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Abstract. The issue of providing a formal justification for the use of fourth
normal form (4NF) in relational database design is investigated. The motiva-
tion and formal definitions for three goals of database design are presented.
These goals are the elimination of: redundancy, key-based update anomalies
and fact-based replacement anomalies. It is then shown that, depending on
the type of constraints permitted, either Boyce-Codd normal form (BCNF)
or 4NF are the exact conditions needed to ensure most of the design goals.
However, it is also shown that the conditions required to ensure the absence
of a particular class of key-based update anomaly are new normal forms
which have not previously been identified. In particular, for the case where
the only constraints are functional dependencies (FDs), it is shown that
the required normal form is a new normal form that is stronger than third
normal form (3NF) yet weaker than BCNF. Similarly, in the more general
case where both FD and multivalued dependencies (MVDs) are present, the
required normal form is a new normal form that is weaker than 4NF.

1 Introduction

Originating with the pioneering work of Codd [11], the theoryrmafrmal
formsis one of the oldest topics in relational database theory. However the
issue of understanding and justifying the use of normal forms from a se-
mantic perspective is one that, although mentioned as an unsolved problem
in database theory [31], has not been completed. In most works defining
normal forms [11, 12, 15, 41], the emphasis has been on the syntactic prop-
erties of the normal forms rather than on their semantic justification. In the
simplest case where the only constraintsfaretional dependenci€sDs),
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other researchers have addressed the problem of providing a semantic jus-
tification for BCNF and have shown that it is equivalent to certain desirable
semantic properties [7, 8, 10, 39]. However, little research has addressed
the same issue fdourth normal form(4NF) [15] in the more general case
whenmultivalued dependencig¢$5] are present. The purpose of this pa-
per is to address the issue by providing a comprehensive formal analysis of
the relationship between 4NF and several desirable semantic properties of
database design.

The desirable design properties investigated in this paper are the elimi-
nation of:redundancykey-based update anomali@sdfact-based replace-
ment anomaliesVhile it's not claimed that this is an exhaustive list, it does
include the main approaches that have been proposed in the literature during
the last few decades. The motivation for each of these properties will now
be briefly outlined (a more detailed presentation is contained in [35]).

The motivation for eliminatingedundancys based on the minimal prin-
ciple which aims to store each unit of information only once in a database.
Eliminating redundancy thus minimises storage usage and also avoids the
associated difficulty in duplicated data of having to update all occurrences
of a data item. In another paper [36] we proposed a formal definition of
redundancy based on interpreting the set of attribitEsin an FDX — Y
or MVD X —— Y as the fundamental unit of information tact The
difficulty with this approach is that it is dependent on the syntactic structure
of FDs and MVDs and it is not clear how to generalise this definition to
other types of relational dependencies, sugbiasdependencig@8], or to
other data models. In this paper we propose a more fundamental definition
of redundancy that corrects these deficiencies. We consider the occurrence
of an attribute value in a relation to be redundant if it can be derived from
the other data values in the relation and the set of dependencies which apply
to the relation, i.e. the occurrence is ‘fixed’ by the other data in the relation
and the set of dependencies. More precisely, a relation scheradus-
dantif there exists a legal relation (satisfies the constraints) defined over
the scheme containing an occurrence of a data value suchrthahange
to the occurrence results in the violation of the dependencies. For exam-
ple, consider the relation scherfid, B, C, D} and the set of dependencies
{A — B, A —— C}. Each of the occurrences bf in the first four tuples
of the relation of Fig. 1 is redundant since any change results in B
being violated. Similarly, all occurrences of (and alsocs, dy, ds) in the
first four tuples are redundant.

The second semantic aim of normalisation, that of avoidieygtbased
update anomaligsvas introduced in [16]. A key-based update anomaly is
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A B C D
3 by 1 dp
3 by C2 da
3 by 1 dz
3 by C2 dp
& by C2 dh

Fig. 1. A relation containing redundancy

defined to occur when an updat®e a relation results in the new relation
satisfying key uniqueness (no two tuples in the relation have the same value
for a candidate key) but violating some other constraint on the relation.
The reason for this being considered undesirable is that the enforcement of
key uniqueness can be, and is [13], relatively easily enforced in relational
database software whereas the same is not true for more general constraints
such as FDs or MVDs. Thus if the satisfaction of all the constraints on a
relation is a result of key unigueness then the integrity of the relation after an
update can be easily enforced, whereas the existence of a key-based update
anomaly implies the converse.

