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Abstract. The canonical genetic code has been
reported both to be error minimizing and to show
stereochemical associations between coding triplets
and binding sites. In order to test whether these
two properties are unexpectedly overlapping, we
generated 200,000 randomized genetic codes using
each of five randomization schemes, with and
without randomization of stop codons. Comparison
of the code error (difference in polar requirement
for single-nucleotide codon interchanges) with the
coding triplet concentrations in RNA binding sites
for eight amino acids shows that these properties
are independent and uncorrelated. Thus, one is not
the result of the other, and error minimization and
triplet associations probably arose independently
during the history of the genetic code. We explicitly
show that prior fixation of a stereochemical core is
consistent with an effective later minimization of
error.
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Introduction

The canonical genetic code differs from random
variants in two well-established ways. First, the pat-
tern of codon assignments markedly reduces differ-
ences in hydrophobicity between amino acids whose
codons differ by a single nucleotide and, thus, can
potentially be interchanged by point misreading
(Freeland and Hurst 1998). This pattern of codon
assignments decreases the probability that a point
mutation or translation error will inactivate the en-
coded protein and is, thus, considered error-mini-
mizing (Haig and Hurst 1991). Such error-minimizing
properties of the genetic code have been confirmed
independently by many investigators (Haig and Hurst
1991; Freeland and Hurst 1998; Ardell 1998;
Freeland et al. 2000; Zhu et al. 2003), suggesting that
natural selection acted on the genetic code to reduce
the effects of errors. Second, coding triplets (codons
or anticodons) for an amino acid appear far more
often than chance would predict at the active sites of
RNA aptamers selected from random-sequence pools
for their ability to bind that amino acid (Knight and
Landweber 1998; Yarus 1998). These significant
associations between coding triplets and amino acid
binding sites, which we have recently reviewed (Yarus
et al. 2005; Knight et al. 2003), suggest that stereo-
chemical factors have influenced codon assignments.
Several proposals for how information might be
transmitted from primordial triplet/binding site
interactions through either the codons or the anti-Correspondence to: Rob Knight; email: Rob@spot.Colorado.edu
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codons by a number of mechanisms, including coding
coenzyme handles (Szathmary 1993, 1999) and direct
template recognition (Yarus 1998), have been sug-
gested. Although selection for sequences with affinity
for a ligand need not necessarily increase the chances
of being able to catalyze reactions involving that li-
gand (Levy and Ellington 2001), the mounting evi-
dence for statistical associations between triplets and
binding sites (Knight and Landweber 2000; Yarus
et al. 2005) requires some kind of explanation. It is
possible that different amino acids entered the code
via different mechanisms, which might be revealed
according to whether they show associations with
their cognate codons, anticodons, both, or neither
(Szathmary 1999). A third theory, that the genetic
code is structured according to relationships between
amino acids within biosynthetic pathways due to its
expansion from a simpler form (Wong 1975), has
considerable intuitive appeal (Taylor and Coates
1989; Miseta 1989; Di Giulio 1991, 1998, 1999), al-
though statistical support for particular suggestions
about biosynthetic relationships within the code has
been highly controversial (Amirnovin 1997; Di Giulio
and Medugno 2000; Ronneberg et al. 2000; Di Giulio
2001; Yarus et al. 2005). Thus, although it may be
possible to incorporate ideas about biosynthesis in
future analyses, in the present work we focus on the
adaptive and stereochemical hypotheses.

Both the error-minimizing (Sonneborn 1965; Alff-
Steinberger 1969) and the stereochemical (Woese
1965; Yarus and Christian 1989) theories of the
evolution of the genetic code have extensive histories,
and predict that chemically similar amino acids will
be assigned to chemically similar codons (as do
essentially all other theories of the code’s origin and
evolution [Knight et al. 1999]). However, if the same
features of amino acids were important both for
function within proteins and for RNA–protein
interactions, a random genetic code that was opti-
mized for error minimization might automatically
display relationships between coding triplets and
amino acid binding sites within aptamers (and vice
versa). In other words, the genetic code may appear
optimal in one of these two respects as a side effect of
being optimal in the other. A correlation between
error-minimizing and triplet-association qualities
would suggest that some chemical basis links these
features. Because the link could be as simple as a
mutual dependence on hydrophobicity, it is worth-
while to investigate a link between these features of
the code.

