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Abstract. The standard genetic code is the nearly
universal system for the translation of genes into
proteins. The code exhibits two salient structural
characteristics: it possesses a distinct organization
that makes it extremely robust to errors in replication
and translation, and it is highly redundant. The ori-
gin of these properties has intrigued researchers since
the code was first discovered. One suggestion, which
is the subject of this review, is that the code�s orga-
nization is the outcome of the coevolution of genes
and genetic codes. In 1968, Francis Crick explored
the possible implications of coevolution at different
stages of code evolution. Although he argues that
coevolution was likely to influence the evolution of
the code, he concludes that it falls short of explaining
the organization of the code we see today. The recent
application of mathematical modeling to study the
effects of errors on the course of coevolution, suggests
a different conclusion. It shows that coevolution
readily generates genetic codes that are highly
redundant and similar in their error-correcting
organization to the standard code. We review this
recent work and suggest that further affirmation of
the role of coevolution can be attained by investi-
gating the extent to which the outcome of coevolu-
tion is robust to other influences that were present
during the evolution of the code.
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Introduction

A genetic code, which associates codons and amino
acids, has two basic characteristics that reflect on its
function. One is the code�s amino acid vocabulary.
The vocabulary of a genetic code affects its function
because it dictates the family of proteins that genes
can encode. Therefore, the addition of useful amino
acids to the vocabulary of a code allows genes to
encode for a greater repertoire of proteins. The sec-
ond characteristic is the code�s robustness to error,
which is an outcome of the code�s organization. The
replication and translation of genes are inherently
prone to error. A code is robust to error if it is or-
ganized such that codons that are frequently inter-
changed by these errors are associated with
functionally similar amino acids. A robust code thus
reduces the deleterious effects of errors in the repli-
cation and translation of proteins.

How is the ubiquitous standard genetic code or-
ganized in these respects? The redundancy of the
standard code suggests that it could have been
modified to incorporate more amino acids (Ardell
and Sella 2001). There are 61 codons that are trans-
lated into 20 amino acids, i.e., more than a threefold
redundancy. Even though some of this redundancy
may be attributed to biochemical constraints that are
inherent to the operation of the translation apparatus
(the wobble coding), a conservative estimate of the
redundancy that is not the outcome of such con-
straints (Osawa et al. 1992) leaves us with a redun-
dancy that is at least twofold that needs to be
explained. The variety of posttranslational covalent
modifications to amino acids that occur in modernCorrespondence to: Guy Sella; email: gsella@math.huji.ac.il
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proteins (see, e.g., Krishna and Wold 1993) and the
existence of noncanonical cotranslationally inserted
amino acids—selenocysteine and pyrrolysine (see e.g.,
Francklyn et al. 2002)—suggests that the addition of
amino acids to the 20 canonical ones would be useful
to the production of proteins. On the other hand, the
intricate organization of the standard code makes it
extremely robust to error (Woese 1965; Woese et al.
1966; Alff-Steinberger 1969; Swanson 1984; Haig and
Hurst 1991; Ardell 1998; Freeland and Hurst 1998;
Freeland et al. 2003). This intricate organization is
illustrated in Fig. 1, where the following is apparent.
(i) Amino acids are more similar to each other along
the first codon position than they are along the sec-
ond. This ‘‘column-like’’ pattern is associated with
translational misreading, which is much higher in the
first codon position than it is in the second (Davies et
al. 1964, 1966; El’skaya and Soldatkin 1985; Parker
1989). (ii) Along the second codon position, amino
acids associated with pyrimidine bases Y = {U, C} or
purine bases R = {A, G} are more similar within

these sets than between them. This regularity is
associated with mutations in replication, in which
transitions (mutations within these base sets) occur
more frequently than transversions (mutations of a
base in one set to a base in the other set) (Freese 1961;
Sankoff et al. 1973; Topal and Fresco 1976; Gojobori
et al. 1982; Hixon and Brown 1986; Petrov and Hartl
1999; Vigilant et al. 1991; Wakeley 1996). Note that
these regularities are not associated with the code�s
redundancy but, rather, with the way different amino
acids are organized in the code. The two can be
separated by comparing the standard code with ran-
domized permuted codes that share the same family
boxes but differ in the assignment of amino acids to
these boxes (Haig and Hurst 1991; Ardell 1998;
Freeland and Hurst 1998; Freeland et al. 2003). It has
been established that the integration of these regu-
larities places the standard code in the top millionth
of randomized codes at minimizing the deleterious
effects of errors in replication and translation (Free-
land and Hurst 1998).

Fig. 1. A representation of the standard code according to the
physicochemical properties of the amino acid it encodes. A The 20
amino acids, denoted according to their standard abbreviations,
are each ascribed a shade that corresponds to their physicochemical
properties (we use Woese�s [1967] polar requirement). Thus, when
two amino acids are ascribed a similar shade here, it means that
they can, on average, replace each other more easily in proteins,
and with less deleterious consequences. B The entry corresponding
to codon UCG is the rectangle corresponding to first position U,

second position C, and third position G. The polar requirement of
the amino acid encoded by codon UCG, which is serine (S), is
represented by the shade in the entry corresponding to serine. The
regularities in the organization of the SGC that are apparent in this
representation are reviewed in the text. C A genetic code generated
by our simulations of gene-code coevolution. In this simulation the
codons consist of two bases, and mutation and misreading were
incorporated according to their qualitative characteristics in reality.
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To explain how the standard genetic code was
endowed with these properties we must consider its
evolution. However, none of the theories on the
evolution of the code (see Knight et al. [1999] and
Freeland et al. [2003] for a review) have been shown
to account for the salient organization of the stan-
dard code. Here we review recent work (Ardell and
Sella 2001, 2002; Sella and Ardell 2002) demonstrat-
ing how both the redundancy and the robustness to
error observed in the standard code can be the out-
come of the coevolution of genes and genetic codes in
the presence of errors in replication and translation.
(Unless specified otherwise, we use the term coevo-
lution to refer to the coevolution of genes and the
genetic code, rather than to the coevolution of
metabolism and the genetic code [Wong 1975, 2005;
Taylor and Coates 1989; Di Giulio 2004].)

A simple consideration suggests that genes and
genetic codes should have coevolved. At any stage in
the evolution of the code, the genes and the evolving
code were allied through the selection on proteins. To
avoid confusion in the definition of genes in the
presence of an evolving code, we refer to an organ-
ism�s protein-coding regions, be they DNA or its
precursor, as its genetic message. Given a genetic
code, the selection on proteins determines the com-
position of genetic messages. In turn, given the
existing genetic messages, the genetic code is under
selection to produce useful proteins with the messages
presented to it.

