region
criterion to the candidate set after the search is
completed. The parameter k is ad hoc and fixed ahead
of time. Furthermore, TRExML uses a modified
version of the stepwise sequence addition algorithm
of fastDNAML which explores tree space relatively

narrowly and also is significantly biased by sequence
addition order (Felsenstein 1981; Olsen et al. 1994).

The recently implemented program covSEARCH
(Blouin et al. 2005a) is explicitly designed both to find
the ML* tree and to explore the likelihood surface for
alternative hypotheses that cannot be rejected from a
statistical point of view. Like TRExML, cov-
SEARCH retains pools of candidate ML trees during
the search but combines exhaustive SPR rearrange-
ments of the current pool with confidence tests to
dynamically determine the size and content of the
pool. The phylogenetic confidence tests of Kishino
and Hasegawa (1989) (KH and RELL-ws), Shimo-
daira and Hasegawa (SH; 1999), and Strimmer and
Rambaut (2002) (ELW) and a variant proposed here
(ECDF-site) are available. The use of confidence set
heuristics automates the selection of pool size and
adapts it to the statistics of the likelihood surface for
the alignment under consideration. This can improve
accuracy in a computationally efficient way. cov-
SEARCH can take advantage of a parallel comput-
ing environment, improving the feasibility of searches
requiring large pools of trees to be returned. None-
theless, the exhaustive SPR rearrangements make the
current software most appropriate for either rela-
tively small trees (tens of taxa) or large trees with
some constrained nodes.

In this work we apply covSEARCH to simulated
amino acid sequences in order to examine in some
detail under what circumstances it is advisable to
look beyond the ML* tree for inference. We present
situations where the ML* tree found after many trial
searches is most often not the true tree. For most
criteria, the final confidence set does usually contain
the true topology. We consider the suitability of using
a simple consensus method as a way to summarize the
content of the covSEARCH output set. Like the
ML* tree, however, the consensus tree can be an
unreliable estimate of the true tree. We suggest
examining individual node frequencies within the
confidence set to determine support for specific bi-
partitions. More importantly, it is clear from our
results that interpreting the ML* tree as the true tree
is incorrect. This interpretation assumes that the user
provides infinite data and that the model of substi-
tution is not misspecified.

Methods

Heuristic Search Algorithms

The covSEARCH topology optimization algorithm is seeded with

a single tree. The default is the BIONJ tree (Gascuel 1997); alter-

natively a user may specify a starting tree. All possible SPR rear-

rangements are performed on the initial tree to generate the first

candidate tree pool. Likelihoods are estimated for all of the trees in

the pool. For the confidence set heuristic algorithm, a confidence

test is then applied to the candidate pool and trees that fall below
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the preselected significance level for the test are deleted from the

pool. All possible SPRs are performed on all of the remaining trees

in the candidate pool to generate a new pool. This process is iter-

ated until there is no longer any change to the candidate pool.

Confidence set heuristic topology optimization
algorithm

1. Seed pool P with BIONJ or user-specified tree, P0 ¼ sinit
2. Perform search iteration step i.

a. Perform all possible SPR rearrangements on all t � Pi and add

newly generated trees temporarily to pool: P0i ¼ Pi [ SPRðPiÞ
b. Evaluate likelihoods for all t 2 P0 i and determine current best

tree sML�
c. Apply ML phylogeny confidence test to P0i, evaluating p-values

ptj for each candidate topology tj.

d. Delete from the pool all tj whose p-value falls below the des-

ignated significance level: Piþ1  CSðP0iÞ ¼ ftj : ptj > ag:

3. If ðPiþ1 6¼ PiÞ i iþ 1 and return to step 2;

otherwise

output pool contents and exit.

The implemented confidence test procedures are outlined be-

low. The reader is encouraged to see the references (Kishino et al.

1990; Shimodaira and Hasegawa 1999; Strimmer and Rambaut

2002; Goldman et al. 2000) for further details.

In the covSEARCH implementation of the KH test (Kishino et

al. 1990), a tree s is rejected if LML* – Ls lies outside the 1 – a
confidence interval for N(0,SÆVar(d)), where S is the number of sites

and Var(d) is the variance of the distribution of site log likelihood

differences. For the RELL-ws (resampling estimated log likelihood-

winning sites) variation, the number of positive site likelihood

differences is tabulated from a number of resampled sites and the

alternative tree is said to be rejected at level a if more than (1 – a) ·
100% of the paired site likelihood differences favor the ML* tree.