To test whether error-minimizing codes necessarily
produce associations between coding triplets and
binding sites, we generated random genetic codes and
scored them on both measures. As a control, we
tested the extent to which codes that score highly on
either measure do so because they share codon

assignments with the canonical genetic code. Our set
of sequences consists of previously published se-
quences (Knight et al. 2003), plus sequences subse-
quently isolated or currently in press from researchers
in the Yarus lab.

This technique compares the canonical code to a
distribution of possible codes. Any particular ran-
domization method can be thought of as a hypothesis
about which alternative codes could have been tested
during the evolution of the canonical code. Since the
mechanism by which the canonical genetic code
evolved is uncertain, we used five different randomi-
zation algorithms, each with the ability either to
preserve or to randomize the positions of stop co-
dons, for a total of 10 distinct methods of random-
izing the codes (and a total of 106 codes). These
diverse randomization algorithms allow us to largely
avoid making implicit assumptions about which
properties of the canonical genetic code are fixed by
the mechanism of its evolution and which are flexible.
In addition, we can use numerical optimization
techniques to evaluate whether a genetic code with a
certain number of codon assignments fixed (for
example, by stereochemistry) can still be optimized by
evolution for error minimization, allowing the two
processes to act separately in the genetic code’s evo-
lution. Consequently, we can test whether error
minimization and triplet/binding site associations are
independent features of the canonical genetic code.

Methods

In order to study the relationship between random genetic codes

that minimize error and random genetic codes that contain coding

triplet associations, we developed software that generates random

genetic codes based on several randomization algorithms. Each

random code is then scored on measures of both error minimiza-

tion and coding triplet (codon or anticodon) association with

amino acid binding sites within known RNA aptamers. The

Pearson correlation coefficient is then used to test whether the same

codes score well on each measure.

Random Genetic Code Generation

To account for uncertainty about the constraints on the form of the

genetic code during evolution, we generated 200,000 random codes

based on each of five different algorithms, each creating a different

space of possible codes. We discuss each of our randomization

algorithms in order, from the smallest to the largest set of possible

codes.

Quartet Shuffler. In the Quartet Shuffler we assume that

the arrangement of amino acids encoded in a quartet block is fixed

among all possible genetic codes. We define a quartet block as an

XYN block. During randomization, the intraquartet organization

of the amino acids is held constant, while the codon assignments

for each quartet are randomized. Under this mechanism of ran-

domization, there are 16! (or 2.09 · 1013) possible genetic codes.

The Quartet Shuffler preserves the number of codons per amino

acid and the quartet blocks of the canonical genetic code.
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N-Block Shuffler. In the N-Block Shuffler the N-Blocks

of the genetic code are held constant. We define an N-Block as a

1-, 2-, or 4-codon block in which all codons specify the same

amino acid. The block structure is defined based on the

canonical code, and all blocks of the same size are permuted

among themselves. The N-Block Shuffler allows for a space of 4!

· 14! · 8! (or 8.44 · 1016) possible genetic codes. This ran-

domization algorithm is designed based on the assumptions that

the block structure of the genetic code is fixed, e.g., by con-

straints on tRNA specificity (Lagerkvist 1981). The N-Block

Shuffler maintains the number of codons per amino acid and the

block structure of the genetic code.

Amino Acid Shuffler. The Amino Acid Shuffler assumes

that the groupings of codons which code for a single amino acid

are fixed, but each codon group could code for any amino acid.

This algorithm first determines the set of codons corresponding

to each amino acid and then permutes the associations between

amino acids and codon sets. This randomization algorithm yields

a set of 21! (or 5.11 · 1019) possible genetic codes. This method

assumes that the structure of the genetic code is fixed but that

amino acids could have been assigned to different codon blocks,

and it has been widely used in other studies (Haig and Hurst

1991; Freeland and Hurst 1998; Ardell 1998; Freeland et al.

2000). The Amino Acid Shuffler maintains the same codon

redundancy as the canonical genetic code, although the amino

acid encoded by each codon set (and hence the number of co-

dons for each amino acid) changes.

Codon Shuffler. The Codon Shuffler is designed based on

the assumption that the important feature in determining possible

genetic codes is the number of codons per amino acid. This ran-

domization algorithm therefore uses the canonical genetic code as a

template and randomizes the codon to amino acid relationships,

maintaining the number of codons per amino acid. This gives 64!/

6!34!53!22!9 = 2.3 · 1069 possible genetic codes.

