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Abstract. The issue of providing a formal justification for the use of fourth
normal form (4NF) in relational database design is investigated. The motiva-
tion and formal definitions for three goals of database design are presented.
These goals are the elimination of: redundancy, key-based update anomalies
and fact-based replacement anomalies. It is then shown that, depending on
the type of constraints permitted, either Boyce-Codd normal form (BCNF)
or 4NF are the exact conditions needed to ensure most of the design goals.
However, it is also shown that the conditions required to ensure the absence
of a particular class of key-based update anomaly are new normal forms
which have not previously been identified. In particular, for the case where
the only constraints are functional dependencies (FDs), it is shown that
the required normal form is a new normal form that is stronger than third
normal form (3NF) yet weaker than BCNF. Similarly, in the more general
case where both FD and multivalued dependencies (MVDs) are present, the
required normal form is a new normal form that is weaker than 4NF.

1 Introduction

Originating with the pioneering work of Codd [11], the theory ofnormal
formsis one of the oldest topics in relational database theory. However the
issue of understanding and justifying the use of normal forms from a se-
mantic perspective is one that, although mentioned as an unsolved problem
in database theory [31], has not been completed. In most works defining
normal forms [11, 12, 15, 41], the emphasis has been on the syntactic prop-
erties of the normal forms rather than on their semantic justification. In the
simplest case where the only constraints arefunctional dependencies(FDs),
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other researchers have addressed the problem of providing a semantic jus-
tification for BCNF and have shown that it is equivalent to certain desirable
semantic properties [7, 8, 10, 39]. However, little research has addressed
the same issue forfourth normal form(4NF) [15] in the more general case
whenmultivalued dependencies[15] are present. The purpose of this pa-
per is to address the issue by providing a comprehensive formal analysis of
the relationship between 4NF and several desirable semantic properties of
database design.

The desirable design properties investigated in this paper are the elimi-
nation of:redundancy, key-based update anomaliesandfact-based replace-
ment anomalies. While it’s not claimed that this is an exhaustive list, it does
include the main approaches that have been proposed in the literature during
the last few decades. The motivation for each of these properties will now
be briefly outlined (a more detailed presentation is contained in [35]).

The motivation for eliminatingredundancyis based on the minimal prin-
ciple which aims to store each unit of information only once in a database.
Eliminating redundancy thus minimises storage usage and also avoids the
associated difficulty in duplicated data of having to update all occurrences
of a data item. In another paper [36] we proposed a formal definition of
redundancy based on interpreting the set of attributesXY in an FDX → Y
or MVD X →→ Y as the fundamental unit of information orfact. The
difficulty with this approach is that it is dependent on the syntactic structure
of FDs and MVDs and it is not clear how to generalise this definition to
other types of relational dependencies, such asjoin dependencies[28], or to
other data models. In this paper we propose a more fundamental definition
of redundancy that corrects these deficiencies. We consider the occurrence
of an attribute value in a relation to be redundant if it can be derived from
the other data values in the relation and the set of dependencies which apply
to the relation, i.e. the occurrence is ‘fixed’ by the other data in the relation
and the set of dependencies. More precisely, a relation scheme isredun-
dant if there exists a legal relation (satisfies the constraints) defined over
the scheme containing an occurrence of a data value such thatanychange
to the occurrence results in the violation of the dependencies. For exam-
ple, consider the relation scheme{A, B, C, D} and the set of dependencies
{A → B, A →→ C}. Each of the occurrences ofb1 in the first four tuples
of the relation of Fig. 1 is redundant since any change results inA → B
being violated. Similarly, all occurrences ofc1 (and alsoc2, d1, d2) in the
first four tuples are redundant.

The second semantic aim of normalisation, that of avoidingkey-based
update anomalies, was introduced in [16]. A key-based update anomaly is
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A B C D

a1 b1 c1 d1

a1 b1 c2 d2

a1 b1 c1 d2

a1 b1 c2 d1

a2 b1 c2 d1

Fig. 1. A relation containing redundancy

defined to occur when an update1 to a relation results in the new relation
satisfying key uniqueness (no two tuples in the relation have the same value
for a candidate key) but violating some other constraint on the relation.
The reason for this being considered undesirable is that the enforcement of
key uniqueness can be, and is [13], relatively easily enforced in relational
database software whereas the same is not true for more general constraints
such as FDs or MVDs. Thus if the satisfaction of all the constraints on a
relation is a result of key uniqueness then the integrity of the relation after an
update can be easily enforced, whereas the existence of a key-based update
anomaly implies the converse.

In [16], only insertions and deletions were considered and in this paper
we extend the approach to the modification of tuples as well as extending
the results in [16] on deletion anomalies and insertion anomalies. Consistent
with this key-based approach, we define a relation to havemodification
anomalyif the modification of a tuple in the relation results in the violation
of the dependencies although key uniqueness is preserved. We also define
some additional types of modification anomalies which satisfy the extra
condition that the ‘identity’ of the tuple be preserved by the modification.
The motivation for this extra condition is based on the observation that in
practice it is often undesirable to change the identity of a tuple because of
the need to also update associated foreign key references as well as possible
confusion as to which real world entity the tuple refers to. Most commercial
relational systems recognise this need and allow the values of specified
attribute sets to be immutable [13]. In the relational model, it is normal to
equate the identity of a tuple with its value on a candidate key but, since
there may be multiple candidate keys, there are several possibilities as to
what could be interpreted by preserving the identity of a tuple. The three
possibilities considered in this paper are: (i) at least one (arbitrary) candidate

1 Update is here used in a general sense and means either the insertion, deletion or modi-
fication of a tuple in a relation.
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key of the original tuple is unchanged by the modification; (ii) the primary
(fixed) key of the original tuple is unchanged by the modification; (iii) all
candidate keys of the original tuple are unchanged by the modification.

The final semantic property analysed is the elimination offact-based
modification anomalies. This approach to justifying normalisation is closest
to the original intuitive justification of normal forms in [11]. In this ap-
proach, the set of attributes in an MVD or FD constraint, rather than all
the attributes in a relation scheme, is interpreted as the as the fundamental
unit of information orfact for retrieval and update. In essence, a fact-based
update anomaly occurs when fact values cannot be independently updated
without violating either the basic properties of the relational model or the
dependencies. Then, for each of the operations of insertion, deletion, and
modification (also called areplacement), fact-based update anomalies can be
formally defined [10]. However, in this paper we restrict our attention to the
case of replacements. The reasons for this are that while replacements can
adequately handled without considering null values, a thorough treatment
of fact-based insertion and deletion anomalies requires the consideration of
nulls and is outside the scope of this paper.

We now outline the structure of this paper and summarise the main re-
sults obtained. Section 2 contains definitions of basic relational concepts.
In Sect. 3, formal definitions are given for redundancy and RFNF, the as-
sociated normal form for relation schemes which ensures the absence of
redundancy. We refer to RFNF, and the other normal forms to be discussed
later in the context of other semantic properties, assemantic normal forms.
The classical normal forms of 3NF, BCNF and 4NF will often be referred to
assyntactic normal forms. The reason for emphasising the difference is the
different nature of the two types of normal forms. Semantic normal forms
encapsulate the desired semantic property by requiring that all relations de-
fined over a scheme will have the specified property, while syntactic normal
forms are expressed in terms of the syntactic structure of the constraints.
The main result derived in Sect. 3 is that 4NF is equivalent to RFNF. In
Sect. 4, formal definitions are given for the various type of key based update
anomalies and the associated normal forms in which the anomalies are ab-
sent. In Sect. 5 we prove that 4NF is equivalent to the absence of key-based
insertion anomalies. In Sect. 6 we show that the condition equivalent to the
absence of key-based deletion anomalies is that the set of dependencies is
equivalent to a set of FDs, a weaker condition than 4NF. In Sect. 7 we show
4NF is equivalent to the semantic normal forms which ensure the absence of
three of the four types of modification anomalies. However, for the normal
form which ensures the absence of a modification anomaly in which all key
values are preserved, we show in Sect. 8 that the equivalent syntactic normal
forms are new normal forms that have not appeared before in the literature.
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In the case where only FDs are present, we show that the equivalent syntactic
normal lies between 3NF and BCNF. Similarly, for the case where MVDs
are also present, the equivalent syntactic normal form is a weaker condition
than 4NF which requires that every attribute be a member of a candidate
key. In Sect. 9 three types of fact-based modification are defined and 4NF
is shown to be equivalent to their absence. A discussion of related work is
contained in Sect. 9 and concluding comments are made in Sect. 10.

2 Basic concepts and notation

The notation used in this paper is the standard notation used in the database
literature [22, 27]. A universeU is a finite set of attributes, each attribute
having an associated domain of values. Thedomainof an attributeA ∈ U
is denoted by DOM(A) and in this paper is assumed to beinfinite. As usual,
the symbolsA, B, C, . . . and their subscripts represent single attributes and
V, W, X, . . . and their subscripts denote sets of attributes. The union of
attribute setsX andY is denoted byXY rather thanX ∪Y . X −Y denotes
set difference.

A relation schemeR is a subset ofU . Let the elements of a relation
scheme be denoted byR = {A1, . . . , An}. A tuple over R is an element
of DOM(A1) × . . .× DOM(An) where× denotes the cartesian product. A
relation instance(or simply arelation) r overR, denoted byr(R), is afinite
set of tuples defined overR. In this paper, all relations are defined over a
single relation schemeR and sor(R) will be denoted simply byr. If t is a
tuple overR andX is a subset ofR, thent[X] is therestrictionof t to the
attributes inX.

2.1 Functional and multivalued dependencies

A relation r satisfiesthe functional dependency (FD)X → Y on a rela-
tion schemeR if for all t1, t2 ∈ r, if t1[X] = t2[X] thent1[Y ] = t2[Y ],
otherwise itviolatesthe FD. A relationr satisfies themultivalued depen-
dency(MVD) X →→ Y on R if for all t1, t2 ∈ r with t1[X] = t2[X],
there exists a tuplet3 ∈ r such thatt3[X] = t1[X], t3[Y ] = t1[Y ] and
t3[R − XY ] = t2[R − XY ]. We shall assume thatX andY in any MVD
X →→ Y are disjoint because of the result thatX →→ Y is satisfied if and
only if X →→ Y − X is satisfied [15]. A set of FDs and MVDsapplyto a
relation schemeR if the attributes in every dependency are members ofR.
Since we are considering only a single relation scheme, it will be assumed
that a set of dependencies always applies to the relation scheme. The set of
all relations which satisfy a setΣ of FDs and MVDs is denoted by SAT(Σ).
An MVD or FD is standardif the lhs of the dependency is not empty. The
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set NS(Σ) is defined as the set of all sets of attributes which appear on the
rhs of a nonstandard MVD or FD.

Given a setΣ of FDs and MVDs and an FDZ → W (or MVD Z →→
W ), Σ impliesthe FDZ → W (or MVD Z →→ W ) if every relation in
SAT(Σ) also satisfiesZ → W (or Z →→ W ). One can decide whether a
setΣ of FDs and MVDs implies another FD or MVD by using proofs based
on a finite application of rules from the following set of inference rules [4].

FD rules:
A1: If Y ⊆ X thenX → Y
A2: If X → Z andY ⊆ R thenXY → ZY
A3: If X → Z andY → Z thenX → Y

MVD rules:
A4: If X →→ Y thenX →→ (R − XY )
A5: If X →→ Y andV ⊆ W thenWX →→ V Y
A6: If X →→ Y andY →→ Z thenX →→ Z − Y
A7: If Y ⊆ X thenX →→ Y

Combined FD and MVD rules:
A8: If X → Y thenX →→ Y
A9: If X →→ Y , Z ⊆ Y , W ∩Y = φ andW → Z thenX → Z

The following rules, although derivable from those above, are useful and
will be used later.