In [16], only insertions and deletions were considered and in this paper
we extend the approach to the modification of tuples as well as extending
the results in [16] on deletion anomalies and insertion anomalies. Consistent
with this key-based approach, we define a relation to mawdification
anomalyif the modification of a tuple in the relation results in the violation
of the dependencies although key uniqueness is preserved. We also define
some additional types of modification anomalies which satisfy the extra
condition that theidentity’ of the tuple be preserved by the modification.
The motivation for this extra condition is based on the observation that in
practice it is often undesirable to change the identity of a tuple because of
the need to also update associated foreign key references as well as possible
confusion as to which real world entity the tuple refers to. Most commercial
relational systems recognise this need and allow the values of specified
attribute sets to be immutable [13]. In the relational model, it is normal to
equate the identity of a tuple with its value on a candidate key but, since
there may be multiple candidate keys, there are several possibilities as to
what could be interpreted by preserving the identity of a tuple. The three
possibilities considered in this paper are: (i) atleast one (arbitrary) candidate

! Update is here used in a general sense and means either the insertion, deletion or modi-
fication of a tuple in a relation.



176 M.W. Vincent

key of the original tuple is unchanged by the modification; (ii) the primary
(fixed) key of the original tuple is unchanged by the modification; (iii) all
candidate keys of the original tuple are unchanged by the madification.

The final semantic property analysed is the eliminatioriact-based
modification anomalies his approach to justifying normalisation is closest
to the original intuitive justification of normal forms in [11]. In this ap-
proach, the set of attributes in an MVD or FD constraint, rather than all
the attributes in a relation scheme, is interpreted as the as the fundamental
unit of information orfact for retrieval and update. In essence, a fact-based
update anomaly occurs when fact values cannot be independently updated
without violating either the basic properties of the relational model or the
dependencies. Then, for each of the operations of insertion, deletion, and
modification (also calledr@placement fact-based update anomalies can be
formally defined [10]. However, in this paper we restrict our attention to the
case of replacements. The reasons for this are that while replacements can
adequately handled without considering null values, a thorough treatment
of fact-based insertion and deletion anomalies requires the consideration of
nulls and is outside the scope of this paper.

We now outline the structure of this paper and summarise the main re-
sults obtained. Section 2 contains definitions of basic relational concepts.
In Sect. 3, formal definitions are given for redundancy and RFNF, the as-
sociated normal form for relation schemes which ensures the absence of
redundancy. We refer to RFNF, and the other normal forms to be discussed
later in the context of other semantic propertiess@mantic normal forms
The classical normal forms of 3NF, BCNF and 4NF will often be referred to
assyntactic normal formsThe reason for emphasising the difference is the
different nature of the two types of normal forms. Semantic normal forms
encapsulate the desired semantic property by requiring that all relations de-
fined over a scheme will have the specified property, while syntactic normal
forms are expressed in terms of the syntactic structure of the constraints.
The main result derived in Sect. 3 is that 4NF is equivalent to RFNF. In
Sect. 4, formal definitions are given for the various type of key based update
anomalies and the associated normal forms in which the anomalies are ab-
sent. In Sect. 5 we prove that 4NF is equivalent to the absence of key-based
insertion anomalies. In Sect. 6 we show that the condition equivalent to the
absence of key-based deletion anomalies is that the set of dependencies is
equivalent to a set of FDs, a weaker condition than 4NF. In Sect. 7 we show
4NF is equivalent to the semantic normal forms which ensure the absence of
three of the four types of modification anomalies. However, for the normal
form which ensures the absence of a modification anomaly in which all key
values are preserved, we show in Sect. 8 that the equivalent syntactic normal
forms are new normal forms that have not appeared before in the literature.
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Inthe case where only FDs are present, we show that the equivalent syntactic
normal lies between 3NF and BCNF. Similarly, for the case where MVDs
are also present, the equivalent syntactic normal form is a weaker condition
than 4NF which requires that every attribute be a member of a candidate
key. In Sect. 9 three types of fact-based modification are defined and 4NF
is shown to be equivalent to their absence. A discussion of related work is
contained in Sect. 9 and concluding comments are made in Sect. 10.

