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Abstract. Are genes nonrandomly distributed around
the genome and might this explain why it was found that,
in the mouse genome, proteins of linked genes evolve at
similar rates? Anecdotal evidence suggests that the simi-
larity of expression of linked genes might, in part, ex-
plain the similarity in their rates of evolution. Immune
system genes, for example, are known to evolve at a high
rate and sometimes cluster in the genome. Here we de-
velop methods for statistical tests of similarity of expres-
sion of linked genes and report that there is a significant
tendency for genes of similar expression breadth to be
linked. Significantly, when we exclude tissue specific
genes from our sample, the similarity in rates of protein
evolution of linked genes is greatly diminished, if not
abolished. This diminution is not a sampling artifact. In
contrast, while half of the immune genes in our sample
reside in 1 of 10 immune clusters in the mouse genome,
this clustering appears not to affect the extent of local
similarity in rates of evolution. The distribution of pla-
centally expressed genes, in contrast, does have an effect.
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Introduction

Are genomes strings of genes in no particular order or
might it be the case that selection favors certain genes to

be clustered, possibly to ensure coregulation? While op-
eron structures are well described in bacteria, the linkage
of coexpressed genes in eukaryotes is typically consid-
ered the exception rather than the rule. However, this
view might be changing. In the human genome highly
expressed genes appear to be clustered (Caron et al.
2001). Similarly, recent systematic evidence indicates
that skeletal muscle genes (Bortoluzzi et al. 1998), ex-
traembryonically expressed genes (Ko et al. 1998), ol-
factory genes (Lander et al. 2001), and tRNA genes
(Lander et al. 2001) tend to show clustering (although
only the analysis of extraembryonic genes controls for
tandem duplication). Likewise, genes in the MHC cluster
tend to be involved in immune functions, and in some
cases the most tightly linked (e.g., Tap and LMP) are
involved in coupled processes (Hughes and Yeager
1997).

Here we compile data on expression profiles of a few
hundred mouse genes, of known genomic location, to ask
whether similarly expressed genes tend to be linked more
often than expected by chance. To achieve this we de-
velop measures of similarity of expression. In particular,
we examine (1) the breadth of expression, meaning the
number of tissues in which a gene is expressed, and (2)
the degree of coexpression, meaning the correspondence
between genes in the degree to which they are expressed
in the same tissues. These two are logically distinct, as
two tissue specific genes, for example, will show similar
expression breadth but may be expressed in different
tissues (i.e., no coexpression). Additionally, we examine
a specific coexpression hypothesis. Given that genes in
the MHC tend to be immune related, we ask whetherCorrespondence to: Laurence D. Hurst; email: l.d.hurst@bath.ac.uk
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immune system genes tend to be clustered more often
than expected by chance and whether the MHC might be
the exception or the rule.

Expression, Linkage, and Rates of Evolution

The motivation behind these tests is not simply to allow
a better statistical appreciation of the degree of ordering
in the mouse genome. We also wish to understand
whether such patterns might underpin the recently de-
scribed similarity in the rate of evolution of the proteins
of linked genes (Williams and Hurst 2000). For this to be
so there needs to be a relationship among expression
pattern, linkage, and rates of protein evolution.

Evidence that expression pattern (broadly defined)
might be related to the rate of protein evolution comes
from a variety of sources. Importantly, proteins of genes
expressed in a tissue-specific manner evolve on average
twice as fast as those that are ubiquitously expressed
(Duret and Mouchiroud 2000). Further, the proteins of
certain tissues tend to evolve faster than others. Most
notably, immune system genes evolve about twice as fast
as nonimmune genes (Hurst and Smith 1999). It is for
this reason that we wish to examine the spatial genomic
distribution of immune system genes in particular.

Methods

Data Set Compilation

We compiled a data set of mouse and rat orthologues from scrutiny of
entries in HOVERGEN (Duret et al. 1994). Genes were accepted as
orthologues if, and only if, the mouse and rat sequences had no other
nonrodent sequence separating their branches and at least one nonro-
dent sequence appeared as a sister group. This resulted in a data set of
in excess of 500 gene pairs.

Each of the mouse genes was then inspected at LocusLink (http://
www.ncbi.nlm.nih.gov/LocusLink/), using its accession number, to es-
tablish mouse chromosomal location. These chromosomal locations are
the same as those described at Mouse Genome Informatics (http://
www.informatics.jax.org/). Only autosomal genes with a location
specified to the centimorgan (cM) were used, because X-linked genes
have unusually low rates of evolution (Smith and Hurst 1999). Pairwise
Blast under the default settings was used to eliminate tandem duplicates
from the data set. Any reported similarity between linked genes led to
the elimination of one of the two. This resulted in a data set of 475
autosomal genes. Of these, 289 had at least one neighbor within 1 cM.