All Amino Acids Get At Least One Codon
Shuffler. The All Amino Acids Get At Least One Codon

(AAAGALOC) Shuffler makes the assumption that the only

constraint on a code is that all amino acids are present. During

randomization, a genetic code is built from the set of amino

acids in the canonical genetic code in a manner that ensures that

all amino acids are present. This is implemented by starting with

a vector containing one of each amino acid, sampling amino

acids for the remaining codons from the set of all possible amino

acids, and permuting the assignments. Effectively, we are sam-

pling directly from the space of codes with at least one of each

amino acid. Without the constraint that each code must have at

least one of each amino acid, there would be 2164 or 4.19 · 1084

codes generated by choosing 1 of the 21 possible symbols (20

amino acids plus stop) independently at each position. However,

we must subtract from this figure all the codes with at most 20

distinct symbols. For a particular set of 20 symbols, there are

2064 or 1.84 · 1083 arrangements, leading to an equivalent

number of possible codes, but there are 21 different ways to

leave out a symbol, so we must subtract 21 · 2064 or 3.87 · 1084

codes, leaving 3.14 · 1083 codes. However, the set of codes

lacking a particular symbol thus generated double-counts codes

that lack more than one symbol: for example, codes lacking both

D and E can be found in the codes lacking D and in the codes

lacking E. Thus, we need to add back in all the codes that lack

exactly two symbols, of which there are (20 · 19)/2 · 1964, or

1.32 · 1084, then subtract all the codes that lack exactly three

symbols, add the codes that lack exactly four symbols, and so

forth. Using the inclusion–exclusion principle, the formula for

the total number of possible codes is

X21
i¼1

21
i

� �
ð�1Þiþ1i64 ð1Þ

Applying this formula yields 1.51 · 1084 possible codes. This

method allows for the largest set of random variants.

Tests for Association Between Coding Triplets and
Aptamer Binding Sites

Aptamer sequences were collated from the literature and from re-

cent experiments in the Yarus lab (M. Illangasekare, I. Majerfeld,

D. Puthenvedu, and M. Yarus, unpublished data). These sequences

had all been isolated from random-sequence pools using selection-

amplification or SELEX (Tuerk and Gold 1990; Ellington and

Szostak 1990; Robertson and Joyce 1990) based on their ability to

bind affinity columns derivatized with particular amino acids.

Specific RNA aptamers now exist for eight amino acids: Arg

(Connell and Yarus 1994; Geiger et al. 1996; Tao and Frankel

1996; Yang 1996), Ile (Majerfeld and Yarus 1998; Lozupone et al.

2003), Tyr (Mannironi et al. 2000), Gln (G. Tocchini-Valentini,

pers. comm.), Phe (Illangasekare and Yarus 2002), and His, Trp,

and Leu (I. Majerfeld and M. Yarus, unpublished data). The 43

characterized binding sites for these amino acids come from RNAs

with 2791 total initially randomized nucleotides (for an average of

65 random nucleotides per sequence). The sequences and binding

sites used are shown in Fig. 1.

To estimate the probability of observed associations between

coding triplets and binding sites as conservatively as possible, we

considered only those sequences for which direct experimental

information about the binding sites was available. This information

came from a mixture of chemical protection/modification/inter-

ference mapping, sequence conservation across isolates, and NMR.

We considered only independently derived sequences in which the

binding site occurred in backgrounds that shared no significant

sequence identity. For example, the minimal isoleucine site has

been isolated at least 63 times, and the minimal histidine site has

been isolated at least 54 times. Consequently, only a small number

of well-characterized examples are used for calculations in Table 1.

Including the many other independent isolations of the same sites

would increase the statistical significance of the results (i.e.,

diminish the probabilities) by many orders of magnitude.

Associations between coding triplets and binding sites were

calculated as previously described (Knight and Landweber 1998).

Specifically, we assigned each nucleotide to one of four catego-

ries—triplet and binding, triplet and not binding, not triplet but

binding, or neither triplet nor binding—depending on whether it

was in a coding triplet (either a codon or an anticodon for the

cognate amino acid) and whether it was within the experimentally

determined binding site sequence. We pooled these four counts

across all the sequences for each amino acid and used the G test for

independence (with the Williams correction) to test whether the

binding site nucleotides were significantly more likely to form parts

of codon or anticodon triplets than were non-binding-site nucleo-

tides. The nonbinding parts of the aptamers thus act as internal

controls both for the effects of nucleotide composition and for any

other properties of the sequences that might affect the results.

Counts are pooled across codons or anticodons and across all

aptamers for that amino acid to reduce small-sample effects.