These tests are defined for the comparison of a single topology

against the ML* topology and their use in contexts that require

multiple comparisons is not technically correct (Goldman et al.

2000).

The procedure of Shimodaira and Hasegawa (1999) explicitly

accounts for the possibility that any of the candidate topologies

may be the ML tree, performing a single all-against-all comparison

rather than multiple tests of pairs of topologies. Briefly, one cal-

culates the test statistic T = LML* – L for each topology s. One

then constructs replicates of the test statistic for each topology

using bootstrap resampling (RELL was used in this work). For

each bootstrap sample b21..B the test statistic replicate

Tsb ¼ maxtf ~L0tb � ~L0sbg is calculated, where ~Lsb signifies that the log

likelihood has been centered by subtracting the corresponding row

average. One then computes ps ¼ cardfb : Tsb > Tsg=B and the

confidence set includes those topologies for which ps � a, where a
is the specified significance level.

The empirical cumulative distribution function (ECDF-site)

method is based on the raw distribution of site log likelihood dif-

ferences, cdfðd � li;ML � �li;sÞ. A candidate tree is rejected if d=0

lies beyond 1 – p, i.e., the probability that site log likelihoods in the

ML* tree are greater than those for the test tree exceeds 1 · a.
The expected likelihood weight (ELW) method of Strimmer

and Rambaut (2002) uses an average over bootstrap samples to

compute the expectation of the likelihood weight: ws � 1
bR

B
b¼1wsb

with ws ¼ Ls
RLt

. The confidence set is computed as the smallest set

such that the probability of one of the included candidates being

the correct model for the data exceeds a specified confidence

value. That is, if one orders the topologies according to likeli-

hood weight such that ws > wsþ1, the probability of the set of

the first m topologies containing the true topology is Rm
t¼1xt.

Thus the confidence set at significance level a consists of the first

tmin topologies in the ordered list, where tmin is the smallest index

for which Pðstrue 2 CÞ � 1� a.
The windowed likelihood algorithm used to examine conver-

gence is identical to the confidence set heuristic algorithm given

above except that steps 2c and 2d are replaced by:

Windowed likelihood heuristic search

2c�. Delete from the pool all trees tj such that LML� � Ltj > WL.

Unlike the confidence set algorithm, the windowed likelihood

algorithm does not allow for a predefined significance level; the

window parameter WL must be selected by the user at the start of

each run. WL = 0 means the search is single threaded and the only

SPR search path pursued for each iteration is the one that modifies

the current best topology. Accuracy with respect to the ML tree is

determined relative to the ML tree found among all searches and

confidence sets that were actually run, i.e., a global maximum

cannot be guaranteed.

Software Tools and Simulation Details

The covSEARCH program used for inference was developed at

Dalhousie University (Blouin et al. 2005a). ML and confidence

tests are implemented in the package libcov (Butt et al. 2005). Some

source code has been incorporated from freely available programs

including branch length optimization routines from TREE-PUZ-

ZLE (Schmidt et al. 2002) and a random number generator from

PAML (Yang 2005). Consensus tree calculations are based on the

Phylip Consense program (Felsenstein 2004). Simulated protein

sequences were generated using the program covTREE (Blouin et

al. 2005b), with the exception of Fig. 3b, for which a modified

version of covTREE that implements random selection of various

model parameters was used. Source code for covTREE, libcov, and

covSEARCH is available for download at the following URL:

http://www.cs.dal.ca/�cblouin.
For the results shown in Figs. 1 and 2, each topology is char-

acterized by two parameters: internal branch length, Li, and termi-

nal branch length, LE. Alignments were simulated using a=0.5 with

four site rate categories. Searches were seeded with the neighbor-

joining tree and phylogenetic reconstruction was performed using

JTT+G+F with four site rate categories. Accuracy and confidence

set sizes reported in Figs. 1 and 2, respectively, are averages over 100

bootstrap replicates of alignments of 1000 sites in length.

