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Abstract. Gene duplication and gene loss as well as
other biological events can result in multiple copies of
genes in a given species. Because of these gene
duplication and loss dynamics, in addition to varia-
tion in sequence evolution and other sources of
uncertainty, different gene trees ultimately present
different evolutionary histories. All of this together
results in gene trees that give different topologies
from each other, making consensus species trees
ambiguous in places. Other sources of data to gen-
erate species trees are also unable to provide com-
pletely resolved binary species trees. However, in
addition to gene duplication events, speciation events
have provided some underlying phylogenetic signal,
enabling development of algorithms to characterize
these processes. Therefore, a soft parsimony algo-
rithm has been developed that enables the mapping of
gene trees onto species trees and modification of
uncertain or weakly supported branches based on
minimizing the number of gene duplication and loss
events implied by the tree. The algorithm also allows
for rooting of unrooted trees and for removal of in-
paralogues (lineage-specific duplicates and redundant

sequences masquerading as such). The algorithm has
also been made available for download as a software
package, Softparsmap.

Key words: Parsimony — Phylogeny — Gene
duplication/gene loss

Introduction

As species and their genomes diverge during evolu-
tionary history, the sets of genes and their sequences
also diverge. Gene duplication has been proposed as
a crucial source of evolutionary innovation in
organisms, like Eukaryotes, with small effective
population sizes (Ohno 1970; Francino 2005). With
duplication comes initial redundancy, followed by
neofunctionalization, subfunctionalization, and,
most commonly. pseudogenization (see Lynch et al.
2001; Rastogi and Liberles 2005). This differential
retention of duplicate genes between species can re-
sult in a different phylogenetic tree for individual
gene families than for the species as a whole. Further,
differential parsing of shared ancestral gene and
nucleotide polymorphism (see Blanchette et al. 2004)
as well as uncertainty in tree calculation methodolo-
gies (especially for EST and partial sequences) can
obfuscate the correlation between the evolutionary
history of a gene and the species. Additionally, when
using Genbank (Benson et al. 2005) or even draft
genome sequences as the starting point for phyloge-
netic analysis, many species will be represented with
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some genes, while others that are actually present in
the species genomes will not be represented in the
datasets and falsely appear to have been lost or
alternatively falsely appear in many copies. On top of
ambiguity at the gene tree level, many vertices in
species trees are unresolved and are represented as
nonbinary to reflect this species history ambiguity.
Goodman et al. (1979) first introduced a mapping,

which was then formalized by Page (1994), to explain
the difference between a gene tree and its species tree.
Additional algorithms for computing these mappings
have also been presented (Zhang 1997; Eulenstein et
al. 1998; Zmasek and Eddy 2001b). Another ap-
proach, Notung (Chen et al. 2000; Durand et al.
2005), allows consideration of gene tree uncertainty
through a bootstrap value threshold and implements
a weighting of gene duplication and loss events.
The problem of reconciling a gene tree to a species

tree is used to solve two opposite but connected
problems. The first problem is to infer a species tree
given a set of gene trees, where the gene trees have
different evolutionary histories (Guigo et al. 1996;
Page 2000; Ma et al. 2000; Page and Cotton 2000;
Cotton and Page 2002; Hallett and Lagergren 2002).
The other problem is to infer a gene tree or a set of
gene trees given a trusted species tree (Arvestad et al.
2003, 2004). The reconciliation can also be used for
locating duplication events with respect to a species
tree (Guigo et al. 1996) and for orthology analysis
(Zmasek and Eddy 2002; Arvestad et al. 2003, 2004).
Recent work has also focused on extending this type
of approach to differentiating gene duplication events
from lateral transfer events (Hallet et al. 2004). In this
paper we wish to infer a rooted binary gene tree given
a rooted nonbinary species tree and an unrooted,
binary, or nonbinary gene tree considering the pro-
cess of gene duplication.
These previously described algorithms require (or

infer) a binary species tree and the approach has been
successfully applied on a large scale, when there are
no ambiguities in the species tree (Koonin et al.
2004). However, the NCBI taxonomy database
(which, while formally a taxonomy, is commonly
used as a species tree) (Benson et al. 2005) and other
reference species trees are not binary in many places
due to uncertainties, between gene trees both from
different genes and from morphological characters
(for example, the resolution of eutherian mammals).
This problem was solved by Koonin et al. (2004) by
performing the calculation over their species tree
twice for the species in their dataset (once for a
topology consistent with a clade of Ecdysozoa and
once for a topology consistent with a clade of Coe-
lomata). Here, building on previous algorithmic
work, we present a more general mapping using a
parsimonious approach toward uncertain speciation
events or soft polytomies (for the original definition

of soft polytomies, see Maddison 1989). Because the
method embraces soft polytomies, we term it soft
parsimony, in contrast to previous work, which we
term hard parsimony.
One alternative to gene tree-to-species tree map-

ping for rooting of unrooted trees is midpoint root-
ing, where the point that is farthest from any extant
sequence is designated as the root. However, as het-
erotachy (different modes of evolution in different
subtrees of gene family trees) does not appear to be
uncommon, this can falsely assign a root to a more
recent fast-evolving branch (see Galtier 2001; Lopez
et al. 2002; Siltberg and Liberles 2002).
For the reasons listed above, in the development of