In order to compare results across multiple analyses (different

amino acids, and codons and anticodons), we used Fisher’s method

for combining independent tests of a hypothesis. We combined the

tests for codons and anticodons for each amino acid and combined

the tests for all amino acids to get overall estimates of the proba-

bilities bearing on the escaped triplet hypothesis (Table 1). The

escaped triplet hypothesis suggests that triplets overrepresented in

RNA binding sites for amino acids ultimately became part of the

modern genetic code (Yarus et al. 2005).
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Fig. 1. Amino acid aptamer sequences used for the calculations, primers omitted. Sequences are shown grouped by specificity, binding sites
are indicated by uppercase letters.
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Evaluation of Code Optimality for Error Minimization

We used the code error value as previously defined (Haig and Hurst

1991). The error value is the sum over all possible single-base

changes of the difference in amino acid properties before and after

the change, We used the Polar Requirement measure (Woese 1973)

to measure differences between amino acids, and no transition bias,

codon usage bias, or positional weighting. Small tests altering the

transition bias indicated that this factor was unlikely to affect the

results (data not shown).

Optimization for Better Codes

To optimize codes with a certain fraction of the codons fixed (e.g.,

by stereochemistry), we used the Great Deluge Algorithm (Dueck

1993) Specifically, we fixed a fraction of the codons to their values

in the canonical code and swapped sets of three amino acid

assignments at a time to avoid becoming trapped in local optima.

Implementation Details

All software was written in the Python programming language on a

Mandrake Linux system and is available from the authors on re-

quest. It relies on the Cogent (formerly PyEvolve) package and

consists of three top-level classes; a genetic code randomizer and

code error and coding triplet association tests.

The overall analysis used 100,000 random codes generated by

each of the five randomization algorithms (see above), each run

separately to permute and maintain the locations of the stop co-

dons. This analysis took approximately 48 h to complete on a 2.4-

GHz desktop computer with 1 GB of RAM.

Results

We begin by confirming that the phenomena we wish
to compare actually exist in our present sample of
codes. Table 1 shows the triplet/binding site associ-
ations for each amino acid specificity individually and
combined over all amino acids. The associations are,
in general, highly significant. Interestingly, an asso-
ciation between anticodons and binding sites is more
strongly supported than an association between co-
dons and binding sites with the new data set. The
amino acid that contributes most significantly to the
codon/binding site association is arginine, which was

the first specificity for which aptamer sequences were
available. However, the codons are also present sur-
prisingly frequently in the minimal isoleucine-binding
site, which has now been reselected hundreds of times
independently in different experiments (Lozupone et
al. 2003; Legiewicz and Yarus 2005). Figure 2 shows
the canonical genetic code compared to random ge-
netic codes under the most restrictive (left column)
and least restrictive (right column) randomization
models in terms of code error, codon association,
anticodon association, and overall association. The
canonical genetic code is far out on the tail of the
distribution of random codes on each measure, even
for the most restrictive randomization model, in all
respects except codon association (for which about
10% random codes show larger associations than
does the canonical genetic code across the different
models). Results are intermediate for the other ran-
domization models. Table 2 summarizes the fraction
of random codes that appeared better than the
canonical code on each association measure. Thus,
the anticodon and overall associations are highly
robust to the choice of model, while the codon
associations are significant for all but one randomi-
zation (and in two individual groups of aptamers).
The specific codon/site associations for arginine
(Knight and Landweber 2000) and isoleucine remain
individually highly significant, and the reselection of
the codons in the minimal isoleucine site is a com-
pelling second line of evidence (Yarus et al. 2005).

Next, we tested for correlations between error
minimization and triplet/site association in each
sample of random genetic codes. Figure 3 shows this
relationship for each of the randomization models.
The canonical genetic code, indicated by an asterisk,
is clearly an extreme outlier on both measures and
does not fall within any group of codes that are
similarly near-optimal in both respects (see insets in
Fig. 3 for the best 0.1% of codes on each measure,
which would reveal a local correlation, if it existed for
only the best codes, as a diagonal line of points sur-
rounding the canonical genetic code). Thus, even the

Table 1. Probabilities for experimental associations between codons and binding sites, anticodons and binding sites, and both codons and
anticodons and binding sites for each amino acid separately and all amino acids together