2 Basic concepts and notation

The notation used in this paper is the standard notation used in the database
literature [22, 27]. A universé is a finite set of attributes, each attribute
having an associated domain of values. @benainof an attributed € U
is denoted by DOMA) and in this paper is assumed toibénite. As usual,
the symbolsA, B, C, . .. and their subscripts represent single attributes and
V,W, X, ... and their subscripts denote sets of attributes. The union of
attribute sets{ andY is denoted byX'Y ratherthanX UY . X —Y denotes
set difference.

A relation schemeR is a subset ol/. Let the elements of a relation
scheme be denoted by = {4,,..., A, }. A tupleover R is an element
of DOM(A;) x ... x DOM(4,,) wherex denotes the cartesian product. A
relation instancéor simply arelation) r over R, denoted by-(R), is afinite
set of tuples defined ovek. In this paper, all relations are defined over a
single relation schem®& and sor(R) will be denoted simply by. If ¢ is a
tuple overR and X is a subset of?, thent[X] is therestrictionof ¢ to the
attributes inX.

2.1 Functional and multivalued dependencies

A relation r satisfiesthe functional dependency (FO¥ — Y on a rela-

tion schemeR if for all t1,t2 € r, if t1[X]| = t2[X] thent [Y] = t2]Y],
otherwise itviolatesthe FD. A relationr satisfies thanultivalued depen-
dency(MVD) X —— Y on R if for all ¢1,t2 € r with t;[X] = t2][X],

there exists a tuplé; € r such thatts[X] = t1[X], t3[Y] = ¢1[Y] and

t3[R — XY] = ta| R — XY|. We shall assume th&f andY in any MVD

X —— Y aredisjoint because of the result that—— Y is satisfied if and
onlyif X —— Y — X is satisfied [15]. A set of FDs and MVDapplyto a
relation scheme® if the attributes in every dependency are memberB.of
Since we are considering only a single relation scheme, it will be assumed
that a set of dependencies always applies to the relation scheme. The set of
all relations which satisfy a s&t of FDs and MVDs is denoted by SAY)).

An MVD or FD is standardif the Ihs of the dependency is not empty. The
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set NSE) is defined as the set of all sets of attributes which appear on the
rhs of a nonstandard MVD or FD.

Given a se® of FDs and MVDs and an FIZ — W (or MVD Z ——
W), 3 impliesthe FDZ — W (or MVD Z —— W) if every relation in
SAT(X) also satisfies’ — W (or Z —— W). One can decide whether a
setX of FDs and MVDs implies another FD or MVD by using proofs based
on a finite application of rules from the following set of inference rules [4].

FD rules
Al:IfY C X thenX — Y
A2:If X — ZandY C RthenXY — ZY
A3:If X - ZandY — ZthenX — Y

MVD rules:
A4 If X -— Y thenX -— (R — XY)
A5 If X -— Y andV C W thenWX —— VY
A6 If X -—— YandY —-— ZthenX —— Z-Y
A7:IfY C X thenX —-— Y

Combined FD and MVD rules:
A8:If X — Y thenX —-—Y
A If X =Y, ZCY, WnNY =¢andW — ZthenX — Z

The following rules, although derivable from those above, are useful and
will be used later.

