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Abstract. Studies on the origin of the genetic code
compare measures of the degree of error minimiza-
tion of the standard code with measures produced by
random variant codes but do not take into account
codon usage, which was probably highly biased
during the origin of the code. Codon usage bias could
play an important role in the minimization of the
chemical distances between amino acids because the
importance of errors depends also on the frequency
of the different codons. Here I show that when codon
usage is taken into account, the degree of error
minimization of the standard code may be dramati-
cally reduced, and shifting to alternative codes often
increases the degree of error minimization. This is
especially true with a high CG content, which was
probably the case during the origin of the code. I also
show that the frequency of codes that perform better
than the standard code, in terms of relative efficiency,
is much higher in the neighborhood of the standard
code itself, even when not considering codon usage
bias; therefore alternative codes that differ only
slightly from the standard code are more likely to
evolve than some previous analyses suggested. My
conclusions are that the standard genetic code is far
from being an optimum with respect to error mini-
mization and must have arisen for reasons other than
error minimization.
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Introduction

The genetic code is not random. It has been proposed
that the structure of the genetic code reflects the
physiochemical properties of amino acids and their
biosynthetic relationships. Some authors (Haig and
Hurst 1991; Freeland and Hurst 1998; Knight et al.
1999; Freeland et al. 2000a) support the view that the
main force that shaped the genetic code is selection
for minimization of the chemical distances between
amino acids, that is, error minimization at the protein
level, as proposed by Woese (1965), Epstein (1966),
Sonneborn (1965), and others. The main alternative
view is the coevolution hypothesis, introduced by
Wong (1975) and subsequently championed by
Di Giulio (1989, 1997a, b, 1999, 2000a): according to
this view the structure of the code reflects the bio-
synthetic pathway of amino acid formation but error
minimization is not the main force that shaped the
genetic code. The debate seems not to be resolved
(Freeland et al. 2000a; Di Giulio 2000a, 2000b, 2001).
These studies on the optimization of the genetic

code compare measures of error minimization of the
standard code and measures produced by random
variant codes. They, however, rely on different
approaches: the ‘‘statistical’’ approach (Freeland
et al. 2000a) produces a large set of random codes
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and observes the probability that a code with a better
measure of error minimization than the standard
code is observed; the ‘‘engineering’’ approach (named
so by Freeland et al. [2000a]—referred to Di Giulio)
is based on the calculation of a minimization per-
centage, that is, it introduces a distance function
based on the physiochemical properties of amino
acids and looks at the value it assumes in the genetic
code with respect to both a completely randomized
code and the most optimized code possible.
One critique of the statistical approach is that

(Di Giulio 2000a), although the frequency of codes
that performbetter (in terms of relative efficiency) than
the standard code is roughly 1 · 10)6 (Freeland and
Hurst 1998), there are 2.4 · 1018 (=20!) possible codes
in the space of permutations of the standard code,
which still leaves 2.4 · 1012 possible alternative better
codes. Another concern about the statistical approach
is that the space of all possible permutations of the
standard code contains codes that may differ very
much from the standard code. Therefore most alter-
native codes produced by this approach are not likely
to be obtained at all by mutations with small effect. A
possible way to resolve this issue is to reduce the space
of possible variant codes to those in the neighborhood
of the standard code, that is, to generate variant codes
that differ only slightly from the standard code, and,
therefore, are more likely to be obtained by mutation.
All these methods, in any case, are based on the

structure of the possible genetic codes, that is, on the
assignment of the different amino acids to the different
codons, and do not take into account at all frequency
of the different codons. Yet synonymous codons are
not used at random, and codon usage bias could affect
the degree of error minimization because the different
codons are not equal with respect to the capacity to
minimize errors. This is important especially because
it is supposed that life originated at high temperatures
(Woese 1987; Achenbach-Ritcher et al. 1987; Di
Giulio 2000c), and during the origin of the code C and
G were probably more abundant than A and T, be-
cause of a more stable conformation due to the three
(instead of two) hydrogen bonds. Therefore, if one
allows for a bias in the CG content (for a prevalence
of CG), the code should perform even better, in terms
of relative efficiency, if it evolved to minimize errors.
I will measure the level of optimization of the ge-

netic code by producing many variant codes and
looking at the probability that a code that is ‘‘better’’
than the standard code is observed, as in the standard
statistical approach, but with two main differences.
First, the measure of error minimization will take
into account a possible bias in codon usage. Second,
the space of possible variant codes will be restricted
to those codes originated by mutations of small effect,
possibly taking into account the real biosynthetic
pathways of amino acid formation.

