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Abstract. Sequence divergence among orthologous
proteins was characterized with 34 amino acid
replacement matrices, sequence context analysis, and
a phylogenetic tree. The model was trained on very
large datasets of aligned protein sequences drawn
from 15 organisms including protists, plants,
Dictyostelium, fungi, and animals. Comparative tests
with models currently used in phylogeny, i.e., with
JTT+G±F andWAG+G±F, made on a test dataset
of 380 multiple alignments containing protein se-
quences from all five of the major taxonomic groups
mentioned, indicate that our model should be pre-
ferred over the JTT+G±F and WAG+G±F models
on datasets similar to the test dataset. The strong
performance of our model of orthologous protein
sequence divergence can be attributed to its ability to
better approximate amino acid equilibrium frequen-
cies to compositions found in alignment columns.
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Introduction

In some of the first comparisons of the amino acid
sequences of orthologs, Zuckerkandl and Pauling
(1965) expected that equivalent positions would be
filled by amino acids with similar chemical properties

more frequently than amino acids with differences in
size, charge, or hydropathy. They pointed out that
most mutations resulting in amino acids that alter the
local protein context would be eliminated by selection
if they were incompatible with function. Their
expectations were largely confirmed in the larger
database used by Dayhoff et al. (1972, 1978) to
construct their PAM matrix. This matrix as well as
the BLOSUM series (Henikoff and Henikoff 1993)
and the JTT matrix (Jones et al. 1992) use amino acid
frequencies observed along the length of many pro-
tein sequences. However, as many people have ob-
served, a large fraction of all columns in multiple
alignments of protein sequences is dominated by a
few amino acids (Taylor 1986; Livingstone and
Barton 1993; Brown et al. 1993; Miyamoto and Fitch
1995; Sjolander et al. 1996; Halpern and Bruno 1998).
The compositions of these columns are not well rep-
resented by average frequencies. Recent efforts to
generate improved matrices continue to use database-
averaged frequencies (Müller and Vingron 2000;
Whelan and Goldman 2001; Lin et al. 2001; Dimmic
et al. 2002; Veerassamy et al. 2003; Xu et al. 2004).
Adjustments of these matrices to specific proteins
focused on length rather than position (Cao et al.
1994; Goldman and Whelan 2002; Yu et al. 2003; Yu
and Altschul 2004).
We have developed a model of amino acid

replacements that contains a collection of 34
replacement matrices. These were derived from the
frequencies observed in alignment columns of a very
large number of likely orthologs from organisms
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position can be characterized by several different
matrices with different weights. Twenty of the
matrices account for highly conserved positions of
each of the 20 amino acids. There is also a generic
matrix similar to the PAM for substitutions between
any pair of amino acids. Thirteen other matrices are
used for modeling replacements between subgroups
of amino acids sharing physical similarities. The
model also adjusts weights on the matrices in protein
regions to capture domain-specific differences in
selection pressure. A phylogenetic tree is generated by
the model and is expanded as new organisms are
iteratively added to the study. When the mature
model was compared to models currently used in
phylogeny (JTT+G±F, WAG+G±F), it was found
to be better.
The model can also be used for classifying

homologous relationships between sets of protein
sequences by making tests of their historical lineage
relationships. Recognizing clusters of orthologous
proteins by sequence comparison can assist in pre-
dicting related functions and provide useful infor-
mation on phylogeny.

Materials and Methods

Proteome Database

For initial model construction, the complete proteomes of six

organisms (Arabidopsis thaliana, Saccharomyces cerevisiae,

Schizosaccharomyces pombe, Drosophila melanogaster, Fugu

rubripes, and Homo sapiens) were downloaded from major archival

and genome sequencing institutions (see supplementary material).

In subsequent expansions of the dataset, proteomes of nine more

organisms were included (Plasmodium falciparum, Leishmania

major, Oryza sativa, Zea mays, Dictyostelium discoideum,

Neurospora crassa, Caenorhabditis elegans, Anopheles gambiae, and

Ciona intestinalis (see supplementary material).