Al0:If X - YZthenX — Y

All: If X -— Yand X —— ZthenX -— Y Z

A dependency ifrivial if it is satisfied by every relation. An FIXY — Y
is trivial if and only if Y € X and an MVDX —— Y is trivial if and only
if Y € X or R = XY [22]. Theclosureof a setX of FDs and MVDs,
denoted byX T, is the set of FDs and MVDs implied b¥%. Two sets of
dependencies: and ¥, areequivalent written asy = ¥, if ¥ = ¥+,
If ¥ = W, thenW is acoverfor X. The closure of a set of attributes,
denoted byX T, is the set of attributes such that an attribdte X if and
onlyif X - Aec X+,

Thedependency basfser a set of attributes(, denoted by DEPX), is
a set of attributes sets which can be writte{ a3, ..., X,,, X;", ..., X;“
Wh, ..., W, } with the following properties [3]:

(i) DEP(X) coversR,i.e. R = UZ; whereZ; € DEP(X);
(i) The sets in DEPK) are disjoint and nonempty;
(i) X -— Y e XtifandonlyifY = UZ; whereZ; € DEP(X);

(iv) Xi,...,X, aresingle attribute sets such tbat= ZL:J? X
1=

(v) X;,...,X; aresingle attribute sets such that — X = lii X
1=
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The next concept required is that ofeaduced sedf FDs and MVDs.
Definition 2.1 LetX be a set of FDs and MVD& is reducedf:

(i) Nodependency € X is redundant, i.e. for all € 3, ¥ — {d} is not
equivalent tax;

(i) Every dependency is left-reduced, i.e. for every M¥D—— Y (or
FD X — Y) € X, thereisno MVDX’ —-— Y (or FD X' — Y)
€ X% such thatX’ C X;

(iii) every dependency is right-reduced, i.e. for every M¥D—— Y (or
FD X — Y) € X, there isno MVDX —— Y’ (or FD X — Y)
€ Xt suchtha) CY' C Y.

We note that this definition is weaker than the definition in [26] since we
do not impose the condition that no set of attributes be able to be transferred
from the lhs to the rhs of a dependency. Also, it can be easily verified that
the following procedure terminates and generates a reduced cover for any
setX of FDs and MVDS.

Input: A set X of FDs and MVDs
Output: A reduced cover for by
Repeat
For each dependency d in X do
If d is redundant then X :=3 —d;

If d is not left-reduced then X := (X —-d)Ud,
where d’ is the dependency in >+ whose l|hs
is a proper subset of the lhs of d;

If dis not right-reduced then

If disan FD X -Yand X -Y' e Xt
then T:= (T - {X > YHU{X > Y X Y -Y'}
else (dis an MVD X -— Y and X -— Y’ € 1)
Y=C-{X->->Y}HU{X >—>Y X =Y -Y'}
Untii no more changes can be made to X.

Given a se® of FDs and MVDs, a set of attributes is asuperkeyor
a relation scheme if the FD X — R € 7. X is acandidate keyor R
if it is a superkey and it has no proper sub&étsuch thatX’ — R € X+,
The set of all superkeys in a scherRés denoted by SKR, ) and the set
of all candidate keys by CK{, 3). Theprimary keyof a relation scheme,
denoted byk,, is an arbitrarily chosen candidate key. An attributepsime
attributeif it is a member of any candidate key. The sekef constraints
denoted byX,, is the set of all FDs i+ of the form K — R where
K € CK(R,X). The set of all relations which satisB;. is denoted by
SAT(Xy). Obviously, if arelation € SAT(X) thenr € SAT(Xy) butthe

2 We note that the rhs of every FD in a reduced set contains a single attribute.
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converse is not true. Also, a relatione  SAT(Xy) if and only if no two
tuples in the relation have the same value for a candidate key.

If 3 is a set of FDs and MVDs which apply to a relation scheRje
then (R, X) is in third normal form(3 NV F') if for every nontrivial FDX —
A€ X7, X € SK(R,X) or A is prime [41]. (R, X) is in Boyce-Codd
normal form(BCNP if for every nontrivial FDX — A € ¥t, X €
SK(R, ¥) [12] and is infourth normal form(4NF) if for every nontrivial
MVD X -»— Y € 1, X € SK(R, X) [15].