Methods

Error Minimization for Single Codons: The Mean
Distance

For each pair of amino acids I derive the measure DAA/AA* =

xAA/AA ) xAA/AA* from McLachlan’s (1971) matrix of chemical

similarity, where xAA/AA is the similarity of amino acid AA with

itself (this value is usually the same for all amino acids, but not in

all similarity matrices: in McLachlan’s it is either 8 or 9) and xAA/
AA* is the similarity of AA to the mutant amino acid AA*, ob-

tained after an error at one of the three positions of the original

codon. Hence, DAA/AA* is the distance (dissimilarity) between

the original (AA) and the mutant (AA*) amino acid. Since

xAA/AA>xAA/AA* for every amino acid, DAA/AA* is always posi-
tive, and since there are three possible mutants for each position,

there are nine measures of DAA/AA* for each codon, corresponding

to the nine possible mutant codons. Their mean value is taken as a

measure of distance (dissimilarity) between the original codon and

its possible mutants. I call this measure MD (mean distance). Since

MD is a measure of dissimilarity, lower values of MD correspond

to optimal codons (codons that minimize the effects of errors). For

all the values of the present analysis the similarity score with the

termination signal (xAA-STOP) is set to )10 (different values ranging
from 0 to )50 do not affect results significantly).

Mutation Bias

Since transitions (CMT, AMG) and transversions (C,TMA,G) are

not equally likely to occur, MD values are calculated with a pos-

sible transition/transversion bias for mutation and mistranslation

and a possible weighting due to base position for mistranslation.

The values used here are the same as used by Freeland and Hurst

(1998), which coincide quite well with the empirical data and have

been shown to increase the efficiency of the standard code (Fre-

eland and Hurst 1998). The precise values are summarized in Ta-

ble 1. Different values in a similar range do not change the results

drastically. Moreover I consider the possibility of different muta-

tion rates for CG and AT, because C and G, which have three

hydrogen bonds, may be less error-prone than A and T, which have

only two hydrogen bonds.

Rules for the Formation of Variant Genetic Codes

I use the following method (as in Haig and Hurst 1991; Freeland

and Hurst 1998) to create random codes: the codon space (i.e., the

possible 64 codons) is divided into the same 21 nonoverlapping sets

of codons observed in the standard code, each set comprising all

codons specifying a particular amino acid in the standard code; the

three stop codons remain in the same position of the standard code

for all alternative codes, while each of the 20 amino acids is

assigned randomly to one of these sets to form an alternative code.

In addition, in another set of random codes, I use the further

Table 1. Relative frequencies of mutation and mistranslation

Frequencya T/T ratiob

1st 2nd 3rd 1st 2nd 3rd All bases

Mistranslation 0.5 0.1 1 2 5 1 —

Mutation — — — — — — 3

a Frequency of mistranslation.
b Transition/transversion ratio (relative to a transversion rate = 1).
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constraint (not used by Haig and Hurst [1991] or by Freeland and

Hurst [1998] but used by Freeland et al. [2002b] of keeping the first

or the second base as in the standard code (see Fig. 1), to reduce

the space of possible variant codes.

Error Minimization for a Genetic Code: The Sum of
the Mean Distances

The sum of MD values (SMD) is a measure of the optimization

reached by the genetic code without considering codon usage bias,

a measure that is similar to the ‘‘mean square’’ used by Haig and

Hurst (1991) and Freeland and Hurst (1998), with the difference

that changes to stop codons in this case are included in the cal-

culation of MD values (but MD values for stop codons are not

included in the calculation of SMD). To take into account codon

usage bias, codon usage is measured on 1000 random sequences,

300 codons long, generated with a given probability of CG content

and MD values are weighted by the usage frequency of each codon.