A10: If X → Y Z thenX → Y
A11: If X →→ Y andX →→ Z thenX →→ Y Z

A dependency istrivial if it is satisfied by every relation. An FDX → Y
is trivial if and only if Y ⊆ X and an MVDX →→ Y is trivial if and only
if Y ⊆ X or R = XY [22]. The closureof a setΣ of FDs and MVDs,
denoted byΣ+, is the set of FDs and MVDs implied byΣ. Two sets of
dependencies,Σ andΨ, areequivalent, written asΣ ≡ Ψ, if Σ+ = Ψ+.
If Σ ≡ Ψ, thenΨ is a cover for Σ. The closure of a set of attributesX,
denoted byX+, is the set of attributes such that an attributeA ∈ X+ if and
only if X → A ∈ Σ+.

Thedependency basisfor a set of attributesX, denoted by DEP(X), is
a set of attributes sets which can be written as{X1, . . ., Xp, X+

l , . . ., X+
j ,

W1, . . ., Wn} with the following properties [3]:

(i) DEP(X) coversR, i.e.R = ∪Zi whereZi ∈ DEP(X);
(ii) The sets in DEP(X) are disjoint and nonempty;
(iii) X →→ Y ∈ Σ+ if and only if Y = ∪Zi whereZi ∈ DEP(X);

(iv) X1, . . . , Xp are single attribute sets such thatX =
i=p∪
i=1

Xi;

(v) X+
l , . . . , X+

j are single attribute sets such thatX+ − X =
i=j∪
i=1

X+
i .
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The next concept required is that of areduced setof FDs and MVDs.

Definition 2.1 LetΣ be a set of FDs and MVDs.Σ is reducedif:

(i) No dependencyd ∈ Σ is redundant, i.e. for alld ∈ Σ, Σ − {d} is not
equivalent toΣ;

(ii) Every dependency is left-reduced, i.e. for every MVDX →→ Y (or
FD X → Y ) ∈ Σ, there is no MVDX ′ →→ Y (or FD X ′ → Y )
∈ Σ+ such thatX ′ ⊂ X;

(iii) every dependency is right-reduced, i.e. for every MVDX →→ Y (or
FD X → Y ) ∈ Σ, there is no MVDX →→ Y ′ (or FD X → Y ′)
∈ Σ+ such that∅ ⊂ Y ′ ⊂ Y .

We note that this definition is weaker than the definition in [26] since we
do not impose the condition that no set of attributes be able to be transferred
from the lhs to the rhs of a dependency. Also, it can be easily verified that
the following procedure terminates and generates a reduced cover for any
setΣ of FDs and MVDs2.

Input: A set Σ of FDs and MVDs
Output: A reduced cover for Σ
Repeat

For each dependency d in Σ do
If d is redundant then Σ := Σ − d;
If d is not left-reduced then Σ := (Σ − d) ∪ d′,
where d′ is the dependency in Σ+ whose lhs
is a proper subset of the lhs of d;
If d is not right-reduced then

If d is an FD X → Y and X → Y ′ ∈ Σ+

then Σ := (Σ − {X → Y }) ∪ {X → Y ′, X → Y − Y ′}
else (d is an MVD X →→ Y and X →→ Y ′ ∈ Σ+)

Σ := (Σ − {X →→ Y }) ∪ {X →→ Y ′, X →→ Y − Y ′}
Until no more changes can be made to Σ.

Given a setΣ of FDs and MVDs, a set of attributesX is asuperkeyfor
a relation schemeR if the FD X → R ∈ Σ+. X is acandidate keyfor R
if it is a superkey and it has no proper subsetX ′ such thatX ′ → R ∈ Σ+.
The set of all superkeys in a schemeR is denoted by SK(R,Σ) and the set
of all candidate keys by CK(R,Σ). Theprimary keyof a relation scheme,
denoted byKp, is an arbitrarily chosen candidate key. An attribute is aprime
attribute if it is a member of any candidate key. The set ofkey constraints,
denoted byΣk, is the set of all FDs inΣ+ of the formK → R where
K ∈ CK(R,Σ). The set of all relations which satisfyΣk is denoted by
SAT(Σk). Obviously, if a relationr ∈ SAT (Σ) thenr ∈ SAT(Σk) but the

2 We note that the rhs of every FD in a reduced set contains a single attribute.
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converse is not true. Also, a relationr ∈ SAT(Σk) if and only if no two
tuples in the relation have the same value for a candidate key.

If Σ is a set of FDs and MVDs which apply to a relation schemeR,
then (R,Σ) is in third normal form(3NF ) if for every nontrivial FDX →
A ∈ Σ+, X ∈ SK(R,Σ) or A is prime [41].(R,Σ) is in Boyce-Codd
normal form (BCNF) if for every nontrivial FDX → A ∈ Σ+, X ∈
SK(R,Σ) [12] and is infourth normal form(4NF) if for every nontrivial
MVD X →→ Y ∈ Σ+, X ∈ SK(R,Σ) [15].

2.2 Join dependencies

Let R1, . . . , Rp be nonempty subsets ofR. If there are tuplest1, . . . , tp (not
necessarily distinct) in a relationr (R) such thatti[Ri ∩ Rj ] = tj [Ri ∩
Rj ] for all i, j such that1 ≤ i ≤ p, 1 ≤ j ≤ p, then t1, . . . , tp are
said to join completelyon {R1, R2, . . . , Rp}. In this case, there exists a
unique tuplet such thatt[Ri] = ti[Ri], for all i such that1 ≤ i ≤ p,
which is called thejoin of t1, . . . , tp on {R1, . . . , Rp}. A join dependency
(JD) is a constraint denoted by∗[R1, . . . , Rp]. A relationr satisfies the join
dependency∗[R1, . . . , Rp] on R if for every set of tuplest1, . . . , tp ∈ r
which join completely on{R1, R2, . . . , Rp}, r also contains the join of
t1, . . . , tp on {R1, . . . , Rp}. R1, . . . , Rp are referred to as thecomponents
of the JD. The result [15] that any MVDX →→ Y is equivalent to the
JD ∗[XY, XZ], whereZ = R − XY , will be used often in this paper. A
JD is trivial if it is satisfied by every relationr. It can be shown that a JD
∗[R1, . . . , Rp] is trivial iff there exists a component such thatRi = R.

A JD ∗[R1, . . . , Rp] is total (full) if R = R1 . . . Rp. Since, the only JDs
considered in this paper are those equivalent to MVDs, it is easily seen that
such a JDs is always full.

2.3 Tableau

A tableauis a matrix consisting of a set of rows [1, 23]. Each column in
the tableau corresponds to an attribute inR. Each row consists of variables
from a setV , which is the disjoint union of two setsVd and Vn. Vd is
the set ofdistinguished variables(dv’s) andVn is the set ofnondistin-
guished variables(ndv’s). Any variable can appear in at most one column, a
dv must appear in each column and at most one dv can appear in a column.

A valuation is a functionρ that maps each variable to an element in
DOM(A) whereA is the column in which the variable appears. This is
extended to a function from a tableauT to a relation overR in the obvious
manner. LetΣ be a set of FDs and JDs (any MVD is treated as a JD). The
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chaseis the result of applying the following transformations to a tableauT
until no further changes can be made:

F-Rule: If X → A ∈ ΣandT has rowsω1 andω2 whereω1[X] = ω2[X]
andν1 = ω1[A] andν2 = ω2[A], then if either ofν1 or ν2 is a dv and the
other is not, then every occurrence of the ndv is changed to the dv. If both
are ndv’s, then the one with the larger subscript is replaced by the one with
the smaller subscript.

J-Rule: If ∗[R1, . . . , Rp] ∈ Σ and there exists a rowω such thatω[R1] ∈
T [R1], . . . , ω[Rp] ∈ T [Rp], ω is added toT .

Let chaseΣ(T ) be the tableau that results from applying the F-rules and
J-rules until no more changes can be made to the tableau. It can then be
shown [23] that the chase always terminates if all JDs are full (which is the
case in this paper) and the resulting tableau is unique, independent of the
sequence in which the rules are applied, up to a renaming of the ndv’s. We
will use the following results on the properties of the chase later in this paper
[23]:

Lemma 2.1 Any valuationρ of chaseΣ(T ) which is a one-to-one mapping
satisfiesΣ.

Lemma 2.2 Let TX be the tableau constructed as follows. It contains two
rows, one row, denoted byωd, contains all dv’s and the other, denoted byωX ,
contains dv’s in the X-columns and ndv’s elsewhere. IfT ∗ = chaseΣ(TX),
thenT ∗ contains the rowωd and an FDX → Y ∈ Σ+ iff the Y-columns in
T ∗ contain only dv’s.

3 Redundancy and 4NF

In this section, we present a formal definition of the redundancy concept dis-
cussed in the Introduction and its associated semantic normal form which
ensures the absence of redundancy. The main result derived in this sec-
tion is that 4NF is a necessary and sufficient condition for the absence of
redundancy.

Definition 3.1 Let R be a relation scheme,A an attribute inR, Σ a set of
dependencies,r a relation andt a tuple inr. The data value occurrence
t[A] is redundant(RED) if for everyreplacement oft[A] by a valuea′ such
that t[A] 6= a′ and resulting in a new relationr′, thenr′ /∈ SAT(Σ).

Based on this we define a semantic normal form in which redundancy is
absent.

Definition 3.2 (R,Σ) is in redundancy free normal form(RFNF) if there
does not existr ∈ SAT(Σ) which contains a data value occurrence that is
RED.
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A B C

a1 b1 c1

a2 b2 c2

Fig. 2.

A B C D E F G

1 1 1 1 1 1 1

1 1 1 0 0 1 1

Fig. 3. An example illustrating Theorem 3.1

We emphasise that for a data value occurrence to be RED every change
to the occurrence must result in a violation of the constraints or duplicate
tuples. For example, consider the relationr in Fig. 2 which is defined over the
attributes{A, B, C} with the set of constraints being{A → B, B → C}.

Although changingb1 to b2 (or b2 to b1) in r results inB → C being
violated, neither value is redundant according to our definition since all other
changes tob1 (or tob2) do not result in constraint violation. Intuitively, this
makes sense since neitherb1 norb2 is derivable from the values in the relation
and the set of constraints. Also, we note that it is a specific occurrence of
a data value in a tuple, rather than the value itself, which is redundant. For
example, in Fig. 1 (see Sect. 1), the occurrence ofb1 in the first four tuples
is RED but not the occurrence ofb1 in the last tuple.

Before establishing the first main result of this section, we present an
important preliminary lemma that will be used extensively in this paper.
The lemma can be derived from the results in [33].

Theorem 3.1 SupposeX /∈ SK(R,Σ) and as before, denote the elements in
DEP(X) by{X1, . . . , Xp, X

+
l , . . . , X+

j , W1, . . . , Wn}. Then every relation
of two tuples for which the two tuples are different on every attribute in one
of theWi but equal on all other attributes is in SAT(Σ).

The following example also illustrates this theorem.

Example 3.1Let R = {A, B, C, D, E, F, G} andΣ = {AB →→ DE,
E →→ F, E → C}. Standard algorithms [3] can be used to show that if
X = AB, thenX+ = {A, B, C} and DEP(X) = {A, B, C, DE, F, G}.
The relation shown in Fig. 3 satisfiesΣ.

We now derive the main result of this section.
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Theorem 3.2 (R,Σ) is in RFNF iff it is in 4NF.

Proof.
If: We shall show the contrapositive that if (R,Σ) is not in RFNF then it is
not in 4NF. If(R,Σ) is not in RFNF then there existsr ∈ SAT(Σ), a tuple
t ∈ r andA ∈ R such that every change tot[A] results in the new relation
violatingΣ. So if t[A] is changed to a valuea′ such thata′ /∈ r[A], resulting
in a new tuplet′ and a new relationr′, thenr′ /∈ SAT(Σ). Suppose firstly
that an FDX → Y is violated inr′. The violation must involvet′, since
r ∈ SAT(Σ) andt is the only tuple changed inr, and some other tuplet1
such thatt′[X] = t1[X] andt′[Y ] 6= t1[Y ] andt1 is also inr, again because
t is the only tuple changed inr. Sincea′ /∈ r[A] andt′[X] = t1[X], then
A /∈ X and sot′[X] = t[X] and thust1[X] = t[X]. Hence there are two
tuples inr, t andt1, which are identical onX and soX /∈ SK(R,Σ) and
hence(R,Σ) is not in 4NF.