2.2 Join dependencies

LetRy,..., R, be nonempty subsets & If there are tuples,, . . ., t, (not
necessarily distinct) in a relation (R) such thatt;[R; N R;] = t;[R; N
R;] for all 4,5 such thatl < i < p, 1 < j < p, thenty,... t, are
said tojoin completelyon {R;, Ra, ..., R,}. In this case, there exists a
unique tuplet such thatt[R;] = t;[R;], for all < such thatl < i < p,
which is called thgoin of ¢;,...,t, on{R1,..., R,}. A join dependency
(JD) is a constraint denoted ByR, . .., R,]. A relationr satisfies the join
dependency|[R;, ..., R,] on R if for every set of tuples;,....t, € r
which join completely on{ Ry, Rs, ..., R,}, r also contains the join of
t1,...,tpon{Ry,...,R,}. R1,..., R, are referred to as theomponents
of the JD. The result [15] that any MVIX —— Y is equivalent to the
JD*[XY, X Z], whereZ = R — XY, will be used often in this paper. A
JD is trivial if it is satisfied by every relation. It can be shown that a JD
“[Ra, ..., Ry]is trivial iff there exists a component such tHat= R.

AJD*[Ry,...,Ry]istotal (full) if R = R, ...R,. Since, the only JDs
considered in this paper are those equivalent to MVDs, it is easily seen that
such a JDs is always full.

2.3 Tableau

A tableauis a matrix consisting of a set of rows [1, 23]. Each column in
the tableau corresponds to an attributé&irEach row consists of variables
from a setV, which is the disjoint union of two setg; and V,,. V; is
the set ofdistinguished variables(dv's) andV,, is the set ofmondistin-
guished variablegndv’s). Any variable can appear in at most one column, a
dv must appear in each column and at most one dv can appear in a column.
A valuationis a functionp that maps each variable to an element in
DOM(A) where A is the column in which the variable appears. This is
extended to a function from a table@uo a relation ovetR in the obvious
manner. Le® be a set of FDs and JDs (any MVD is treated as a JD). The
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chasaeis the result of applying the following transformations to a tabl€au
until no further changes can be made:

F-Rule If X — A € ¥ andT has rowsv; andws wherew [X] = wy[X]
andv; = wi[A] andve = wy[A], then if either ofy; or v, is a dv and the
other is not, then every occurrence of the ndv is changed to the dv. If both
are ndv's, then the one with the larger subscript is replaced by the one with
the smaller subscript.

J-Rule If *[R4, ..., R,] € ¥ and there exists a rowsuch thatv[R,] €
T[Ri],...,w[Ry] € T[R,], w is added tdl".

Let chasex(T') be the tableau that results from applying the F-rules and
J-rules until no more changes can be made to the tableau. It can then be
shown [23] that the chase always terminates if all JDs are full (which is the
case in this paper) and the resulting tableau is unique, independent of the
sequence in which the rules are applied, up to a renaming of the ndv’s. We
will use the following results on the properties of the chase later in this paper
[23]:

Lemma 2.1 Any valuatiorp of chases;(T') which is a one-to-one mapping
satisfiesy.

Lemma 2.2 LetT'x be the tableau constructed as follows. It contains two
rows, one row, denoted hy;, contains all dv’s and the other, denoted.y,
contains dv’s in the X-columns and ndv’s elsewher&*l= chasex(Tx),
thenT™* contains the roww; and an FDX — Y € X1 iff the Y-columns in
T* contain only dv’s.

3 Redundancy and 4NF

In this section, we present a formal definition of the redundancy concept dis-
cussed in the Introduction and its associated semantic normal form which
ensures the absence of redundancy. The main result derived in this sec-
tion is that 4NF is a necessary and sufficient condition for the absence of
redundancy.

Definition 3.1 Let R be a relation schemeq an attribute inR, ¥ a set of
dependencies; a relation andt a tuple inr. The data value occurrence
t[A] is redundan{RED) if for everyreplacement of[ A] by a valuea’ such
thatt[A] # o’ and resulting in a new relatior/, thenr’ ¢ SATE).

Based on this we define a semantic normal form in which redundancy is
absent.

Definition 3.2 (R, X) is in redundancy free normal forgRFNF) if there
does not exist € SAT(X) which contains a data value occurrence that is
RED.
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A B C
2] by C1
3] b C2
Fig. 2.
A B C D E F G
1 1 1 1 1
1 1 1 0 0 1 1

Fig. 3. An example illustrating Theorem 3.1

We emphasise that for a data value occurrence to be RED every change
to the occurrence must result in a violation of the constraints or duplicate
tuples. For example, consider the relation Fig. 2 which is defined over the
attributes{ A, B, C'} with the set of constraints beifgd — B, B — C'}.