If MD values are weighted according to the overall frequency of

the corresponding codons, then the sum of the weighted MD values

(wSMD) incorporates a bias in the importance of each amino acid,

as different codon usages lead to different frequencies of amino

acids. If within-amino-acid codon frequencies are used instead of

overall frequencies, then the sum of the weighted MD values

(zSMD) measures the optimization of the genetic code under the

assumption that certain codon frequencies are used, as wSMD, but

weighting all amino acids the same.

Results

Codon Usage Bias—No Constraints

To understand whether codon usage influences the
level of error minimization of the code, I first evaluate
the level of optimization of the standard code without
codon usage bias. Of 2 million alternative codes, none
is found to have a lower SMD value than the standard
code, even when transition/transversion bias is taken

into account and with a mutation ratio for CG/AT
ranging from 2/3 to 1. This result is similar to what
has been obtained by Freeland and Hurst (1998) and
shows that with the similarity matrix used here the
genetic code seems highly optimized when sampling in
the space of all the 20! possible alternative codes. In-
deed, Freeland and Hurst (1998) found one better
code in 1 million, therefore with the matrix used here
the idea that the standard code is the best possible
code seems even more convincing.
When codon usage bias is taken into account,

however, I do find codes that perform better than the
standard code. For CG content below 50% no better
codes are found, and nothing can be said, except that
low CG contents do not seem to decrease the level of
optimization of the genetic code. Even when sam-
pling 1 million alternative codes there are no codes
that perform better than the standard code, as in the
case that codon usage is not taken into account. For
CG content over 50%, on the contrary, it is clear
(Table 2) that the probability of finding a better code
increases drastically. The importance of CG content
cannot be exactly measured, as we do not have a
reference measure for the case of no codon bias (no
better codes found with no bias of 1 million alter-
natives, might mean that some better codes could still
be found if sampling many more alternative codes).
Even if we take one in a million as a landmark, in any
case, we see that there is a 100-fold increase in the
probability of a better code with a 70% CG content,
and even 10,000-fold with 90% CG. Of course a 90%
CG content is not realistic. We are interested in the
conditions that may apply to the origin of the genetic
code, that is, in a CG content around 70% (Woese
1987; Achenbach-Ritcher et al. 1987; Di Giulio

Fig. 1. Each cell defined by three bases
corresponds to a codon. Black cells correspond
to stop codons. Each number (a block of cells)
corresponds to an amino acid. Variant genetic
codes are formed by assigning at random a
position (1–20) to the 20 amino acids.
Alternatively the process can be constrained at
the first (a) or second (b) base position: changes
are possible only among amino acids belonging
(roughly—there are some exceptions for Leu,
Ser, and Arg) to blocks with the same first
position (a) or with the same second position
(b) (same color).
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2000c). Note that a 70% CG content corresponds to
an effective number of codons (ENC; Wright 1990)
that is about 46, which denotes quite a high codon
usage bias but one that is not rarely found even in
genes of extant organisms.
It must be noted, however, that wSMD values in-

troduce a bias in the importance assigned to each
amino acid, in that the frequency of each amino acid
depends on the CG content. When zSMD values
(that, on the other hand, weight every amino acid the
same) are considered, no better code is found, what-
ever the CG content. The best measure is probably
somewhere in between these two measures. It is diffi-
cult to know if, at the origin of the code, codon fre-
quencies were determined mainly by temperature and
CG content (in which case wSMD values are more
realistic measures) or by the property of the amino
acids in the protein (in which case zSMD values are
more realistic values). In spite of the extensive re-

search done on the origin of life, it is still uncertain
whether the last universal common ancestor was a
progenote or a cenancestor, that is, an organism in
which the genotype–phenotype relationship was al-
ready well defined or not (Woese 1998).
It should also be noted that the mutation ratio

CG/AT, that is, the stability of C and G (due to three
hydrogen bonds instead of the two of A and T), and
the transition/transversion bias do not seem to affect
much the results, though higher stability of CG ver-
sus AT leads to slightly higher frequencies of better
codes.