Alternatively, assume that an MVDX →→ Y is violated inr′ and so
there exists againt1 wheret1 ∈ r andt1 ∈ r′ such thatt1[X] = t′[X]. So,
sincea′ /∈ r[A], A ∈ Y or A ∈ Z whereZ = R − XY . Again this implies
t1[X] = t[X] in r and so contradicts the 4NF assumption.

Only If: The contrapositive that if (R,Σ) is not in 4NF then it is not in
RFNF will be shown. Because (R,Σ) is not in 4NF there exists a nontrivial
MVD X →→ Y ∈ Σ+ whereX /∈ SK(R,Σ) and so there existsWi ∈
DEP(X) such thatX+ ∩ Wi = ∅. By Theorem 3.1, any relationr of two
tuples which are identical on all attributes except those inWi is in SAT(Σ).
Firstly, if there exists anX+

j ∈ DEP(X) then both values ofX+
j are RED

in r since changing either causesX → X+
j to be violated. Alternatively,

if X = X+ then we claim that there are two setsWi andWj in DEP(X)
disjoint fromX. If there is onlyWi then, sinceX ∩Y = ∅, property (iii) of
DEP(X) impliesY = Wi and so, by property (i),XY = R contradicting
the fact thatX →→ Y is nontrivial. It then follows that every value inWj

is RED inr. ut
Since 4NF reduces to BCNF if only FDs are present, this result also

shows that BCNF is the exact condition required to avoid redundancy when
only FDs are present. It also follows from this result and the results in [36]
that the redundancy property defined in that paper is equivalent to the one
defined in this section.

4 Key-based update anomalies

In this section we give formal definitions of the various types of key-based
update anomalies and the associated semantic normal forms in which these
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r r’

A B C A B C

a1 b1 c1 insert <a2, b2, c1> ⇒ a1 b1 c1

a2 b2 c1

Fig. 4. An example of an insertion anomaly

anomalies are absent. The definitions of an insertion anomaly and a dele-
tion anomaly are taken from [16] whereas the definitions of modification
anomalies are new.

4.1 Key-based insertion anomaly

Definition 4.1 LetR be a relation scheme,Σ a set of dependencies andr a
relation. A tuplet∗ is said to becompatiblewith r if t∗ /∈ r3 andr ∪ {t∗} ∈
SAT(Σk).

As mentioned in Sect. 2, a relation is in SAT(Σk) if and only if no two
tuples in the relation have the same value for any candidate key and so, ifr
in SAT(Σ), thent∗ is compatible withr if and only if t∗[K] /∈ r[K] for all
K ∈ CK(R,Σ). We now use this concept to define an insertion anomaly
and a corresponding normal form.

Definition 4.2 A relationr has akey-based insertion anomaly(KIA ) w.r.t.
to a set of dependenciesΣ if:

(i) r ∈ SAT(Σ);
(ii) there exists a tuplet∗ such thatt∗ is compatible withr butr ∪{t∗} /∈

SAT(Σ).

Definition 4.3 (R,Σ) is inkey-based insertion normal form(KINF) if there
does not existr ∈ SAT(Σ) which has a KIA w.r.t. toΣ.

The following example illustrates the previous definitions.

Example 4.1Let R = {A, B, C} andΣ = {AB → C, C →→ A}. The
only candidate key isAB and the relationr shown in Fig. 4 is in SAT(Σ).
However, (R,Σ) is not in KINF becauser has a KIA w.r.t.Σ when the tuple
〈a2, b2, c1〉 is inserted into it since the resulting relation,r′, ∈ SAT(Σk) but
violatesA →→ B.

3 This ensures thatr ∪ {t∗} is a relation, i.e. there are no duplicate tuples inr ∪ {t∗}.
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r r’

A B C A B C

a1 b1 c1 a1 b1 c1

a1 b2 c2 delete <a1, b2, c1> ⇒ a1 b2 c2

a1 b1 c2 a1 b1 c2

a1 b2 c1

Fig. 5. An example of a deletion anomaly

4.2 Key-based deletion anomaly

In a similar fashion to an insertion anomaly and insertion normal form, a
deletion anomaly and deletion normal form are defined as follows.

Definition 4.4 A relationr has akey-based deletion anomaly(KDA ) w.r.t.
to a set of dependenciesΣ if:

(i) r ∈ SAT(Σ);
(ii) there exists a tuplet∗ ∈ r such thatr − {t∗} /∈ SAT(Σ)4.

Definition 4.5 (R,Σ) is inkey-based deletion normal form(KDNF) if there
doesn’t existr ∈ SAT(Σ) which has a KDA w.r.t.Σ.

The following example illustrates these definitions.

Example 4.2Let R = {A, B, C} andΣ = {A →→ B}. SinceΣ contains
no FDs, the only candidate key isABC. (R,Σ) is not in KDNF because the
relationr shown in Fig. 5 has a KDA when the tuple is〈a1, b2, c1〉 is deleted
from it sincer ∈ SAT(Σ) but the resulting relation,r′, ∈ SAT(Σk) but
violatesA →→ B.

In the case of the set of constraints containing only FDs, a relation can
have no deletion anomaly because of the result that if a relation satisfies a
set of FDs then so does any subset of the relation [22].

4.3 Key-based modification anomalies

In this section, we extend the key-based approach of [16] to the modification
of tuples and define several classes of a new type of update anomaly, called
a key-based modification anomaly. Essentially a key-based modification
anomaly occurs when the modification of a tuple results in the violation of
the constraints even though key-uniqueness is maintained. By modelling a
modification as a deletion then an insertion, the formal definition follows.

4 It follows from part (i) of the definition thatr − {t∗} ∈ SAT(Σk).
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Definition 4.6 A relationr has akey-based modification anomaly 1(KMA1)
w.r.t. to a set of dependenciesΣ if there existst ∈ r and a tuplet∗ defined
overR such that:

(i) r ∈ SAT(Σ);
(ii) t∗ is compatible with(r − {t});
(iii) (r − {t}) ∪ {t∗} /∈ SAT(Σ).

In the case of FD constraints, if a relationr has a KMA1 thenr−{t} has a
KIA (see Definition 4.2) sincer−{t} ∈ SAT(Σ) if r ∈ SAT(Σ), but this
property does not extend in the presence of MVDs since thenr ∈ SAT(Σ)
does not implyr − {t} ∈ SAT(Σ).

The next type of modification anomaly is motivated by the observation,
discussed more thoroughly earlier, that it is often undesirable to change a
tuple’s identity during a modification. However, in general there may be
multiple candidate keys and so we propose three possible interpretations as
to what is meant by leaving the identity of a tuple unchanged. In increasing
restrictiveness, they are:

(i) the replacement tuple is identical to the original onany (arbitrary)
candidate key;

(ii) the replacement tuple is identical to the original onthe primary
(fixed) key;

(iii) the replacement tuple is identical to the original onevery candidate
key.

For each of these alternatives, we now present a formal definition.

Definition 4.7 A relationr has akey-based modification anomaly 2(KMA2)
w.r.t. to a set of dependenciesΣ if there existst ∈ r and a tuplet∗ defined
overR such that:

(i) r ∈ SAT(Σ);
(ii) t∗ is compatible with(r − {t});
(iii) there existsK ∈ CK(R,Σ) such thatt[K] = t∗[K];
(iv) (r − {t}) ∪ {t∗} /∈ SAT(Σ).

Definition 4.8 A relationr has akey-based modification anomaly 3(KMA3)
w.r.t. to a set of dependenciesΣ if it satisfies all conditions of Definition 4.7
except that condition (iii) is changed to:

(iii’) t[Kp] = t∗[Kp];

Definition 4.9 A relationr has akey-based modification anomaly 4(KMA4)
w.r.t. to a set of dependenciesΣ if it satisfies all the conditions of Definition
4.7 except that condition (iii) is changed to:

(iii”) t[K] = t∗[K] for all K ∈ CK(R,Σ);
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r r’ r"

A B C D A B C D A B C D

a1 b1 c1 d1 a1 b1 c1 d1 a1 b1 c1 d1

a2 b1 c1 d1 a2 b1 c1 d2 a2 b1 c2 d1

Fig. 6. An example illustrating modification anomalies

The following example illustrates the previous definitions.

Example 4.3Let R = {A, B, C, D} andΣ = {ABC → D, D → C,
B →→ A}. The candidate keys areABC and ABD and the relation
r in Fig. 6 is in SAT(Σ). If the tuple t = 〈a2, b1, c1, d1〉 is changed to
t∗ = 〈a2, b1, c1, d2〉, resulting in the relationr′, thenr has a KMA2 (and
thus also a KMA1). To verify this, each of the conditions of a KMA2 will
be verified. Condition (i) holds sincer ∈ SAT(Σ). Condition (ii) follows
because both tuples inr′ are distinct on both candidate keys. Condition
(iii) holds sincet[ABC] = t∗[ABC] and (iv) holds becauser′ violates
B →→ A.

If ABC is chosen as the primary key, thenr also has a KMA3 when
t is replaced byt∗ sinceB →→ A is still violated. If ABD is chosen as
the primary key, then replacingt by t∗ does not constitute a KMA3 since
t[ABD] 6= t∗[ABD]. However, if insteadt is replaced by〈a2, b1, c2, d1〉,
resulting in the relationr′′, thenr has a KMA3 sincer′′ ∈ SAT(Σk) but
violatesB →→ A.

Also, neitherr nor any other relation can have a KMA4. This follows
because every attribute is prime and so any modified tuple satisfying con-
dition (iii”) must be identical to the original, but then (i) and (iv) cannot be
satisfied simultaneously.

We now use these definitions of anomalies in relation instances to define
the semantic normal forms which are free of these anomalies.

Definition 4.10 (R,Σ) is in key-based modification normal form 1
(KMNF1) if there doesn’t exist a relationr which has a KMA1 w.r.t. Σ.

Definition 4.11 (R,Σ) is in key-based modification normal form 2
(KMNF2) if there doesn’t exist a relationr which has a KMA2 w.r.t. Σ.

Definition 4.12 (R,Σ) is inkey-based modification normal form 3
(KMNF3) if there doesn’t exist a relationr which has a KMA3 w.r.t. Σ.

Definition 4.13 (R,Σ) is in key-based modification normal form 4
(KMNF4) if there doesn’t exist a relationr which has a KMA4 w.r.t. Σ.

From these definitions, it is easily seen that the following implications
hold:r has a KMA4 ⇒ r has a KMA3 ⇒ r has a KMA2 ⇒ r has a KMA1;
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and hence the following implications also hold for the corresponding normal
forms: KMNF1 ⇒ KMNF2 ⇒ KMNF3 ⇒ KMNF4.

Since equivalent sets of dependencies embody exactly the same logical
information, it is important that any normal form possess the property of
beingcover insensitive, i.e. the property is independent of which equivalent
cover is chosen. The classical syntactic normal forms 3NF, BCNF and 4NF
are cover insensitive since they are defined as a property of the closure of
the set of dependencies which, by definition, is the same for all equivalent
covers. We now show that all the semantic normal forms defined in this
section are also satisfy the property.

Theorem 4.1 The update anomalies KIA, KDA, KMA1, KMA2, KMA3,
KMA4 normal forms KINF, KDNF, KMNF1, KMNF2, KMNF3 and KMNF4
are cover insensitive.