Although changing to by (or b2 to b1) in r results inB — C' being
violated, neither value is redundant according to our definition since all other
changes td; (or tobs) do not result in constraint violation. Intuitively, this
makes sense since neitlignorbs is derivable from the values in the relation
and the set of constraints. Also, we note that it is a specific occurrence of
a data value in a tuple, rather than the value itself, which is redundant. For
example, in Fig. 1 (see Sect. 1), the occurrencl ah the first four tuples
is RED but not the occurrence bf in the last tuple.

Before establishing the first main result of this section, we present an
important preliminary lemma that will be used extensively in this paper.
The lemma can be derived from the results in [33].

Theorem 3.1 Suppos& ¢ SK(R, X)and as before, denote the elementsin
DEP(X)by{X1,...,X,, X;",... ,Xj*,Wl, ..., W,}. Thenevery relation

of two tuples for which the two tuples are different on every attribute in one
of theW; but equal on all other attributes is in SAX}.

The following example also illustrates this theorem.

Example 3.1Let R = {A,B,C,D,E,F,G} and¥ = {AB —— DE,

E —— F,E — C}. Standard algorithms [3] can be used to show that if
X = AB, thenX* = {A, B,C} and DEP{) = {4, B,C, DE, F,G}.
The relation shown in Fig. 3 satisfiéx

We now derive the main result of this section.
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Theorem 3.2 (R, X) is in RENF iff it is in 4NF.

Proof.

If: We shall show the contrapositive that R(X) is not in RFNF then it is
notin 4NF. If(R, X) is not in RENF then there existse SAT(X), atuple
t € randA € R such that every change tp4] results in the new relation
violatingX. So ift[A] is changed to a valu€ such that’ ¢ r[A], resulting
in a new tuplet’ and a new relation’, thenr’ ¢ SAT(X). Suppose firstly
that an FDX — Y is violated inr’. The violation must involve’, since
r € SAT(X) andt is the only tuple changed in and some other tuplg
such that'[X| = #;[X] andt'[Y] # ¢1[Y] andt; is also inr, again because
t is the only tuple changed in Sinced’ ¢ r[A] and¢'[X] = t1[X], then
A ¢ X and sot'[X] = t[X] and thust; [X] = t[X]. Hence there are two
tuples inr, t andt;, which are identical orX and soX ¢ SK(R, ¥) and
hence(R, X) is not in 4NF.

Alternatively, assume that an MVY —— Y is violated in’ and so
there exists agaity wheret; € r and¢; € r’ such that,[X] = #'[X]. So,
sinced’ ¢ r[A], A€ Y orA e ZwhereZ = R— XY. Again this implies
t1[X] = t[X] in r and so contradicts the 4NF assumption.

Only If: The contrapositive that ifK, 3) is not in 4NF then it is not in
RFENF will be shown. Becausé( X) is not in 4NF there exists a nontrivial
MVD X —— Y € Xt whereX ¢ SK(R,X) and so there existd/; €
DEP(X) such thatX* n W; = (. By Theorem 3.1, any relationof two
tuples which are identical on all attributes except thod&jris in SAT(X).
Firstly, if there exists alz'f(;r € DEP(X) then both values OK;r are RED
in r since changing either causé&s — X;r to be violated. Alternatively,
if X = X then we claim that there are two sé&t§ and W, in DEP(X)
disjoint from X If there is onlyWW; then, sinceX NY = (), property (iii) of
DEP(X) impliesY = W; and so, by property ()XY = R contradicting
the fact thatX —— Y is nontrivial. It then follows that every value iiv;
isRED inr. O

Since 4NF reduces to BCNF if only FDs are present, this result also
shows that BCNF is the exact condition required to avoid redundancy when
only FDs are present. It also follows from this result and the results in [36]
that the redundancy property defined in that paper is equivalent to the one
defined in this section.