Constrained Variant Codes—No Codon Usage Bias

If we maintain the blocks of codons of the standard
code, each block containing codons coding for one
amino acid (see Fig. 1), and assigning one amino acid
at random to each block, we obtain a space of per-

Table 2. Number of codes with a lower wSMD value than the standard code

No biasa Bias for mistranslationa Bias for mutationa

%CG v = 2/3 v = 0.9 v = 1 v = 2/3 v = 0.9 v = 1 v = 2/3 v = 0.9 v = 1

90 1435 1412 1393 1592 1624 1637 1822 1924 1971

80 168 216 208 151 162 170 222 267 292

70 7 5 5 7 4 6 10 8 12

60 0 0 0 0 0 0 1 0 0

50 0 0 0 0 0 0 0 0 0

Each entry is the number of codes, in 100,000 alternative codes,

that performed better (lower wSMD value) than the standard code

when codon usage bias (produced by the given CG content) is

taken into account. Variant codes are produced at random with no

constraints, among all the (20!) possible permutations of the

standard code.

%CG is the percentage of C and G used to produce 1000 random

sequences 300 codons long; v is the CG/AT mutation ratio, relative
to a mutation frequency = 1 for AT.
a Transition/transversion bias for mutation or mistranslation (see

Table 1).

Table 3. Number of constrained codes with a lower SMD

No biasb Bias for mistranslationb Bias for mutationb

Changesa N v = 2/3 v = 0.9 v = 1 v = 2/3 v = 0.9 v = 1 v = 2/3 v = 0.9 v = 1

X2 * 8 8 4 21 13 12 17 13 7

T2 5!=120 5 5 4 11 12 9 5 4 6

C2 4!=24 0 0 0 0 0 0 0 0 0

A2 7!=5040 0 0 0 10 17 11 12 8 6

G2 4!=24 1 1 1 1 1 1 1 1 1

X1 * 4 5 1 0 0 0 3 2 0

Tl 5!=120 5 5 4 3 3 3 4 4 3

C1 5!=120 1 1 1 0 0 0 0 0 0

A1 5!=120 1 1 1 2 2 2 2 2 2

G1 5!=120 0 0 0 0 0 0 0 0 0

N is the number of possible alternative codes, generated according

to the constraints defined in Fig. 1. For single substitutions (cases

T1, C1, A1, G1, T2, C2, A2, G2) all the possible codes have been

generated. For the cases of multiple substitutions (*) the possible

codes are 3.5 · 108 (=5! · 4! · 7! · 4!) if the second base is

constrained (X2) or 2.07 · 108 (=5!4) if the first base is constrained
(X1), but in both these cases only 100,000 alternative codes have

been generated for each set of parameters. Therefore the entries in

boldface are the real numbers of codes that performed better than

the standard code, while other entries (for X1 and X2) are only

estimates for 100,000 possible codes.
a Constraints according to Fig. 1.
b Transition/transversion bias for mutation or mistranslation (see

Table 1). v is the CG/AT mutation ratio, relative to a mutation

frequency = 1 for AT.
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mutations of about 2.4 · 1018 (=20!) alternative
codes. Sampling in such a large space of alternative
codes, to look for codes that perform better than the
standard code, may be meaningless if most of this
space contains variant codes that can never be ob-
tained by small mutations of the standard code. The
probability to find a better code should be measured
in the neighborhood of the original (standard) code,
that is, for codes that are likely to arise only by small
changes in the assignment of amino acids.
One possibility is to constrain the first codon po-

sition, that is, to allow changes only among amino
acids with the same first base as the standard code
(see Fig. 1). This constraint reflects partially the
biosynthetic pathway of amino acid formation (Free-
land et al. 2000b) but reduces the possible variant

codes to about 2.07 · 108 (=5!4), which is still a huge
number. Moreover, it allows for variant codes with
multiple position substitution. An alternative possi-
bility is to constrain the first codon position and to
allow changes only along one of the first bases (see
Fig. 1). This reduces the space of possible codes to
only 120 (=5!) for each of the four bases, a space that
still reflects the biosynthetic pathway of amino acid
formation and includes only codes that are generated
by mutations of small effect, that is, codes that are in
the neighborhood of the standard code. A similar
procedure can be applied to constrain the second
base (see Fig. 1): in this case the constraint is arbi-
trary; it does not necessarily reflect the biosynthetic
pathway, though it does limit the space of possible
alternative codes to codes that are in the neighbor-

Fig. 2. Codes with a lower SMD
value than the standard code when
possible changes occur only among
amino acids with the same first (or
second) base (no codon usage bias,
no transition/transversion bias,
CG/AT mutation ratio = 0.9).
Only amino acid assignments that
differ from the standard code are
shown. The standard code is shown
at the bottom right.