Proof. Immediate since, by definition, a set of attributes is a candidate key
w.r.t. a set of dependencies iff it is a candidate key w.r.t. any equivalent cover
and a relation violates a set of dependencies iff it violates any equivalent set
by the definition of equivalence. ut

5 KINF and 4NF

In this section, we show that 4NF and KINF, the normal form defined in
Sect. 4, are equivalent. This result also follows from the results of [16] but
our proof is more direct and is based on a stronger preliminary lemma.

Lemma 5.1 If (R,Σ) is not in 4NF then every nonemptyr ∈ SAT(Σ) has
a KIA w.r.t.Σ.

Proof. If (R,Σ) is not in 4NF then there exists a nontrivial MVDX →→
Y ∈ Σ+ whereX /∈ SK(R,Σ). Let t be any tuple inr and lett∗ be the
tuple defined byt∗[X] = t[X] andt∗[A] /∈ r[A] for all A ∈ (R − X). Such
a tuple always exists because the domains are infinite. The claim is thatr
has a KIA whent∗ is inserted into it. This is immediate from the fact that for
anyK ∈ CK(R,Σ), K − X 6= ∅ sinceX /∈ SK(R,Σ), and the definition
of t∗. ut
Theorem 5.1 (R,Σ) is in 4NF iff it is in KINF.

Proof.
If: The contrapositive, that if (R,Σ) is not in 4NF then it is not in KINF,
follows from Lemma 5.1 and the fact any relation containing a single tuple
is in SAT(Σ).
Only if: Let (R,Σ) be in 4NF and suppose to the contrary that (R,Σ) is
not in KINF. So there existsr ∈ SAT(Σ) and a tuplet∗ /∈ r such that
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r∪{t∗} ∈ SAT(Σk) butr∪{t∗} violates a nontrivial dependencyX → Y
or X →→ Y in Σ. For this to occur, there has to be at least two distinct
tuples inr∪{t∗} which are identical onX. But this impliesX /∈ SK(R,Σ)
sincer ∪ {t∗} ∈ SAT(Σk) which contradicts the assumption that (R,Σ)
is in 4NF. ut

6 KDNF and 4NF

In this section the relationship between KDNF, the normal form defined in
Sect. 4, and 4NF is investigated. We prove that 4NF is a stronger condition
than KDNF and that KDNF is equivalent to the condition that the set of
constraints is equivalent to a set of FDs.

Lemma 6.1 If (R,Σ) is in 4NF then it is in KDNF.

Proof. Similar argument to the one used in Theorem 5.1.ut

It was noted earlier that no relation scheme can have a KDA if the set of
constraints contains only FDs. The following example shows that even in
the presence of both FDs and MVDs, a relation scheme may have no KDA
even though it is not in 4NF. In other words, 4NF is not a necessary condition
for KDNF.

Example 6.1LetR = {A, B, C} andΣ = {A →→ B, C → B}. The only
candidate key is AC and so both dependencies violate 4NF. Using inference
rules A9 and A8,Σ is equivalent to the set of FDsΣ′ = {A → B, C → B}.
However, as noted earlier, a KDA is cover insensitive and so (R,Σ) is in
KDNF becauseΣ′ contains only FDs.

We now introduce a restriction on the MVDs in the set of dependencies
which will ensure a necessary and sufficient condition for a relation scheme
to be in KDNF [19].

Definition 6.1 LetΣ be a set of FDs and MVDs. An MVDX →→ Y ∈ Σ
is pureif it is nontrivial andX → Y /∈ Σ+ andX → R − XY /∈ Σ+. Σ
is pureif it contains only FDs or if every MVD inΣ is pure.

The following example illustrates the definition.

Example 6.2Let R = {A, B, C} andΣ = {A →→ B, B → C}. From
the inference rulesA → C ∈ Σ+ and soA →→ B is not pure. The
MVD A →→ B in the set{A →→ B, C → B} is also not pure since
A → B ∈ Σ+.

The motivation for the definition is to distinguish between those MVDs
which convey ‘true’ multivalued information and those that only represent
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FD information. This notion is captured in the following lemma which shows
that the existence of a pure MVD is both a necessary and sufficient condition
for the set of constraints not to be equivalent to a set of only FDs. Similar
definitions aimed at ensuring that the MVDs are not FD equivalents have
also been proposed by others [40]. It is also clear, using rules A8 and A4,
that any set of FDs or MVDs has a pure cover generated by replacing each
nonpureX →→ Y by X → Y if X → Y in Σ+, or byX → R − XY if
X → R − XY in Σ+.

Lemma 6.2 A setΣ of FDs and MVDs contains at least one pure MVD iff
Σ is not equivalent to a set of FDs.

Proof.
If: Suppose to the contrary thatΣ is not equivalent to a set of FDs but
doesn’t contain a pure MVD. Then, as noted previously, if every non pure
MVD X →→ Y ∈ Σ is replaced by eitherX → Y or X → R − XY , an
equivalent set of FDs is obtained. This is a contradiction.
Only If: Suppose to the contrary thatΣ contains a pure MVDX →→ Y but
Σ ≡ Σf whereΣf is a set of FDs. By definition, this means thatX →→ Y
is implied byΣf . Then, by Theorem 7.2 in [22], there exists eitherX → Y
or X → R − XY ∈ Σ+

f and, by definition of equivalence, these FDs are
also inΣ+ thus contradicting the assumption thatX →→ Y is pure. ut

In order to establish the main result of this section, we firstly derive
additional preliminary lemmas.

Lemma 6.3 If X /∈ SK(R,Σ), then the tableauT ∗, whereT ∗ = chaseΣ
(TX), consists of two or more rows and all rows are identical onX.

Proof. Let TX , ωd, ωX , T ∗, ω∗
d and ω∗

x be as defined in Sect. 2. Firstly,
T ∗ must consist of more than one row since otherwise one derives from
Lemma 2.2 the contradiction thatX ∈ SK(R,Σ). Secondly, we claim that
for each attributeA ∈ X, T ∗[A] consists of a single dv and so all rows inT ∗
are identical onX. This follows from an inductive argument. Initially, by
definition ofTX , each column inX contains a single dv and so the property
holds. Then, letT ′ represent the tableau at any stage of the chase and assume
inductively that the property is true. If a J-rule is applied toT ′ to produce a
new rowω′, then by definition of the J-rule, for each attributeB ∈ R there
is a rowω in T ′ such thatω′[B] = ω[B]. So, by the induction hypothesis,
for every attributeA ∈ X, ω′[A] will contain the same dv asT ′[A] and the
hypothesis is again true. Alternatively, if an F-rule is applied then the dv in
each of the columns inX will remain unchanged since the F-rule does not
change dv’s. ut

We now use this lemma to derive a result which will be used later to
construct a relation with a deletion anomaly.
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T*

X Y Z

. . .

ω1: x y1 z1

ω2: x y2 z2

ω3: x y1 z2

ω4: x y2 z1

. . .

Fig. 7. Structure of tableauT ∗

Lemma 6.4 If X →→ Y is a pure MVD inΣ, there exists a relation
r ∈ SAT(Σ) which contains at least 4 distinct tuplesω1, ω2, ω3 andω4
such thatω1[X] = ω2[X] = ω3[X] = ω4[X], ω1[Y ] = ω2[Y ], ω2[Y ] =
ω3[Y ], ω3[Y ] = ω4[Y ], ω1[Z] = ω3[Z], ω3[Z] = ω2[Z], ω2[Z] = ω4[Z]
(whereZ = R − XY ).

Proof. Form the tableauTX as described in Sect. 2 and letT ∗ = chaseΣ
(TX ). The claim is thatT ∗ satisfies the conditions of the theorem from which
it follows trivially that so doesρ(T ∗) for any one-to-one valuationρ. The
desired property ofT ∗ can perhaps be more easily illustrated in Fig. 7.

From Lemma 6.3,T ∗ consists of more than one row and every row is
identical onX. From Lemma 2.2, one row inT ∗ is the rowωd which contains
only dv’s. For notational convenience, relabelωd asω1. Next,X → Y /∈ Σ+

sinceX →→ Y is pure and so, by Lemma 2.2, there must be at least one
row in T ∗, which we label asω2, which contains a ndv in aY -column and
soω2[Y ] 6= ω1[Y ].

Suppose firstly thatω1[Z] 6= ω2[Z]. By Lemma 2.1,T ∗ satisfiesX →→
Y and so there is a rowω3 with ω3[X] = ω1[X], ω3[Y ] = ω1[Y ] and
ω3[Z] = ω2[Z] and a rowω4 with ω4[X] = ω1[X], ω4[Y ] = ω2[Y ] and
ω4[Z] = ω1[Z]. These conditions also imply thatω1, ω2, ω3 andω4 are
distinct and so satisfy the conditions of the theorem.

Alternatively, suppose thatω2[Z] = ω1[Z]. Because by Lemma 2.1ω1
contains only dv’s,ω2[Z] contains only dv’s in theZ-columns. Then, since
X → Z /∈ Σ+ becauseX →→ Y is pure, there is a rowω3 ∈ T ∗ containing
a ndv in aZ-column and soω3[Z] 6= ω2[Z] andω3[Z] 6= ω1[Z] and hence
ω3 must be distinct fromω2 andω1. There are then three subcases to be
considered.

(a) ω3[Y ] = ω1[Y ]. Since by Lemma 2.1T ∗ ∈ SAT(Σ), there must be
a rowω4 in T ∗ with ω4[Z] = ω3[Z] andω4[Y ] = ω2[Y ]. These conditions
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also imply thatω4 is distinct and soω1,ω4,ω3 andω2 satisfy the requirements
of the lemma.

(b)ω3[Y ] = ω2[Y ]. Again, sinceT ∗ ∈ SAT(Σ), there is a distinct tuple
ω4 with ω4[Y ] = ω1[Y ] andω4[Z] = ω3[Z]. Again these conditions imply
thatω4 is distinct and soω1, ω3, ω4 andω2 satisfy the requirements of the
lemma.

(c) ω3[Y ] 6= ω2[Y ] andω3[Y ] 6= ω1[Y ]. Again, to satisfyX →→ Y ,
there is a rowω4 with ω4[Y ] = ω1[Y ] andω4[Z] = ω3[Z] and a rowω5
with ω5[Y ] = ω2[Y ] andω5[Z] = ω3[Z]. Thenω1, ω5, ω4 andω2 satisfy
the requirements of the lemma.ut

This lemma is now used to derive the main result of this section which
shows that the condition that the set of dependencies contain only FDs is
equivalent to KDNF.

Theorem 6.1 (R,Σ) is in KDNF iff Σ is equivalent to a set of FDs.

Proof.
If: Follows immediately from the facts that a KDA is cover insensitive and
that there can be no KDA when the only dependencies are FDs.
Only if: We shall show the contrapositive that ifΣ is not equivalent to a
set of FDs then there existsr with a KDA. By Lemma 6.2, there is a pure
MVD X →→ Y in Σ and by Lemma 6.4, there existsr ∈ SAT(Σ) of at
least four tuples with the properties specified. Relationr has a KDA since
deleting any of the four specified tuples results inX →→ Y being violated,
but the new relation is in SAT(Σk) sincer ∈ SAT(Σ). ut

7 KMNF 1, KMNF 2 and KMNF 3 and 4NF

In this section we derive results on the relationship between 4NF and the
key-based semantic normal forms KMNF1, KMNF2 and KMNF3. The two
cases of whether the constraints contain only FDs or both FDs and MVDs
are treated separately.

7.1 The FD case

The main result we establish is that BCNF is equivalent to KMNF1, KMNF2
and KMNF3. Firstly, we state some elementary lemmas whose proofs are
omitted since they involve only simple applications of the inference rules.

Lemma 7.1 If X → A ∈ Σ andX /∈ SK(R,Σ) thenXA /∈ SK(R,Σ).

Lemma 7.2 If K ∈ CK(R,Σ) then there is no nontrivialX → A ∈ Σ+

such thatXA ⊆ K.
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Lemma 7.3 If X → A ∈ Σ and X /∈ SK(R,Σ) then for all K ∈
CK(R,Σ), K − X+ 6= ∅.

