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Abstract. Patterns of network connection of
members of multigene families were examined for
two biological networks: a genetic network from
the yeast Saccharomyces cerevisiae and a protein–
protein interaction network from Caenorhabditis
elegans. In both networks, genes belonging to gene
families represented by a single member in the
genome (‘‘singletons’’) were disproportionately rep-
resented among the nodes having large numbers of
connections. Of 68 single-member yeast families
with 25 or more network connections, 28 (44.4%)
were located in duplicated genomic segments be-
lieved to have originated from an ancient polyplo-
idization event; thus, each of these 28 loci was thus
presumably duplicated along with the genomic
segment to which it belongs, but one of the two
duplicates has subsequently been deleted. Nodes
connected to major ‘‘hubs’’ with a large number of
connections, tended to be relatively sparsely inter-
connected among themselves. Furthermore, dupli-
cated genes, even those arising from recent
duplication, rarely shared many network connec-
tions, suggesting that network connections are
remarkably labile over evolutionary time. These
factors serve to explain well-known general prop-
erties of biological networks, including their scale-
free and modular nature.
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Introduction

With increasing knowledge of gene regulation, pro-
tein–protein interactions, and metabolic processes, it
has become possible to assemble these and similar
sorts of biological information in the form of net-
works, that is, graphical representations of intermo-
lecular interactions (Kanehisa 2000). Networks have
been constructed from information on metabolic
pathways, signal transduction, transcriptional regu-
lation, and other cellular processes (Kanehisa 2000).
One important generalization regarding biological
networks is that they tend to be scale-free (Barabási
and Albert 1999). Unlike a random network, a scale-
free network has the property that a small proportion
of nodes have a large number of connections, while
the other nodes have smaller numbers of connections
(Barabási and Albert 1999). In intuitive terms, in a
scale-free network, nodes are divided into ‘‘hubs’’
(having many connections) and ‘‘spokes’’ (having few
connections and connected with one another mainly
through hubs). More formally, the scale-free property
occurs when P(k), the probability that a node in the
network is connected to k other nodes, decays as a
power law, following P(k) � k k-c, where c is a po-
sitive real number (often about 2.0 in a wide variety
of networks known from both the biological and the
social sciences) (Barabási and Albert 1999).

An apparent paradox of biological networks is
that within many such networks there are numerous
small modules of densely interconnected nodes, while
connections between modules are sparser (Ravasz
et al. 2002). A modular organization would seem to
contradict the scale-free property, since in such a
network nodes would tend to have roughly equalCorrespondence to: Austin L. Hughes; email: austin@biol.sc.edu
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numbers of connections. However, it has been shown
in the case of metabolic networks from a variety of
species that the network consists of many small
highly connected modules that combine in a hierar-
chical manner, as a result of a small number of
nonrandom intermodule links that connect modules
in a nested fashion (Ravasz et al. 2002). This hierar-
chical mode of organization explains the observation
that biological networks are scale-free and yet consist
of functionally distinct modules.

It has been hypothesized that repeated gene
duplication over evolutionary time can account for
the properties of biological networks (Wagner 2001).
However, this will only be true if the duplication
process has certain characteristics. Figure 1A illus-
trates the simplest possible protein–protein interac-
tion network: a network consisting of just two
interacting proteins, X and Y. This network is not
scale-free. Suppose that the genes encoding X and Y
are both duplicated, giving rise to two new genes
encoding two new proteins (X¢ and Y¢). If X retains

its interaction with Y, while X¢ interacts only with Y¢
(Fig. 1B), the network will not be any more scale-free
than was the original network. Similarly, if X inter-
acts with both Y and Y¢ while X¢ interacts with both
Y and Y¢ (Fig. 1C), the network will not be any more
scale-free than was the original network.

On the other hand, the scale-free property is in-
creased if, after duplication, interactions are lost
differentially. An example of such a process is illus-
trated in Fig. 1D. Here, after duplication of both the
genes encoding X and Y, X retains the capacity to
interact with both Y and Y¢, whereas X¢ interacts
only with Y¢ (Fig. 1D). Likewise, the scale-free
property of the network will be increased if only one
of the two genes is duplicated, but both duplicates
retain the capacity to interact with the unduplicated
gene (Fig. 1E). The same effect would be produced if
both genes were duplicated, but one duplicated gene
was subsequently deleted.