Table 4. Number of constrained codes with lower wSMD and zSMD value, with codon usage bias (70%CG)

No bias Bias for mistranslation Bias for mutation

Changes N v = 2/3 v = 1 v = 2/3 v = 1 v = 2/3 v = 1

X2 * 1–2 0–0 0–12 2–11 1–13 0–7

T2 5!=120 3–2 3–2 3–4 3–5 3–3 3–3

C2 4!=24 2–2 2–2 0–0 0–0 0–0 0–0

A2 7!=5040 0–0 0–0 2–46 2–24 1–20 1–15

G2 4!=24 1–1 1–1 1–1 1–1 1–1 1–1

X1 * 0–194 0–240 0–14 0–25 0–181 0–244

T1 5!=120 1–5 2–8 1–5 3–5 1–7 1–7

C1 5!=120 0–3 0–4 0–0 0–0 0–3 0–3

A1 5!=120 1–1 1–1 1–1 0–1 1–1 1–1

G1 5!=120 0–0 0–0 0–0 0–0 0–0 0–0

Same as Table 3, but each entry is in the form a–b, where a is the value for zSMD and b is the value for wSMD.
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hood of the standard code (3.5 · 108 = 5! · 4! · 7! ·
4! when multiple substitutions are allowed).
When the space of possible variant codes is reduced

in these ways, the probability that a better code is
found increases dramatically (Table 3). For example,
about 5–20 better codes in 100,000 are found when the
second base is constrained and about 1–5 when the
first base is constrained (remember that with no con-
straints, no better codes are found in 2 million), and
when changes are allowed only among one block with
the same first (second) base, the percentage of better
codes is up to 4% (10%). These codes differ only
slightly from the standard code (see Fig. 2).

Constrained Variant Codes and Codon Usage Bias

When both codon usage bias and constraints for the
formation of variant codes are taken into account we
obtain the conditions that are most likely to have
occurred during the origin of the code. In particular,
we may choose to apply a CG content around 70%,
as this reflects the probable CG content during the
origin of the code, and to generate codes that differ
from the standard code only by changing the as-
signment of amino acids among codons in one block
with the same first (or second) base, as this reflects the
probability that variant codes really arise. In this

Table 5. Number of better codes using different similarity matrices

Changesb

All X1 T1 C1 A1 G1

Matrixa (20!*) (5!4 *) (5!=120) (5!=120) (5!=120) (5!=120)

WOEC730101

SMD 20 73 3 10 2 1

wSMD 987 212 3 14 2 1

zSMD 526 148 19 10 2 3

DAYM780301

SMD 0 0 0 1 0 2

wSMD 633 1,246 13 10 0 6

zSMD 20 9 2 0 0 2

BENS940103

SMD 0 1 0 8 0 1

wSMD 8,627 8,516 9 40 0 6

zSMD 414 105 13 0 0 3

OVEJ920101

SMD 0 1 3 1 0 4

wSMD 948 1,004 18 7 0 9

zSMD 1 2 3 0 0 4

RIER950101

SMD 96,932 92,532 101 95 96 92

wSMD 82,223 46,722 84 40 73 30

zSMD 97,613 88,630 83 75 97 44

RISJ880101

SMD 47 111 3 5 0 6

wSMD 15,426 12,020 22 33 0 36

zSMD 765 7 0 2 0 8

GEOD900101

SMD 5,916 6,215 7 63 7 1

wSMD 29,498 25,018 22 90 10 1

zSMD 14,917 12,198 25 52 28 4

Each entry is the number of codes with lower SMD values or

wSMD and zSMD values with codon usage bias due to 70% CG,

obtained with different scoring matrices for amino acid similar-

ity, when the first base is constrained, the transition/transversion

bias for mutations is assumed, and the CG/AT mutation ratio is

set to 1. The value in parentheses is the number of possible

alternative codes, generated according to the constraints defined

in Fig. 1. For single substitutions all the 5! possible codes have

been generated. For the cases of no constraints or multiple

substitutions (*) the possible codes are, respectively, 2.4 · 1018

(=20!) and 2.07 · 108 (=5!4), but only 100,000 alternative codes
have been generated. Therefore these entries (*) are only esti-