The implications of coevolution at different stages
in the evolution of the code were explored by Francis
Crick in a seminal paper from 1968. His ‘‘frozen
accident’’ theory laid the foundation for future
coevolutionary thinking about the evolution of the
code. We therefore briefly review the principle
assumptions and deductions of this theory (we review
only the ideas from this paper that are associated
with coevolution). Crick begins by characterizing the
primitive genetic code. He reasons that the size of
codons was unlikely to change during the evolution
of the code because ‘‘a change in codon size makes
nonsense of all previous messages and would almost
certainly be lethal.’’ Therefore the primitive code
must have been a triplet code. Crick then suggests
that the primitive code was likely to involve only a
few amino acids, although it may have encoded
ambiguously for classes of amino acids (Woese 1965).
At that stage, too many nonsense codons would be
strongly selected against, because mutation would
introduce them into messages where they would cause
severe interruptions in translation (Sonneborn 1965).
Crick assumes that the easiest way to produce new
tRNAs that translate these nonsense codons would
have been to alter the anticodons of existing tRNAs.
Therefore, these few amino acids, or amino acid
classes, would have quickly spread all over the code

such that most codons would quickly be brought into
use. Furthermore, the codons associated with each
amino acid, or amino acid class, were likely to be
related.

After the primitive code was established, the
coevolution of codes and messages would have taken
a different course. Crick suggests that at that stage
the formation of the code proceeded by the intro-
duction of new amino acids and by an increase in the
precision of recognition of amino acids within classes.
Such changes in the code were likely to be disruptive
at some protein sites and advantageous at others. For
changes in the code to succeed, they should have, in
balance, given the cell a reproductive advantage. This
was more likely if the amino acids that replaced each
other were similar, because then the deleterious ef-
fects were likely to be smaller. Each change in the
code was consolidated by corresponding changes in
messages. After the meaning of a codon changed,
selection on messages would establish the use of that
codon at sites where the new amino acid meaning was
advantageous, and replace it where that meaning was
disruptive. The net effect of the whole series of
changes would be that similar amino acids would
tend to have similar codons, which is what we observe
in the present code. If this process left its mark in
modern tRNA sequences one might expect tRNAs
associated with similar amino acids to be nearby on a
phylogenetic tree. A prediction along these lines (for
codons rather than amino acids) was corroborated by
Fitch and Upper (1987). However, this corroboration
should be taken with a grain of salt, as other studies
of tRNA phylogeny have reached different conclu-
sions (Di Giulio 1994; Xue et al. 2003) and, more
generally, tRNA�s may be too short and functionally
constraint to allow for reliable deductions about a
process as primordial as the evolution of the standard
code (Knight et al. 1999; Freeland et al. 2003).

As the process of code evolution proceeded the
number of proteins in the genome became larger and
their design became more sophisticated. Crick pos-
tulates that when the code reached its current devel-
oped form, any change in it would have introduced
new amino acids into numerous highly evolved pro-
teins, and would have therefore been catastrophic for
the organism. At that stage the code became a ‘‘fro-
zen accident’’. This abrupt freezing may account for
the standard code�s considerable redundancy.

Despite his conviction that the coevolutionary
ideas reviewed above are ‘‘crucial to the evolution of
the code,’’ Crick is very critical of his own theory. His
main criticism is that the theory is ‘‘too accommo-
dating,’’ and ‘‘in a loose sort of way it can explain
anything’’. Although the theory suggests how the
standard code may have become redundant, it would
have worked equally well if the standard code had
incorporated 15, or 25, amino acids. And although it
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suggests why similar amino acids are associated with
similar codons, it falls short of explaining the detailed
organization of the code we have reviewed above.
According to Crick�s ‘‘frozen accident’’ theory,
coevolution only preserved the associations between
codons and amino acid properties that can be traced
back to the original division of the primitive code
among the first amino acids. Thus, in spite of the
theory�s appeal, its explanatory value is questionable
if Crick was right in suggesting that it places very
little constrains on the properties of the frozen code.

The work we review below suggests that this pic-
ture changes significantly if we consider the way er-
rors in replication and translation affect the course of
code-message coevolution. We show that a coevolu-
tionary process, which begins with a highly ambigu-
ous primitive code (Sonneborn 1965; Fitch 1966; de
Duve 1995) and ends with a frozen code (Crick 1968),
does substantially more than associate similar codons
with related amino acids, it generates a code that is
organized along the lines we have reviewed above. To
assure that this organization is the result of coevo-
lution, as opposed to being an indirect outcome of a
predisposed primitive code, we assume an initial code
with no specificity in translation. We further assume
that the course of coevolution was affected by two
main factors. The first, which is similar in spirit to
Crick�s (1968) proposal, is an effective selection on
the level of amino acid residues in translated proteins.
Here we assume this selection acts along one physi-
cochemical dimension that corresponds to amino acid
polarity. The second is the errors in replication and
translation. Here we assume that during the evolution
of the code these errors were qualitatively similar
to those we see today. Although Crick (1968) and
Woese (1965) considered the effect of errors on the
coevolutionary process, they may have underesti-
mated its importance—especially for mutations (Sella
and Ardell 2002).

This review is divided into four parts. First, we
introduce a mathematical framework that allows us
to follow through the ‘‘mechanics’’ of code-message
interactions. The framework incorporates selection
on amino acid residues and errors in replication and
translation, and it describes how a given genetic code
determines the composition of messages and how the
composition of messages condition changes in the
code. Next, we study a very simple model of coevo-
lution—the double-ring toy model. In the double-ring
toy model, we can directly observe how genetic codes
affect the composition of messages and how messages
condition changes in the code. These observations
reveal that a coevolutionary process that begins with
a highly ambiguous primitive code gives rise to three
well-defined categories of code modifications which
we call load-minimizing steps, diversifying steps, and
reassignments. The effect of errors in replication and

translation on the evolving code is mediated through
load-minimizing and diversifying modifications. The
evolution of a code that proceeds through these
modifications generates a frozen code that is both
suboptimally redundant and extremely robust to the
errors that were present during its evolution. The
principles revealed in the toy model carry over to
more complex and realistic models of coevolution. In
the following section, we apply these principles to
explain why coevolution in more realistic models,
which begins with a highly ambiguous primitive code
and incorporates the qualitative errors in replication
and translation we see today, consistently generates
frozen codes that have the error-correcting organi-
zation of the standard code and a characteristic level
of suboptimal redundancy (compare the code in
Fig. 1C, which is the outcome of our simulations of
code-message coevolution, with the standard code in
a similar representation in Fig. 1B). These results
suggest that the theory of coevolution provides a
much ‘‘tighter’’ explanation for the properties of the
standard genetic code than that envisioned by Crick.
In the Discussion we reevaluate the potential of
coevolution as an explanation for the properties of
the standard code and suggest that further under-
standing of its role in shaping the code may be gained
by studying the extent to which the outcome of
coevolution is robust to other factors that were
present during the evolution of the code.