The next lemma is needed for the construction of counter-examples in the
proofs of the main theorem concerning KMNF3 and BCNF.

Lemma 7.4 LetΣ be a reduced set of FDs and supposeX → A ∈ Σ and
X /∈ SK(R,Σ). Also, letV andY be subsets ofX such thatX = V ∪ Y ,
V ∩ Y = ∅, V 6= ∅, Y 6= ∅. Construct a relationr of two tuples,t1 andt2,
such thatt1 andt2 are identical onV + and different elsewhere. Thenr has
the following properties:

(a) r ∈ SAT(Σ);
(b) t1[V ] = t2[V ];
(c) t1[Y ] 6= t2[Y ];
(d) t1[A] 6= t2[A].

Proof. Properties (a) and (b) follow from the fact thatV /∈ SK(R,Σ) (since
X /∈ SK(R,Σ)) and a result on two tuple relations (Theorem 4.1 in [22]).
To establish (c), assume to the contrary thatt1[Y ] = t2[Y ]. By definition of
r, V → Y ∈ Σ+ and applying the inference rules shows thatV → A ∈
Σ+ contradicting the fact thatΣ is reduced sinceV ⊂ X. Similarly, (d)
holds since otherwise the reduced assumption is again violated by replacing
X → A by V → A. ut

These results are now used to establish the first main theorem of this
section that BCNF is equivalent to KMNF3. The proof is rather technical, so
we provide firstly a brief sketch of the ‘if’ part of the proof, i.e. that KMNF3
implies BCNF (the ‘only if’ part is immediate). We do this by showing the
contrapositive that if (R,Σ) is not in BCNF then one can always construct
a two tuple relation which has a KMA3 and so (R,Σ) is not in KMNF3.
The construction uses a result that if (R,Σ) is not in BCNF then there exists
an FDX → A ∈ Σ such thatX is not a superkey and then, depending on
the possible inclusion relationships betweenXA and the primary keyKp,
assigns particular values toX andA in a two tuple relation such that the
resulting relation has a KMA3.

Theorem 7.1 If Σ contains only FDs then (R,Σ) is in BCNF iff it is in
KMNF3.

Proof.
Only if: As for Theorem 5.1.
If: We will establish the contrapositive that if (R,Σ) is not in BCNF then
there existsr with a KMA3. As (R,Σ) is not in BCNF there is a nontrivial
X → A ∈ Σ whereX /∈ SK(R,Σ) (Theorem 12.7 in [38]). However,
every set of FDs has a reduced cover and so without loss of generalityΣ is
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assumed to be reduced andX → A an FD inΣ which violates BCNF. The
proof is divided into three exhaustive cases.

(a) A /∈ Kp whereKp is the primary key ofR. By Lemma 7.1,XA /∈
SK(R,Σ) sinceX /∈ SK(R,Σ) and using the result mentioned in the
previous proof, a relationr of two tuples,t1 andt2, which are identical on
(XA)+ and different elsewhere is in SAT(Σ). Let t∗ be the tuple obtained
by modifyingt2[A] so thatt∗[A] 6= t1[A]. The claim is thatr has a KMA3
whent2 is updated tot∗. Condition (i) is satisfied becauser ∈ SAT(Σ),
(ii) holds sincet2[Kp] = t∗[Kp] (asA /∈ Kp) andt∗[Kp] 6= t1[A] because
r ∈ SAT(Σ), (iii’) holds becauseA /∈ Kp and (iv) is satisfied because
t1[X] = t∗[X] andt1[A] 6= t∗[A].

(b) A ∈ Kp andX ∩ Kp = ∅. Firstly, X 6= ∅ since otherwise applying
the inference rules shows thatKp − A ∈ SK(R,Σ) contradicting the fact
that Kp ∈ CK(R,Σ). Next we claim that ifY → B ∈ Σ andY 6= ∅
thenY ∩ NS(Σ) = ∅. To verify this, suppose to the contrary∅ → C ∈ Σ
and C ∈ Y . An application of the inference rules shows thatY → B
can be replaced byY − C → B while maintaining equivalence and so
contradicts the assumption thatΣ is reduced. Construct then a relationr
of two tuples,t1 andt2, as follows. For allC ∈ NS(Σ), sett1[C] = t2[C]
and for all otherC ∈ R sett1[C] 6= t2[C]. We note that sinceX 6= ∅, X∩
NS(Σ) = ∅ and sor is actually a relation, i.e.t1 andt2 are not duplicates.
Let t∗ be the tuple such thatt∗[X] = t1[X] andt∗[R − X] = t2[R − X].
The claim is thatr has a KMA3 when t2 is changed tot∗. To satisfy (i)
of a KMA3, we show thatr ∈ SAT(Σ). Any FD of the form∅ → C is
satisfied sincet1[C] = t2[C] and any FDY → C whereY 6= ∅ is satisfied
sincet1[Y ] 6= t2[Y ] becauseY ∩ NS(Σ) = ∅. To verify (ii), firstly K∩
NS(Σ) = ∅ for all K ∈ CK(R,Σ) since otherwise an application of the
inference rules derives the contradiction thatK − B ∈ SK(R,Σ) where
B ∈ K∩ NS(Σ). By Lemma 7.3,K − X 6= ∅ for all K ∈ CK(R,Σ)
sinceX /∈ SK(R,Σ) and combining this withK∩ NS(Σ) = ∅ shows that
K ∩ R − X − NS(Σ) 6= ∅ and so (ii) holds by construction ofr andt∗.
Condition (iii’) follows by definition oft∗ and the fact thatX ∩ Kp = ∅.
Condition (iv) follows by definition oft∗ and the fact thatA /∈ NS(Σ)
since otherwise the reduced assumption is violated by replacingX → A by
∅ → A.

(c) A ∈ Kp and X ∩ Kp 6= ∅. Let V = X ∩ Kp andY = X − Kp

and soX = V ∪ Y , V ∩ Y = ∅. Also, V 6= ∅ by assumption andY 6= ∅
since otherwiseXA ⊆ Kp, sinceA ∈ Kp, and so Lemma 7.2 implies a
contradiction. By Lemma 7.4, the relationr of two tuples,t1 andt2, which
are identical onV + and different elsewhere has the properties given by the
lemma. Lett∗ be the tuple defined byt∗[Y ] = t1[Y ] and t∗[R − Y ] =
t2[R − Y ]. The claim is thatr has a KMA3 when t2 is replaced byt∗.
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Condition (i) follows from (a) of Lemma 7.4. To verify (ii),V +Y A ⊆ X+

from the properties of the closure and then, by Lemma 7.3,K −V +Y A 6= ∅
for all K ∈ CK(R,Σ) and so (ii) holds by definition oft1, t2 and t∗.
Condition (iii’) holds sincet∗ andt2 differ only on attributes inX −Kp and
(iv) follows from Lemma 7.4 and the construction oft∗. ut

A corollary of the previous result is the following which shows that
BCNF, KMNF1 and KMNF2 are also equivalent.

Corollary 7.1 If Σ contains only FDs, then BCNF, KMNF1, KMNF2 and
KMNF3 are equivalent.

Proof.
KMNF1 ⇒ KMNF2 ⇒ KMNF3. Immediate from the definitions.
KMNF3 ⇒ BCNF : Immediate from the theorem.
BCNF ⇒ KMNF1: As for Theorem 5.1. ut

7.2 The FD and MVD case

In this section we generalise the results of the previous section by showing
that KMNF1, KMNF2, KMNF3 and 4NF are again equivalent when MVDs
are present in the set of constraints provided that there is also at least one
FD. First, a preliminary lemma that will be extensively used in later sections
is established.

Lemma 7.5 LetX /∈ SK(R,Σ). If W ∈ DEP(X) andW ∩X+ = ∅ then
K ∩ W 6= ∅ for all K ∈ CK(R,Σ).

Proof. By Theorem 3.1, any two tuple relationr for which the tuples are the
same except for those attributes inW is in SAT(Σ). Hencer ∈ SAT(Σk)
and soK∩W 6= ∅ because the two tuples must be distinct on every candidate
key. ut

We now present the main result of this section which shows that 4NF
and KMNF3 are equivalent. As before, we first briefly outline the main idea
of the ‘If’ part of the proof for the benefit of the reader (the ‘Only If’ part is
again immediate). The ‘If’ part is established by showing the contrapositive
that if (R,Σ) is not in 4NF then one can construct a relation which has a
KMA 3 and so (R,Σ) is not in KMNF3. The construction is based on the
result that there exists an MVD or FD inΣ where the lhs is not a superkey
if (R,Σ) is not in 4NF and then constructing a relation with specific values
for the attributes in the dependency so that resulting relation has a KMA3.
The technical complexity and length of the proof arises from the fact that
different techniques are needed for constructing the relation depending on
whether the dependencies are standard or not and on the relationship between
the attributes in the lhs of the dependency and the primary key
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Theorem 7.2 If Σ is a set of FDs and MVDs containing at least one non-
trivial FD, then (R,Σ) is in 4NF iff it is KMNF3.

Proof.
Only if: As for Theorem 5.1.
If: We shall show the contrapositive that if (R,Σ) is not in 4NF then it is
not in KMNF3. Because 4NF is cover insensitive,Σ is assumed to be pure
and reduced without loss of generality. Then since (R,Σ) is not in 4NF, it
follows from Lemma 4.3 in [36] that there exists a dependency inΣ which
violates 4NF. In the proof, the complementary rule (rule A4) is needed and
soX →→ Y will often be written asX →→ Y |Z whereZ = R − XY .
We shall now consider several cases separately.

(a) There exist nonstandard dependencies inΣ. The FD and MVD cases
are considered separately.

(a.1) There exists a nonstandard FD∅ → B ∈ Σ. B cannot be a
superkey or else an application of the inference rules shows that∅ is a
superkey and so the lhs of every dependency inΣ is a superkey thus con-
tradicting the assumption that (R,Σ) is not in 4NF. Also,B /∈ K for all
K ∈ CK(R,Σ) since otherwise the inference rules show the contradiction
thatK − B ∈ SK(R,Σ). Construct then the tableauTB as in Lemma 2.2,
let T ∗ = chaseΣ(TB) and letr be any one-to-one valuation ofTB. Then
by Lemma 6.3,r contains at least two tuples and all tuples are identical on
B. We then claim thatr has a KMA3 when someB value inr is changed
to a new value. Condition (i) follows from Lemma 2.1; (ii) holds because
r ∈ SAT(Σk) andB is not prime; (iii) holds becauseB is not prime and
(iv) holds because the new relation violates∅ → B.

(a.2) There exists a nonstandard MVD∅ →→ Y |Z ∈ Σ: Let Kp be
the primary key ofR. Since there is at least one FD inΣ, R /∈ CK(R,Σ)
and so there is at least one attributeB disjoint fromKp. We then claim that
B cannot be a superkey. To verify this, suppose to the contrary thatB is a
superkey and thatB ∈ Y (by symmetry the same argument holds ifB ∈ Z).
Then sinceB is a superkey,B → Z ∈ Σ+ and so, by inference rule A9,
∅ → Z ∈ Σ+ contradicting the assumption thatΣ is pure.

As before, construct the tableauTB as in Lemma 2.2, letT ∗ = chaseΣ
(TB) and letr be any one-to-one valuation ofTB. Then by Lemma 6.3,r
contains at least two tuples and all tuples are identical onB. Next we claim
that there are two tuples,t1 andt2, such thatt1[Z] 6= t2[Z]. This follows
since if all rows are equal onZ, then they must be equal toωd on Z since
dv’s are not changed during the chase and so, by Lemma 2.2,B → Z ∈ Σ+

which implies, by inference rule A9, that∅ → Z which again contradicts the
pure assumption. We then claim thatr has a KMA3 whent2[B] is changed
to a valueb∗ disjoint from the values inr. Condition (i) follows from Lemma
2.1; (ii) holds because for anyK ∈ CK(R,Σ), if B /∈ K then the new
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relation is in SAT(Σk) becauser ∈ SAT(Σk) and ifB ∈ K, then the new
relation is in SAT(Σk) becauseb∗ is disjoint from the values inr; (iii) holds
becauseB /∈ Kp and (iv) holds sincet1[Z] 6= t2[Z] and the property ofb∗.