mates for 100,000 possible codes.
a The label corresponds to the AAindex accession number (http://

www.genome.ad.jp/dbget/AAindex/list_of_matrices), followed here

(in parentheses) by the score assigned to the similarity score of an

amino acid with the stop codon (chosen to be about the lowest score

of the matrix minus the difference between the highest score and the

lowest score of the matrix): WOEC730101 ()10), polar requirement
(Woese 1973); DAYM780301 ()20), log odds matrix for 250 PAMs
(Dayhoff et al. 1978); BENS940103 ()1), log-odds scoring matrix
collected in 74–100 PAM (Benner et al. 1994); OVEJ920101 ()20),
STR matrix from structure-based alignments (Overington et al.

1992); RIER950101 ()100), hydrophobicity scoring matrix (Riek et
al. 1995); RISJ880101 ()8), scoring matrix (Risler et al. 1988);
GEOD900101 ()10), hydrophobicity scoring matrix (George et al.
1990).
b Constraints according to Fig. 1.
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case, when both codon usage bias and mutation
constraints are taken into account, the probability to
find a code that performs better than the standard
code is even higher.
Even when allowing multiple substitutions, that is,

changes among amino acids with the same first po-
sition, for all the four possible bases, there is an up to
100-fold increase in the probability to find a better
code, compared to the case of no codon usage bias.
The precise values are in Table 4.
If only variant codes that differ slightly from the

standard code are generated, the probability that a
better code is found is even higher (see Table 4). For
example, the possible variant codes with position
substitutions occurring only among amino acids with
T at the first position are 120 (=5!), and among them,
if the CG content is 70%, between 1 and 8 codes (that
is, roughly 1–7%, depending on whether amino acids
are weighted all the same or not) are better than the
standard code.

Different Similarity Matrices

The similarity matrix used here has been chosen be-
cause it relies on chemical similarities rather than on
observed substitutions. Matrices derived from ob-
served substitutions are probably more reliable
measures of the properties of amino acids in living
organisms, but they have the disadvantage to incor-
porate the very structure of the genetic code. That is,
similarity scores between amino acids in these ma-
trices may directly reflect the structure of the genetic
code, rather than similarity between amino acids. As
Di Giulio (2001) has shown, for example, the use of
the PAM 74–100 matrix (Benner et al. 1994) would
render tautologous an analysis of the optimization of
the genetic code.
When different matrices are used, incorporating

codon usage bias in the measure of error minimi-
zation, and reducing the space of possible variant
codes to those originating by substitutions along
single-base positions, as in the previous paragraph,
the frequency of better codes is always rather high,
even higher than with the matrix used throughout
this paper. For example, using Woese (1973) polar-
ity, more than 10% better codes are found among
the possible variant codes with position substitutions
occurring only among amino acids with T at the
first position, up to 30% using the 74–100 PAM
matrix (Benner et al. 1994) with C at the first po-
sition, up to 80% using other matrices based on
hydrophobicity (see Table 5). Woese polarity has
been used in most studies of error minimization of
the genetic code because it produced better alter-
native codes less frequently than any other matrix
(Haig and Hurst 1991). McLachlan’s (1971) chemi-

cal similarity matrix, in the study reported here, was
even better than Woese’s polarity in minimizing er-
rors. Therefore, unless McLachlan’s is the most ac-
curate available similarity matrix to measure error
minimization of the genetic code, the true frequency
of better codes is probably even higher than the
values discussed throughout this paper.