Molecular Evolutionary Analysis

The coding sequence was extracted automatically using the annotations
in the GenBank entry. DNA alignments were carried out by PILEUP
(Wisconsin Package, GCG) using the default settings. The alignments
were checked by eye and modified if the alignment was obviously
wrong (e.g., translation of aligned sequences gave a nonfunctional
protein). Substitution rates were estimated using the method described
by Li (1993; Pamilo and Bianchi 1993), applying Kimura’s two-
parameter method to correct for multiple hits, and by the maximum

likelihood method of Goldman and Yang (1994). For each orthologous
gene (mouse–rat) we therefore obtained two estimates for the rate, per
site, for both nonsynonymous (Ka) and synonymous (Ks) substitutions.
We also calculated the rate of protein evolution, controlling for the
underlying mutation rate (Ka/Ks). However, we have found that none of
the results that we present below are greatly affected by the choice of
method. Therefore, for ease of comparison we report only the results
using Li’s protocol, except where of unusual interest (precise figures
for results using the maximum likelihood protocol available on re-
quest).

Expression Data

Expression data were assembled from numerous resources. First, all
genes were inspected at Unigene (http://www.ncbi.nlm.nih.gov/
UniGene/) and the tissues of confirmed expression were noted. These
data are based on EST matches of genes and will give only a positive
result; negative results are not reported. Additionally, the expression
data given at MGI (http://www.informatics.jax.org) was employed. Fi-
nally, the original source papers were consulted. If there is disagree-
ment between or within the resources whether a gene is or is not
expressed in a certain tissue, we always count the gene as being ex-
pressed, under the supposition that a false positive is considerably less
likely than a false negative.

From the source papers we could classify some genes as definitely
not being expressed in certain tissues (at least at certain times and in
certain strains). When a tissue was actively investigated for expression
but none was found, we refer to this as the narrow definition of non-
expression. Using this methodology we can, for each gene, score the
expression in any given tissue as present, not present (from narrow
definition), or “no hit” (not a clear positive or negative due to lack of
firm data).

Twenty-two tissues were considered. For each gene, we can obtain
a score for the total number of tissues in which expression has been
reported. This we define as the breadth of expression. While in prin-
ciple this value might run from 0 to 22 (no expression to ubiquitous
expression), we eliminated all those scoring 0, regarding it as evidence
that the expression of the gene has yet to be adequately investigated.

Index of Coexpression (ICE)

Not only can we calculate the breadth of expression, but also we can
calculate the degree of coexpression for any given pair of genes. This
index of coexpression was calculated as follows. If in a given tissue
both genes were expressed, or both were not expressed, then the gene
pair scores one for that tissue. Expression of one gene and not the other
gives a score of −1. This procedure was followed for each of the 22
tissues and a total score was calculated. This total was then divided by
the total number of informative tissues to provide an index of coex-
pression (ICE) that can run from −1 to +1. An ICE value of +1 means
perfect coexpression; both genes were expressed in the same tissues
and only those tissues. A negative ICE implies antagonistic expression,
i.e., where one gene was expressed, the other was not. An ICE value of
0 means coexpression half the time and antagonistic expression the
other half. The definition of an “informative tissue” and of “no expres-
sion” depends on the precise model that we use. These we now outline.

Models for ICE

We employed three models that differed in their interpretation of the
“no hit” category of expression and how this relates to nonexpression.
As the data are derived from matches to EST data, it is not the case that
no hit simply means no information; it might indicate absence of ex-
pression.
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Model 1: No Hit = No Information. At one extreme we can sup-
pose, conservatively, that “no hit” is synonymous with an absence of
information. This is reflected in the calculation of the index of coex-
pression that we calculate for all pairs of linked genes. In this model,
informative tissues are those in which expression is either present or
confirmed absent for both genes in the pair. If either gene has a no hit,
this is treated as an absence of data so is not counted as an informative
tissue. When calculating the mean index in any given set of gene pairs,
we calculated a mean weighted by the total number of informative
tissues.

This method has the problem that it is biased to reporting high ICE
values, as most of the information available confirms the presence of
expression. An extreme example is that if there were no confirmed lack
of expression, all genes would score either 0 for no matches or 1 for at
least one confirmed match.