(b) All dependencies inΣ are standard. If the only violations of 4NF
are caused by FDs, there can be no MVDs inΣ because if there is, the
lhs of the MVD must be a superkey contradicting the fact thatΣ is pure
and Theorem 7.1 then shows that (R,Σ) is not in KMNF3. Alternatively,
suppose there isX →→ Y ∈ Σ violating 4NF, i.e. the MVD is nontrivial
andX /∈ SK(R,Σ). We shall now show that there exists a relation which
has a KMA3. Split each of the setsX, Y andZ into a set which intersects
with Kp and a set which is disjoint fromKp and soX →→ Y |Z is written
asX ′Xk →→ Y ′Yk|Z ′Zk whereX = X ′Xk, Y = Y ′Yk, Z = Z ′Zk and
X ′Y ′Z ′ ∩ Kp = ∅. Again, several subcases are considered.

(b.1) Xk = ∅. Define a relationr of two tuples,t1 andt2, such thatt1
andt2 are different on every attribute. Obviously,r ∈ SAT(Σ) sinceΣ
contains only standard dependencies. Then define the tuplet∗byt∗[X] =
t1[X], t∗[R − X] = t2[R − X]. The claim is thatr has a KMA3 whent2 is
replaced byt∗. Condition (i) of a KMA3 follows from the definition ofr and
(ii) holds follows from Lemma 7.3 and the fact thatX /∈ SK(R,Σ). Also,
t∗[Kp] = t2[Kp] sinceXk = ∅ and so (iii’) holds. Condition (iv) follows
from Z 6= ∅ (sinceX →→ Y is nontrivial) and the definitions ofr andt∗.

(b.2)Xk 6= ∅. We now break the proof up into several subcases.
(b.2.1.1) There doesn’t exist a dependency inΣ with a subset ofXk on the

lhs. It follows from this assumption thatX ′ 6= ∅ since otherwise the MVD
X ′Xk →→ Y ′Yk|Z ′Z could be written asXk →→ Y ′Yk|Z ′Z. Construct
r of two tuples,t1 andt2, such thatt1[Xk] = t2[Xk] andt1[B] 6= t2[B] for
all B ∈ R − Xk. Definet∗ by t∗[X] = t1[X] andt∗[R − X] = t2[R − X].
We claim thatr has a KMA3 whent2 is replaced byt∗. Firstly,r ∈ SAT(Σ)
becauset1[B] 6= t2[B] for all B ∈ R−Xk and so the only dependency that
r could violate is one with a subset ofXk on the lhs and by (b.2.1.1) this
cannot occur. Next, by Lemma 7.3,K −X 6= ∅ for all K ∈ CK(R,Σ) and
so by definition ofr andt∗, t∗[K] 6= t1[K] and thus (ii) holds. Condition
(iii’) holds becauset∗ andt2 differ only onX ′ and (iv) holds becauset∗ and
t1 agree onX yet differ onY andZ.

(b.2.2) There exists a dependency inΣ with a subset ofXk as the lhs. In
other words, there exists eitherX ′

k →→ V orX ′
k → A ∈ Σ with X ′

k ⊆ Xk.
Consider firstly the MVD case.

(b.2.2.1)X ′
k →→ V |U ∈ Σ. Write X ′

k →→ V |U as X ′
k →→

V ′Vk|U ′Uk where, as before,Vk andWk are the intersection ofKp with
V andU . Firstly, by property (ii) of DEP,U is equal to a union of elements
of DEP(X ′

k) and at least one of these,W , must be disjoint from(X ′
k)

+ since
otherwiseU ⊆ (X ′

k)
+ contradicting the assumption thatΣ is pure.
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We now construct a relation which has a KMA3. Since, as noted earlier,
R 6= Kp and sinceR = X ′

kV
′VkU

′Uk, eitherV ′ 6= ∅ or U ′ 6= ∅. Assume
thatV ′ 6= ∅. By symmetry, the same argument applies ifU ′ 6= ∅. Construct
r of two tuples,t1 andt2, which are identical on all attributes except those in
W and modifyr by replacingt2 by the tuplet∗ defined byt∗[V ′] 6= t1[V ′]
andt∗ andt2 are identical elsewhere. The claim is thatr has a KMA3 whent2
is replaced byt∗. Condition (i) follows from Theorem 3.1, (ii) holds because
of Lemma 7.5 and the fact that only theV ′ values int2 are modified and
(iii’) holds for the same reason. Finally, (iv) is valid since the tuplest∗ and
t1 agree onX ′

k but differ onU andV .
(b.2.2.2)X ′

k → A ∈ Σ. Firstly, by Lemma 7.2,A /∈ Kp because
X ′

k ⊆ Kp. ThenX ′
k /∈ SK(R,Σ) sinceX ′

k ⊆ Kp and so there exists
W ∈ DEP(X ′

k) such thatW ∩ (X ′
k)

+ = ∅. Choose any suchW and
construct a relationr of two tuples,t1 andt2, wheret1[R−W ] = t2[R−W ]
andt1[B] 6= t2[B] for all B ∈ W . Modify r by replacingt2 with the tuple
t∗ defined byt∗[A] 6= t1[A] andt∗[R −A] = t1[R −A]. The claim is thatr
has a KMA3 whent2 is replaced byt∗. Condition (i) follows from Theorem
3.1. The compatibility condition (ii) holds since by Lemma 7.5,t1 andt2
differ onK ′ ∩W for all K ′ ∈ CK(R,Σ) and sot∗ andt1 differ onK ′ since
t∗[W ] = t2[W ]. Condition (iii’) holds becauset∗[A] 6= t1[A] andA /∈ K,
while (iv) holds becauset∗ andt1 agree onX ′

k yet differ onA. ut
A simple corollary of the previous theorem is the following important

result that 4NF is also equivalent to KMNF1 and KMNF2.

Theorem 7.3 If Σ contains at least one FD then 4NF is equivalent to
KMNF1, KMNF2 and KMNF3.

Proof. As for Corollary 7.1. ut
We note that the requirement in Theorem 7.3 that the set of dependencies
contain at least one FD is necessary for the equivalence of 4NF and KMNF3.
To verify this, if there are only MVDs in the set of dependencies then the
only candidate key isR since only trivial FDs are implied by a set of MVDs
[22]. So every attribute inR is prime and it follows from the definitions of
modification anomalies that (R,Σ) is in KMNF3. However, any nontrivial
MVD violates the 4NF condition sinceR is the only candidate key and
so every relation scheme with only MVDs in the set of dependencies is in
KMNF3 yet not in 4NF.

8 KMNF 4 and 4NF

8.1 The FD case

In this section we show that the syntactic normal form equivalent to KMNF4
is a new normal form, what we refer to asprime attribute normal form
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(PANF). This new normal form is stronger than 3NF yet weaker than BCNF.
We also show that PANF is not equivalent to EKNF, another normal form
that lies between 3NF and BCNF, and that the simplest version of the well
known synthesis algorithm generates schemes which are in PANF.

Definition 8.1 LetΣ be a reduced set of FDs. (R,Σ) is in prime attribute
normal form(PANF) if for every FDX → A ∈ Σ, eitherX ∈ CK(R,Σ)
or XA contains only prime attributes.

It is easily seen from this definition that PANF lies between 3NF and
BCNF and the following examples show that this inclusion is strict.

Example 8.1Let R = {A, B, C, D} andΣ = {AB → C, CD → AB,
BD → A}. The candidate keys areCD andBD and so (R,Σ) is in 3NF
sinceC is a prime attribute, but (R,Σ) is not in PANF sinceA is not a prime
attribute.

Example 8.2LetR = {A, B, C, D} andΣ = {AB → C, AB → D, C →
B}. It can be easily verified that the only candidate keys areAB andAC
and so (R,Σ) is in PANF since the lhs of the first two FDs is a candidate
key and, in the FDC → B, bothC andB are prime. However,C → B
violates BCNF.

We now show the equivalence of PANF and KMNF4.

Theorem 8.1 If Σ contains only FDs, then (R,Σ) is in KMNF4 iff it is in
PANF.

Proof.
If: Suppose to the contrary that (R,Σ) is in PANF yet is not in KMNF4.
Then there existsr andt ∈ r such that an FDX → A is violated whent
is modified tot∗. By definition of a KMA4 the new relation is in SAT(Σk)
and soX /∈ SK(R,Σ) and hence, by the definition of PANF,XA contains
only prime attributes. This is a contradiction since, by definition of a KMA4,
t[XA] is unchanged during the update and soX → A cannot be violated.

Only if: The contrapositive that if (R,Σ) is not in PANF then it is not
in KMNF4 will be established. If (R,Σ) is not in PANF there existsX →
A ∈ Σ such thatX /∈ SK(R,Σ) andXA contains a nonprime attribute.
If A is nonprime then the same construction used in (a) of the proof of
Theorem 7.1 shows that (R,Σ) is not in KMNF4. Alternatively if A is
prime thenX must contain nonprime attributes. IfX contains only nonprime
attributes then the same construction used in (b) of Theorem 7.1 shows that
(R,Σ) is not in KMNF4. Alternatively, supposeX contains both prime and
nonprime attributes whereV is the set of prime attributes andY is the set
of nonprime attributes. The conditions of Lemma 7.4 are satisfied and the
same construction used in (c) of Theorem 7.1 shows that (R,Σ) is not in
KMNF4. ut
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We note that since KMNF4 is cover insensitive, then a corollary of this
theorem is that PANF is also cover insensitive, a result that is not immediate
from the definition of PANF.

Another normal form, namelyelementary key normal form(EKNF) [41],
also lies between 3NF and BCNF. We now demonstrate that EKNF and
PANF are not comparable. Firstly we recall the definition of EKNF.

Definition 8.2 Suppose thatΣ contains only FDs and letX → A an FD
in Σ. ThenX → A is elementaryif there doesn’t exist a nontrivial FD
X ′ → A ∈ Σ+ such thatX ′ ⊂ X.

We note that it follows from this definition that every FD in a reduced
set of FDs is elementary.

Definition 8.3 Let R be a relation scheme,Σ a set of FDs andK ∈
CK(R,Σ). ThenK is anelementary keyif for some attributeA, K → A
is an elementary FD. An attribute which belongs to some elementary key is
called anelementary key attribute.

Definition 8.4 LetR be a relation scheme andΣ a set of FDs. (R,Σ) is in
elementary key normal form(EKNF) if for every nontrivial FDX → A ∈
Σ, eitherX ∈ CK(R,Σ) or A is an elementary key attribute.

The first example, taken from [41], shows that a scheme can be in PANF
but not in EKNF, while the second example demonstrates the converse.

Example 8.3Let R = {A, B, C} and Σ = {A → B, B → A}. The
candidate keys areAC andBC. Neither candidate key is elementary because
neitherAC → B nor BC → A is an elementary FD and so there are
no elementary key attributes. Hence (R,Σ) is not in EKNF since if one
considers the FDA → B thenA /∈ CK(R,Σ) andB is not an elementary
key attribute. However, (R,Σ) is in PANF since every attribute inR is prime.

Example 8.4As in Example 8.1, letR = {A, B, C, D} andΣ = {AB →
C, CD → AB, BD → A}. Both the candidate keysBD and CD are
elementary because of the FDsCD → AB, BD → A and soB, C and
D are elementary key attributes. Thus (R,Σ) is EKNF since bothCD and
BC are superkeys andC is an elementary key attribute. However, as noted
previously, (R,Σ) is not in PANF becauseA is not prime.