For Fig. 3, 216 single gene alignments were generated using the

opisthokont topology shown in the figure as a starting tree. Ran-

dom selection of the shape parameter, a, was used in the gamma

model of rate variation across sites. All branches of the starting tree

were scaled proportionately by a factor of 0.05, 0.2, 0.5, 1.0, 1.5,

and 2.0. For each scaling factor, 36 alignments were generated: 6

alignments of each of 50, 150, 250, 350, 450, and 550 amino acids.

covSEARCH was run with the KH test option on all 216 align-

ments.

Protein Sequence Data

a-Tubulin sequences were obtained from the National Center for

Biotechnology Information Protein database and aligned using

ClustalW (Thompson et al. 1994). Five sequences represent yeasts

including two Saccharomyces cerevisiae paralogues (accession

numbers S50871 and B25076), Candida albicans (AAB53194), and

two Schizosaccharomyces pombe paralogues (A25072 and B25072).

Five represent microsporidia including Encephalitozoon hellem

(P92120), Encephalitozoon cuniculi (NP_586048), Nosema locustae
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(AAC47419), Glugea plecoglossi (AAN35162), and Trachipleisto-

phora hominis (AAN35139).

Mammal mitochondrial protein sequence alignments were ob-

tained from the Goldman Group web site at http://www.ebi.ac.uk/

goldman. This data set consists of 3414 amino acid sites for Homo

sapiens (human), Phoca vitulina (harbor seal), Bos taurus (cow),

Oryctolagus cuniculus (rabbit), Mus musculus (mouse), and Didel-

phis virginiana (opossum) taxa.

Results

Efficacy of ML Search

We first examine ML search convergence for real and
simulated data using fixed likelihood windows. Ta-
ble 1. shows the rate of convergence on the ML tree as

Fig. 2. Size of converged
confidence sets for topology search
using covSEARCH. Li refers to the
length of the internal branches in
expected number of substitutions.
LE is a terminal branch length.
Standard deviation is given in
parentheses. Statistics for
reconstruction both with rates
across sites (RAS) variation and
assuming homogeneous site rates
(–) are shown. Boxes with only
lower bounds (‘‘>2K’’) indicate
that the covSEARCH program was
halted before convergence was
reached.

Fig. 1. Relationship of true
topology to maximum likelihood
estimated tree and majority rule
consensus trees for simulated data.
Li refers to the length of the
internal branches in expected
number of substitutions. LE is a
terminal branch length. ‘‘True
Found’’ indicates the percentage of
times the true tree was contained
within the final confidence set.
‘‘True is ML*’’ refers to the
fraction of the time that the found
true trees were equal to the ML*
tree for a given topology.
‘‘Consensus Is True’’ refers to the
percentage of the time the majority
rule consensus tree equaled the true
tree. The topological distance
between two trees is the number of
branches present in one tree and
not the other.
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a function of the likelihood interval used during the
search for one real and two simulated data sets. For the
12 taxa ef1a alignment dramatic variation with search
breadth is evident. It takes a search pool only 5 units of
likelihood inwidth to practically guarantee recovery of
the ML topology. For the longer simulated sequences,
containing 1025 sites, single path search proves ade-
quate, finding the ML tree 100% of the time. The re-
sults for the 20-taxon simulated data set with 400 sites
indicate a less challenging likelihood surface than for
the real data case, with single path search finding the

global optimum 87% of the time. Nonetheless, some
improvement is seen when the search likelihood win-
dow is broadened.

In order to test the reliability of the ML* tree for
finite data, sequences were simulated from the
topologies shown in the first column in Fig. 1 and
confidence sets inferred using covSEARCH. Topol-
ogy B presents the most challenging case for inference
with all long terminal branches and five of six short
internal branches. The percentage of the time the
estimated ML tree was found to equal the true tree is
shown in column 6 of Fig. 1. ML* tree agreement
with the true tree is perfect, with the exception of
topologies with short internal branch lengths corre-
sponding to cases B and F. For these cases, the
average accuracy of the estimated ML tree falls to
53.2% and 79.3%, respectively. Thus, for fixed short
internal branches, long terminal branches worsen the
accuracy of the ML* tree significantly.