Model 2: No Hit = No Expression. At the other extreme we can
suppose that “no hit” means no expression, in which case the number
of informative tissues is always 22. This model tends to report high ICE
values when the number of no hits is high. Tissues ignored in model 1
because both genes scored no hit, will now return a +1 value to the
score. If the sampling of expression data is extensive and EST matches
are well reported, then this should, in principle, provide the most reli-
able information. However, if the sampling is sparse (as must be the
case to some extent if some genes have failed to be detected at all or
some tissues are not used extensively in EST studies), then this over-
estimates the degree of coexpression.

Model 3: A Hybrid Model. In our hybrid model we assume that a
“no hit” counts as no expression, but only if in the tissue concerned the
other gene in the pair has a confirmed expression pattern. This hybrid
model attempts to minimize the effect of poor data on the ICE values
in model 2. That is, there may be several data points for any given gene
pair that score +1 simply because there are many no hit results. If this
is due to poor data, rather than a true reflection of expression, this is a
problem. In this model the number of informative tissues is 22 minus
the number of tissues where both genes have a no hit.

Statistical Analysis

A randomization protocol was used to analyze how similar the expres-
sion profiles of linked genes were. To analyze the extent to which
linked genes had similar breadths of expression, for each linked pair we
calculated the difference in the total number of tissues in which each
gene was expressed. This value was calculated for all the linked gene
pairs in the data set, and the mean calculated. This mean was compared
with means calculated from 10,000 randomizations of the data set. In
the randomizations the expression profile of the genes were conserved
and the gene position in the genome was randomized. If a gene was
used more than once in the original data, it was used more than once in
the randomized data set.

We performed a similar procedure for the analysis of the index of
coexpression by each of the three models. We calculated a mean (or
weighted mean) index of coexpression for the real data. We then ran-
domized the gene positions and calculated a mean index of coexpres-
sion for 10,000 randomized sets. These methods allow us to ask how
often we would expect by chance the degree of similarity of expression
profiles of linked genes which we obtained from the real data set.

For calculating the similarity in rates of evolution we used the
method developed by Lercher et. al. (2001) and that employed by
Williams and Hurst (2000). The former differs from the previous ran-
domization protocols as it calculates, for each gene, the mean differ-
ence between the gene’s value (Ka or Ka/Ks) and the mean value of all
its neighboring genes within 1 cM. The mean difference calculated
from the real data set is then compared to a set of 100,000 random mean
values calculated in the same way from randomized data sets. For each
test we report (Table 1a) the p value and the r2 value. The latter is
calculated by correlating each individual gene’s K value with the mean
of its neighbors. In Table 1b we also report the results using the method
used by Williams and Hurst (2000) as a comparison. In this method a
given gene is compared to its nearest two neighbors (or one neighbor
if only one other is within 1 cM). Often, however, the choice of nearest
neighbor is arbitrary, as recombination maps place many genes at
the same position. The results obtained are sensitive to methodology
(Lercher et al. 2001). Given the slightly arbitrary nature of the method

Table 1. Summary of the p and r2 values obtained using the randomization protocols (a) devised by Lercher et al. (2001)a and (b) used by Williams
and Hurst (2000)b

No.
genes

No.
comparisons

Ka Ka/Ks

p r2 p r2

(a)
Whole data set 289 223 0.0029 7.2% 0.011 10.6%
Without immune genes 243 181 0.053 7.9% 0.12 8.1%
Tissue-specific genes 134 76 0.034 14.0% 0.031 11.9%
Tissue-specific without immune genes 80 51 0.087 13.3% 0.19 10.2%
Without tissue-specific genes 155 87 0.54 0.0% 0.081 5.3%
Tissue-specific without placentally

expressed genes 127 67 0.125 9.5% 0.073 9.3%

(b)
Whole data set 289 196 0.0001 5.8% 0.0001 5.6%
Without immune genes 243 147 0.02 4.1% 0.008 6.2%
Tissue-specific genes 134 61 0.0061 9.6% 0.013 8.1%
Tissue-specific without immune genes 80 38 0.0094 20.5% 0.0083 16.4%
Without tissue-specific genes 155 74 0.34 0.2% 0.1788 2.1%
Tissue-specific without placentally

expressed genes 127 55 0.078 5.0% 0.0501 5.8%

a These were obtained by comparing each individual gene’s Ka and Ka/Ks values with the average of its neighbors. The p value was obtained from
randomizations, and the r2 value from linear correlation.
b These were obtained by pairing linked genes using no gene more than twice in total. The p value was obtained from randomization of the mean
difference in K values between the pairs of linked genes. The r2 value was obtained from linear correlation of the K values of the linked genes.
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used by Williams and Hurst (2000), we report in the text the results
obtained by the method of Lercher et al. (2001) while flagging up
results that appear to be method sensitive.