Clusters of Orthologs

The ‘‘COG’’ method, introduced by Tatusov et al. (1997), was

applied to the six-proteome dataset to find clusters of likely

orthologous sequences. Easy-to-align columns were identified by

comparing four distinct multiple alignments done on each cluster

using T-Coffee (Notredame et al. 2000) and ClustalW with gap

opening costs of 6, 10, and 18 (Thompson et al. 1994). Align-

ment blocks with at least five gap-free columns that were found

in all four multiple alignments or received a T-Coffee column

score of at least 5 were considered easy-to-align. Amino acids

falling outside an easy-to-align column were not considered

further. Hard-to-align regions hold little functional or phyloge-

netic information and can lead to misassignments (Altschul 1998;

Fitch 2000). Each cluster of sequences was represented by con-

catenating blocks of easy-to-align columns. Clusters in which at

least half of the amino acids were found in the easy-to-align

columns were accepted into the dataset. Clusters with fewer easy-

to-align columns were reanalyzed after removing members.

Those that passed the 50% threshold and still had at least three

members were accepted into the dataset.

Parameters and a Phylogenetic Tree

Equilibrium frequencies of our matrices were established by self-

consistent counting. All other model parameters were set using

maximum (log)likelihood on the dataset with a phylogenetic tree.

The tree topology is well established for the initial six organisms (two

vertebrates, an insect, two yeasts, and a plant). The branch length

ratios of the tree were computed simultaneously with the model

parameters usingmaximum (log)likelihood on the entire database of

multiple alignments. Proportional trees with varying lengths were

used for individual clusters. The Pruning algorithm was used to

compute the probabilities of an alignment column given a matrix

(Felsenstein 1981). The branching pattern of the 15 organisms was

essentially identical to that determined by Bapteste et al. (2002).

Iterative Expansion

The clusters were expanded by adding nine proteomes, one at a time,

with redefinition of parameters. As each organism was added, a

tentative expanded tree was established on a subset of the new pro-

teome assigned to clusters. In the expansion steps cluster additions

were based on comparisons of different test topologies and branch

length variation rather than theCOGmethodology used in the initial

set. Previously accepted members of clusters were also serially re-

moved from the clusters and subjected to the same tests to establish

likely orthology. The seven proteome dataset went through three

rounds of cluster database orthology testing and tree and model

parameter retraining. The tree and model parameters were retrained

when each of the next three proteomes was added. Retraining was

not continued thereafter because there was little change or gain in

model performance after addition of the tenth proteome.

Regional Sequence Context

The modular structure of many proteins results in significant dif-

ferences in the rate of amino acid replacement from region to re-

gion (Goldman et al. 1998; Tourasse and Li 2000). Hidden Markov

models have been used to assign rate categories in multiple align-

ments of DNA sequences (Yang 1995; Felsenstein and Churchill

1996). Our regional sequence context adjustment is similar to a

hidden Markov model. It adjusts the weights (prior probabilities)

on the use of the individual matrices to the density of conserved

positions. Its five states are weight vectors that are one-parameter

variants of the average matrix use probabilities (see supplementary

material). The sequence context adjustment differs from a standard

HMM in that the state transition probabilities are dependent on

how long a state has been occupied. For each state, this depen-

dency is such that the length of occupation of the state (of optimal

paths) follows a state-specific, shifted G distribution.

Comparative Tests

We used a test set of all (380) alignments that contained at least one

sequence from each of the five major taxonomic groups represented

in the dataset, i.e., protists, plants, Dictyostelium, fungi, and ani-

mals. These were extracted from a dataset of 5038 multiple align-

ments of proteins from 15 organisms. The parameters of our model

were reestimated on the remaining 4658 multiple alignments to

avoid any bias by the test set. Performance of our model and

various forms of the JTT and WAG models on the test set was

compared by resampling BIC model selection (Schwartz 1978;

Efron 1979). In addition to testing the JTT and WAG models with

fully adjustable trees, we tested them with proportional and fixed

trees. The fixed tree was established on concatenated aligned
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sequences from EF1a, HSP70, DNAJ, ribosomal S14 and L10, a
vacuolar proton pump ATPase, and TCTP, which have clear

orthologs in all 15 organisms. Proportional trees were constant

ratio variants of the fixed tree. The PAML package was used to

perform all work with the JTT+G and WAG+G models (Yang

1997). Eight categories were used for the discrete G distribution

controlling rate variation (ncatG = 8). The resampled versions of

our 380 multiple alignment test dataset were generated by a stan-

dard program, seqboot (Felsenstein 1993). Only seven resampled

datasets could be analyzed because the four slowest competing

models would each require 5 years of 1-GHz processor time for 100

resamplings.