a large-scale database for understanding species
evolution through the evolution of gene families
(Liberles et al. 2001; Roth et al. 2005), it has been
necessary to develop a soft parsimony based ap-
proach to map gene trees onto species trees. In future
implementations of The Adaptive Evolution Data-
base (TAED), an analysis of gene content could be
coupled to an analysis of sequence evolution, as
lineage-specific duplication has been proposed to play
a major role in lineage-specific organismal evolution
(for an interesting discussion see Francino 2005). In
addition to the bootstrap (or posterior probability)
threshold also implemented in Notung, it has been
necessary to implement some additional features
driven by considerations in the starting dataset
(Genbank). Because many species have sparse sam-
pling of genes from their genomes, it has been nec-
essary to minimize, first, gene duplications and,
second, gene losses rather than minimizing them to-
gether and attributing (with a weight) the loss of a
gene to an absence in the genome. Also, because of
the redundancy in GenBank (GenBank is an uncu-
rated depository for gene sequences and many genes
including those with mutations, splice variants,
sequencing errors, etc., appear as multiple indepen-
dent entries), it has been necessary to treat in-para-
logues (lineage-specific duplicates) as redundant
entries in an effort to improve gene family signal. The
algorithm, as an option, can seek to exclude in-par-
alogues, as these are then not counted as duplications
and are filtered out. An algorithm is presented that
enables a mapping with all of the above features
using the flexible soft parsimony approach, together
with a downloadable software package, Softparsmap.

Methods

Multiple sequence alignments (MSA) were calculated using POA

(Grasso and Lee 2004) and phylogenetic trees were built using

MrBayes (Huelsenbeck and Ronquist 2001). The parameters

used for the tree calculations were as described by Roth et al.

(2005). The NCBI taxonomy (Benson et al. 2005) was used as a

species tree. The objective of our method is twofold. First, we
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aim to root the unrooted phylogenetic tree from MrBayes, using

the information from the corresponding species tree. Second, we

aim to infer a topology of poorly resolved groups in the gene

tree based on the species tree with a minimization of duplication

and subsequently loss events as optimality criteria, detecting and

filtering out redundant copies in the process. The flowchart for

the method is illustrated in Fig. 1.

Our approach of rooting the gene tree follows that of Notung,

but the methods differ in how the minimum number of duplications

and losses are computed. First, the number of duplications is

minimized and then the number of losses is minimized for the trees

with the minimum number of duplications. Also, our method does

not return all binary gene trees that have the minimum number of

duplications and losses.

Algorithms

By mapping the vertices of a gene tree to the vertices of the cor-

responding species tree, each inner gene tree vertex can be labeled

as being a duplication or speciation event. Hence, different map-

pings will describe different evolutionary scenarios. Them-mapping

for mapping the vertices in the gene tree to the vertices in the

species tree was introduced by Goodman et al. 1979. For any gene

tree vertex g, m(g) is the species to which genome g belongs. For

our soft parsimony approach we defined another mapping, denoted

M, for mapping gene tree vertices to species tree vertices. The two

mappings are illustrated in Fig. 2, and the Appendix presents a

formal definition of our M-mapping.

The objective of our method is to both root and resolve weakly

supported edges of unrooted gene trees. This is done by finding the

rooted gene trees corresponding to the unrooted gene tree that has

the most parsimonious mapping, i.e., a mapping that results in the

fewest duplications and losses.

Our method starts out with an unrooted, binary, or nonbinary

gene tree, where all edges have bootstrap values or posterior

probabilities attached to them. In the first step of our method a set

of rooted gene trees is constructed by applying midedge rooting to

each edge in the unrooted gene tree. Next the edges that have

bootstrap values or posterior probabilities less then a predefined

cutoff value are collapsed. From the resulting set of rooted gene

trees with well-supported edges the following is performed. First,

Fig. 1. A flowchart describes the
algorithmic process of rooting an unrooted
tree.
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the minimum number of duplications is computed by summing

over all gene tree vertices.

DupðS;GÞ ¼
X

g2VðGÞnLðGÞdup
ðS;GÞðgÞ ð1Þ

where dup(S,G)(g) is the minimum number of duplications associ-

ated with gene tree vertex g (see below). Since the number of

duplications associated with any gene tree vertex is independent

of the number of duplications associated with any other gene tree

vertex, the summation over the gene tree vertices can be done in

any order. Only the rooted gene trees that minimize the number

of duplications are kept, and this results in a subset to the original

set of rooted gene trees. Of course this subset might be equal to

the original set. Second, for this subset of rooted gene trees the

minimum number of losses is computed by summing over all gene

tree vertices:

LossðS;GÞ ¼
X

g2VðGÞnLðGÞloss
ðS;GÞðgÞ ð2Þ

As in the previous step, only the rooted gene trees that meet the

optimality criterion are kept. Here the optimality criterion is that

the minimum number of losses should be minimized. Conse-

quently, the resulting subset consists of rooted gene trees that all

have the same number of duplications and losses. The weak edges

that do not affect the number of duplications and losses are re-

stored as they are encountered in the summation. Third, if the

subset of rooted gene trees that minimize the number of duplica-

tions and losses has more than one member, the following proce-

dure is applied to choose the preferred rooted gene tree. As soon as

only one tree satisfies a criterion, the procedure stops. The first

criterion is that the preferred tree should have the most internal

vertices (i.e., the most nodes or branching points), the second cri-

terion is that the preferred tree should have the least number of

weak edges, and the third criterion is that the preferred tree should

have the shortest root distance. However, it is not certain that a

gene tree can be chosen from this procedure and in such cases our

method returns any of the trees in the subset together with a

warning. Fourth, the preferred rooted gene tree might not be bin-

ary, and thus the next step is to resolve the remaining collapsed

edges. This is done by adding splits from the corresponding species

tree and, if necessary, information from adding outgroups to the

original unrooted gene tree (see the Appendix for more detail).