Discussion

Freeland and Hurst (1998) found that only one in a
million possible alternative codes performs better
than the standard code, in terms of relative efficiency
to minimize the effects of errors. In this standard
approach, codon usage was not taken into account,
however, codon usage bias was probably important
during the evolution of the code, as CG content was
probably about 70% (Woese 1987; Achenbach-Rit-
cher et al. 1987; Di Giulio 2000c). Moreover, this
approach considers possible alternative codes in the
whole space of permutations of the standard genetic
code, which allows some 2.4 · 1018 (=20!) possible
variant codes. Therefore the finding of one better
code in a million still leaves 2.4 · 1012 possible better
codes. Freeland and Hurst (1998) concluded that the
genetic code evolved to minimize errors, but the de-
bate about this issue seems not to be resolved (Fre-
eland et al. 2000a; Di Giulio 2000a, 2000b, 2001).
The first modification of the standard approach I

used here is to take into account codon usage bias.
Despite the uncertainty about the nature of the last
universal common ancestor, it is probable that life
originated at high temperatures (Woese 1987;
Achenbach-Ritcher et al. 1987; Di Giulio 2000c) and
that, during the origin of the genetic code, C and G
were more abundant than A and T, because of a more
stable conformation of CG-rich sequences due to the
three hydrogen bonds of C and G instead of two (in
A and T). In particular, CG content has been esti-
mated for the ancestral tRNAs to be between 61%
and 68%, with the latter percentage more likely (Fitch
and Upper 1987; Di Giulio 2000c). Therefore, if one
allows for a bias in CG content in the direction of a
prevalence of CG, the code should perform even
better, in terms of relative efficiency for error mini-
mization. I have shown that, on the contrary, in-
creasing CG content highly reduces the level of
optimization of the standard code, and at a CG
content around 70% the frequency of codes that
perform better than the standard code is not negli-
gible.
The second main modification of the standard

approach I have used is to reduce the space of pos-
sible codes to those that are likely to arise by muta-
tions of small effect. One could say that sampling in
the space of these variant neighbor codes introduces a
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bias in the probability of finding better codes because
in this space there exist more codes that perform
better than the standard code. Indeed this is exactly
the point, which is ignored by Freeland and Hurst
(1998) and by the standard ‘‘statistical’’ approach:
that natural selection for error minimization acts in
the neighborhood of the original genetic code. The
space of the constrained codes contains alternative
codes that differ only slightly from the original
(standard) code, therefore they are more likely to
arise than alternative codes that differ in many posi-
tions. In other words, sampling in the space of all the
possible permutations (20!) of the genetic code does
not give a reliable estimate of the true probability
that possible variant codes replace the standard code,
simply because it is a space of codes than are unlikely
to arise by small mutations of the standard code.
This concern has been considered by Freeland et

al. (2000b), who take into account the biosynthetic
pathway of amino acid formation to reduce the set of
possible alternative codes (their set of restricted codes
corresponds to my ‘‘constrained first base’’) and ap-
parently confirm the high level of error minimization
of the standard code. However, as Di Giulio has
shown (2001), the claim of Freeland et al. (2000b) is
unsupported because their use of the PAM 74–100
matrix of amino acid similarity (which itself depends
on the genetic code structure) renders their whole
analysis tautologous. I have used here a similarity
matrix based on chemical properties (McLachlan
1971), which does not lead to the same mistake, and I
have shown that in the neighborhood of the standard
code, the frequency of codes that perform better than
the standard code is dramatically higher and certainly
not negligible. Even when other matrices (including
the PAM 74–100 matrix) are used, in any case, the
results shown here do not change drastically. Indeed,
with other matrices the frequency of better codes is
even higher.
The conclusion of the analysis presented here is

that the apparently high degree of error minimization
of the genetic code is dramatically reduced when one
takes into account (1) codon usage bias produced by
the probable CG content occurring during the origin
of the code and (2) a space of possible alternative
codes that differ from the standard code only slightly.
When codon usage bias and mutation constraints are
taken into account, the frequency of codes that per-
form better than the standard code is not negligible.
Therefore these results do not support the claim that
the main force that shaped the genetic code is error
minimization (Woese 1965; Haig and Hurst 1991;
Freeland and Hurst 1998; Knight at al. 1999; Freeland
et al. 2000a,b) and, though not directly supporting the
coevolution theory (Wong 1975), are in favor of the
view (Di Giulio 1997a, b1999, 1999, 2000a, 2000b;
Judson and Haydon 1999) that the genetic code

evolved for reasons other than the minimization of
errors.