Results

Counting and Choice of Matrices

Our collection of matrices is structured to fit amino
acid replacements commonly found in multiple

alignment columns. The composition of 329,062
columns in the 976 multiple alignments of the pro-
teins from the six widely separated organisms (see
Materials and Methods) was determined. About a
third of the columns were filled by a single amino
acid. Another 58,250 columns were dominated by a
single amino acid but had one row replaced, while
another 84,511 were biased to a single amino acid but
contained others. Most of the remaining columns
(77,339 out of 85,146) were dominated by a mixture
of two or three amino acids. These were counted into
bins indexed according to composition; 80% of the
counts were concentrated in 60 of the 1309 potential
bins (Fig. 1).
Inspection of the bins immediately suggested the

use of matrices with only a subset of the 20 amino
acids since the composition of many individual

Hydrophobic 

IV 6644 LM 2095 FI 445 FM 229

IL 4591 FL 1750 MV 341 ILV 212

LV 2739 IM 648 FV 329  

 
Alanine and Threonine with Valine, Leucine, Isoleucine 

AV 1240 AL 488 IT 385 

TV 951 LT 405 AI 309 

 
Small     Alanine and Glycine with Small/Medium Hydrophilic 
                  Threonine and Asparagine 

 

AS 2846 

AG 1377 

GS 881 

AT 865 

GN 523 

AN 255 

GT 185 

ST 2447 DS 579

DN 1107 NT 484

NS 1013 DT 243

Acidic and Medium/Large Hydrophilic 

KR 3956 EK 1143 ER 348 HK 218

DE 3744 KQ 1003 HQ 333 EH 108

EQ 1299 QR 497 HR 218   

 
Large Hydrophilic with Small Hydrophilic 

KS 659 KT 501 QS 381 DK 338

KN 591 EN 416 ET 360 QT 294

ES 562 HN 382 NQ 347  

 
Large Aromatic 

FY 2555 FW 313 FH 147

HY 473 WY 286 HW 29 

 
Proline and Cysteine with Alanine, Serine, Valine 

AP 676 PS 488 CS 387 

AC 633 CV 470 PV 180 

 
Other Top 60 Ranked Mixed Alignment Columns 

AE 674 EP 396 AQ 367 KL 340 

AK 581 LY 394 DG 363 KP 318 

Fig. 1. Number of multiple alignment columns by
composition. Each alignment column counted had six amino
acids, one each from A. thaliana, S. cerevisiae, S. pombe,
D. melanogaster, F. rubripes, and H. sapiens. Column counts
were placed into bins according to composition. If an amino
acid appeared two or more times in a column, it was counted
into a bin indexed by that amino acid.
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positions was restricted to amino acids with shared
physical properties, particularly hydropathy and size.
Together with 20 ‘‘highly conserved’’ matrices, one
for each amino acid, we included matrices dedicated
to frequently observed pairwise exchanges. We in-
cluded ‘‘IV,’’ ‘‘acidic,’’ and ‘‘basic’’ matrices for
positions dominated by isoleucine and valine, aspar-
tic and glutamic acids, lysine and arginine. The col-
lection also contains matrices for exchange of
‘‘small,’’ ‘‘small/medium hydrophobic,’’ ‘‘medium/
large hydrophobic,’’ ‘‘small/medium hydrophilic,’’
‘‘medium/large hydrophilic,’’ and ‘‘large aromatic’’
amino acids. The amino acids in the IV matrix
overlap with those in the hydrophobic matrices
(I,V,L,F,M,W and I,V,L,A,T,F,M); however, the
equilibrium frequencies of these three matrices are
very different from each other (Fig. 2). The remaining
matrices in our collection cover more varied
replacement patterns. One is a 11 · 11 ‘‘hydrophilic’’
matrix which can model replacements between amino
acids that are not modeled by the more specific
hydrophilic matrices. Another is a 9 · 9 ‘‘large’’
matrix. There are two 20 · 20 matrices, ‘‘hydrophobic
biased’’ and ‘‘generic,’’ so that any amino acid