We now address the problem of generating relation schemes which are
in PANF. We start with the simplest version [32] of the synthesis algorithm
[6] for generating 3NF schemes. Other versions of the algorithm combine
schemes which result from dependencies having the same, or equivalent,
left-hand sides. We conjecture that Theorem 8.2 is also valid for these alter-
natives versions.
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ALGORITHM 8.1. A SYNTHESIS ALGORITHM FOR
ACHIEVING 3NF.
Input: A relational scheme R and a reduced
setΣ of FDs.
Output: A dependency preserving, lossless
decomposition of R into 3NF.
Method:
For each FD X → A ∈ Σ, create the scheme XA.
If there is no scheme which contains a
candidate key K then create an extra scheme
which contains K alone.

We now show that the relation schemes generated by Algorithm 8.1 are
in PANF.

Theorem 8.2 Each of the relation schemes generated by Algorithm 8.1 is
in PANF.

Proof. If the relation scheme is a candidate key then the result is immediate,
so alternatively assume that it is the schemeR′ = XA which corresponds
to the FDX → A ∈ Σ. From the properties of projected FDs [22, 32]
any FD which holds inR′ must also hold inR. We show firstly thatX
is a candidate key inR′. X ∈ SK(R′,Σ) becauseR′ = XA. Also,
X ∈ CK(R′,Σ) since if not there existsK ∈ CK(R′,Σ) with K ⊂ X,
and soK → A ∈ Σ+ which contradicts the assumption thatX → A is
reduced. We now show that any other FDY → B which holds inR′ satisfies
PANF. We divide the proof into the two casesB = A andB 6= A.

(a) B = A. For this case, it follows thatY = X since otherwiseY ⊂ X
and this violates the property thatX → A is reduced and soY → B satisfies
PANF.

(b) B 6= A. Firstly, sinceR′ = XA thenB ∈ X and so, from Lemma
7.2,Y 6⊂ X and thusY = AX ′ whereX ′ ⊂ X. X ′ is prime inR′ since
X ∈ CK(R′,Σ) and so it remains to show thatA is prime. Assume it is
not. SinceAX ′ → B andR′ = AX, AX − B ∈ SK(R′,Σ) and so there
existsK ∈ CK(R′,Σ) such thatK ⊆ AX −B. Then sinceA is not prime
in R′, K ⊆ X − B and soK ⊂ X becauseB ∈ X which contradicts the
fact thatX → A is reduced using the same argument as in the previous
paragraph. ut

8.2 The FD and MVD case

We now address the problem of deriving necessary and sufficient conditions
for a relation scheme to be in KMNF4 when both FDs and MVDs are present.
We proved in the previous section that in the case where the set of constraints
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contains only FDs, KMNF4 is a weaker condition than BCNF. The following
example shows that similarly, in the case where the set of constraints includes
both MVDs and FDs, 4NF is a stronger condition than is required for a
relation scheme to be in KMNF4.

Example 8.5Let R = {G, S, T, H} andΣ = {G → T, T → G, G →→
H}. It can be verified that the candidate keys areGSH andHST and that
the MVD G →→ H is pure. (R,Σ) is not in 4NF because none of the lhs
is a superkey yet, as will be seen in the next theorem, it is not in KMNF4
because every attribute is prime.

We now present the main theorem of this section which gives a necessary
and sufficient condition for a relation scheme to have no KMA4.

Theorem 8.3 If Σcontains at least one pure MVD, then (R,Σ) is in KMNF4
iff every attribute inR is prime.

Proof.
If: Consider anyr ∈ SAT(Σ). Since every attribute inR is prime, any
modification which leaves the prime attributes of a tuple unchanged doesn’t
change the tuple and sor has no KMA4 violation.
Only if: We shall establish the result by showing the contrapositive that if
there is a nonprime attribute then there existsr with a KMA4 anomaly.
Firstly, since a KMA4 is cover insensitive, then without loss of generalityΣ
is assumed to be pure and reduced. Also, if the original set of dependencies
Σ contains a pure MVD then, by Lemma 6.2, a pure reduced cover forΣ
must contain at least one MVD.

Firstly, if Σ contains a nonstandard dependency then the same construc-
tions used in (a) of Theorem 7.3 shows that (R,Σ) is not in KMNF4 so we
will assume that all dependencies are standard. Consider anyX →→ Y |Z ∈
Σ. BecauseΣ is pure,X /∈ SK(R,Σ) since otherwiseX → Y ∈ Σ+ con-
tradicting the pure assumption. SinceXY Z = R and by assumptionR
contains a nonprime attribute, eitherY Z contains a nonprime attribute or
only X contains a nonprime attribute. We now consider each case in turn.

Y Z contains a nonprime attribute. In this case, the same argument used
in (b.2.2) of Theorem 7.3 shows that (R,Σ) is not in KMNF4.

Only X contains a nonprime attribute:Write X as X ′Xp whereX ′
contains only nonprime attributes andXp contains only prime attributes.
We firstly show that we can restrict attention to the case whereX ′ is a
subset of the lhs of every MVD inΣ. Otherwise, sinceX ′ contains all the
nonprime attributes inR, this implies that either the rhs of an MVD, or
its complement, contains nonprime attributes and so the previous argument
shows that (R,Σ) is not in KMNF4.

We now want to show that there existsW ∈ DEP(Xp) such thatW =
X ′Y Z. The proof of this assertion is presented as a separate lemma (Lemma



Semantic foundations of 4NF 203

8.1). Construct then a relationr of two tuples,t1 andt2, such thatt1[R −
W ] = t2[R − W ] and t1[B] 6= t2[B] for all B ∈ W . Replacet2 by t∗
defined byt∗[X ′] = t1[X ′] andt∗[R − X ′] = t2[R − X ′]. The claim is
that r has a KMA4 whent2 is replaced byt∗. Condition (i) follows from
Theorem 3.1. Condition (ii) holds becauser ∈ SAT(Σk) andt∗ andt2 are
equal on prime attributes, which also implies condition (iii”). Finally, (iv)
holds becauseW ∩ Y 6= ∅ andW ∩ Z 6= ∅ and so by definition ofr andt∗,
t1 andt∗ agree onX but differ on bothY andZ. ut

In order to derive the lemma needed for the completion of the theorem
we need the following algorithm for calculating DEP(X) [3, 27]. Our version
is a simplification of that in [27] since the set of constraints is reduced and
so the rhs of an FD contains a single attribute.

ALGORITHM 8.2. An algorithm for generating
DEP(X)
Input: A relation scheme R, a reduced set of
FDs and MVDs Σ, and a set of attributes
X.
Output: DEP(X)
Method:

var : U ′ U ′′, V ′ V ′′, W : sets of attributes;
OLDDEP, NEWDEP: sets of sets of attributes;

1: NEW DEP:= {{A}|A ∈ X} ∪ {R − X};
repeat

OLDDEP := NEWDEP;
2: for each U →→ V or U → V ∈ Σ do
3: U ′′ := ∪{W |(W ∈ NEW DEP) and (W ∩ U 6= ∅)};
4: V ′′ := V − U ′′;
5: if V ′′ 6= ∅

then
for each W ∈ NEWDEPdo

6: if (W ∩ V ” 6= ∅) and (W ∩ V ′′ 6= W )
then

7: NEW DEP := (NEW DEP−{W})∪
{W ∩ V ′′, W − V ′′};

od
od

until (NEWDEP = OLDDEP);

We also note that in this algorithm, if a setZ is in NEW DEP at any
iteration thenX →→ Z ∈ Σ+. We now use the algorithm establish the
following lemma.
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Lemma 8.1 LetX ′ be a nonempty set of attributes and letΣ be a reduced
set of FDs and MVDs such that the lhs of every MVD inΣ containsX ′.
Then, for any MVDX ′X →→ Y |Z ∈ Σ, DEP (X) = {X1, . . . , Xn,
X ′Y Z} whereX = X1 . . . Xn.

Proof. Initially, becauseR = X ′XY Z, NEW DEP = {X1, . . ., Xn,
X ′Y Z} and we shall now prove that NEWDEP never changes. We con-
sider separately the two cases of whether the dependency tested at line 2 of
Algorithm 8.1 is an MVD or an FD.

(a) The MVD case. By the assumption of the lemma, any MVDU →→
V ∈ Σ can be written asX ′U ′ →→ V whereU = X ′U ′. Consider
V ′′ = V −U ′′ defined at line 4. ObviouslyX ′Y Z ⊆ U ′′ sinceX ′∩U = X ′
and soV ′′ ∩ X ′Y Z = ∅ and thus the test at line 6 fails whenW = X ′Y Z.
The only other elements in NEWDEP are the attributes inX and the second
test at line 6 fails for these and so NEWDEP remains unchanged.

(b) The FD case. Consider the effect on NEWDEP if instead the FD
U → V is applied at line 2. SinceΣ is reduced,V consists of a single
attribute. We shall break the proof up into the following subcases.

(b.1)V ∈ X. NEW DEP is unaltered sinceV is already in NEWDEP.
(b.2)V ∈ X ′. We shall show that NEWDEP is unchanged by assuming

the contrary and deriving a contradiction. SinceV is a single attribute,V
is added to NEWDEP at line 7 and soX →→ V ∈ Σ+ and since the
lhs and rhs of every MVD inΣ are disjoint, a simple application of the
inference rules shows that(X ′ − V )X →→ Y ∈ Σ+. This contradicts the
assumption thatΣ is reduced and so NEWDEP remains unchanged.

(b.3)V ∈ Y . As before, assume to the contrary that NEWDEP changes
and thusV is added to NEWDEP and soX →→ V ∈ Σ+. If V = Y
then the assumption that every MVD is left-reduced is contradicted since
X ′ 6= ∅, and ifV ⊂ Y the inference rules show thatX ′X →→ V ∈ Σ+

contradicting the assumption that every MVD is right-reduced.
(b.4)V ∈ Z. Same argument used in (b.3).ut
We note that in the case thatΣ does not contain a pure MVD (soΣ

is equivalent to a set of FDs), then the necessary and sufficient condition
reduces to the one given in Theorem 8.1. We also note that the condition in
Theorem 8.3 is not equivalent to the normal form PANF defined in Sect. 8.1
since the relation scheme in Example 8.2 is in PANF yet contains a nonprime
attribute.

9 Fact-based modification anomalies and 4NF

In this section we consider again the relationship between 4NF and the main-
tenance of database integrity when tuples are modified, but under different
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assumptions to those used in Sect. 4. Instead of the tuple being the basic
unit of information, in this section we use thefact-based approachwhich
assumes that only certain subsets of a tuple, called facts, are the basic infor-
mation units for retrieval and update. The fact-based has been widely used
in research relating to database design and database semantics [5, 10, 39].

If facts are the basic information units, then it is desirable that the integrity
of a relation is maintained when facts are updated and so a fact-based update
anomaly is considered to occur when the update of a fact results in a violation
of the integrity constraints. In general, an update to a relation can be either an
insertion, a deletion or a modification of a tuple but in this section attention
is restricted to the modification of tuples. This is because we believe that
this case can be adequately handled without using null values, whereas a
complete analysis of the insertion and deletion of facts require the use of
null values and thus has been left as a topic for future investigation.

The final issue to be addressed before formally defining a fact-based
modification anomaly is to choose the attribute sets for the set of facts. The
approach adopted here, and elsewhere, is to use the attribute sets corre-
sponding to the FDs and MVDs. However even in this approach there are
still several choices. The first is to use only the FDs and MVDs inΣ. The
second is to recognise the symmetrical nature of MVDs and also include
the complementary MVDs (Rule A4). The last is to include derived depen-
dencies and so use any nontrivial dependency inΣ+. We allow for each of
these possibilities and formally define three types of fact-base modification
anomalies.