Results

Proteins of Highly Expressed Genes Are Slow-Evolving

We can confirm that within our data set the breadth of
gene expression (E) is negatively correlated with the rate
of protein evolution (Ka � 0.046 − 0.0014E, r2 � 3.9%,
p < 0.001) (Fig. 1). Note, however, that this is a relatively
weak effect. As with previous analysis, we find no evi-
dence that Ks and expression level covary (Ks � 0.00018
− 0.0003E, r2 � 0.1%, p � 0.564).

Proteins of Linked Genes Evolve at a Similar Rate

We can confirm in this data set that the difference in Ka

between linked genes is much lower than expected by
chance (p � 0.0029, r2 � 7.2%) (Table 1a). Parentheti-
cally, as regards local similarity in Ks, we previously
reported (Williams and Hurst 2000) weak significance
(p � 0.01). In the present data set this effect has de-
creased marginally (p � 0.039, r2 � 1.5%).

Linked Genes Have a Weak Tendency to Have Similar
Expression Patterns

To ask whether linked genes might show similar expres-
sion patterns we analyzed the local similarity of expres-
sion profiles using two measures.

Expression Breadth. To investigate whether linked
genes had similar expression breadths, we calculated the
mean difference in breadth of expression (calculated as

the total number of tissues in which each gene is ex-
pressed) of linked genes and compared this with the
mean from 10,000 randomized simulants. We find that
only 4% of randomized data sets show a higher level of
local similarity in breadth of expression. A priori we
would expect that 50% of random data sets would show
a higher level of local similarity in expression breadth,
therefore this result shows that there is a significant ten-
dency for linked genes to have similar expression
breadths.

Degree of Coexpression. Coexpression of linked
genes was investigated using the three ICE (index of
coexpression) models (explained in methods) for the in-
terpretation of the expression data. Again, we compared
the mean (or weighted mean) ICE with the distribution of
ICE values obtained through randomization. In each we
find at most a weak tendency for linked genes to be more
similarly expressed than expected by chance: Model 1
(“no hit” � no information), p � 0.095; Model 2 (no hit
� no expression), p � 0.183; and Model 3 (hybrid
model), p � 0.093.

Clustering of Immune System Genes Is Very Common.
The above results suggest that clusters of genes ex-
pressed in the same tissues are the exception rather than
the rule. But is this also true if we look more specifically
at immune system genes? For these we have a priori
expectations that they might be clustered given the pres-
ence of the MHC cluster. However, it is hard to provide
a definitive definition of what is and what is not an
“immune system gene.” We chose to apply a method that
takes account of as much information as possible. We
therefore used all available functional information and
expression data and defined a gene as being of the im-
mune system if (a) the knockout had an effect on the
immune response or (b) it had expression specific to
immune cells (e.g., B cells and T cells). Additionally,
Mouse Genome Informatics defines certain genes as be-
longing to the immune system. We included any gene
that MGI considered as belonging to the immune system.
No doubt one might query whether our definition is too
conservative or too liberal, but in the absence of alter-
native objective criteria and definitions, we consider this
to be a reasonable approach and not obviously prone to
bias.

In our data set we find strong evidence for clustering
of unrelated immune system genes. There are 46 immune
system genes, 24 of which have at least one other im-
mune gene within 1 cM. These exist in 10 clusters, 2 of
which are relatively large (Table 2). We could define 13
pairs of linked immune system genes. In 10,000 random-
ized data sets, on the average there are only 3.75 linked
immune pairs (and a maximum of 11). The frequency of

Fig. 1. The relationship between the number of tissues in which a
gene is expressed and its rate of nonsynonymous evolution: 1–5 tissues,
N � 133; 6–10 tissues, N � 64; 11–15 tissues, N � 56; 16–22 tissues,
N � 32.
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linked immune system genes is therefore significantly
higher than expected by chance (p < 0.0001).

Clustering and Rates of Protein Evolution

The above set of results presents highly contrasting pic-
tures: broad-scale analyses report only weak effects, at
most, for the effects of linkage on similarity of expres-
sion. In contrast, within the same data sets there is a
strong pattern of clustering of immune system genes, an
effect that is diluted in the broad-scale pattern. A priori
given the weakness of the broad-scale patterns, it seems
unlikely that a broad-scale analysis of the extent to which
expression similarity covaries with the similarity of rates
of evolution of linked genes will provide an informative
result. However, this seems not to be the case.