A Mathematical Framework for Code-Message

Coevolution

We describe the mathematical framework for the
study of code-message coevolution in two steps. First,
we describe how we model an individual�s genes and
genetic code, and how they determine an individual�s
protein distribution and fitness. Second, we describe
how we model the dynamic process of code-message
coevolution in a population of such individuals. The
mathematical form of the coevolutionary relations is
described in the following section; however, they are
not required for the reading of the rest of the paper.
The assumptions of the model are the result of a
combination of biological and methodological con-
siderations. Unless these considerations are abso-
lutely necessary for the understanding of the model
we have deferred them, as well as the formal defini-
tion of the models, to the supplementary online
material.

Figure 2 depicts an individual in our models. The
genotype of each individual consists of a message (A),
which is a vector of codons that stands for the con-
catenation of all the protein-coding regions, and a
genetic code (C). In the models studied here we do
not consider stop codons. The phenotype of each
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individual consists of a protein distribution (D),
which is the outcome of translating the message using
the code, where translation incorporates errors such
as misreading (B). For simplicity we refer to a single
translational product of the message as a protein
rather than as a concatenation of proteins. Because of
the errors in translation and because we allow an
evolving genetic code to be probabilistic, each codon
can translate into more than one amino acid.
Therefore the outcome of translation is a distribution
of proteins rather than a single long protein.

To define the fitness associated with the protein
distribution, we take advantage of an important
simplification: the selection on proteins that is rele-
vant to code evolution takes a much simpler form
than the selection at a given protein site. The fitness
effects that are relevant to code evolution are those
that arise when a mutant code appears. Because a
mutation in the genetic code changes the meaning of
a codon wherever that codon appears, it causes the
simultaneous substitution of one amino acid by an-
other across many sites in many protein contexts.
Thus, the fitness effects associated with a change in
the code can be expressed as an average across many
sites in many protein contexts. Such an average
amplifies the fitness effects of amino acid substitu-
tions that are shared by many protein sites while it
diminishes the importance of fitness effects that are
idiosyncratic to any specific protein site (see Sella and
Ardell [2002] and the online supplementary material
for further considerations and evidence that support
this assumption). Because of this consideration, we
assume that protein sites can be classified into a small
number of types (E), which we call site-types, where
each site-type reflects a form of selection on amino
acid residues that is shared by the protein sites of that
type. Here we use the simplest version of this
assumption: we assume that sites in proteins can be
classified into types according to the amino acid that
best fits their requirements. When an amino acid b

appears at a protein site in which amino acid a is the
most fit it will contribute an amount w(b,a) to the
overall fitness. To define this amount we assign a
coordinate, which stands for a physicochemical
property such as polar requirement, to each amino in
our models. We then define this amount as

wðb; aÞ ¼ /dðb;aÞ; 0</<1 ð1Þ

where d(b,a) represents the physicochemical distance
between amino acid b and amino acid a, and the
selection parameter / determines the intensity of
selection for biochemical accuracy. Note that unlike
the conventional definition of a selective coefficient,
here selection becomes weaker when the selection
parameter / is increased. Overall fitness is calculated
by multiplying the fitness contributions across the
sites of a single protein and arithmetically averaging
the products across proteins in the distribution.

We assume that messages change much faster than
codes. Code-message coevolution under this
assumption is described in Fig. 3. At the initial step
t = 0 all the individuals in the population have the
same initial code c0 (1). In all the models studied here
we assume that this initial code is uniformly ambig-
uous; i.e., each codon can translate into any amino
acid with equal probability. Because we assume
messages change much faster than codes, the com-
position of messages in a population with a given
code ct (t ‡ 0) always attains a state of equilibrium
that balances between mutations in the messages and
the selection exerted on the amino acids in proteins
before any change in the code occurs (2). The com-
position of messages at mutation-selection balance
with code ct can be calculated and characterized in
terms of the codon usage at each of the site-types (see
mathematical section below). After the messages at-
tain mutation-selection balance, the set of mutant
codes that derive from ct is generated (3). Here we
assume that a mutation in the code changes the
meaning of one codon so that it encodes for a single

Fig. 2. The representation of an
individual in our models. The
message is a vector of codons that
stand for all the protein coding
regions (A). The message is
translated in accordance with the
code (C), where translation
incorporates errors such as
misreading (B). The product of
translation is a protein
distribution (D). Protein sites are
classified into types (E), where site
i is of type ti.
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amino acid, where previously it was in the ambiguous
initial condition or coded for a different amino acid.
We say that a mutant code meets the invasion crite-
rion (4) if the fitness of an individual with the mutant
code and a wild-type message—the messages at
mutation-selection balance conditional on the wild-
type code—is greater than that of an individual with
both the wild-type code and a wild-type message
(mathematical expressions for both are derived in the
next section). Here we assume that if any of the code
mutants meet the invasion criterion, the mutant code
that confers the maximal fitness when it appears will
succeed the existing code (5). Once a new code takes
over the population the process returns to (2). When
none of the code mutants meets the invasion crite-
rion, the coevolutionary process comes to a halt, and
the existing code is then the frozen outcome of evo-
lution (6). Note that these dynamics capture the
essential nature of the coevolutionary process: a given
genetic code determines the composition of messages
at mutation-selection balance, and in turn, this
composition of messages conditions how the genetic
code is allowed to change.

A model of code-message coevolution within this
framework is defined by specifying the codon and
amino acid spaces. The codon space is defined by the
set of codons and the systematic errors of replication
and of misreading in translation, which determine
the relations between codons. We say that codons are
‘‘close’’ or ‘‘distant’’ if they are often or are rarely,
respectively, interchanged for one another in repli-
cation and translation. The amino acid space and the
corresponding site-type space are defined by the set
of possible amino acids and the physicochemical
relations between them, which we summarize in
terms of the distance d. We say that amino acids are
‘‘close’’ or ‘‘distant’’ if they are physicochemically
similar or dissimilar, respectively, to one another. In
all the models we investigate here, we assume that
each of the site-types is present at an equal fre-
quency.