Definition 9.1 A relationr has afact-based modification anomaly 1(FMA1)
w.r.t. a reduced setΣ of FDs and MVDs if there exists a tuplet ∈ r and a
tuplet∗ defined overR such that:

(i) r ∈ SAT(Σ);
(ii) t∗ is compatible with(r − {t}) (See Sect. 4);
(iii) The set of attributes on whicht andt∗ differ is a subset of ATT(d) where

d ∈ Σ and ATT(d) are the attributes ind;
(iv) {r − {t}} ∪ {t∗} (SAT(Σ).

Some observations on the above definition are appropriate at this point. A
reduced set of dependencies is used in this definition because a dependency
in such a set cannot have their lhs or rhs decomposed and so are irreducible
units of information [14]. Condition (ii) requires that the update satisfy key-
uniqueness since, as mentioned in Sect. 1, this is a fundamental property of
the relational model which is easily enforceable. We note, however, that there
is no concept of the maintenance of a tuple’s identity during a modification
and so there’s no equivalent to condition (iii) of Definition 4.7. We now use
the definition to define a normal form for relation schemes which ensures
that these violations can never occur.
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Definition 9.2 (R,Σ) is in fact modification normal form 1(FMNF1) if
there doesn’t existr which has an FMA1.

We now extend these definitions to allow for different sets of facts.

Definition 9.3 A relationr has afact-based modification anomaly 2(FMA2)
if it satisfies all the conditions of Definition 9.1 except that condition (iii) is
changed to:

(iii’) The set of attributes on whicht andt∗ differ is a subset of ATT(d)
whered ∈ Σ′ andΣ′ = Σ ∪ {X →→ R − XY |X →→ Y ∈ Σ}.

Definition 9.4 (R,Σ) is in fact modification normal form 2(FMNF2) if
there doesn’t exist r which has an FMA2.

We note that in the case where the set of constraints contains only FDs,
an FMA1 and an FMA2 are identical and thus so are FMNF1 and FMNF2.

Definition 9.5 A relationr has afact-based modification anomaly 3(FMA3)
if it satisfies all the conditions of Definition 9.1 except that condition (iii) is
changed to:

(iii”) The set of attributes on whicht andt∗ differ is a subset of ATT(d)
whered ∈ Σ+.

Definition 9.6 (R,Σ) is in fact modification normal form 3(FMNF3) if
there doesn’t existr which has an FMA3.

The following example illustrates the previous definitions.

Example 9.1Let R = {A, B, C}, Σ = {A → B, B → C} andr is as
shown in Fig. 8. Thenr has a FMA1, a FMA2 and a FMA3 when〈2, 2, 1〉
is updated to〈2,1,2〉 since the attributesBC = ATT (B → C) and the
resulting relation,r′, is in SAT(Σk) (sinceA is the only candidate key) but
violates the FDB → C.

It follows directly from the definitions of modification anomalies that
the following relationships hold: a relationr has an FMA1 ⇒ r has an
FMA2 ⇒ r has an FMA3, and thus in relation schemes: a relation scheme
(R,Σ) is in FMNF3 ⇒ (R,Σ) is in FMNF2 ⇒ (R,Σ) is in FMNF1.

We show the equivalence between 4NF and the modification normal
forms.

Theorem 9.1 The following conditions are equivalent:

(i) (R,Σ) is in 4NF;
(ii) (R,Σ) is in FMNF3;
(iii) ( R,Σ) is in FMNF2;
(iv) (R,Σ) is in FMNF1.
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r r’

A B C A B C

1 1 1 replace <2, 2, 1> by  <2, 1,2> ⇒ 1 1 1

2 2 1 2 1 2

Fig. 8. An example illustrating modification anomalies

Proof.
(i) ⇒ (ii) : As for Theorem 5.1.
(ii) ⇒ (iii) : Follows directly from the definitions of the normal forms.
(iii) ⇒ (iv) : Follows directly from the definitions of the normal forms.
(iv) ⇒ (i) : We shall prove the contrapositive that if (R,Σ) is not in 4NF
then it is not in FMNF1. If (R,Σ) is not in 4NF then, by the results in [35,
36], there exists a nontrivial dependencyX → Y or X →→ Y ∈ Σ such
thatX is not a superkey. We now construct a relationr which has an FMA1
by considering separately the cases whereXY is not a superkey andXY is
a superkey.

(a) XY is not a superkey.From the properties of DEP there existsW ∈
DEP(XY ) such thatW ∩ (XY )+ = ∅. Construct a two tuple relationr
for which the two tuples are identical on all attributes except those inW . If
any value of an attributeA ∈ Y is changed to a value that is not inr, then
r has an FMA1 from Theorem 3.1 and Lemma 7.5.

(b) XY is a superkey:We firstly claim thatZ, whereZ = R − XY , is
nonempty. This is because if the dependency is an FD thenZ is nonempty
becauseX is not a superkey, and if the dependency is an MVD thenZ is
nonempty because the dependency is nontrivial. Then asXY is a superkey,
XY → Z ∈ Σ+ and combining with the fact thatX →→ Y ∈ Σ+ and
inference rule A9 thenX → Z ∈ Σ+. Then from Lemma 2.2, there has to
be a nontrivial FDV → A ∈ Σ for every attributeA ∈ Z since otherwise
the ndv in rowωX [A] could not be changed to a dv. Construct then a two
tuple relation for which the two tuples agree onX+ and disagree elsewhere.
If the value of an attributeA ∈ Z is now changed so that the two tuples
disagree onA, thenr has an FMA1 sinceV → A ∈ Σ, the new relation is
in SAT(Σk) (from Lemma 7.3 and the fact thatX → Z ∈ Σ+) but violates
X → A. ut

10 Related work

The first paper to address the problem of providing a formal justification for
the use of normal forms and formalising the concept of an update anomaly
was by Bernstein and Goodman [7]. Based on the concept of an update
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‘affecting’ some sets of attributes but not others, they provided formal def-
initions of three types of update anomalies (insertion anomalies, deletion
anomalies and replacement anomalies) and proved that BCNF is a necessary
and sufficient condition for the avoidance of each type of update anomaly.
They also investigated the usefulness of BCNF in the context of multiple
relations and showed that in this setting, having individual relation schemes
in BCNF does not guarantee an absence of processing difficulties. However,
these conclusions were based on the stronguniversal instance assumption
(UIA) and it was later shown [20] that if one replaced the UIA assumption
by the less restrictive and now widely acceptedweak instance approach[2,
18, 30], then most of the problems encountered by Bernstein and Goodman
in the context of multiple relations disappear. More recently, Vossen used a
similar approach and derived similar results to Bernstein and Goodman in
a slightly different fashion [39]. We have not included this approach in this
paper as it was addressed in an allied paper where it was shown that 4NF
is equivalent to an absence of insertion anomalies in the sense of Bernstein
and Goodman [37].

The original work on the relationship between normal forms and key-
based update anomalies is due to Fagin [16, 17]. In the earlier paper, Fagin
showed that BCNF and 4NF were equivalent to the property that every
relation in SAT(Σ) is also in SAT(Σk) and then used this property to de-
fine the normal forms PJ/NF for join dependencies. In the later paper the
approach was generalised to consider include domain constraints and the
normal form DK/NF and key-based update anomalies were defined. The
main differences between this paper and of Fagin’s work is that we have ex-
tended his approach, where only insertions and deletions were considered,
to the modification of tuples and also extended his results on insertion and
deletions anomalies by deriving necessary and sufficient conditions for an
absence of key-based deletion anomalies. Another difference is that we as-
sume that attribute domains are infinite whereas Fagin considered the effect
of finite domains.

Another approach to justifying the use of BCNF is due to Biskup [8].
Similar to the approach in Sect. 9, sets of attributes were considered to be
the fundamental units of information (which were referred to asobjects),
but these sets were the lhs of FDs rather than all the attributes in an FD as in
Sect. 9. Two object normal forms were proposed based on the requirement
of being able to insert unique objects into a relation without violating the
constraints. It was then shown that one of the normal forms is equivalent to
BCNF and the other is equivalent to single key BCNF. In a later paper [9],
this approach was extended to the multiple relation setting with inclusion and
exclusion dependencies also being allowed. None of the semantic properties
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considered in this paper are comparable to the one used by Biskup and the
other major difference is that MVDs are considered in this paper.

An approach similar to the one used in Sect. 9 was used by Chan in his in-
vestigations into the relationship between update anomalies and BCNF [10].
He considered the cases where facts are defined by the constraints and, alter-
natively, independently of the constraints and defined insertion anomalies,
deletion anomalies and replacement anomalies. As mentioned earlier, we
feel that a more complete investigation of the relationship between normal
forms and fact-based insertion and deletion anomalies requires the incor-
poration of null values into the definitions of dependency satisfaction and
normal forms and have not pursued the issue in this paper. There are sev-
eral other differences between Chan’s work and ours. Chan considered only
FD constraints but investigated the relationship between normal forms and
update anomalies in multiple relations using the weak-instance approach
mentioned earlier, whereas we have considered both FDs and MVDs but
only in the context of single relations. Moreover, Chan’s definition of a re-
placement anomaly, while similar in principle to ours, differs in important
from the definition of a modification anomaly given in Sect. 9. In his defini-
tion, the attributes whose values can be changed are a fixed set of attributes
defined by the user and replacements which violate key uniqueness are per-
mitted. In contrast, in our definitions any value can be changed as long as
the corresponding attributes is part of a constraint but key violations are not
permitted.

11 Conclusions

In this paper, we have addressed the problem of providing a formal justifi-
cation for the use of 4NF in relational database design. We have formally
defined three different semantic properties that it is desirable that a relation
scheme should possess. These properties are: an absence of redundancy, an
absence of key-based update anomalies and an absence of fact-based update
anomalies. For each of the properties, normal forms were defined (called
semantic normal forms) which encapsulate the relevant property. The rela-
tionship between 4NF and the semantic normal forms was then investigated.
For some of the semantic normal forms, we proved that, depending on the
types of constraints permitted, either BCNF or 4NF are equivalent condi-
tions to the semantic normal forms, but for other semantic normal forms the
equivalent syntactic normal forms are weaker than BCNF or 4NF. In partic-
ular, for the semantic normal form which is free of a key-based modification
anomaly in which no candidate key value is changed, we proved that in the
case of the only constraints being FDs, the equivalent syntactic normal form
is a new normal form which lies between 3NF and BCNF. Similarly, in the
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Fig. 9. The relationship between normal forms for the FD case

 4NF = RFNF
= KINF
= KMNF1 = KMNF2 = KMNF3
= FMNF1 = FMNF2 = FMNF3

KDNF

KMNF4

Fig. 10.The relationship between normal forms for the FD and MVD case

case of both FD and MVD constraints, the equivalent syntactic normal form
was shown to be a weaker condition than 4NF. The relationship between
the normal forms introduced in this paper and the classical normal forms is
summarised in Figs. 9 and 10.

There are several other issues related to the work in this paper that war-
rant further investigation. Firstly, we have assumed in this paper that nulls
are not present and a more thorough approach would be to extend the results
of this paper to the case where nulls are present. A second issue is the justi-
fication of the normal forms used when join dependencies [28] are present.
The definition of redundancy given in Sect. 3 is applicable to any type of
relational constraint and we are currently investigating the normal forms
which ensure an absence of redundancy in the presence of join dependen-
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cies. Interestingly, preliminary research [34] has shown that a condition that
is weaker than both PJ/NF [17] and 5NF [21] is equivalent to the absence of
redundancy. The final issue is to extend the approach used in this paper to
develop a formal foundation for database design in the newer data models
such as nested relational and object-oriented models. Little work has been
devoted to database design for object-oriented models and while normal
forms have been defined for nested relations [21, 24, 25, 29] none have been
derived from fundamental semantic objectives. Preliminary research has in-
dicated that the redundancy elimination approach used in Sect. 3 extends
naturally to nested relations and may provide the basis for understanding
and deriving nested normal forms.
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