Finally, in-paralogues are removed from the rooted gene tree by

pairwise comparisons of the gene sequences of the in-paralogues.

Given the sequences of two in-paralogues we choose to keep one of

them according to the following criteria. First, if one of the se-

quences is complete while the other is only a fragment, the com-

plete one is kept. Second, the longest sequence is kept. Third, the

sequence with the highest GI number (most recent entry to Gen-

Bank) is kept.

Minimizing the Number of Duplications

As the leaves have no duplications associated with them, the

minimum number of duplications for a given gene tree is computed

by summing the minimum number of duplications for each inner

gene tree vertex as shown in expression (1). Since the numbers of

duplications associated with each gene tree vertex are independent,

the computations can be done in any order. When the minimum

number of duplication is computed for any inner gene tree vertex g

to a gene tree G, the subtree rooted at g is considered, i.e., Gg.Given

a binary inner gene tree vertex, the minimum number of duplica-

tions can readily be computed from

dupðS;GÞðgÞ ¼

1 if the two children of g have

descendents within the same

extant genome

0 otherwise

8>>><
>>>:

ð3Þ

For any nonbinary inner gene tree vertex g, the minimum number

of duplications associated with g is calculated by partitioning the

child vertices of g into sets, such that the members of any set do not

have descendants in the same extant genome. The partitioning is

done such that the number of sets is minimized. An example of how

the minimum number of duplications is computed for a gene tree

vertex is shown in Fig. 3a. The problem of computing the mini-

mum number of duplications for nonbinary gene tree vertices in

this way is NP-complete; see Theorem A4 in the Appendix.

Minimizing the Number of Losses

The minimum number of losses is computed after the minimum

number of duplications has been computed. Moreover, the com-

putations are only performed for the rooted gene trees that

minimize the number of duplications, as gene loss is a secondary

optimization criterion to gene duplication. When the minimum

number of losses is computed for any inner gene tree vertex g, the

subtree rooted at g with the children of g as leaves is considered.

If the gene vertex is nonbinary, so is the subtree, and thus, a

refinement of this nonbinary subtree is constructed before the

minimum number of losses is computed. Our algorithm separates

three types of loss that can occur in the planted subtree rooted at

g and containing one of the two children of g. For each gene tree

vertex we have to sum over these three types of loss:

lossðS;GÞðgÞ ¼
X2

i¼1ðloss1ðg; ciðgÞÞ þ loss2ðg; ciðgÞÞ
þ loss3ðg; ciðgÞÞÞ

ð4Þ

For any binary gene tree vertex the minimum number of losses is

computed directly using expression (4), but for nonbinary vertices

in the gene tree another approach must be taken. The proposed

algorithm for computing the minimum number of losses for a

nonbinary gene tree vertex and the corresponding species tree is

approximate, and it is presented in detail in the Appendix. For

each nonbinary gene tree vertex g, the corresponding partitioning

of the child vertices into sets, given from the minimization of

duplications algorithm, is used to resolve the uncertainty, i.e.,

create a binary tree with the children of the current vertex as

Fig. 2. At the left is a gene tree explaining the evolutionary
relationship among the genes a1, b1, c1, d1, d2, e1, and e2. The labels
of the inner vertices have been omitted. The circles denote the
duplication events detected by the soft parsimony approach. At the
right is the species tree corresponding to the gene tree. The leaves of
the species tree are labeled with the extant species A, B, C, D, and
E, and gene a1 belongs to the genome of species A, gene b1 to
genome B, and so on. The two inner vertices are labeled x and y.
For every vertex g in the gene tree, the m- and M-mappings are
given in the form of m(g)|M(G). For the edges in the gene tree
where the soft parsimony definition of loss detects gene losses, the
losses are printed out as (loss1, loss2, loss3). If the species tree is
nonbinary, our soft parsimony definition infers a lesser or equal
number of duplications compared to the definition introduced by
Goodman et al. (1979), as well as a lesser or equal number of losses
compared to the definition by Guigo et al. (1996). However, if the
species tree is binary, the definitions are equivalent, and thus our
approach will give the same number of duplications and losses in
comparison with these other two approaches.
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leaves. This tree is constructed such that the vertices labeled as

duplications are as close to the leaves of this tree (as this will

count redundant sequences as in-paralogues rather than out-par-

alogues, enabling them to be filtered from the duplication calcu-

lation). This tree is then used together with the corresponding

species subtree in expression (2) to compute the minimum number

of losses for the current gene vertex. In Fig. 3b, an example of

how the minimum number of losses is computed for a gene tree

vertex is presented.

Software

Softparsmap is available for download from http://www.ii.uib.no/

�steffpar/softparsmap/. It is written in Java and requires JDK
1.4.2 or later.