Confidence Set Heuristic Search Performance

For topologies where the ML* tree is often not the
true tree, the data in column 5 of Fig. 1 show that
accuracy in terms of discovering the true tree within

Table 1. Convergence to maximum likelihood topology as a
function of search breadth

Alignment Taxa Sites WL Iterations Success rate (%)

efla 12 349 0 1000 37.4

4 1000 66.1

5 1000 99.6

Random tree 12 1025 0 1000 100

data ML tree 20 400 0 100 87

5 100 94

Note. Each iteration corresponds to a converged search starting

from a random topology.WL is the width of the likelihood window

for search. Success rate refers to the percentage of iterations that

converged to the ML tree.

Fig. 3. Node support as a
function of confidence set size for
simulated alignments. a Tree used
as the basis for simulated
alignments to study node support
in confidence sets. The tree shown
was inferred from concatenated
mitochondrial protein sequences
(J. Leigh, unpublished) for the
opisthokonts Podospora anserina,
Penicillium marneffei, Yarrowia
liolytica, Saccharomyces cervisia,
Schizosaccharomyces pombe,
Schizosaccharomyces japonicus,
Cryptococcus neoformans,
Crinipellis perniciosa,
Spizellomyces punctatus,
Harpochytrium sp. 94, Monsiga
brevicollis, Metridium senile, and
Amoebidium parasiticum. b
Number of nodes with >80%
support in KH confidence sets for
simulations based on the 13-taxon
ophisthokont tree pictured in a.
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the converged covSEARCH confidence sets is gen-
erally good. In fact, only in the cases of very short
internal branch lengths and when using the ELW test
is there significant failure to find the true tree within
the final confidence set. Column 8 indicates that im-
proved accuracy is achieved through a broadening of
the confidence set topological content with respect to
the true tree.

One sees from the data in column 7 of Fig. 1 that
the consensus tree is not equal to the true topology
under a broader range of circumstances than for the
ML* tree. Consensus tree agreement with the true
tree not only is poor for topologies with short inter-
nal branches, as is the case for the ML estimate, but
also exhibits diminished agreement for topologies
with only one or two long branches. When only one
or two long branches are present and internal bran-
ches are not very short, the KH, SH, and ELW
confidence sets allow recovery of the true tree using
the consensus tree method.

The average sizes of converged confidence sets for
various combinations of topology and rejection cri-
teria are listed in Fig. 2. The data show how both
relatively long and relatively short branch lengths act
to increase the number of accepted candidate trees.
For topology E, which has two long terminal bran-
ches, most measures find small numbers of trees.
RELL-ws and ECDF-site perform exceptionally
poorly in this case, generating confidence sets of more
than 100 trees. The short internal branches that are
ubiquitous in the case of topology F lead to larger
confidence sets for all criteria. The worst-case sce-
nario for tree resolution occurs in case B with all long
terminal branches and almost all short internal
branches. Here we see that the RELL-ws and ECDF-
site confidence sets are so large that they preclude
running the algorithm to convergence. ELW gener-
ates confidence sets with very few trees in all cases. As
noted above, however, it achieves poor coverage in
challenging inference situations.

Though the consensus tree is often not equal to the
true tree for difficult inference problems, a substantial
fraction of the nodes in the consensus tree is typically
present in most (‡80%) of the topologies for simu-
lated alignments as shown in Fig. 3b. In a 13-taxon
tree, 6 of 11 of the nodes are at the 80% support level
when there are close to 100 trees in the confidence set.
Even for confidence sets containing of the order of
10,000 trees, more than one node exhibits strong
support. Thus even for extremely large confidence
sets information on specific species bipartitions may
still be extracted.

The computational burden involved in evaluating
a confidence set of trees at each search step can be
significant. The simulation results discussed here were
gathered on an AMD Opteron cluster utilizing eight
processors for which convergence to confidence sets

with up to 2000 trees took only a few minutes. Fig-
ure 4 plots covSEARCH running time as a function
of the number of trees evaluated during the search for
the SH, KH, and ECDF-site tests for the same
alignments as in Figs. 1 and 2. ELW times were ob-
served to overlap those of the KH test, while RELL-
ws runtime behavior mimics that of ECDF-site. The
plots for all tests appear linear (which is to be ex-
pected) up to >2000 search trees. The change in
slope in the vicinity of 2500 trees for the SH test and
3500 trees for the ECDF-site test is most likely
hardware-specific and related to the efficiency of
memory handling for large data structures. In gen-
eral, peak memory usage grows linearly with the
maximum candidate pool size, which in turn is a
function of both the number of taxa and the difficulty
of the search problem.