Amino acid Codon Anticodon Both C & AC Aptamers/total nt

Phenylalanine 0.72 3.4 · 10)5 2.9 · 10)4 2/160

Isoleucine 1.2 · 10)3 1.0 · 10)6 2.7 · 10)8 6/320

Histidine 0.999 6.9 · 10)4 5.7 · 10)3 12/809

Leucine 0.27 4.5 · 10)4 1.2 · 10)3 1/78

Glutamine 0.042 0.99 0.17 2/156

Arginine 3.4 · 10)8 0.045 3.3 · 10)8 5/197

Tryptophan 0.99 1.8 · 10)4 1.7 · 10)3 12/800

Tyrosine 4.8 · 10)3 1.6 · 10)6 1.6 · 10)7 3/271

Overall 6.6 · 10)3 1.1 · 10)10 5.4 · 10)11 43/2791

Note. See text for discussion.
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Fig. 2. The canonical genetic code (marked with an asterisk)
compared to the distribution of random codes produced by the most
restrictive model (the Quartet Shuffler, maintaining stop codon
locations; left column) and the least restrictivemodel (AAAGALOC
Shuffler; right column). The y axis shows the number of random

codes in a particular range of x-axis values, which are code error (a,
b), and the log of the p-values for codon association (c, d), anticodon
association (d, e), and overall association (g, h). Data shown are for
samples of 100,000 genetic codes in each model. The same sample of
genetic codes is shown in the graphs for each column.

602



best codes in each respect show no tendency to have
both properties simultaneously.

Although the graphs in Fig. 3 show no obvious
association by eye, small but significant associations
exist in the graphs for the Quartet, N-Block, and
Amino Acid Shufflers when the locations of stop
codons were preserved (r, from 0.008 to )0.02; p,
from 0.004 to 10)10). These small correlations, which
would explain at most 0.04% of the variance, can be
explained by preservation of substantial portions of
the canonical genetic code in some of the randomized
variants (Table 2). In particular, there was always a
moderate positive correlation between the number of
codon differences from the canonical genetic code
(counting only codons for amino acids for which we
have aptamers) and the p-value of the association
between triplets and binding sites: in other words,
codes that differed more from the canonical code
were more likely to have larger, hence less significant,
p-values when tested for association (r, from 0.10 to
0.38; p < 10)200), and, similarly, codes that differed
more from the canonical code were more likely to
have higher error scores (r, from )0.0009 to 0.03; p,
from 0.83 to 10)26). Consequently, the small associ-
ations that do exist can be explained in terms of
shared pieces of the canonical genetic code. Because
the distribution of the data differs substantially from
the bivariate normal distribution assumed by the
Pearson correlation coefficient, the p-values should be
treated with caution (although model distributions
with the same visual appearance but with indepen-
dent sampling of x and y, such as bivariate negative
exponential distributions, give a correlation coeffi-
cient close to 0). This effect is illustrated in Fig. 4, in
which highly significant associations between the
number of shared codons and both the code error
(r = 0.011, p = 0.00035) and the overall triplet/site
association (r = 0.10, p = 2.1 · 10)220) interact to
give an apparent association between code error and
overall association. Similar effects give apparent

associations between various combinations of the
codon/site association, the anticodon/site association,
the error value, and the overall association.

To test whether a substantial fraction of stereo-
chemically determined codons would still allow
optimization, we generated random codes through
amino acid permutation in which a certain fraction of
the amino acid assignments were fixed at their values
in the canonical genetic code. We then used the Great
Deluge Algorithm (Dueck 1993) to optimize this
starting set as far as possible and compared the error
values of the random codes to the error values of the
optimized codes (Fig. 5). As expected, the error val-
ues of both the randomized and the optimized codes
approached the error value of the canonical code as
more codons were shared with the canonical code.

Discussion and Conclusion

Our results demonstrate that an error-minimizing
genetic code does not necessarily display associations
between coding triplets and binding sites, and that a
code having such associations does not necessarily
minimize the effects of errors. Taken together with
the fact that the canonical genetic code performs
surprisingly well on both measures, this suggests that
error minimization and triplet/site associations both
played important but independent roles in the evo-
lution of the genetic code. The fact that these obser-
vations were supported over a wide range of
randomization strategies, and hence hypotheses
about what might have been conserved over the
course of genetic code evolution, suggests that these
conclusions (along with the consistent observation of
both the error-minimizing and the coding triplet
association properties) are robust to different
assumptions about how the genetic code evolved. The
results also suggest that the features of amino acids
that are important for protein function may differ

Table 2. Fraction of random codes showing greater triplet/site associations the canonical code under each model