Clustering of Tissue-Specific Genes Underlies the Lo-
cal Similarity in Rates of Evolution. A gene can be de-
fined as being tissue specific if it is expressed in fewer
than six tissues. This, naturally, is an arbitrary divide.
However, genes expressed in only one tissue are too few
to provide meaningful analysis. We can then partition
our sample into tissue-specific (N � 134) and nonspe-

cific (N � 155) genes. Within the nonspecific group we
find that the local similarity is removed completely (Ka:
p � 0.54, r2 � 0.0%) (Table 1a, Fig. 2). In contrast,
when we look at tissue-specific genes and test for local
similarity in rates of evolution, we find that there is a
correlation stronger than before, even though the p value
does not indicate that it is highly statistically significant
(Ka: p � 0.034, r2 � 14.0%) (Table 1a, Fig. 2). Using
the method of Williams and Hurst (2000), the relevant p
value resolves to 0.0061 (r2 � 9.6%), versus p � 0.0001
(r2 � 5.8%) for the data set as a whole. This suggests
that the local similarity in the rate of protein evolution is
due largely to the distribution and rate of evolution of
tissue-specific genes.

Could the apparent absence of local similarity in the
non-tissue-specific set of genes be an artifact of dividing
the data set up, thereby reducing the sample size? To
examine this, we randomly divided the entire data set
into two subsamples, one the same size as the tissue-
specific group (N � 134) and the other containing the
remainder (N � 155). We repeated this 100 times. We
then calculated the extent of local similarity in each ran-
dom subsample using the method of Lercher et al. We
found that in none of the samples did the larger half give

Table 2. The 10 clusters of immune system genes and their chromosomal locations for genes within our samplea

Name of gene Chromosome cM position Ka Ks Ka/Ks

Interleukin 1 receptor, type I 1 19.5 0.08 0.273 0.293
Interleukin 1 receptor, type II 1 19.5 0.054 0.162 0.333

CD28 antigen 1 30.1 0.055 0.279 0.197
CD152 antigen CTLA 1 30.1 0.046 0.137 0.336

Decay accelerating factor 1 1 67.6 0.185 0.234 0.791
Polymeric immunoglobulin receptor 1 68.5 0.075 0.176 0.426
Cathepsin E 1 69.1 0.036 0.161 0.224
Interleukin 10 1 69.9 0.077 0.173 0.446

Selectin, platelet 1 86.6 0.054 0.228 0.237
CD3 antigen, � polypeptide 1 87.2 0.034 0.148 0.230

CD1d1 antigen 3 48.0 0.087 0.21 0.414
CD53 antigen 3 48.5 0.038 0.173 0.220

Small inducible cytokine B subfamily (Cys–X–Cys), mbr 10 5 53.0 0.129 0.329 0.392
Small inducible cytokine B subfamily, mbr 5 5 53.0 0.115 0.241 0.477

CD9 antigen 6 57.0 0.032 0.166 0.193
Tumor necrosis factor receptor superfamily, mbr 1a 6 57.1 0.092 0.184 0.50

Chemokine (C–C) receptor 1, -like 2 9 72.0 0.042 0.143 0.293
Chemokine (C–C) receptor 2 9 72.0 0.031 0.136 0.228

Small inducible cytokine A2 11 46.5 0.098 0.099 0.989
Small inducible cytokine A11 11 47.0 0.025 0.062 0.403
Small inducible cytokine A5 11 47.0 0.023 0.115 0.200
Small inducible cytokine A3 11 47.6 0.064 0.145 0.441

Histocompatibility 2, class II, locus DMa 17 18.56 0.069 0.229 0.301
Tumor necrosis factor 17 19.06 0.035 0.157 0.223

a A cluster is defined as the presence of one or more immune system genes within 1 cM of another immune gene. Also listed are the rates of
nonsynonymous (Ka) and synonymous evolution (Ks). For the data set as a whole the mean Ka is 0.04 ± 0.04 and the mean Ks is 0.174 ± 0.05. The
mean Ka/Ks for these genes is 0.21 ± 0.21, but for these linked immune system genes it is 0.39 ± 0.12.
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an r2 near 0.0% or the small half give such a high r2

value. This indicates that this result is not an artifact of
subsampling per se. As regards Ka/Ks, the r2 in the non-
tissue-specific sample is approximately half that in the
complete data set. In none of 100 trials did this amount
of diminution occur.