Phylogenetic Examples

Mammalian mitochondrial protein sequences

We first demonstrate the effectiveness of the confi-
dence set heuristics using the mammal mitochondrial
protein sequences analyzed by Shimodaira and Ha-
segawa (1999). As this data set has only six taxa, it is
a seemingly trivial search problem with only 105
possible trees. However, because the SPR neighbor-
hood of the initial neighbor joining tree contains only
48 topologies, i.e., the first search step is not
exhaustive, this problem is still illustrative of the
covSEARCH algorithms. Table 2. lists the top eight

Fig. 4. Time to confidence set convergence as a function of trees
evaluated for the SH, KH, and ECDF-site tests on an AMD Op-
teron cluster utilizing eight processor nodes. Data are the same as
those used to generate Figs. 1 and 2 with no RAS for recon-
struction. Not shown are data for the ELW test, which overlaps
those for the KH test over the observed range of 1 to 500 trees
evaluated, and the RELL-ws test, which behaves similarly to the
ECDF-site test.
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topologies in likelihood order and indicates their
presence or absence in the confidence sets for the KH,
SH, and ELW tests. RELL-ws and ECDF-site results
are not listed because the confidence sets contain >90
trees, making them relatively ineffective. The SH,
KH, and ELW tests evaluate a total of 89, 79, and 41
candidate trees, respectively. The SH and KH tests
result in sets of 8 and 7 trees; these are the same
numbers of topologies that would be found by
applying the SH and KH tests to the 15 topologies
containing the (harbor seal, cow) grouping, as done
by Shimodaira and Hasegawa (1999). Search using
the ELW test generates the smallest confidence set,
including only the ML* tree and the tree with the
second highest likelihood. This may indicate a prob-
lem of insufficient coverage, as was the case for some
simulated data sets. Interestingly, the topology that is
present in the SH set but missing in the KH set does
not have the lowest likelihood. This demonstrates
how the test criterion, through its determination of
the search pool, can generate different solutions than
consideration of the rank order of likelihood alone.

Microsporidia and ascomycete a-tubulin sequences

Where microsporidia originate within the evolution-
ary history of eukaryotes is a current point of con-
troversy, therefore finding all plausible trees and

quantifying their support is of significant biological
interest (Keeling 2003). Resolution for the a-tubulin
tree containing the ascomycetes Saccharomyces ce-
revisiae, Schizosaccaromyces pombe, and Candida
albicans is expected to be good, based on prior
analyses. Though the number of trees in the con-
verged confidence set varies with the confidence test
used, the consensus tree is equal to the ML* tree for
all tests. Figure 5 shows the majority consensus tree
with labeled nodes. In Table 3, we list the support
values for all of the nodes. In addition to the results
using heuristic search, ML bootstrap results are
compared directly by constructing a confidence set
consisting of the four distinct trees found of 100
bootstrap data runs. From this one can see that the
microsporidia clade is strongly supported in all cases.
Nodes D and G are inadequately supported accord-
ing to the heuristic confidence set results (<50%) and
also show weaker ML bootstrap support. Note that
the ML tree is found in >90% of the single-threaded
bootstrap data searches so that using the raw per-
centages as a measure of support without accounting
for duplications may be significantly misleading. The
advantage in computation time for the heuristic
search methods over bootstrapping can be quite
large. Here the single KH test breadth search is more
than 20 times faster than the accumulated time for
100 bootstrap searches.

Table 2. Converged confidence set content for mammal mitochondrial protein sequences

SH KH ELW Topology

+ + + (cow, (harbor seal, (rabbit, (human, (opossum, mouse)))))

+ + + (cow, (harbor seal, (human, (rabbit, (opossum, mouse)))))

+ + ) (cow, (harbor seal, ((opossum, mouse), (human, rabbit))))

+ + ) (cow, (harbor seal, (rabbit, (mouse, (opossum, human))))

+ ) ) (cow, (harbor seal, (rabbit, (opossum, (human, mouse)))))

+ + ) (cow, (harbor seal, (opossum, human), (mouse, rabbit)))))

+ + ) (cow, (harbor seal, (human, (opossum, (mouse, rabbit)))))

+ + ) (cow, (harbor seal, (opossum, (human, (mouse, rabbit)))))

Note. Topologies (not) contained within a converged confidence set are indicated by a + ()) sign.