Shuffler Stops Anticodon Codon Overall Shared (mean/SD)

AAAGALOC Random 0.00656 0.09994 0.00294 1.15/1.04

AAAGALOC Preserved 0.00682 0.10492 0.00306 1.20/1.06

Codon Random 0.0093 0.08695 0.00351 1.54/1.16

Codon Preserved 0.00997 0.09208 0.00392 1.60/1.19

Amino Acid Random 0.01138 0.1462 0.00283 1.15/2.13

Amino Acid Preserved 0.0122 0.15463 0.00289 1.20/2.17

N-Block Random 0.00008 0.12914 0.00005 2.50/2.43

N-Block Preserved 0.00008 0.16385 0.00015 2.74/2.49

Quartet Random 0.01182 0.07176 0.00065 2.00/2.36

Quartet Preserved 0.02582 0.02454 0.00055 5.07/2.41

Note. Columns indicate the random model (Shuffler), whether the locations of stop codons was randomized, the fraction of codes with better

anticodon associations over all amino acids, the fraction of codes with better codon associations over all amino acids, the fraction of codes

with better combined codon and anticodon associations over all amino acids, and the mean and standard deviation of the number of codons

(for amino acids with characterized aptamers) shared between a random code generated under each model and the canonical genetic code.
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Fig. 3. Continued
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Fig. 3. Code error (x axis) plotted against the overall triplet/site
association (y axis) for each randomization model. The inset within
each graph shows just the best 0.1% of points on each measure, to
test whether correlations exist for the best codes on either measure
even if they do not exist for all codes. The left column shows
models where the locations of stop codons are maintained; the right
column shows models where the locations of stop codons are

randomized. The plots are ranked from most restrictive to least
restrictive model; Quartet (A, B), N-Block (C, D), Amino Acid (E,
F), Codon (G, H), and AAAGALOC (I, J). Although small, sta-
tistically significant correlations actually do exist for some models
despite their invisibility to the naked eye, they are explicable by
random codes that share codons with the canonical genetic code.
The canonical genetic code is indicated by an asterisk.

Fig. 4. Explanations for weak but significant correlations caused
by sharing of codons with the canonical genetic code. A Number of
shared codon assignments (x axis) against code error (y axis). B
Number of shared codon assignments (x axis) against p-value of
the association score (y axis). C Codon association (x axis) against

anticodon association (y axis). D Number of shared codon
assignments (x axis) against frequency of codes with that number
of shared codon assignments (y axis). Each graph shows the same
sample of 100,000 codes generated according to the least restrictive
model (the AAAGALOC Shuffler, allowing stop codons to vary).
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from those that are important for RNA-amino acid
recognition, which may be unsurprising given the
varied and different chemistry involved in the two
types of interaction.

The present work confirms that significant asso-
ciations exist between coding triplets and binding
sites within aptamers for seven of the eight amino
acids for which specific aptamers are now available
(the exception, glutamine, being a plausibly late
addition to the genetic code). However, nonspecific
aptamers were earlier selected to valine (Majerfeld
and Yarus 1994) and to phenylalanine and trypto-
phan (Zinnen and Yarus 1995). The more recent
success in selecting specific aptamers to the latter two
amino acids (Yarus et al. 2005) suggests that many
initially intractable amino acids, such as lysine
(M. Illangasekare, I. Majerfeld, and M. Yarus, pers.
comm.), may eventually yield to SELEX. Thus, our
results should be interpreted as providing a snapshot
of current knowledge about triplet/binding site
associations that is subject to modification as more
aptamer sequences are determined. However, we
demonstrate that selection for error minimization
could have played a definite role in shaping the code
even if most of the codon assignments were fixed by
triplet/amino acid associations.

One scenario for the evolution of the genetic code
is that a primordial set of codons fixed by stereo-
chemistry was later added to through revolutionary
processes and/or optimized by natural selection for
error minimization (Knight and Landweber 1998).

Accordingly, we tested whether a code in which a
certain fraction of the modern codons was ‘‘fixed’’
could be optimized at least to the level of the
canonical code. Figure 5 shows the plausibility of this
scenario: even with a substantial fraction of the
canonical code locked to the present codon assign-
ments, codes that are even better than the canonical
code at minimizing errors can be found through
numerical optimization procedures such as the Great
Deluge Algorithm. Consequently, the fact that the
genetic code appears unusual in that it both mini-
mizes errors and shows associations between coding
triplets and binding sites is compatible with a plu-
ralistic view of code evolution.
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