What classes of tissue-specific genes are there that
could possibly be responsible for this effect? There is an
a priori expectation that genes involved in antagonistic
coevolution may evolve at high rates. If these too are
clustered, then this will lead to local similarity in the
rates of evolution. This is because in randomized data
sets on the average, these fast-evolving genes tend to be
paired up with slower-evolving genes. They would thus
cause the randomized data sets to have a higher average
difference in Ka between linked genes than in the real
data set. We have shown that immune genes tend to
cluster and it is well established that they have unusually
high rates of evolution, probably because of host parasite
coevolution. Similarly, genes putatively involved in
mother–offspring conflict may show increased rates of
evolution (Hurst and McVean 1998). Many of these are

likely to be placentally expressed. This is of significance,
as prior evidence suggests that placentally expressed
genes are clustered (Ko et al. 1998). We therefore ex-
amined the consequences of removal of immune and
placental genes. Given the absence of a priori expecta-
tions for other sets of genes for which we have data, we
shall not examine any other subcategories.

Removal of the immune system genes has a little
effect on the extent of local similarity as assayed by the
r2 values. Now using 243 genes (i.e., the complete set
minus the immune genes), we find a comparable amount
of local similarity in Ka as in the complete data set (Ka,
r2 � 7.9% and p � 0.05; Ka/Ks, r2 � 8.1% and p �
0.12) (Table 1a). When we examine 100 random data
sets, each containing 243 randomly selected entries for
the original data set, we find that the r2 value from the
nonimmune data set is not unusual. Indeed, in the case of
Ka, the r2 increases. This indicates that the clustering of
immune genes is not of importance in determining the
local similarity in rates of evolution.

Given the lack of effect on the r2 values, the decline
in the p value seen on the removal of immune genes most

Fig. 2. The relationship between the Ka of a focal gene and the mean Ka of the surrounding genes for (A) the complete sample, (B) the
tissue-specific genes, and (C) the non-tissue-specific genes.
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likely reflects sample size changes. This we confirmed.
We took each of the 100 randomly assembled data sets of
243 genes and measured the mean local similarity within
each using the method of Lercher et al. Then we did
10,000 randomizations of each of these 100. We then
asked what proportion showed a greater mean local simi-
larity and thereby determined a p value for each of the
100 sets. We found that 12% of the random collections
reported a p value above that shown in the nonimmune
data set. We therefore failed to reject the hypothesis that
the weakening of the p value in the nonimmune set is
anything other than a sampling effect.

These conclusions are further supported by analysis of
the tissue-specific genes. Within the tissue-specific
group without the immune genes, the local similarity is
increased (from r2 � 9.6% in the complete set of tissue-
specific genes to r2 � 20.5% after the removal of im-
mune genes) under the protocol of Williams and Hurst
(2000). Under the protocol of Lercher et al (2001), the r2

remains largely unchanged (r2 � 14 versus 13.3%).
The distribution of seven placentally expressed genes,

in contrast, appears to have an effect on the local simi-
larity within the class of tissue-specific genes. When
these are removed from the tissue-specific gene class, the
local similarity decreases and is not statistically signifi-
cant under either model (method of Lercher et al.—Ka, p
� 0.125 and r2 � 9.5%; method of Williams and
Hurst—Ka, p � 0.078 and r2 � 5.0%). Again using the
method of randomly subsampling, this time randomly
removing seven genes from the tissue-specific data set,
none of the 100 random subsamples showed such dra-
matic decreases in r2.

Discussion

In this paper we have set out to ask two questions. First,
do similarly expressed genes tend to cluster in the ge-
nome? Second, if they do, does this explain why linked
genes evolve at similar rates? We have found evidence
that there is a significant tendency for genes of compa-
rable expression breadth to be linked but only a weak
tendency, at most, for genes that are coexpressed to be
linked. One limitation of our study is the usage of ex-
pression data that permit us to analyze presence or ab-
sence of expression rather than rate of expression, which
might be the more relevant parameter. In the near-future
results from microarray data and SAGE analyses should
allow exploration of these issues as well.

Given the weakness of the tendency for genes of com-
parable expression to be linked, and the weakness of the
correlation between Ka and expression breadth, we might
reasonably conclude that it is a priori unlikely that link-
age of similarly expressed genes might explain why
linked genes evolve at similar rates. This, however, ap-
pears not to be so: within the class of nonspecific genes

there is no tendency for linked genes to have similar rates
of protein evolution. The local similarity in rates of evo-
lution appears to be due in no small part to the genomic
positioning of tissue-specific genes. This is due in part to
clustering of placentally expressed genes but is not de-
pendent on the clustering of immune system genes.