Fig. 5. The consensus tree (equal
to the maximum likelihood tree in
this case) for a-tubulin. Internal
nodes are labeled in order to
associate confidence set and
bootstrap support given in Table.
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In contrast to the above case, estimated branches
for the ascomycete taxa Mycosphaerella graminicola,
Rhynchosporium secalis, Sordaria macrospora, Ajel-
lomyces capsulatus, and Emericella nidulans are very
short, leading one to expect poor tree resolution. This
is confirmed in the confidence set results, where an
alignment of these taxa and microsporidia yields a set
of nearly 200 trees under the SH criterion (data not
shown).

Discussion

Whether local maxima are common features of the
likelihood surface for real sequences has been a
matter of some debate. While previous simulation
studies by Rogers and Swofford (1999) suggested that
local maxima are not problematic, Chor et al. (2000)
were able to find data sets exhibiting complex likeli-
hood surfaces for branch length optimization. Here
we have shown evidence for the existence of multiple
topologies that are statistically indistinguishable from
the true and/or ML* tree for both real and simulated
amino acid alignments. Performing a parallel search
on a pool of trees within some likelihood interval of
the maximum estimate illuminates the problem of
local maxima: when only one path is searched, the
estimated peak is unlikely to be optimal. As the
search is expanded to parallel threads close in likeli-
hood to the current best tree, performance in terms of
finding the global maximum improves steadily.

Disagreement between the ML* tree and the true
tree can occur due to the use of finite data for infer-
ence or it can also be the result of model misspecifi-
cation. Note that the simulated data for Fig. 1 were
generated under a JTT+G+F model but recovered
using only JTT+F in an effort to mimic real data
model misspecification. Thus in Fig. 1, all simula-
tions are misspecified (due to no RAS), nonetheless
there is a clear trend toward ML* inaccuracy in the
case of short internal branches. This suggests that the
primary cause of inaccuracy is lack of resolving
information relative to the true topology in the
alignment used for inference.

Low phylogenetic signal creates a difficult search
problem in tree space, hence large confidence sets are
required to generate a sufficiently broad search to find
the global maximum. For fixed short internal bran-
ches, the addition of long terminal branches worsens
the accuracy of the ML* tree significantly. This is not
surprising since short internal branches imply that
large amounts of sequence information are required
to properly resolve the phylogeny, while long bran-
ches indicate that the phylogenetic information per
site is low. It is significant because real data sets often
have these branch characteristics, as is the case for
one of the a-tubulin trees. It is quite encouraging that
our simulation results show that the confidence sets
nearly always recover the true tree under these cir-
cumstances.

In general, there is a tradeoff between coverage
and confidence set size, the specifics of which depend
on both the tree properties and the confidence set
criterion that is used. While ELW yields consistently
small confidence sets, its accuracy is relatively poor
when the true topology has both short internal
branches and long terminal branches. If accuracy is
most valued, the KH and SH tests do well with small
numbers of retained trees compared to RELL-ws and
ECDF-site. In our tests, the KH and SH tests per-
form very similarly despite the KH test not being
intended for the case of multiple tree comparisons to
the ML tree. However, SH should be preferred be-
cause it is statistically sound in this context. In gen-
eral, covSEARCH converged confidence sets will be
only approximations to the true confidence sets due
to the limitations of searching.

Though neither the ML* tree nor the majority rule
consensus tree is reliably the true tree, Fig. 3b dem-
onstrates that some biological information is recov-
erable on a per node basis even for confidence sets of
a few thousand trees. Extracting biological answers
from these sets is a topic for further research and
ongoing work in our group.

Obtaining large output sets of trees radically
deviates from the usual ML* tree output that phy-
logeneticists expect for a ML package. A relatively
large number of trees in the output set indicates that
only a fraction of the relationship that has to be
present in a strictly bifurcated tree is supported by the
data. In many cases, the number of trees in the output
set is the product of the number of valid topologies
within a few subtrees. We suggest focusing the sam-
pling in sequence to more specific questions to avoid
the combinatorial increase in the number of trees in
the output set.