replacement can be modeled with nonzero probabil-
ity. The generic matrix was initialized to be a 0.1
PAM version of the JTT matrix (Jones et al. 1992),
although its parameters were repeatedly retrained
and ultimately took on a noticeable bias for hydro-
philic replacements.
We tested collections with different matrices and

kept only those that improved the performance of the
model. The 34 matrices in the final collection were
given mnemonic names that suggest, but do not de-
fine, their sets of interchangeable amino acids. Al-
though not hydrophilic themselves, alanine and
glycine were included in the hydrophilic matrix be-
cause of the relatively high frequency with which they
were seen to exchange with hydrophilic amino acids.
Tyrosine was excluded from this matrix because it
was seldom observed to exchange with other hydro-
philic amino acids. The equilibrium frequencies in
individual matrices are shown in Fig. 2. Many of the
frequencies are much higher than typical frequencies
seen in standard 20 · 20 matrices. In some matrices,
such as IV, Acidic, and Basic, the frequencies of two
amino acids account for a high proportion, effectively
limiting the alphabet size.

 
IV               Medium/large hydrophobic                            Small/ medium hydrophobic 

I V L 

0.458 0.442 0.100 

I V L M F W 

0.230 0.033 0.554 0.086 0.091 0.006

I V L M F A T

0.217 0.296 0.238 0.070 0.058 0.067 0.055

Small             Small/medium hydrophilic
 
 
 
 

 
Acidic     Basic 

 
 
 
 

 
Medium/large hydrophilic             Hydrophilic 

S T N D

0.24 0.301 0.209 0.248

A G S T V N 

0.370 0.245 0.205 0.078 0.073 0.028 

K R Q N H 

0.444 0.370 0.082 0.066 0.038

D E Q N 

0.447 0.484 0.033 0.033 

E Q K R H 

0.34 0.117 0.252 0.242 0.041 

S T N D E Q K R H A G

0.101 0.057 0.083 0.139 0.193 0.080 0.133 0.060 0.026 0.064 0.063 

 
Large aromatic                         Large 

F Y W H L M 

0.354 0.404 0.135 0.046 0.053 0.007 

F Y W H L M Q K R

0.07 0.089 0.02 0.04 0.21 0.081 0.05 0.19 0.21

Proline and cysteine with small/medium 
 
 
 

P C A S V T G E K 

0.064 0.149 0.265 0.155 0.107 0.114 0.062 0.054 0.031

 

Fig. 2. Matrix equilibrium frequencies. The equilibrium frequencies are taken from the results of retraining done on the 15-organism
dataset. The equilibrium frequencies of the 20 highly conserved and two 20 · 20 matrices in the collection are not shown. The equilibrium
frequencies of the amino acid associated with each highly conserved matrix are all higher than 0.93.
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Comparison Between Models

The performance of several forms of the JTT+G±F
and WAG+G±F models (Jones et al. 1992; Yang
1994 ; Cao et al. 1994; Whelan and Goldman 2001)
were compared to our model by resampling BIC
model selection (Schwartz 1978; Efron 1979). Likeli-
hood ratio tests could not be used because the models
were not nested. In the comparative BIC tests, models
that used amino acid frequencies specific to each
multiple alignment (+F) were found to perform less
well than models with fixed frequencies. The stron-
gest performing models used proportional trees ra-
ther than freely adjustable or fixed trees (see
Materials and Methods). Models that used the WAG
matrix always outperformed the corresponding JTT
model. The strongest performing WAG+G model
has two adjustable parameters for each multiple
alignment, G and absolute branch length, while our
model only adjusts absolute branch length.
Our model was preferred over the strongest per-

forming WAG+G model in 7 of 7 resampling BIC
tests. Further, the margin of preference was very
large. The average difference in BIC values between
our model and the best WAG+G model was over 21
times their standard deviation. The distribution of
BIC differences is most probably Gaussian due to the
large size of the test dataset. Differences found in the
seven tests fit a Gaussian well (v2 was better than
what is expected of data drawn from a real Gauss-
ian). Although we could not extend these trials much
further (see Materials and Methods), the 21 standard
deviations and the compact distribution mean that
our model would be preferred over the best WAG+G
model on any resampled dataset with a probability
very close (�10)90) to 1.