The Mathematical Form of Code-Message
Coevolutionary Relations

First we describe how a given genetic code deter-
mines composition of messages at mutation-selection
balance. The effective genetic code, which incorpo-
rates both the evolvable component of the code and
the errors in translation, takes a matrix form
ceff = {ceff(b|i)}, where ceff(b|i) is the probability that
codon i is translated into amino acid b. Throughout
this review, for simplicity we assume that errors in
replication and translation remain constant during
the evolution of the code. When we incorporate
translational misreading the effective code is given by

ceffðbjiÞ ¼
X

j

cevðbjjÞRðj; iÞ ð2Þ

where the cev matrix is the evolvable component of the
code, and the matrix R describes the misreading
probabilities, namely, R( j,i) is the probability that
codon i is read as codon j. It is easy to show that, under
our fitness scheme, the codon distributions at different
sites are independent at mutation-selection balance
(Sella and Ardell 2002). Therefore, we can describe the
composition of messages at mutation-selection bal-
ance in terms of the codon usage at each type of site.
The codon usage at a site of type a is a vector
~uðaÞ ¼ fuðijaÞg, where u(i|a) is the frequency at which
codon i is used at a site of type a. Atmutation-selection
balance the codon usage~uðaÞis uniquely characterized
by the fact that it remains constant under the action of
selection and mutation. Namely, given an effective
code c, the codon usage at a site of type a is given as the
unique positive eigenvector solution to the equation
(Sella and Ardell 2002)

lSa~ucðaÞ ¼ kcðaÞ~ucðaÞ ð3Þ

where l is the matrix that describes mutation rates
between codons, Sa is the selection matrix that de-
scribes the selection on codons at a site of type a,
which is given by

Sa ¼ diagð
X

b

wðb; aÞcðbjiÞÞ ð4Þ

and kc(a) is the positive eigenvalue. We solve Eq. 3 at
the beginning of each cycle of the coevolutionary
dynamic (Fig. 3 [2]), to find the composition of
messages at each of the site-types given the genetic
code.

Second, we describe how the codon usage condi-
tions the invasion of mutant codes. According to our
invasion criterion, a mutant code c¢ can invade if the
fitness it confers when it is presented with the existing
messages is greater than or equal to that of the wild-
type code c with the existing messages (both c and c¢
refer to effective codes). To determine the mathe-
matical form of the invasion criterion, we therefore
require expressions for the fitness corresponding to a
combination of a code and a message distribution. In
our multiplicative fitness scheme across sites within a
protein, given a code c and codon usages f~uðaÞga, the
fitness of the protein distribution is

wðf~uðaÞga; cÞ ¼
Y

a

ðwð~uðaÞ; cÞÞla ð5Þ

where wð~uðaÞ; cÞis the fitness contribution of a site of
type a, and la is the number of protein sites of type a.
In our additive fitness scheme across proteins in the
distribution, the fitness contribution of a site of type a
across the distribution is given by
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wð~uðaÞ; cÞ ¼
X

b

X

j

wðb; aÞcðbjjÞuðjjaÞ ð6Þ

When the codon usage is atmutation-selection balance
with the code c, this fitness contribution is precisely the
eigenvalue in Eq. 3 (Sella and Ardell 2002), namely,

wð~ucðaÞ; cÞ ¼ kcðaÞ ð7Þ

Thus, the mathematical form of the criterion that
determines when a code mutant c¢ can invade a wild-
type code c is

wðf~ucðaÞga; c0Þ ¼
Y

a

ðwðf~ucðaÞg; c0ÞÞla �
Y

a

ðkcðaÞÞla

¼ wðf~ucðaÞga; cÞ
ð8Þ

Criterion 8 is evaluated for each of the code mutants
at the end of each cycle of the coevolutionary dy-
namic (Fig. 3 [4]).

A Simple Model of Code-Message Coevolution

To gain an intuitive understanding of the way a ge-
netic code is shaped through code-message coevolu-
tion we examine a very simple model of coevolution:
the double-ring toy model, depicted in Fig. 4. The
term toy model, borrowed from physics, refers to a
model that is unrealistically simple and serves for
explicatory purposes. The rules of code evolution
take their simplest form in the double-ring toy model
because the codon and amino acid spaces in this
model have the same simple topology. In this model
codons are organized on a ring (Fig. 4A, left). This
means that each codon can mutate to become each of
its neighbors on the ring (the probability of mutation
per generation is l = 0.01). Amino acids and the
site-types that correspond to them are organized on a
ring of circumference 1, which stands for a normal-
ized physicochemical index (Fig. 4A, right). Namely,
the fitness contribution of an amino acid b at a site of

Fig. 3. The simplified code coevolutionary
dynamics in the quasistatic approximation. The
numbers that appear in the boxes refer to the
explanation in the text.
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type a is determined by the distance between amino
acid a and amino acid b, d(b, a), that is measured
on the ring (the selection parameter is taken to be
/ = 0.25).

Before we analyze this model in detail, let us
examine how the propensity of a code to change de-
pends on the amino acid vocabulary it encodes.
Figure 5 depicts the number of code mutants that
meet the invasion criterion as a function of the code�s
amino acid vocabulary. As the coevolutionary pro-
cess proceeds, the code, message, and proteins are
endowed with a finer structure, such that the possi-

bilities of change that do not reduce fitness are
gradually narrowed down. When the ambiguity in the
code is reduced and its vocabulary grows, the pro-
teins become more intricate and the messages impose
more restrictive conditions on changes in the code.
Ultimately, the code freezes, as reasoned by Crick
(1968). This funneling behavior, which Woese (1998)
called evolutionary annealing, is a general property of
code-message coevolution.

Figure 4B describes a simulation of code-message
coevolution in the double-ring model. Once the ge-
netic codes encode for some amino acids, the forces

Fig. 4. Code-message
coevolution in the double-ring toy
model. A Codons and amino acids
are organized on rings. Codons
are assigned a number and a color,
corresponding to their position on
the ring. Amino acids and the
corresponding site-types are
assigned a letter according to their
position on the ring. B The codes
corresponding to successive
evolutionary steps are presented
on the left. In step 1, codon 1 is
assigned amino acid e; the other
codons which are still in the initial,
uniformly ambiguous, state
appear with no letter. The
equilibrium codon usage
corresponding to each code
appears on its right. For example,
at step 0, when all the codons are
in the initial, uniformly ambiguous
state, all the codons are equivalent
and therefore their usage at the
different site-types is equal. See
text for the analysis of the whole
evolutionary trajectory.
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of mutation and selection determine the profiles of
codon usage at the different site-types. For example,
consider the profiles of codon usage at step 1, when
codon 1 encodes for amino acid e, while the other
codons are still in the uniformly ambiguous initial
state. Due to selection, the usage of codon 1 is high at
sites where amino acid e is desirable, such as at sites
of types d, e, f, and g, and low at sites where amino
acid e is undesirable, such as at sites of type j. The
codons close to codon 1, such as 2 and 8, have a
usage profile that differs in magnitude but is similar in
trend to that of their encoding neighbor, because of
the abundance, or lack, of mutational flow from co-
don 1. By the same token, the codons that are farthest
away from codon 1, such as codon 5, have a usage
profile that is opposite in trend from that of codon 1:
their usage is highest at sites of type j and lowest at
sites of type e. The profiles of codon usage in mes-
sages dispose the coevolutionary process toward
three kinds of modifications in genetic codes:

� A diversifying step. Step 2 in Fig. 4 is a diversifying
step. In this step, codon 5, which is antipodal to
codon 1 on the codon ring, is assigned amino acid
j, which is antipodal to the encoded amino acid e

on the amino acid ring. More generally, for two
codons that are far from each other in codon space,
if one codes for an amino acid, the other one is
assigned an amino acid that is far from the encoded
amino acid. Codon usage with the pre-existing

code is disposed towards such a modification in the
code because the usage of the distant non-encoding
codon is already higher at sites in which the
encoded amino acid is undesirable, and lower at
sites in which the encoded amino acid is desirable.
Therefore, assigning a distant amino acid to the
distant non-encoding codon can increase fitness
with the preexisting codon usage.

� A load-minimizing step. Steps 3, 4, 5, and 7–9 in
Fig. 4 are load-minimizing. In step 3, codon 4,
which is a neighbor of codon 5 on the codon ring,
is assigned amino acid a, which is similar to amino
acid j, encoded by codon 5. In general, when two
codons are neighbors in codon space, and one of
the two codes for an amino acid, the other one is
assigned a similar amino acid. Codon usage with
the preexisting code is disposed toward such a
modification in the code because the usage of the
encoding codon�s neighbor is already higher at sites
where the encoded amino acid is desirable and
lower at sites where this amino acid is undesirable.
Therefore, assigning a similar amino acid to the
neighboring codon increases fitness with the pre-
existing codon usage.

� A codon reassignment. Step 6 in Fig. 4 is a reassign-
ment. The addition of amino acid a in step 3 reduced
the usage of codon 5 at sites of type a; this enables
codon 5 to be reassigned amino acid i, which better
meets the requirements of its modified usage profile.
In general, the assignment of an amino acid to one
codon releases usage constraints on other encoding
codons, which can then be reassigned to better meet
their modified usage requirements.

The notions of load-minimizing and diversifying
steps are heuristic articulations of the rules of code
modification that arise from the underlying coevolu-
tionary dynamics, and govern the evolutionary
shaping of genetic codes. These rules explain why
code-message coevolution produces a genetic code
that is both robust to error and redundant. They
associate similar amino acids with close codons and
very dissimilar amino acids with distant codons. As a
result, in the final code in Fig. 4 the ring in amino
acid space is embedded in the ring of codons in a
structure-preserving manner, and therefore this fro-
zen code is robust to error. Although code-message
coevolution produces a very well-organized code, this
code is not optimal: the frozen code in this example is
redundant, and it is easy to show that if, for example,
codon 6 would code for amino acid j rather than i,
thus increasing the code�s vocabulary, the code would
confer higher overall fitness. Such disadvantageous
redundancy is an intrinsic result of coevolutionary
‘‘traps.’’ The usage of ambiguous codons that are
close to assigned codons is strongly biased toward a
profile that favors the use of amino acids that are

Fig. 5. Evolutionary annealing in the double-ring model. The
graph depicts the number of code mutants that meet the invasion
criterion as a function of the number of explicitly encoded amino
acids. The initial rise in the number of possible mutants reflects the
increase in possible changes after the symmetry in codon usage,
which corresponds to the initial code, is broken (see Fig. 4B). The
black point refers to the reassignment at time step t = 6 (see Fig.
4B).
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already encoded (for example, the usage of codon 6 at
step 6 in Fig. 4). This biases load-minimizing modi-
fications to assign amino acids that are more similar,
and sometimes identical, to the amino acids that are
already encoded, even though a more distinct amino
acid may ultimately confer higher fitness (for exam-
ple, the assignment of amino acid i to codon 6 at step
7 in Fig. 4). Once a codon is assigned redundantly, its
usage is altered such that the redundancy becomes
imprisoned. Although sometimes reassignments can
set a codon free, more often, once the redundancy has
appeared it remains irreversibly trapped in the code.
Thus, the same principles that explain how the code
becomes advantageously robust to error can also
explain how it becomes disadvantageously redun-
dant. With these concepts in place, we can explain the
evolution of the patterns corresponding to both er-
ror-correction and redundancy in the standard code.

More Realistic Models of Coevolution

The Evolution of Robustness to Error

Figure 6A depicts the evolution of a genetic code in a
more biologically realistic coevolutionary model,
which incorporates transition bias in mutation. In the
more realistic model, a codon is composed of two
letters over the standard alphabet of four bases.
Mutations occur among the bases, where transitions
occur at a rate that is j times higher than the rate of
transversions. The amino acid space, and the site-type
space that corresponds to it, consists of 20 members
that are organized along a one-dimensional interval
that corresponds to a normalized physicochemical
property (requirement). In a transition-biased muta-
tion structure, which characterizes replication in
biological systems, the codon space consists of four
blocks (see step 0 in Fig. 6A), corresponding to first-
and second-position pyrimidines {U, C} or purines
{A, G}. Within a block each codon has two closest
neighbors, which are one transition away, and a
neighbor which is two transitions away. Each block
has two adjacent blocks which are one transversion
away, and an antipodal block which is two trans-
versions away. This structure of codon space partic-
ipates in determining the course of code evolution by
defining the regions of codon space across which
load-minimizing and diversifying steps occur.

Code-message coevolution with transition bias
(Fig. 6A) can be explained using the heuristic terms
we have defined above:

� Step 2 is a diversifying step. It associates codon
AA, which is antipodal to the existing encoding
codon UU, with amino acid 2, which is at the end
of the amino acid space furthest from the existing

encoded amino acid 10. Steps 13 and 17 are also
diversifying steps, which initiate the encoding in a
block by associating amino acids that are far from
those encoded by the other blocks.

� Steps 4, 6–8, 10, 12, 14–16, and 18–20 are load-
minimizing steps. In these steps, codons that have
encoding neighbors within their block are assigned
amino acids similar to those encoded by their
neighbors.

� Steps 3, 5, 9, 11, and 21–26 are reassignments.