The time to convergence of the covSEARCH
program will generally increase with the size of the
required confidence set, which in turn will vary with
the degree of phylogenetic resolution allowed by the
input alignment. Dependence on the number of taxa

Table 3. Consensus tree node support within converged confi-
dence sets tor the mammal mitochondrial protein sequences

Consensus

tree node KH SH RELL-ws MLBOOT ECDF-site

A 6/7 8/10 15/22 3/4 15/22

B 7 10 22 4 22

C 7 10 16 4 16

D 4 5 15 3 15

E 7 10 22 4 22

F 7 10 22 4 22

G 4 5 8 3 8
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and sites in the input alignment will be somewhat
complex. Additional taxa and/or sites increase pool
update time on a per tree basis, however, the im-
proved phylogenetic resolution that may result from
the additional data should decrease the average
number of trees in the search pool. Whether adding
genes or adding taxa is most beneficial for increasing
resolution will vary with the problem under consid-
eration (Zwickl and Hillis 2002; Rokas and Carroll
2005). covSEARCH can optimize multiple genes with
constrained topologies as a means to provide more
phylogenetic signal. The implications of the latter is
the matter of ongoing work.

covSEARCH runtime and memory requirements
do not currently allow for application to very large
alignments (hundreds of taxa). One possible strategy
is to first estimate large phylogenies along with
bootstrap support values for each branch using a
faster search method (e.g., Phyml or RAXML).
Branches with very high bootstrap support may be
fixed during the covSEARCH procedure, thus
restricting the confidence search to areas of tree space
where it can be of most benefit.

The criteria used here are all based on paired site
likelihoods and, as such, represent only one category
of measures for tree comparison. Some newer likeli-
hood confidence tests have not been considered here
(e.g., Shimodaira 2002; Shi et al. 2005) but may be
added in the future. Another alternative is parametric
bootstrapping (Swofford et al. 1996). Given that
models of real data are always somewhat misspeci-
fied, however, it seems prudent to choose nonpara-
metric test options. Additionally, parametric
bootstrapping tests would likely increase the com-
putational burden dramatically.

The strategy described in this work is a breadth-
first approach. This has many downsides from a
practical perspective, which impact the runtime of the
algorithm as well as the memory requirements.
However, it is clear that single-threaded or otherwise
greedier approaches may not perform as well in dif-
ficult situations. For instance, one might consider
starting an NNI-based algorithm from many random
initial trees, recording the local maximum found
during each run, and applying a confidence test after
the fact. This will not work in the case that broad
maxima in likelihood are present, i.e., multiple trees
near a single maximum cannot be rejected. In order
to output all statistically plausible topologies, one
must maintain information on trees that are close to
optimal in likelihood but are not precisely at a local
maximum.

The use of an exhaustive SPR enumeration at each
iteration, and for each tree in the current candidate
pool, can be seen as a brute force approach. A TBR
enumeration would be more exhaustive although
practically prohibitive. We are anticipating that lar-

ger datasets will further highlight the value of a broad
search strategy. However, further work is necessary
to refine the algorithm or define new heuristics to
make these larger analyses possible on common
computer hardware.

Conclusions

ML-based phylogenetic inference can be made more
reliable by choosing inference methods that are well
matched to the information content of the data. For
sequence alignments that provide ample phylogenetic
signal relative to the true tree, finding the ML esti-
mated tree may be adequate. In situations where
multiple maxima are close in likelihood, as is the case
for topologies with short internal branches, a broader
search for solutions is necessary. The program cov-
SEARCH provides an efficient set of algorithms in
this context and accomplishes robust phylogenetic
inference using pool-based topology search guided by
confidence sets. Computing phylogenies using this
method provides not only the ML estimated tree, but
also statistically significant alternative topologies.

One should be cautious in interpreting the major-
ity consensus tree for the confidence sets, as it is not
equal to the true tree in many cases. Rather, confi-
dence set output can be used to assess whether there
is enough sequence information to resolve specific
phylogenetic relationships. Large confidence set
solutions indicate that the phylogenetic signal is
insufficient to resolve an entire tree. For these situa-
tions we recommend focusing on more specific bio-
logical questions (i.e., support for particular
bipartitions) through judicious taxon and/or gene
sampling.
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