Results and Discussion

The systematic application of a soft parsimony ap-
proach for analyzing gene trees in the context of
species trees has been performed as part of The
Adaptive Evolution Database (TAED) (Roth et al.
2005). Here, vertices with posterior probabilities of
<0.7 were collapsed to nonbinary trees. Then the
NCBI taxonomy (Benson et al. 2005) was used as a
species tree to minimize the number of gene dupli-
cation and loss events in the gene family tree to
produce a binary result.
A total of 1217 of 11,704 rootable gene families

trees in the Chordate half of TAED were modified

Fig. 3. a An overview of the gene duplication computation pro-
cess is presented. In the upper left corner is the species tree corre-
sponding to the rooted, binary gene tree in the upper right corner,
for which we wish to compute the minimum number of duplica-
tions. The weak edges in the gene tree are labeled W. Duplication
events are denoted by circles. Here we only show how to compute
the minimum number of duplications for the gene tree vertex g.
After the week edges have been collapsed, the child vertices of g are
equal to the set {ab,bc,de,cd} and the minimum partitioning of
these vertices such that members of the same set do not have
descendants in the same extant genome is {{ab,cd},{bc,de}}. The
number of duplications associated with g is equal to the size of the
minimum partition minus one. In this case the minimum number of
duplications associated with g is one. b An overview of the gene
loss computation process is presented. In the upper right corner is
the rooted, binary gene tree for which we wish to compute the
minimum number of losses, and in the upper left corner is the
corresponding species tree. The gene tree leaves labeled a1, a2, and
a3 are genes present in the genome of the extant species A, and the
gene tree leaves labeled b1 and b2 are genes present in the genome of
the extant species B. The weak edges are labeled W, and duplica-
tions are denoted as circles. Here we only show how to compute the
minimum number of losses for the gene tree vertex g. After col-
lapsing the weak edges, the children of g are equal to the set
{a1,b1,a2,b2,a3}. From the duplication algorithm a minimum par-

titioning of these vertices into sets such that any members of the
same set do not have descendants in the same extant genome is
{{a1,b1},{a2,b2},{a3}}, i.e., the minimum number of duplications
associated with this gene tree vertex is equal to two. In the first step
in the loss algorithm, a rooted tree is constructed for each set in the
partition as illustrated in (I). Note that the tree constructed from
the set {a3} is a single vertex. The first two trees in (I) are then
combined as illustrated in (II). The duplication event associated
with the root of this tree can be moved one step farther from the
leaves by swapping b1 and a3, illustrated in (III), and the tree is kept
for the subsequent steps of the algorithm. However, if the dupli-
cation event cannot be moved closer to the leaves, the first and
third trees in (I) are combined and the resulting tree is tested to see
if the duplication there can be moved closer to the leaves. If so, this
tree is kept instead, but if the duplication event cannot be moved
closer to the leaves in any of the trees constructed by combining the
first tree in (I) with any other tree in (I), the tree constructed first
would be chosen. Moreover, we continue to build trees from the
remaining pairs of trees in (I), if any. The resulting tree(s) is(are)
shown in (III). Next the tree(s) in (III) is(are) combined (if there is
more than one) in the same way as in the previous step, and this
procedure continues until we only have one tree as shown in (IV).
Now the minimum number of losses for the gene vertex g can be
computed, using expression (2), and in this example the minimum
number of losses is equal to zero.
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using this approach. This approach holds equal value
for other gene family databases, where identification
of orthologous genes is important. From TAED, a
sample tree, where the algorithm corrects a tree in the
expected manner, is shown in Figs. 4a and b. The
example shown is malate dehydrogenase.
As calculated by Mr. Bayes (Huelsenbeck and

Ronquist 2001), there is no root of the gene family
tree that generates Artiodactyls (hoofed mammals
with an even number of toes) as a monophyletic
group without inferring a gene duplication and mul-
tiple selective loss events. Application of the soft
parsimony algorithm results in the expected rooted
tree, shown in Fig. 4b.
To walk through this, in the first step, the root is

placed on the lineage separating Branchiostoma
(amphioxus) from teleost (bony) fish. This results in
one implied gene duplication event in eutherian
(placental) mammals. Next the branch leading to Sus
scrofa below the posterior probability threshold of
0.70 is collapsed. leading to possible nonbinary trees
linking it with the Ovis aries/rodent vertex. Then the
number of duplication events associated with differ-
ent resolutions is assessed, and a resolution of the Sus
scrofa/Ovis aries grouping as Artiodactyls with the
root still on the branch separating amphioxus from
teleosts now implies no gene duplication events.

Of course, gene duplication and loss events do
occur. Bayesian approaches, which treat such events
probabilistically, result in the explanation that such
events are rarer and less likely to explain a tree such
as that shown in Fig. 4a than, in this case, statistical
uncertainty of branching (Arvestad et al. 2003).
Many of the families in TAED that have been

corrected are multigene families, where the branching
order is different following a gene duplication event
and gene loss events. An example of this, where an
ancient gene duplication event preceded the diver-
gence of eutherian mammals and where the optimal
tree shows a different eutherian mammal topology, is
shown in Figs. 5a and b, from the guanine nucleotide
binding protein gene family in TAED. This is an
example of a tree where hard parsimony would force
a less preferred topology on one of the postduplica-
tion clades. In this case, Primates are the outgroup to
Rodents, Carnivores, and Artiodactyls on one half of
the tree and Rodents are the outgroup to Primates,
Carnivores, and Artiodactyls on the other half.
Without a posterior probability threshold, the hard
parsimony approach would infer a gene duplication
event. With a posterior probability threshold (in this
case), the tree would be corrected to one with even
lower support to prevent inference of a gene dupli-
cation event using hard parsimony.