The frozen code at the end of the evolutionary tra-
jectory shown in Fig. 6 exhibits the four-block pat-
tern, which is precisely the pattern that makes it
robust to the errors of transitionally biased mutation.
This four-block pattern was generated through load-
minimizing and diversifying steps, which were in-
duced by the mutational errors, but driven by the
local fitness requirements of code-message coevolu-
tion. Similarly, in Fig. 6B, we see that the final code
produced by coevolution in the presence of misread-
ing in the first codon position (see regularity i, at the
beginning of the paper) is error-correcting with re-
spect to that error: the frozen code is organized in
columns, such that amino acids are more similar to
each other along the first codon position than along
the second.

When the qualitative characteristics of both types
of errors and their relative magnitudes are incorpo-
rated, code-message coevolution reproduces the
qualitative organization of the standard code. Gen-
erally, when both misreading at the first codon po-
sition and transition bias in mutation are introduced,
the organization of the frozen codes varies according
to the type of errors that is dominant at the first
codon position. When transitional mutation
dominates over misreading, frozen codes (Fig. 7[A1])
pronounce the four-block structure that is error-
correcting for transition bias in mutation. However,
as we review in the supplementary online material,
empirical evidence strongly suggest misreading dom-
inated the error along the first codon position. In the
more realistic case (Fig. 7[A2]), where misreading is
dominant, the model reproduces the salient organi-
zational properties of the standard code that we have
set out to explain; namely, (i) amino acids are more
similar along the first codon position than they are
along the second, and (ii) amino acids associated with
pyrimidine, or purine, bases along the second codon
position, are more similar within these sets than they
are between them. To quantify this transition, we
apply the same method that has been used to measure
the organization of the standard code (Ardell 1998).
We compare each frozen code with a large set of
codes, which are generated by randomly permuting
the amino acid vocabulary of the frozen code between
its codons. Then we measure the fraction of permuted
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codes P(X) that are more conservative than the fro-
zen code along the X dimension of the code. Fig-
ure 7B shows the results averaged over 42 simulations
with different randomly chosen amino acid distribu-
tions: on the left, where misreading is low, P(Itv) �
P(IItv) >> P(Its) � P(Its), corresponding to the
four-block pattern, and on the right, in the more
realistic case, P(IIts) >> P(IIts), P(Its), P(Itv), cor-
responding to the organization of the standard code
(compare Fig. 7C). These results establish that code-
message coevolution robustly reproduces the salient
properties of the standard code when we vary the
distribution of available amino acids. In Ardell and
Sella (2002), we also show that these patterns remain
robust when other parameters, such as the mutation
rate and the degree of transition bias, are varied.

The Evolution of Suboptimal Redundancy

Figure 8 shows the average size of the frozen code�s
vocabulary as a function of the intensity of selection
and the rate of mutation. It is apparent that a
redundant frozen code is a robust outcome of the
coevolutionary dynamics. While the codes in the
model are able to incorporate up to 16 amino acids,
the number of amino acids that actually become en-
coded is considerably smaller. This redundancy can
be explained in terms of the coevolutionary traps we

have encountered in the double-ring toy model.
Namely, at a given stage of coevolution existing co-
don usage creates a bias toward the incorporation of
amino acids that are already encoded, even though
the incorporation of novel amino acids would ulti-
mately confer higher fitness.

The coevolutionary dependence on mutation and
selection exhibits three dynamic regimes, which are
reflected in the number of encoded amino acids as
well as in other attributes of the coevolutionary tra-
jectories and frozen codes (see Ardell and Sella [2001]
for a detailed account). We refer to the lower / re-
gion, which corresponds to extremely strong selec-
tion, as the Crick limit. Even at the Crick limit frozen
codes rarely code for more than 14 amino acids.
However, the intensity of selection at the Crick limit
appears to be unrealistically high. For example,
assuming a selective parameter of / = 10)3 and a
vocabulary of 10 amino acids, then substituting a
single amino acid by its best alternative (d � 0.1)
causes a 50% reduction in the organism�s overall fit-
ness (/d � 0.5). In contrast, empirically manipulated
genetic codes in E. coli, which alter translation at
thousands of sites, only cause a 33% decrease in
overall fitness (Döring and Marliére 1998). This
decrease is likely to have been even smaller during the
evolution of the standard code, when proteins were
highly statistical (Woese 1967) and thus less sensitive

Fig. 6. A A typical evolution in the more
biologically realistic model with transitional
mutational bias (transition bias was taken to be,
j = 7, / = 0.92, and l = 0.0006). The 20 amino
acids were chosen from a uniform distribution on
the (0,1) interval, which stands for a
physicochemical property such as polar
requirement, and they are represented by a gray
scale in which darker shades correspond to a
position closer to 1. At step 1, codon UU is
assigned amino acid 10, which is in the middle of
the range of the physicochemical property. The
other codons, which are still in the initial state,
appear with a white entry. See text for the analysis
of the whole evolutionary trajectory. B The frozen
code that results from a typical evolution with
uniform misreading in the first codon position (/
and l as above; e1 = 0.01).
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to amino acid substitutions. We believe that the
standard code evolved under conditions that corre-
spond to the transition between the encoding plateau
and the encoding catastrophe. At the encoding pla-
teau, which refers to the midrange / that extends
over most of the selection parameter range, the
number of encoded amino acids is stable between
10.5 and 12. At the encoding catastrophe, which
corresponds to high / and weak selection, the num-
ber of amino acids exhibits a dramatic decline to 2.

As we know very little about the properties of pro-
teins at the time the code evolved, estimating the actual
range of the selection parameter is very hard.However,
in order to explain why we think the standard code has
evolved at the boundary between the encoding plateau
and the encoding catastrophe we provide two inde-
pendent rough evaluations. In the supplementary
online material we perform a rough calculation of the
selection parameter based on the empirical results of
Döring and Marliére (1998), which yields a range of
0.996 < / < 0.9996 (Ardell 1999). Of course this
evaluation is based on modern proteins and should
therefore be taken with a grain of salt. We can also
estimate the lower bound on the intensity of selection
(which is an upper bound on /) under the assumption
that selection for physicochemical accuracy was strong
enough to differentiate between two adjacent amino

acids that became incorporated in the standard code.
Assuming an amino acid vocabulary of 10 in our 16-
codon model, 2 adjacent amino acids would be at a
normalized physicochemical distance of d � 0.1. The
selective coefficient corresponding to the substitution
of an amino acid by its closest alternative is given by
s = 1 ) (1//d). Therefore, if we assume an effective
population size ofN = 105, the requirement thatNs�
1 yields a selective intensity of / = 0.9995. Although
we are reluctant to place too much weight on these
estimates, we do note that they agree with each other.
Within the range that extends below this bound into
the encoding plateau, the redundancy of frozen codes,
namely, the number of encoded amino acids per codon,
ranges between 0.75 and 3. Obviously, these are very
rough estimates which leave much room for further
consideration and improvement. Nevertheless, we
claim that these results strongly suggest that a
considerable measure of the redundancy in the stan-
dard code may be an unavoidable consequence of
code-message coevolution.