These simple examples show that gene duplication
will increase the scale-free property of networks if
genes involved in networks are duplicated differen-
tially, are deleted differentially after duplication, and/
or if interactions are retained differentially after
duplication. A similar effect would also be produced
if different interactions were acquired by each gene
independently after duplication, especially if dupli-
cates differed with respect to the number of interac-
tions acquired.

Figure 1F represents a simple ‘‘module’’ of three
interacting proteins (X, Y, and Z). If the genes
encoding Y and Z are duplicated, and the proteins
encoded by the duplicates continue to interact with X
(Fig. 1G), the result will be a network with two
hierarchically combined modules. This simple exam-
ple shows that differential duplication can, under
appropriate circumstances, yield a network having
the property of a modular and hierarchical organi-
zation. Again, the same effect would be produced if
both genes were duplicated, but one duplicated gene
was subsequently deleted. Consistent with this rea-
soning, eukaryotic genomes include substantial
numbers of unduplicated genes (‘‘singletons’’), in
spite of the existence of numerous multigene families
(Friedman and Hughes 2001a, b).

These theoretical considerations lead to the pre-
dictions that biological networks will be characterized
by three phenomena: (1) After gene duplication, new
interactions will be differentially acquired by dupli-
cates and/or ancestral interactions will be differen-
tially retained by duplicates. The latter will be the
case particularly when the duplication involves genes
constituting multiconnected nodes (‘‘hubs’’) in a gene
interaction network. (2) Genes corresponding to
network hubs will consist disproportionately of sin-
gletons. (3) When genes corresponding to network
hubs are duplicated, it will often happen that one

Fig. 1. Hypothetical scenarios of gene duplication in biological
networks. (For explanation, see text.)
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copy is quickly deleted. Here we test these predictions
with data on gene interaction networks from two
model organisms: the genetic interaction network of
yeast Saccharomyces cerevisiae (Tong et al. 2004) and
protein–protein interaction network of the nematode
worm Caenorhabditis elegans (Li et al. 2004).

Methods

The complete sets of predicted protein translations for the fol-

lowing organisms were downloaded from the euGenes Web site,

http://iubio.bio.indiana.edu:8089: yeast Saccharomyces cerevisiae

(version 06/24/2002) and Caenorhabditis elegans (version 06/24/

2002). For each of these genomes, gene families were assembled

using the BLASTCLUST computer program available in the

BLAST tools (Altschul et al. 1997). This program establishes

families by BLASTP homology search and the single-linkage

method (i.e., if a match is scored between A and B and between B

and C, then A, B, and C are placed in the same family). We used a

value of 10)6 for the E parameter (representing the probability that

a score as high as that observed between two sequences will be

found by chance in a database of the size examined) of the BLAST

algorithm. To score a match between two proteins, we further re-

quired that 30% of amino acids be identical and 50% of aligned

amino acid sites be shared. These criteria have been shown to

assemble multigene families whose members show evidence of

homology throughout the length of the sequence, thus making

them suitable for phylogenetic analysis and estimation of evolu-

tionary distances (Hughes and Friedman 2004).

In the case of selected duplicate gene pairs, sequences were

aligned at the amino acid level using the CLUSTALW program

(Thompson et al. 1994), and this alignment was imposed on the

DNA sequences. The number of synonymous nucleotide substi-

tutions per synonymous site (dS) and the number of nonsynony-

mous nucleotide substitutions per nonsynonymous site (dN) were

estimated by a maximum likelihood method (Yang and Nielsen

2000) using the software package PAML (Yang 1997). Since most

synonymous mutations are selectively neutral or nearly so

(Kimura 1977), dS is expected to be correlated with the amount of

time since duplication of the two genes compared. By contrast, dN
reflects the extent to which the two genes are subject to purifying

selection arising from functional constraint on the amino acid

sequence (Kimura 1977; Nei 1987).