Fig. 4. a The unrooted tree for malate dehydrogenase from Mr.
Bayes as calculated for TAED (Roth et al. 2005) before application
of the soft parsimony algorithm. The leaf IDs are GenBank protein
GIs. b The same tree has now been rooted and corrected using the
soft parsimony algorithm. The Artiodactyls now form a single

clade without implying a gene duplication event, and the in-para-
logues along the human and mouse lineages have been filtered out
because the original data set from GenBank contained redundan-
cies. Trees here are visualized using ATV (Zmasek and Eddy
2001a).

Fig. 5. a The unrooted tree for guanine nucleotide binding pro-
tein from Mr. Bayes as calculated for TAED (Roth et al. 2005)
before application of the soft parsimony algorithm. b Following
application of the soft parsimony algorithm, a tree with differential
optimal branching of eutherian mammals in two independent
clades after a more ancient gene duplication event is shown. While

a zebrafish in-paralogue is removed, the ambiguous branching or-
der of Primates, Rodents, Carnivores, and Artiodactyls is tolerated
without imposing a solution from one clade to another or inferring
any extra gene duplication events. Trees here are visualized using
ATV (Zmasek and Eddy 2001a).
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The algorithm presented under Methods and ap-
plied to TAED is available as software, called Soft-
parsmap, and is available for download at http://
www.ii.uib.no/�steffpar/softparsmap/. The optional
functionality available in the software package in-
cludes tree rooting by minimization of gene duplica-
tion and loss events, removal of in-paralogues,
removal of uncertainties or correction of weakly
supported splits based on the reference species tree,
gene tree-to-species tree mapping to allow identifi-
cation of orthologues and paralogues, and compari-
son of tree topologies.
A fast, flexible, powerful approach is presented

that allows a gene tree-to-species tree mapping using
a soft parsimony algorithm. This approach has been
applied systematically to gene families based on
GenBank in TAED, modifying over 10% of gene
families. The software package available from this
method should be a valuable addition to the evolu-
tionary bioinformatics toolbox.

Appendix: Mathematical Properties of the Soft

Parsimony Algorithm

Definitions and Notation

A tree T is a connected graph with no cycles, and
consists of a vertex set V(T) and an edge set E(T). The
leaves of a tree are the vertices with degree 1, and the
leaf set of T is denoted L(T), which is a subset of
V(T). A tree T is rooted if there is exactly one dis-
tinguished vertex, the root, which is denoted r(T). For
a rooted tree T, a child of a vertex u 2 V(T) is denoted
cTi ðuÞ, and the set of children for a vertex u in T is
denoted CT(u). The rooted subtree of T rooted at u 2
V(T) is denoted Tu. The planted subtree rooted at
u containing only the child vertex ci(u) is denoted
TuciðuÞ. Further, for a nonroot vertex v 2 V(T), let
pT(v) be the parent of v. For any u, v 2 V(T), let v £ T

u if v 2 V(Tu) and let v <
T u if v 2 VðTuÞnfug.

A rooted tree T is binary if all interior vertices have
two children and an unrooted tree is binary if all
interior vertices are connected to three other vertices.
For a tree T, d = (L1, L2) is a split in T if there exists
an edge e 2 E(T) such that L1, L2 are the two leaf sets
of the trees formed when e is removed. Given a tree
T and a set of vertices V0 � VðTÞ, let LCAT(V¢) be the
last common ancestor of the vertices in V¢. Tree in-
dexes are omitted whenever it is clear from the con-
text, and trees are rooted if else is not specified.
A species tree S is a phylogenetic tree that de-

scribes the relationship between extant species. A
gene tree G is a phylogenetic tree with a leaf labeling
function r:L(G) fi L(S). The leaves in G represent
genes and the leaves in S represent extant species, and
thus a gene g 2 L(G) belongs to the genome of species

r(g). We denote the set of all extant genomes that are
represented by the leaves of the gene treeP

ðGÞ ¼ [g2LðGÞrðgÞ. For two rooted gene trees
G and G¢, the leaf g12L(G) equals the leaf g2 2 L(G¢) if
g1 and g2 are representing the same gene. The internal
vertex g1 2V(G)\L(G) equals g22V(G¢)\L(G¢) if
LðGg1Þ ¼ LðG0

g2
Þ: Further, G is said to refine G¢ if for

every g22V(G¢) there exists a g12V(G) such that
g1 = g2. Goodman et al. (1979) introduced a mapping
m, mapping the vertices in the gene tree to the vertices in
the species tree. More precisely, given a species tree
S and a gene tree G, m is a surjective mapping such that
for all; g 2 VðGÞ;mðgÞ ¼ LCASð

P
ðGgÞÞ.

Gene Duplication and Gene Loss

Here we introduce a new soft parsimony mapping for
uncertain species trees and binary gene trees. Further,
we define how to compute gene duplication and gene
loss events using this mapping.
Given a species tree S and a rooted binary gene

tree G such that S(G) = L(S), let M be the mapping
M: V(G) fi 2V(S) such that

1. For any g 2 V(G) such that m(g) 2 L(S),
M(g) = {m(g)}.

2. For any g 2 V(G) such that m(g) =2 L(S),
MðgÞ ¼ fx 2 CSðmðgÞÞj9g0 2 VðGÞ;
g05Gg^ mðg0Þ �S xg
and define ZðgÞ ¼ [s2MðgÞLðSsÞ.