These results do not examine whether coexpression
more generally underlies local similarity in rates of evo-
lution. Unfortunately, here we can perform only much
weaker tests. In yeast, the member of a pair of duplicates
that has the higher expression level has the higher rate of
protein evolution (Pal et al. 2001b). Evidence that this is
so came from analysis of the regression of the difference
in the rate of protein evolution versus the difference in
expression level (assayed by microarray data) for each
pair of duplicates. We can attempt the same sort of analy-
sis for the present data set. That is, if similarity of ex-
pression pattern does explain some of the local similarity
of rates of protein evolution, then we expect that a large
local difference in Ka should reflect a large difference in
expression profile.

To see whether this occurs we can plot �Ka (pairwise
difference in Ka) versus ICE for each pair of linked
genes. If coexpression predicts the local similarity in Ka

to any extent, then we expect a negative correlation be-
tween �Ka and ICE. We do not find this: �Ka versus
ICE, Model 1 (�Ka � 0.03 − 0.001 ICE1; r2 � 0.001%,
p � 0.61); ICE, Model 2 (�Ka � 0.03 − 0.005 ICE2;
r2 � 0.006%, p � 0.295; and ICE, Model 3 (�Ka �
0.03 − 0.006 ICE3; r2 � 0.009%, p � 0.175). However,
while we know that the expression breadth covaries with
Ka, �Ka does not covary with �E (�Ka � 0.0324 −
0.0001 �E; r2 � 0.00%, p � 0.8). The latter result
indicates that these are very weak tests. The above result
must therefore be considered a rejection of the possibility
that there is a strong covariation of expression and rate of
evolution. We cannot therefore make any strong conclu-
sions regarding coexpression.

The GC Ka Problem

It is remarkable that removal of the tissue-specific genes
from the data set destroys the signal of local similarity in
rates of protein evolution. This suggests that the effects
are unlikely to be genome-wide. This, however, leaves
the problem of the causes of the negative correlation
between GC content and Ka. Unlike the Ks/GC and Ka/Ks

correlations, the Ka/GC correlation is not sensitive to
method: the GY94 protocol reports the same result as
Li93 (Li93, Ka � 0.108218 − 0.118808GC4, r2 �
13.1%, p < 0.0001; GY94, Ka_ML � 0.122907 −
0.141966GC4, r2 � 16.4%, p < 0.0001). This negative
correlation was considered by Williams and Hurst (2000)
to be consistent with the idea that local similarity in rates
of protein evolution was due to genome-wide variation in
the strength of purifying selection owing to variation in
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the recombination rate around the genome (i.e., the in-
tensity of Hill–Robertson effects). This interpretation
rests on the understanding that the recombination rate
covaries with the GC content (Fullerton et al. 2001). The
Hill–Robertson model is given some support by the find-
ing that variation in Ka and Ka/Ks within the Drosophila
genome covaries negatively with the recombination rate
(Comeron and Kreitman 2000).

If the local similarity in rates of protein evolution is
due largely to linkage of similarly expressed genes, and
disappears when tissue-specific genes are removed, how
are we to interpret this strong GC/Ka correlation? One
possibility is that, as in yeast, the recombination rate
(hence GC) and gene expression rates covary, so a cor-
relation between recombination/GC and Ka need not be
evidence for Hill–Robertson effects (Pal et al. 2001a).
We cannot analyze expression rates in mammals. We
find, however, that there is a positive correlation between
breadth of expression and GC content at fourfold redun-
dant sites (E � 4.28 + 4.27GC4, r2 � 1.3%, p � 0.06).
Given that broadly expressed genes have low rates of
evolution, this is in the right direction to explain why
genes with a high GC content might have low rates of
protein evolution. The correlation is, however, weak
[and, incidentally, in the direction opposite to that re-
ported by Goncalves et al. (2000) for human sequences].
This effect is so weak that it cannot account for the
greatly reduced Ka in regions of high GC content. This is
confirmed by the finding that the Ka/GC correlation re-
mains when only the tissue-specific genes are analyzed
(Ka � 0.15 − 0.18GC4, r2 � 22.1%, p < 0.0001, N �
126).