Discussion

The constraints that selection imposes on amino acid
sequences differ from position to position along the
length of proteins. Some positions are forced to be
almost invariant, while others can vary among
members of sets of amino acids with similar physical
properties and still maintain function. Other posi-
tions can vary among a broad variety of amino acids.
Phylogenetic models that rely on a matrix of amino
acid replacements based on observed frequencies that
are averaged over the length of proteins cannot cap-
ture position-specific frequencies nor accurately esti-
mate the degree of divergence among orthologs. We
have generated a collection of 34 matrices that more
closely model the inherent variation from position to
position. While selection pressures on each position
differ, the use of weighted matrices from the collec-
tion better approximates sequence divergence.

The number of possible matrix collections that can
be considered is almost unlimited. However, inspec-
tion of position-specific amino acid frequencies in a
very large set of alignment columns immediately
suggests a set of pertinent matrices that should be
included in any collection. The large number of
invariant positions in easy-to-align regions requires
that each of the 20 amino acids has a dedicated ma-
trix in the collection. Replacements of amino acids
with similar hydropathy and size, such as isoleucine
and valine, aspartate and glutamate, and lysine and
arginine, are frequently observed at equivalent posi-
tions and can be captured by matrices that focus on
these hydrophobic, acidic, and basic amino acids to
the exclusion of most others. A generic 20 · 20 matrix
has to be included so that any amino acid replace-
ment can be modeled with nonzero probability.
The choice of the remaining 10 matrices in our

collection was directed by the observed position-spe-
cific replacement frequencies of amino acids with
shared properties. We found that small amino acids
were often found at equivalent positions and
generated a matrix for these exchanges. Likewise, we
observed a high frequency of replacements among
aromatic amino acids and so included a matrix dedi-
cated to these amino acids. We explored a consider-
able number of collections of matrices and kept only
those that improved the performance of the model.
The final collection was based on amino acid
replacements observed in 5038 multiple alignments
generated from the proteomes of 15 diverse organisms
and so covers a large portion of eukaryotic evolution.
While we cannot be certain that we have the optimal
set of matrices, the sparing use of the 20 · 20 matrices
indicates that most common replacements are ac-
counted for. Moreover, addition of the last three
matrices, those for ‘‘large,’’ ‘‘broadly hydrophobic,’’
and ‘‘proline and cysteine with small medium’’ amino
acids, only marginally improved the performance of
the final model over a preceding model that used 31
matrices. When the model with the final set of 34
matrices was compared to models presently used in
phylogenetic analyzes of orthologs (JTT+G±F and
WAG+G±F), it outperformed them.
Our model has the advantage of being able to

handle large databases efficiently. During the final
steps of the iterative addition of proteins predicted
from fully sequenced genomes, there were over 10
million amino acids in multiply aligned positions.
Müller et al. (2002) said that a training dataset of 6
million amino acids was unfeasibly large formaximum
likelihood estimation. As each proteome was added,
individual proteins were initially assigned to estab-
lished clusters on the basis of Blast results. However,
once the tentative tree position was established for a
new organism, all members of the clusters were rean-
alyzed for historical evidence of orthology and the
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clusters readjusted. This technique has advantages
over mutual best Blast hit approaches to establishing
likely orthologs that can be confounded by gene loss.
The model depends on a phyogenetic tree built up

iteratively from the initial tree of animals, fungi, and
a plant where the branching topology is well estab-
lished. It was rooted on a set of seven archaebacteria
whose genomes had been fully sequenced. The posi-
tions of the nodes and the branch lengths were
determined on the basis of maximum likelihood tests
with the whole genome datasets. The measurements
of divergence are robust to further additions as well
as minor changes in the model parameters. As each
organism was added, various positions on the tree
were tested and the best performing node and branch
length established.
The strong performance of our model of ortholo-

gous protein sequence divergence can be attributed to
its ability to better approximate amino acid equilib-
rium frequencies to compositions found in alignment
columns. These compositions appear to be the result
of position contextual constraints imposed by func-
tional selection which are taken into account in our
model. At least on the timescales of more than 1
billion years separating the major groups of eukary-
otes represented in our dataset (Feng et al. 1997), the
close fit of our model to the data supports the pre-
dictions of Zuckerkandl and Pauling (1965).
The datasets, computer programs, and scripts used

in this study are freely available upon request to the
authors.
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