Information for the yeast genetic interaction network was ob-

tained from Tong et al. (2004), who determined about 4000 inter-

actions for about 1000 genes using computational analysis of data

from 132 synthetic gene array screens. Information for theC. elegans

protein–protein interaction was obtained from Li et al. (2004), who

obtained data on over 4000 interactions using high-throughput yeast

two-hybrid screens and combined these results with previously de-

scribed interactions and in silico predictions for a total of about 5500

interactions. Genes included in these networks (820 genes from yeast

and 2606 genes fromC. elegans) were matched with the gene families

determined by homology search. We examined the relationship be-

tween the number of connections a gene had in the network and the

size of the family towhich it belonged. Family sizeswere based on the

complete sets of predicted proteins rather than on the sets included in

the networks. The clustering coefficient for node i with ki links was

defined as Ci = 2ni/[ki(ki – 1)], where ni is the number of links be-

tween the ki neighbors of i (Ravasz and Barabási 2003). Note thatCi

is undefined for nodes with only one connection.

Information on duplicated segments in the yeast genome was

obtained from Seoighe and Wolfe (1999). In order to obtain a

conservative estimate of duplicated regions, for purposes of our

analyses we did not include duplicated regions designated ‘‘possi-

ble’’ or ‘‘low-scoring’’ by those authors.

Phylogenetic analyses were conducted by the following meth-

ods: (1) the maximum parsimony (MP) method, implemented in

the PAUP* program (Swofford 2002); (2) the quartet maximum

likelihood method (QML), implemented in the PUZZLE 5.0 pro-

gram (Strimmer and van Haeseler 1996); and (3) the neighbor-

joining (NJ) method (Saitou and Nei 1987), implemented in the

MEGA2 program (Kumar et al. 2001). The NJ trees were based on

the gamma-corrected amino acid distance, with the shape param-

eter estimated by the PUZZLE 5.0 program. The reliability of

clustering in the MP and NJ trees was assessed by bootstrapping

(Felsenstein 1985); 1000 bootstrap samples were used. In QML

trees, the proportion of puzzling steps supporting a branch pro-

vided a similar index of the reliability of clustering patterns. Since

all phylogenetic methods produced essentially identical trees, only

the MP tree is shown in the following.

Results

Network Properties

Both the yeast gene interaction network and the
C. elegans protein–protein interaction network
showed patterns characteristic of a scale-free net-
work, with a negative exponential relationship be-
tween the number of connections and the number of

Fig. 2. Plots of the log number of nodes (N) having a given
number of connections vs. the log number of connections (Con-
nections) for (A) the yeast genetic interaction network and (B) the
C. elegans protein–protein interaction network. In the yeast net-
work, the relationship between N and Connections was described
by the regression equation Y = 162.18 X)1.16 (R2 = 83.9%). In the
C. elegans network, the relationship between N and Connections
was described by the equation Y = 1288.25 X)1.84 (R2 = 91.4%).
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nodes in the network having that number of con-
nections. In each case, a regression relating the log
number of genes to the log number of connections
produced a highly significant linear relationship with
a negative slope (Fig. 2). The slope of the relationship
had a much higher absolute value in the C. elegans
network (slope = )1.84; Fig. 2B) than in the yeast
network (slope = )1.16; Fig. 2A). This difference is
explained by a higher frequency of nodes with a small
number of connections in the former network than in
the latter network. In the C. elegans network, 1406 of
2606 nodes (54.0%) had a single connection, whereas
in the yeast network only 254 of 820 (31.0%) of nodes
had a single connection.

In spite of this difference, clustering coefficients
for the two networks were similar. The median
clustering coefficient (Ci) for the yeast network was
0.500, while that for the C. elegans network was
0.533. These medians were not significantly different
(Mann–Whitney test). In both networks, there was a
strong negative correlation between Ci and the
number of connections at a node (Fig. 3). The
Spearman rank correlation coefficient (rS) between
Ci and the number of connections was –0.588 (p <
0.001) in the case of the yeast network (Fig. 3A) and
–0.500 (p < 0.001) in the case of the C. elegans
network (Fig. 3B).