Each mapping M for a given gene tree and species
tree describes a hypothesis of how the gene tree
evolved with respect to the species tree and, thus,
which gene tree vertices are duplication events and
which are speciation events.
For any interior vertex g12V(G)\L(G) the number

of duplications associate with g is

dupðS;GÞðgÞ ¼
1 if jZðc1ðgÞÞ \ Zðc2ðgÞÞj > 0

0 otherwise

(
ðA1Þ

and the total number of duplications for G is

DupðS;GÞ ¼
X

g2VðGÞnLðGÞdup
ðS;GÞðgÞ ðA2Þ

The number of losses associated with a vertex g2V(G)
and one of its two children ci(g)2V(G) is defined as

loss1ðg; ciðgÞÞ ¼ jfs 2 VðSÞgjmðciðgÞÞ<ss<smðgÞgj
ðA3Þ

loss2ðg; ciðgÞÞ ¼
1 if mðciðgÞÞ<smðgÞ ^ jCs

ðmðciðgÞÞÞnMðciðgÞÞj > 0
0 otherwise

8><
>:

ðA4Þ
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loss3ðg; ciðgÞÞ ¼
1 if dupðS;GÞ ðgÞ ¼ 1

^MðgÞ 6¼MðciðgÞÞ
0 otherwise

8><
>: ðA5Þ

Then the number of losses assigned to an interior
vertex g2V(G)\L(G) and the total number of losses in
the gene tree is

lossðS;GÞðgÞ ¼
X2

i¼1 ðloss1ðg; ciðgÞÞ
þ loss2ðg; ciðgÞÞ þ loss3ðg; ciðgÞÞÞ

ðA6Þ

and

LossðS;GÞ ¼
X

g2VðGÞnLðGÞloss
ðS;GÞðgÞ ðA7Þ

Uncertain Gene Trees

In many real gene trees, vertices with more then two
children exist. Here we present a heuristic algorithm
for computing the minimum number of duplications
and losses over the set of all gene trees refining the
given gene tree. Duplications are prioritized before
losses.
Let G be any gene tree, and let S be a species tree,

such that S(G) = L(S). The set of binary gene trees
that refine G is denoted BGG. Moreover, the set of
trees in BGG that have the minimum number of
duplications is denoted BG

ðS; GÞ
min and can be expressed

as BG
ðS; GÞ
min ¼ fH¢ 2 BGG 8H 2 BGG

�� ; DupðS; H¢Þ �
DupðS; HÞg:
The minimization of the number of losses is con-

strained by the minimum number of duplications.
Thus, the numbers of duplications and losses are

defined as

Dup
ðS; GÞ
min ¼ DupðS; HÞ where H 2 BGðS; GÞ and

Loss
ðS; GÞ
min ¼Minimum

H2BGðS; GÞ
min

LossðS; HÞ

Computing the number of duplications Dup
ðS; GÞ
min is

NP-complete (see Theorem A4), but for our heuristic
approach, described below, duplications can be
computed in polynomial time.

Algorithms

Since our model assumes that the number of
duplications at a vertex g 2 V(G)\L(G) is indepen-
dent of the number of duplications at any other
vertex g¢ 2 V(G)\L(G), we can calculate the number
of duplications at the vertices of G in any order.
The algorithm computing duplications is based on
Theorem A1.

Theorem A1. Let S be a species tree, let G be a gene
tree such that S(G) = L(S). For all g 2 V(G)\L(G),
denote A(g) to be all possible partitions of
the set CG(g) = {g1,...,gn}, let A¢ðgÞ ¼ fPA 2 AðgÞj
8D 2 PA; 8gi; gj 2 D; ZðgiÞ\ZðgjÞ ¼ / _ i ¼ jg,
and let A¢minðgÞ ¼ fPA 2 A¢ðgÞ 8PA¢ 2 A¢j ðgÞ;
PA � PA¢g. Then Dup

ðS; GÞ
min ¼

P
g2VðGÞnLðGÞ

PAðgÞj j � 1 where PA(g)2 A¢min(g). In order to prove
Theorem A1 the following lemmas are needed.

Lemma A2. Given a gene tree G and a species tree S
such that S(G) ˝ L(S), then for all g, g1 = V (G),
such that g = p (g1) it holds that Z(g1) ˝ Z(g).
Proof. Let G be a gene tree and S a species tree such
that S(G) ˝ L(S), and let g, g12V(G), such that g = p
(g1). Then the vertex set of Gg1 is a subset of the ver-
tex set of Gg, which by the definition of the set S gives
S(Gg1 ) ˝ S(Gg), and further m(g1) £ S m(g). Conse-
quently, for all s2M (g1) there exists s¢2M(g) for
which S £ S S¢, and thus Z(g1) ˝ Z(g).
For a species tree S, a gene tree G, a gene tree

G¢2BGG, let the notation (g11,g12:g1)g2:g0 be an up
triplet in G¢ if g0, g1, g2, g11, g122V(G¢), g1 = p
(g11) = p(g12), g0 = p(g1) = p(g2), g12V(G¢)\V(G),
dup(S, G¢) (g1) = 1, and dup

(S, G¢)(g0) = 0.