Discussion

Although we cannot yet ascertain the full extent to
which coevolution determined the properties of the

Fig. 7. A comparison of frozen evolved codes with the standard
code. A Frozen codes that correspond to mutationally dominated
(1) and misreading-dominated (2) errors. B Each point represents
an average over 42 frozen codes that result from simulations with
randomly chosen amino acid parameters, selection coefficient /
= 0.92, mutation rate l = 0.0006, transition bias j = 7, and
misreading e1 given by the horizontal axis. P(X) denotes the frac-
tion of randomly permuted codes that are more physicochemically

conservative than the evolved code along the X codon dimension,
where the four lines correspond to first- and second-position
transitions (ts) and transversions (tv). When P(X) is small, it means
that the amino acids along the X codon dimension are very similar.
To show the behavior of P(X) on the lower end the axis is split,
such that the lower values are shown on a logarithmic scale, and
the higher values are shown on a linear scale. C The corresponding
P(X) values for the standard code taken from Ardell (1998).
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standard code, it seems clear that coevolution sug-
gested a more powerful explanation than Crick
(1968) initially proposed. According to Crick�s the-
ory, the origin of the associations between codons
and amino acid properties in the standard code can
be traced back to the original division of the primitive
genetic code among the first encoded amino acids. He
argues that the primitive code was likely to associate
the same amino acid, or amino acid class, with related
codons, although the more detailed form of these
ancestral associations was largely accidental. Crick
suggests that the amelioration of the primitive code
into the code we see today proceeded through the
incorporation of new amino acids and an increase in
the precision of translation within amino acid classes.
Coevolution would affect this process through selec-
tion to reduce the disruptive effect of changes in the
code on the translation of existing messages. This
selection may explain why changes in the code would
tend to preserve the ancestral association between
codons and amino acid properties, but it does not
account for the origin of these associations or for
their detailed form. The results we have reviewed
suggest that coevolution in the presence of errors in
replication and translation does more than preserve
ancestral associations, it generates them. In all the
simulations presented here, we started from a

uniformly ambiguous code, which is an extreme ver-
sion of the highly ambiguous code suggested by
Sonneborn (1965) and others (Fitch 1966; de Duve
1995). The uniformly ambiguous code has no speci-
ficity in the association of codons and amino acids
and therefore it cannot bias the outcome of evolution.
The association between codons and amino acids was
produced by load minimizing and diversifying mod-
ifications, which arise naturally from the coevolution
of codes and messages in the presence of errors.
When we incorporated the qualitative errors we see
today, which represent our best guess on the char-
acteristics of errors at the time the code evolved, the
coevolutionary process did more than associate sim-
ilar amino acids with related codons, it consistently
generated the main organizational features observed
in the standard code.

Consider, for example, the association of central
pyrimidine codons (NYN) with hydrophobic amino
acids and central purine codons (NRN) with hydro-
philic amino acids. A theory of coevolution can ex-
plain why amino acid polarity would be divided
between these sets of codons, although other factors
may have determined which one of these sets is
associated with hydrophobic (hydrophilic) amino
acids. This division has been suggested to be the first
effective discrimination incorporated during the evo-

Fig. 8. The number of encoded
amino acids in frozen codes as a
function of selection and mutation.
The model used to produce this
graph incorporates uniform
mutations among bases and no
misreading. Each point represents
an average over 40 frozen codes
that result from simulating with
different randomly chosen amino
acid parameters and the specified
selection intensity and mutation
rate.
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lution of the standard code, and the analysis of tRNA
phylogenies supports this assertion (Fitch and Upper
1987). Studies in protein design (Kamtekar et al.
1993; West and Hecht 1995) also suggest that this
discrimination would have allowed for an effective
encoding of polypeptides with characteristic struc-
tures, consisting of localized a-helices and b-sheets. It
is therefore plausible that the selection on primitive
polypeptides was directed primarily toward discrim-
inating between hydrophilic and hydrophobic amino
acids. Crick�s theory explains why similar amino
acids would be associated with related codons, but
that is a long way from explaining why amino acid
polarity would be divided according to the central
position pyrimidines and purines. The results re-
viewed here show that code-message coevolution
provides a direct explanation for this division. We
suggest that elevated misreading in the first and third
codon position in concert with transition bias in
mutation would have created the most effective dis-
crimination between codons with central pyrimidines
and purines. Therefore, once the code exhibited a
slight bias in polarity, even in the ambiguous trans-
lation of a single codon, diversifying modifications
across these two sets of codons and load-minimizing
modifications within them would have associated one
set with hydrophilic amino acids and the other with
hydrophobic amino acids. The original seeds of
specificity that provided the bias toward one of the
two alternatives may have been purely accidental,
although they also may have been influenced by co-
don bias (Eigen and Schuster 1979), the metabolic
production of amino acids (Wong 1975, 2005; Taylor
and Coates 1989; Di Giulio 2004), stereochemical
biases (Knight et al. 1999), and selection for the use
of versatile amino acids (Ardell and Sella 2001, 2002).
Although coevolution does not determine the direc-
tion of this association, it reduces numerous possible
organizations to two well defined structural alterna-
tives. It would be interesting to see whether models of
coevolution that incorporate amino acid properties
other than polarity, such as those proposed by Fitch
and Upper (1987), can account for the division of the
standard code according to these properties.