Family Size and Connections

In the yeast network, there was a negative rank cor-
relation between the number of connections a gene
had and its family size (rS = –0.124; p < 0.001;
Fig. 4A). This negative correlation was explained by
the fact that most genes with large numbers of con-
nections were singletons (Fig. 4A). Nine of 10 genes
with 100 or more connections were singletons, and 64
of 83 (77.1%) of genes with 25 or more connections
were singletons (Fig. 4A). In the C. elegans network,
there was a similar, though weaker, negative rank
correlation between the number of connections a
gene had and its family size (rS = –0.053; p = 0.007;
Fig. 4B). The protein with the highest number of
connections (90) was a member of a two-member
family, while the proteins with the next three highest
numbers of connections (82, 74, and 66) were all
encoded by singletons (Fig. 4B). Of 27 proteins with
25 or more connections, 15 (55.6%) were proteins
encoded by singletons.

Because of the negative correlation between Ci and
the number of connections in both networks (Fig. 3),
we further examined the relationship between family
size and number of connections using rank partial
correlation, controlling for the effect of Ci (Table 1).
Since Ci is not defined for nodes with only one con-

Fig. 3. Plots of the clustering coefficient (Ci) of a node vs. the
number connections at the node for (A) the yeast genetic interac-
tion network (rS = –0.588; p < 0.001) and (B) the C. elegans
protein–protein interaction network (rS = –0.500; p < 0.001).

Fig. 4. Plots of the number of connections of a node vs. family
size for (A) the yeast genetic interaction network (rS = –0.124; p <
0.001) and (B) the C. elegans protein–protein interaction network
(rS = –0.053; p = 0.007).
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nection, such nodes were not included in the partial
correlation analyses. Even excluding such nodes,
there was a significant negative partial rank correla-
tion between family size and number of connections
in both the yeast network and the C. elegans network
(Table 1). Likewise, in both networks there was a
highly significant negative rank partial correlation
between number of connections and Ci, controlling
for the effect of family size (Table 1). On the other
hand, in neither network was there a significant
partial rank correlation between family size and Ci,
controlling for the number of connections (Table 1).

Gene Duplication and Network Connections

There is evidence of extensive ancient segmental
duplication in the yeast genome, which has been
attributed to an ancient polyploidization event which
occurred about 200 million years ago (Wolfe and
Shields 1997; Seoighe and Wolfe 1999; Friedman and
Hughes 2001a; Hughes and Friedman 2003; Kellis
et al. 2004). Of 68 single-member yeast families with
25 or more network connections, 28 (44.4%) were
located in duplicated blocks believed to have origi-
nated from polyploidization (Seoighe and Wolfe
1999). The fact that, in spite of their location in
duplicated regions, these families contain a single
member implies that, after segmental duplication, one
duplicate member of each of these 28 families was
deleted from the genome.

In C. elegans, we compared the connections of 34
two-member families, both members of which were
included in the protein interaction network (Table 2).
Most of the duplication events giving rise to the 34
pairs of paralogues were ancient, as indicated by high
mean values of dS and dN (Table 2). In general, the
paralogous gene pairs showed little tendency to share
network connections; the mean number of connec-
tions shared was less than one, and the median
number of connections shared was zero (Table 2).
Furthermore, there was no significant correlation
between either dS or dN and either the number of
connections shared or the percentage of connections
shared (data not shown). In only 3 of the 34 gene

pairs was dS less than 1.0, and in all 3 of these pairs
no network connections were shared between pair
members. C38C10.4 and F22B7.13 were the protein
pair with the lowest dS (0.038); these two proteins
shared none of the five connections of the former
protein or of the six connections of the latter protein.

Phylogenetic analyses of families with multiple
members in a network were used to examine the
relationship between phylogenetic relatedness and
sharing of network connections. Figure 5A shows the
phylogenetic tree of MAP kinases from the yeast
network; this was the family showing the greatest
within-family contrast in numbers of connections in
either network. The two genes in this family with the
highest numbers of connections, YPL031C (with 62
connections) and YHR030C (with 60 connections),
were not sisters (Fig. 5A). There was strong (100%)
bootstrap support for clustering of YHR030C with
YLR113W, which had only 24 connections (Fig. 5A).
The same clustering pattern received strong support
in QML and NJ trees (data not shown). When
sharing of connections among these genes was
examined, YHR030C was found to share only a
single connection with the closely related YLR113W
(Fig. 5B). On the other hand, YHR030C shared 14
connections with YPL031C (Fig. 5B). All other
members of this family included in the yeast network
shared at most a single connection (Fig. 5B).