Lemma A3. Let S be a species tree and let G be a
gene tree such that S(G) = L(S), then for every gene
tree G¢2BGG there exists a gene tree G¢¢2BGG such
that Dup(S, G¢) = Dup(S, G¢¢) and G¢¢ do not contain
any up triplets.
Proof. G¢¢ is computed through following steps.

l. Let Gn = G¢, where n = 1.
2. Find an up triplet (g11, g12:g1) g2:g0 in G

n. If no
up triplet exists, then G¢¢ = Gn.

3. We know that dupðS;G
nÞ g1ð Þ ¼ 1,

dup S;G
nð Þ g0ð Þ ¼ 0, and since dup S;Gnð Þ g1ð Þ ¼ 1 it

follows that Z g11ð Þ \ Z g12ð Þj j > 0. According to
Lemma A2 Z g12ð Þ � Z g1ð Þ, and since
dup S;G

nð Þ g0ð Þ ¼ 0, it follows that 0 ¼ Z g1ð Þ\j
Z g2ð Þj � Z g12ð Þ \ Z g2ð Þj j ¼ 0. Consequently, it
is possible to move the duplication associated
with vertex g1 one edge closer to the root of G

n

by creating the following tree. Let Gn+1 denote
the tree obtained when we take Gn and exchange
places with the rooted subtreesGng11 andG

n
g2
. Note

thatDup S;G
nð Þ ¼ Dup S;Gnþ1ð Þ. Set n: = n+1 and

resume at 2.

Theorem A1 can now be proven.
Proof. According to Lemma A3, we know that for
any G¢ 2 BS S;Gð Þ

min it is possible to compute gene tree
G¢¢ 2 BS S;Gð Þ

min such that no up triplet exists in G¢¢. Now
for every gene vertex g 2 V(G), let PA(g) be the
partition computed using G¢¢ in following steps.
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1. Locate the gene vertices g¢, g¢1, . . . , g¢n 2 N(G¢¢)
such that g¢ = g, g¢1 = g1, . . . , g¢n = gn where
CG(g) = {g1, . . . , gn}.

2. If dup S;G¢¢ð Þ g¢ð Þ ¼ 0, then let PA(g) = {g1, . . . , gn}
and we are done.

3. Let L be list such that L = {g¢1, . . . , g¢n} and PA¢
(g) be an empty set.

4. Set g¢t to be the first gene vertex in L.
5. If dup S;G¢¢ð Þ p g¢tð Þð Þ ¼ 0, set g¢t to be p(g¢t) and
resume at 5.

6. Let D¢i ¼ g¢¢ 2 g¢1; . . . ; g¢nf g g¢¢ �j g¢tf g; add D¢i, to
PA¢(g), and remove the gene vertices in D¢i from L.
If |L| > 0, resume at 4.

From Lemma A3 nd the above steps it holds that PA
(g) 2 A¢(g). Furthermore, if PA (g) =2 A¢min(g), then a
binary gene tree with fewer duplications then G¢¢
could be constructed, but G¢¢ 2 BS S;Gð Þ

min and thus it
must hold that PA (g) 2 A¢min(g). Consequently, for
every gene tree G¢ 2 BS S;Gð Þ

min and for all g2N (G)\L(G),
there exists a minimum partition PA (g) 2 A¢min(g)
such that Dup

S;Gð Þ
min ¼ Dup S;G¢ð Þ

min ¼
P
g2N Gð ÞnL Gð Þ

PA gð Þj j � 1.

Inferring the number of duplications at a gene tree
vertex.
Let G be gene tree and S species tree, such that
S(G) = L(S). Then for gene tree vertex g2V
(G)\L(G), let Ag = CG(g) and let Pg be an empty list
of sets of gene tree vertices.

1. For all gene tree vertices in Ag,
2. Pick a gene tree vertex gi2Ag such that for all
gj2Ag it holds that Z gj

	 
�� �� � Z gið Þj j.

2.1. Put gi in the first set pk 2 Pg such that for all
other gene tree vertices gk in pk it holds tha
Z gkð Þ \ Z gið Þ ¼ /.

2.2. Let Ag = Ag\{gi}.
2.3. If Ag is empty goto 4, otherwise goto 2.

3. Set Ag = CG(g) and Pg to an empty list of sets.
For all gene tree vertices in Ag,

3.1. pick a gene tree vertex gi2Ag at random.
3.2. Put gi in the first set pk of Pg such that for

all other gene tree vertices gk in pk it holds
that Z gkð Þ \ Z gið Þ ¼ /.

4. Let gi(k) denote gene vertex gi in set pk, if
\k [iZ gi kð Þ

	 
	 
�� �� � 1 then a minimum partition
is reached. The number of duplications equals
the number of sets in Pg minus one.

5. If it is possible to create a set Lg of gene vertices
by taking exactly one gene vertex from every set
pk in Pg such that for any two gene vertices
gi; gj 2 Lg Z gkð Þ \ Z gið Þj j � 1, then a minimum
partition is reached. The number of duplications
equals the number of sets in Pg minus one.