Alternatively, it might simply be the case that immune
system genes (under directional selection or subject to
overdominance) tend to be AT rich. Were this so, the
GC/Ka correlation need not be indicative of variation in
purifying selection. Indeed, when we divided our data set
into immune and nonimmune genes, immune system
genes tended to be AT rich (GC4 immune � 0.55 ±
0.016; GC4 nonimmune � 0.61 ± 0.008). However, both
sets still showed a strong Ka/GC4 correlation (non-
immune, Ka � 0.075 − 0.075GC4, r2 � 8.6%, p <
0.001; immune, Ka � 0.21 − 0.24GC4, r2 � 24.1%, p �
0.001).

Given that these two possible explanations do not
explain the GC/Ka correlation, we must regard the cause
as problematic. Given that the result is both relatively
strong and robust to methodology (unlike the Ka/Ks cor-
relation), the causes of the correlation deserve further
scrutiny.

Acknowledgments. We thank Deborah Charlesworth, Martin
Lercher, and Araxi Urratia for their constructive comments.

References

Bortoluzzi S, Rampoldi L, Simionati B, Zimbello R, Barbon A,
d’Alessi F, Tiso N, Pallavicini A, Toppo S, Cannata N, Valle G,
Lanfranchi C, Danieli GA (1998) A comprehensive, high-resolu-
tion genomic transcript map of human skeletal muscle. Genome
Res 8:817–825

Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis
P, Hermus MC, van Asperen R, Boon K, Voute PA, Heisterkamp
S, van Kampen A, Versteeg R (2001) The human transcriptome
map: Clustering of highly expressed genes in chromosomal do-
mains. Science 291:1289–1292

Comeron JM, Kreitman M (2000) The correlation between intron
length and Recombination in Drosophila: Dynamic equilibrium be-
tween mutational and selective forces. Genetics 156:1175–1190

Duret L, Mouchiroud D (2000) Determinants of substitution rates in
mammalian genes: Expression pattern affects selection intensity but
not mutation rate. Mol Biol Evol 17:68–74

Duret L, Mouchiroud D, Gouy M (1994) Hovergen—A database of
homologous vertebrate genes. Nucleic Acids Res 22:2360–2365

Fullerton SM, Carvalho AB, Clark AG (2001) Local rates of recom-
bination are positively correlated with GC content in the human
genome. Mol Biol Evol 18:1139–1142

Goldman N, Yang ZH (1994) Codon-based model of nucleotide sub-
stitution for protein-coding dna sequences. Mol Biol Evol 11:725–
736

Goncalves I, Duret L, Mouchiroud D (2000) Nature and structure of
human genes that generate retropseudogenes. Genome Res 10:672–
678

Hughes AL, Yeager M (1997) Molecular evolution of the vertebrate
immune system. Bioessays 19:777–786

Hurst LD, McVean GT (1998) Do we understand the evolution of
genomic imprinting? Curr Opin Genet Dev 8:701–708

Hurst LD, Smith NGC (1999) Do essential genes evolve slowly? Curr
Biol 9:747–750

Ko MSH, Threat TA, Wang XQ, Horton JH, Cui YS, Wang XH, Pryor
E, Paris J, WellsSmith J, Kitchen JR, Rowe LB, Eppig J, Satoh T,
Brant L, Fujiwara H, Yotsumoto S, Nakashima H (1998) Genome-
wide mapping of unselected transcripts from extraembryonic tissue
of 7.5-day mouse embryos reveals enrichment in the t-complex and
under-representation on the X chromosome. Hum Mol Genet 7:
1967–1978

Lander ES, et al. (2001) Initial sequencing and analysis of the human
genome. Nature 409:860–921

Lercher MJ, Williams EJB, Hurst LD (2001) Local similarity in evo-
lutionary rates extends over whole chromosomes in human–rodent
and mouse–rat comparisons. Mol Biol Evol 18:2032–2039

Li W-H (1993) Unbiased estimation of the rates of synonymous and
nonsynonymous substitution. J Mol Evol 36:96–99

Pal C, Bapp B, Hurst LD (2001a) Does the recombination rate affect
the efficiency of purifying selection? The yeast genome provides a
partial answer. Mol Biol Evol 18:2323–2326

Pal C, Bapp B, Hurst LD (2001b) Highly expressed genes in yeast
evolve slowly. Genetics 158:927–931

Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates
and interdependence between the genes. Mol Biol Evol 10:271–281

Smith NGC, Hurst LD (1999) The causes of synonymous rate variation
in the rodent genome: Can substitution rates be used to estimate the
sex bias in mutation rate? Genetics 152:661–673

Williams EJB, Hurst LD (2000) The proteins of linked genes evolve at
similar rates. Nature 407:900–903

518