Discussion

A number of general patterns emerged from the
evolutionary analysis of two biological networks with
rather different properties, a genetic interaction net-
work of yeast and a protein–protein interaction net-
work of C. elegans. First, in both networks, genes
belonging to gene families represented by a single
member in the genome (‘‘singletons’’) were dispro-
portionately represented among the nodes having
large numbers of connections. Furthermore, in the
case of yeast, there was evidence that when singletons
with large numbers of connections have been dupli-
cated, one of the two duplicate copies has frequently
been deleted. Of 68 single-member yeast families with

Table 1. Rank partial correlations among three variables
describing network nodes, in each case controlling for the other
variable

Ci p No. connections p

Yeast network (566 nodes)

Family size )0.033 N.S. )0.099 0.019

Ci )0.588 <0.001

C. elegans network (1200 nodes)

Family size )0.027 N.S. )0.076 0.008

Ci )0.501 <0.001

Table 2. Summary statistics for variables describing 34 two-
member families in the C. elegans protein–protein interaction net-
work

Variable Mean ± SE Median Range

dN 0.539 ± 0.047 0.595 0.016–1.095

dS 2.500 ± 0.212 2.284 0.039–4.942

No. shared connections 0.471 ± 0.128 0.000 0–3

Percentage

connections shared

7.8 ± 2.7 0.0 0.0–66.7
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25 or more network connections, 28 (44.4%) were
located in duplicated genomic segments believed to
have originated from an ancient polyploidization
event (Seoighe and Wolfe 1999). Each of these 28 loci
was thus presumably duplicated along with the
genomic segment to which it belongs, but one of the
two duplicates has subsequently been deleted.

A second property shared by both networks was
the strong negative correlation between the clustering
coefficient (Ci) of a node and the number of con-
nections at the node. This relationship held even
when the effect of family size was controlled for sta-
tistically. Nodes connected to major ‘‘hubs’’ with a
large number of connections tended to be sparsely
interconnected among themselves.

Finally, there was evidence that network connec-
tions are remarkably labile over evolutionary time.
Immediately after gene duplication, it seems reason-
able to suppose that gene duplicates have the same
network connections, unless one duplicate is partial
or an exon-shuffling event or other recombinational
event has accompanied gene duplication. But our
results suggest that duplicated genes generally have
quite distinct sets of connections, and that such
changes can happen soon after duplication, as indi-

cated by paralogous gene pairs in C. elegans with
relatively low synonymous divergence.

Taken together, these observations paint a picture
of the evolutionary process underlying the known
characteristics of biological networks, namely, the
properties of being scale-free and modular/hierar-
chical in organization. A multiply connected node is a
hierarchical hub if the nodes connected to it have
relatively little connection among themselves,
whereas a module within a network would consist of
a small set of mutually interconnected nodes. There-
fore, evidence of a negative correlation between the
clustering coefficient and the number of connections
at a node provides an insight into at least one
mechanism maintaining the modular/hierarchical
nature of biological networks.

There was evidence that duplicated copies of
multiply connected genes are frequently deleted, as
evidently happened with such genes in duplicated
segments of the yeast genome. Such deletion of
duplicate genes has happened frequently enough in
yeast to suggest that it may result from natural
selection against duplication of multiply connected
hubs. Moreover, the evidence that network connec-
tions are highly labile over evolutionary time suggests

Fig. 5. A MP tree of yeast MAP kinases included
in the genetic interaction network. Numbers in
parentheses after each gene name are numbers of
network connections. Numbers on the branches
show the percentage of 1000 bootstrap samples
supporting the branch. B Network indicating
numbers of network connections shared by yeast
MAP kinases. Numbers in parentheses after each
gene name are numbers of network connections.
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that even when multiply connected genes are dupli-
cated and both duplicates are retained, one duplicate
may lose numerous connections, while the other
duplicate retains ancestral connections. This process
would result in widely different numbers of connec-
tions within multigene families, as in the MAP kinase
family of yeast (Fig. 5).
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Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller

W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new

generation of protein database search programs. Nucleic Acids

Res 25:3389–3402

Barabási A-L, Albert R (1999) Emergence of scaling in random

networks. Science 286:509–512

Felsenstein J (1985) Confidence limits on phylogenies: an approach

using the bootstrap. Evolution 39:783–791

Friedman R, Hughes AL (2001a) Gene duplication and the struc-

ture of eukaryotic genomes. Genome Res 11:373–381

Friedman R, Hughes AL (2001b) Pattern and timing of gene

duplication in animal genomes. Genome Res 11:1842–1847

Hughes AL, Friedman R (2003) Parallel evolution by gene dupli-

cation in the genomes of two unicellular fungi. Genome Res

13:794–799

Hughes AL, Friedman R (2004) Differential loss of ancestral gene

families as a source of genomic divergence in animals. Pro R

Soc Lond B (Suppl) 271:S107–S109

Kanehisa M (2000) Post-genome informatics. Oxford University

Press, Oxford

Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary

analysis of ancient genome duplication in the yeast Saccharo-

myces cerevisiae. Nature 428:617–624

Kimura M (1977) Preponderance of synonymous changes as evi-

dence for the neutral theory of molecular evolution. Nature

267:275–276

Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2:

molecular evolutionary genetics analysis software. Bioinfor-

matics 17:1244–1245

Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M,

Vidalain P-O, Han J-D J, Chesneau A, Hao T, Goldberg DS, Li

N, Martinez M, Rual J-F, Lamesch P, Xu L, Tewari M, Wong

SL, Zhang LV, Berritz GF, Jacotot L, Vaglio P, Reboul J,

Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baum-

gartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A,

Mange SE, Saxton WM, Strome S, van den Heuvel S , Piano F,

Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L,

Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE,

Vidal M (2004) A map of the interactome network of the

metazoan C. elegans. Science 303:540–543

Nei M (1987) Molecular evolutionary genetics. Columbia Uni-

versity Press, New York

Ravasz E, Barabási A-L (2003) Hierarchical organization in com-

plex networks. Phys Rev E 67:026112

Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L

(2002) Hierarchical organization of modularity in metabolic

networks. Science 297:1551–1555

Saitou N, Nei M (1987) The neighbor-joining method: a new

method for reconstructing phylogenetic trees. Mol Biol Evol

4:406–425

Seoighe C, Wolfe KH (1999) Updated map of duplicated regions in

the yeast genome. Gene 238:253–261

Strimmer K, van Haeseler A (1996) Quartet puzzling: a quartet

maximum-likelihood method for reconstructing tree topologies.

Mol Biol Evol 13:964–969

Swofford DL (2002) PAUP*: phylogenetic analysis using parsi-

mony (*and other methods). Sinauer, Sunderland, MA

Thompson JD, Higgins DG, Gibson T (1994) CLUSTALW:

improving the sensitivity of progressive multiple sequence

alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic Acids Res 22:4673–

4680

Tong AHY, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J,

Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G,

Friesan H, Goldberg DS, Haynes J, Humphries C, He G,

Levinson JN, Lu H, Ménard P, Munyana C, Parsons AB, Ryan

O, Tonikian R, Roberts T, Sdicu A-M, Shapiro J, Sheikh B,

Suter B, Wong SL, Munro S, Sander C, Rine J, Greenblatt J,

Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews

B, Bussey H, Boone C (2004) Global mapping of the yeast

genetic interaction network. Science 303:808–813

Wagner A (2001) The yeast protein interaction network evolves

rapidly and contains few redundant duplicated genes. Mol Biol

Evol 18:1283–1292

Wolfe KH, Shields DC (1997) Molecular evidence for an ancient

duplication of the entire yeast genome. Nature 387:708–713

Yang Z (1997) PAML: a program package for phylogenetic anal-

ysis by maximum likelihood. Comput Appl Biosci 13:555–556

Yang Z, Nielsen R (2000) Estimating synonymous and nonsyn-

onymous substitution rates under realistic evolutionary models.

Mol Biol Evol 17:32–43

764