6. If we have not reached the maximum number of
rebuilds, goto 3. Otherwise the method has
failed.

Inferring the number of losses at a gene tree vertex.
Let G be a gene tree and S a species tree, such that
S(G) = L(S). Then for a gene tree vertex g 2
V(G)\L(G), let Pg be the partition as given from the
duplication algorithm. The objective is to build a
rooted binary gene tree Gg0 with L Gg0

	 

¼ CG gð Þ,

such that for every gi 2 L Gg0
	 


and its corresponding
gj 2 CG(g), it holds that M(gi) = M(gj). We wish to
construct a gene tree Gg0 such that the number of
losses is less then or equal to any other binary gene
tree constructed with the vertices in CG(g) as leaves.
However, the method proposed here is approximate,
which means that there might exist another binary
gene tree constructed with the same set of leaves that
gives fewer losses. The gene tree Gg0 is then used in
equations (A3)–(A5) to calculate the minimum
number of losses associated with the gene tree vertex
g. Let Lg be an empty sorted set of gene vertices such
that for any two gene vertices gi, gj, 2 Lg, gi is before
gj if Z gið Þj jjZ gj

	 

j.

1. For every set in Pg,

1.1. build a gene tree Ggi using the splits found in
the species tree. Denote the root gi and add gi
to Lg.

2. If there is more then one gene vertex in Lg resume
at 3. Else,

2.1. let g0 be the gene vertex in Lg,
2.2. set Gg0 ¼ Ggi and find locally the mapping

M that puts the duplications as close to the
leaves as possible. Resume at 5.

3. Let j = 1.

3.1. Let g0, gj 2 Lg be the roots of the first pair of
subtrees for which a new gene tree Ggk can be
constructed by adding a gene tree vertex gk
and two edges such that gk = p(g0) = p(gj).

3.2. For Ggk find locally the mapping M that puts
the duplications one step closer to the leaves.
If no such mapping can be found, let j = j+ l
and resume at 3. l.

3.3. Remove g0, gj from Lg and add gk to Lg.
Resume at 2.

4. Let g0, g1 2 Lg be the roots of the first pair of
subtrees in Lg. Construct a new gene tree Ggk by
adding a gene tree vertex gk and two edges such
that gk = p(g0) = p(g1).

4.1. Remove g0, g1 from Lg and add gk to Lg.
Resume at 2.
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5. Compute the losses of Gg0 by using equation
(A7).

In different steps of the loss algorithm it says that we
find locally the mapping M that puts duplications as
close to the leaves as possible. That is done in the
following way. For each triplet (g11, g12:g1) g2:g0, i.e.,
rooted tree with three leaves, in Gg0 the mappingM is
found such that duplications are assigned to vertices
as close to the leaves as possible. This is successful if
the root of the triplet is labeled as a duplication event
and g1 is not, and if we can swap g1i and g2 without
increasing the number of duplication events occur-
ring in the triplet.

NP-Completeness

The problem of computing the minimum number of
duplications over the set of all gene trees refining a
given gene tree using the soft parsimony mapping can
be formulated as follows.

Uncertain Gene Tree (UGT). Instance: A species
tree S, a gene tree G such that S(G) = L(S), and an
integer D. Question: Does a gene tree G¢ exist such
that G¢ refines G and Dup(S,G¢) £ D?

Theorem A4. UGT is NP-complete.

Proof. UGT belong to NP since given an instance of
the problem and a certificate in the form of a binary
gene treeG¢, the answer of the question isDup(S,G¢) £ D
which can be computed in polynomial time. To prove it
to be NP-hard, we reduce the Partition into Cliques
problem (Garey and Johnson 1979) to UGT.

The Partition into Cliques problem. Given an
undirected graph P = (V, E) and a positive integer
K £ |V|, can the vertices in P be partitioned into
k £ K disjoint sets Vl,V2,. . .,Vk such that for each Vi,
i = l, 2,. . .,k, the subgraph Pi = (Vi, Ei) induced by
Vi is a clique (Garey and Johnson 1979)?
Let P = (V, E) be any graph. Moreover, let S be a

species tree and G a gene tree, for which there exists a
bijection c:V fi C(r(G)) such that for all vi, vj 2 V, it
holds that Z c við Þð Þ \ Z c vj

	 
	 
�� �� ¼ 0 if and only if the
edge (vi, vj) exists in the edge set of P. A rooted gene
tree G and a rooted species tree S that satisfy these
conditions can be constructed as follows. Let
P¢ = (V¢, E¢) be the complement of P. Let the species
tree S have one internal vertex, the root s = r(S),
such that the child set of s is the leaves of S, i.e.,
CS(s) = L(S), and define an injective function q that
maps the edges in the graph P to the leaves of the
species tree, i.e., q:E¢ fi L(S). The gene tree G has
root vertex g = r(G), where CG gð Þ

�� �� ¼ V¢j j and
c(vi) = gi for all gi 2 CG(g). For every gi 2 CG(g) add

a gene vertex gir for every edge er = (vi, vj) 2 E¢ and
set r(gir) = q(er). For all gi 2 CG(g) such that
CG gið Þ
�� ��52 add a gene vertex gij under gi and a
species vertex sj under the root vertex s, and set
r(gij) = sj. Furthermore, for any certificate
Vl,V2,. . .,Vk, a certificate G¢ can be constructed such
that DupðS;G¢Þ þ 1 � V1;V2; . . . ;Vkf gj j. Construct a
gene tree G¢¢ refining G, by, for every
Vi 2 V1;V2; . . . ;f Vkg, adding a gene vertex g¢i under
the root g¢ = r(G¢¢) and, for every vr 2 Vi, adding
Gc vrð Þ under g¢i. Then let G¢ be any binary gene tree
refining G¢¢. Thus, for any graph P and any positive
integer K £ |V|, an integer D = K ) 1, a gene tree
G, and a species tree S can be constructed in poly-
nomial time such that UGT gives the same answer as
Partition into Cliques.
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