Although coevolution explains why a frozen code
is likely to be redundant, it is not yet clear whether,
and to what extent, it can account for the precise
degree of redundancy observed in the standard code.
The results we have reviewed indicate that the
vocabulary of frozen codes depend on the mutational
and selective parameters during evolution. In a large
region of these parameters, which we call the encod-
ing plateau, the number of amino acids in the frozen
code appears to be stable. For given parameters
within that region, the number of encoded amino
acids does not exhibit much variation (Ardell and
Sella 2001), and this stability in number does not

change when typical errors in replication and trans-
lation are introduced (Ardell and Sella 2002). How-
ever, two main issues would have to be addressed
before we can assess the degree to which coevolution
restricts the size of the amino acid vocabulary. First,
as we have seen, the size of the amino acid vocabulary
does vary significantly when we cross into the
parameter region we call the encoding catastrophe.
Therefore, ascertaining the constraints on amino acid
vocabulary would require a better evaluation of
evolutionary parameters together with a more de-
tailed study of the coevolutionary dynamics they
imply. Second, the degree of redundancy imposed by
coevolution appears to depend on the topology of the
code. Intuitively, the probability of encountering
coevolutionary traps that result in redundant amino
acid assignments, such as the one we observed in the
double-ring model, increases with the number of
neighbors associated with each codon. We would
therefore expect the doublet code to have more
redundancy than a code on a ring, and by the same
token, we would expect a triplet code to have more
redundancy than a doublet code. It would therefore
be useful to study how the vocabulary of frozen codes
varies in a triplet system, which incorporates rea-
sonable alternatives on the constraints at the third
codon position.

We have recently learned about ongoing research
that suggests that a theory of coevolution may pro-
vide a much ‘‘tighter’’ explanation for the redun-
dancy of the standard code than we have expected.
This study applies analytical methods from high-en-
ergy physics to analyze the relationship between the
topology of codes and their frozen vocabularies
(Tlusty 2006). It incorporates a simplified version of
the coevolutionary dynamics presented here and fo-
cuses on the redundancy at the transition between the
encoding plateau and the encoding catastrophe,
which represents our best guess on the parameter
region in which the standard code evolved. In cor-
respondence with the results presented here, the the-
ory predicts a vocabulary of 11 amino acids in the
doublet code. Quite surprisingly, this study also
indicates that triplet codes, which incorporate rea-
sonable assumptions about the constraints at the
third codon position, are expected to encode 20
amino acids. In correspondence to the crude intuition
provided above, the redundancy in triplet codes
(0.56 = 1)20/45) turns out to be greater than that in
doublet codes (0.45 = 1)11/20). Although various
perturbations can change the number of amino acids
that eventually get encoded, Tlusty�s work suggests
that these changes would not be large and that the
expected number corresponds to that observed in the
code.

Asserting that coevolution is disposed toward
generating the organization observed in the standard
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code does not necessarily imply that this tendency is
strong enough to overcome other influences that were
present during the evolution of the code. Many other
factors may have affected the evolving code. For
example, it has been suggested that stereochemical
biases in the association of codons, or anticodons,
and amino acids were important at the early stages of
code evolution (Crick 1968; Jukes 1973; Knight and
Landweber 2000). Because empirical studies (Knight
and Landweber 2000; Yarus 2000) suggest only a
very partial picture on the possible direction of these
associations, we have to assume some of them could
have biased the primitive code in directions that op-
posed the course of coevolution. In view of our
ignorance concerning the conditions during the evo-
lution of the code, an affirmation of the ability of
coevolution to explain the shaping of the standard
code has to rely on its potency to overcome other
influences. In other words, we would like to know
whether, and to what extent, the outcome of coevo-
lution is robust to other influences. This question can
be addressed using the mathematical framework we
have presented. For example, to study the robustness
to stereochemical association one can examine how
biased primitive codes and code mutation schemes
affect the shape of the frozen code. Although the
work we have reviewed began to address some as-
pects of robustness, such as the dependence of frozen
codes on evolutionary parameters, much further
work is required before we can assess the robustness
of, and hence our confidence in, the coevolutionary
explanation.

The proposition that errors in replication and
translation were important in the coevolutionary
shaping of the standard code is substantially different
from claims that the standard code was shaped by
selection to minimize the deleterious effects of these
errors (Alff-Steinberger 1969; Ardell 1998; Freeland
and Hurst 1998; Goldberg and Wittes 1966; Niren-
berg et al. 1963; Sonneborn 1965; Swanson 1984;
Woese 1965; Woese et al. 1966; Zuckerkandl and
Pauling 1965; see Sella and Ardell [2002] for a review
of the various error-correcting hypotheses). Because
these proposals have often been confused as being
similar (despite the fact that this distinction was
convincingly explained by Crick [1968] and Woese
[1965] and, more recently, by Freeland [2002] and
Freeland et al. [2003]), we briefly review the main
differences between them. First, they differ in mech-
anism. While theories of optimization assume that
code variants, which differ in their organization,
compete at minimizing the deleterious effects of er-
rors, a theory of coevolution postulates that code
variants, characterized by the addition of an amino
acid or a reduction in ambiguity, compete with their
predecessor at translating the messages bequeathed
by that predecessor. Second, the difference in mech-

anism implies a difference in plausibility. For selec-
tion on error minimization to distinguish effectively
between alternative codes very special conditions
must be met. For example, at each stage in evolution,
alternative codes must have the same amino acid
vocabulary and the messages that accompany them
must be equilibrated; otherwise, differences in their
amino acid vocabulary, or in the transient use of
amino acids in their messages, are likely to over-
whelm the relatively small advantage associated with
an error correcting organization. In contrast, the
coevolution of codes and messages does not require
special conditions. It only requires that whenever a
variant code appears, it is presented with the mes-
sages bequeathed by its precursor. Third, they differ
in the way they explain the organization of the
standard code. A theory of error minimization ex-
plains the organization of the code as an outcome of
an optimization process. The optimization principle
cannot be associated with error correction alone,
because the most error-correcting codes are those
which encode for a single amino acid. A theory of
error minimization should therefore be founded on a
justifiable optimization function that balances be-
tween the vocabulary of a code and its robustness to
error, and this function should be maximal at the
levels of redundancy and error correction observed in
the standard code. A theory of code-massage coevo-
lution explains both robustness to error and redun-
dancy as an outcome of the local selection on codes
and messages at different stages in the evolutionary
process. This outcome depends on the parameters
during the evolutionary process.

The theory of code-message coevolution illustrates
a general principle that may apply to the evolution of
other biological systems. Namely, the shaping of
biological systems is, to a varying extent, the outcome
of the coevolution of their parts, and the laws that
govern this coevolution derive from the way these
parts operate together. In the case of code evolution,
these laws derive from the way genes are translated
according to the genetic code to produce proteins.
This simple functional relation determines how a gi-
ven genetic code and the errors in replication and
translation shape the composition of messages, and
how a given composition of messages conditions
changes in the code, where both are mediated
through the selection on proteins. The work reviewed
here shows that recurrent application of these rules
has the potential to explain how the code was shaped
and, most importantly, how the code was endowed
with the properties we see today. The extent to which
the coevolutionary principle has dictated the shaping
of the code would have to be resolved, as is often the
case with other evolutionary principles, based on its
potency to overcome historical and biochemical fac-
tors that may have disrupted its operation.
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