References

Achenbach-Ritcher L, Gupta R, Stetter KO, Woese CR (1987)

Were the original eubacteria thermophiles? Syst Appl Microbiol

9:34–39

Benner SA, Cohen MA, Gonnet GH (1994) Amino acid substitu-

tion during functionally constrained divergent evolution of

protein sequences. Protein Eng 7(11):1323–1332

Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evo-

lutionary change in proteins. In: Dayhoff MO (ed) Atlas of

protein sequence and structure, Vol 5, Suppl 3. National Bio-

medical Research Foundation, Washington, DC, p 352

Di Giulio M (1989) The extension reached by the minimization of

the polarity distances during the evolution of the genetic code.

J Mol Evol 29(4):288–293

Di Giulio M (1997a) On the origin of the genetic code. J Theor Biol

187(4):573–581

Di Giulio M (1997b) The origin of the genetic code. Trends Bio-

chem Sci 22(2):49–50

Di Giulio M (1999) The coevolution theory of the origin of the

genetic code. J Mol Evol 48(3):253–255

Di Giulio M (2000a) Genetic code origin and the strength of nat-

ural selection. J Theor Biol 205:659–661

Di Giulio M (2000b) The origin of the genetic code. Trends Bio-

chem Sci 25(2):44

Di Giulio M (2000c) The universal ancestor lived in a thermophilic

or hyperthermophilic environment. J Theor Biol 203:203–213

Di Giulio M (2001) The origin of the genetic code cannot be

studied using measurements based on the PAM matrix because

this matrix reflects the code itself, making any such analyses

tautologous. J Theor Biol 208:141–144

Epstein CJ (1966) Role of the amino-acid ‘‘code’’ and of selection

for conformation in the evolution of proteins. Nature 210:25–28

Fitch WM, Upper K (1987) The phylogeny of tRNA sequences

provides evidence for ambiguity reduction in the origin of the

genetic code. Cold Spring Harbor Symp Quant Biol 52:759–767

Freeland SJ, Hurst LD (1998) The genetic code is one in a million.

J Mol Evol 47:238–248

Freeland SJ, Knight RD, Landweber LF (2000a) Measuring adap-

tation within the genetic code. Trends Biochem Sci 25(2):44–45

Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000b) Early

fixation of an optimal genetic code. Mol Biol Evol 17(4):511–

518

George DG, Barker WC, Hunt LT (1990) Mutation data matrix

and its uses. Meth Enzym 183:333–351

Haig D, Hurst LD (1991) A quantitative measure of error mini-

mization in the genetic code. J Mol Evol 33(5):412–417

Judson OP, Haydon D (1999) The genetic code: What is it good

for? An analysis of the effects of selection pressures on genetic

codes. J Mol Evol 49(5):539–550

Knight RD, Freeland SJ, Landweber LF (1999) Selection, history

and chemistry: The three faces of the genetic code. Trends

Biochem Sci 24(6):241–247

McLachlan AD (1971) Tests for comparing related amino-acid

sequences. Cytochrome c and cytochrome c 551. J Mol Biol

61:409–424

Overington J, Donnelly D, JohnsonMS, et al. (1992) Environment-

specific amino-acid substitution tables - tertiary templates and

prediction of protein folds. Protein Sci 1(2):216–226

Riek RP, Handschumacher MD, Sung SS, Tan M, Glynias MJ,

Schluchter MD, Novotny J, Graham RM (1995) Evolutionary

conservation of both the hydrophilic and hydrophobic nature of

transmembrane residues. J Theor Biol 172(3):245–258

265



Risler JL, Delorme MO, Delacroix H, Henaut A (1988) Amino

acid substitutions in structurally related proteins. A pattern

recognition approach. Determination of a new and efficient

scoring matrix. J Mol Biol 204(4):1019–1029

Sonneborn TM (1965) Degeneracy of the genetic code: extent,

nature and genetic implications. Academic Press, New York

Woese CR (1965) On the evolution of the genetic code. Proc Natl

Acad Sci USA 54:1546–1552

Woese CR (1973) Evolution of genetic code. J Naturwiss 60:447–459

Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA

95:6854–6859

Wong JT (1975) A co-evolution theory of the genetic code. Proc

Natl Acad Sci USA 72(5):1909–1912

Wright F (1990) The ‘effective number of codons’ used in a gene.

Gene 87:23–29

266