4 Key-based update anomalies

In this section we give formal definitions of the various types of key-based
update anomalies and the associated semantic normal forms in which these
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r r
A B C A B C
8 | b | ¢ insert <a, b, ¢;> [ a | b | g
& b, G

Fig. 4. An example of an insertion anomaly

anomalies are absent. The definitions of an insertion anomaly and a dele-
tion anomaly are taken from [16] whereas the definitions of modification
anomalies are new.

4.1 Key-based insertion anomaly

Definition 4.1 Let R be a relation schem&; a set of dependencies ana
relation. A tuplet* is said to becompatiblewith r if * ¢ 3 andr U {t*} €
SATER).

As mentioned in Sect. 2, a relation is in SAIY) if and only if no two
tuples in the relation have the same value for any candidate key and-so, if
in SAT(X), thent* is compatible with- if and only if t*[ K] ¢ r[K] for all
K € CK(R,X). We now use this concept to define an insertion anomaly
and a corresponding normal form.

Definition 4.2 A relationr has akey-based insertion anomalgIA) w.r.t.
to a set of dependenci@sif:

(i) re SAT(X®),
(i) there exists atuplé* such that™ is compatible with- butr U {t*} ¢
SATE).

Definition 4.3 (R, X) isinkey-based insertion normal forfINF) if there
does not exist € SAT(X) which has a KIA w.r.t. t&.

The following example illustrates the previous definitions.

Example 4.1Let R = {A,B,C} and¥ = {AB — C,C —— A}. The
only candidate key igi B and the relatiom shown in Fig. 4 is in SATE).
However, R, X) is not in KINF because has a KIA w.r.t.3 when the tuple
{ag,be, 1) is inserted into it since the resulting relatiofi, e SAT(3;) but
violatesA —— B.

% This ensures thatU {t*} is a relation, i.e. there are no duplicate tuples in {t*}.
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A B C A B C
& by G & by C1
a b, (o delete <ay, b,, ¢;> O EN b, C
a | b | o & | b |
a b, G

Fig. 5. An example of a deletion anomaly

4.2 Key-based deletion anomaly

In a similar fashion to an insertion anomaly and insertion normal form, a
deletion anomaly and deletion normal form are defined as follows.

Definition 4.4 A relationr has akey-based deletion anomal{DA) w.r.t.
to a set of dependenci&sif:

(i) re SAT(X);
(i) there exists a tuple* € r such thatr — {t*} ¢ SATE)%.

Definition 4.5 (R, X)is inkey-based deletion normal forfK{DNF) if there
doesn't exist € SAT(3) which has a KDA w.r.t3.

The following example illustrates these definitions.

Example 4.2LetR = {A, B,C} and¥X = {A —— B}. SinceX contains
no FDs, the only candidate keyisBC. (R, X) is notin KDNF because the
relationr shown in Fig. 5 has a KDA when the tuple(is;, b2, ¢ ) is deleted
from it sincer € SAT(X) but the resulting relation;’, € SAT(X;) but
violatesA —— B.

In the case of the set of constraints containing only FDs, a relation can
have no deletion anomaly because of the result that if a relation satisfies a
set of FDs then so does any subset of the relation [22].

4.3 Key-based modification anomalies

In this section, we extend the key-based approach of [16] to the modification
of tuples and define several classes of a new type of update anomaly, called
a key-based modification anomaly. Essentially a key-based modification
anomaly occurs when the modification of a tuple results in the violation of
the constraints even though key-uniqueness is maintained. By modelling a
modification as a deletion then an insertion, the formal definition follows.

4 It follows from part (i) of the definition that — {t*} € SAT(X4).
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Definition 4.6 Arelationr has akey-based modification anomalydMA;)
w.r.t. to a set of dependencigsif there exists € r and a tuplet* defined
over R such that:

(i) re SAT(X),
(i) ¢*is compatible with(r — {t});
(i) (r—{t}) U{t*} ¢ SATE).

Inthe case of FD constraints, if arelatiohas a KMA thenr—{t} has a
KIA (see Definition 4.2) since — {t} € SAT(X)if r € SAT(X), but this
property does not extend in the presence of MVDs sincethenSAT ()
does not implyr — {t} € SAT(X).

The next type of modification anomaly is motivated by the observation,
discussed more thoroughly earlier, that it is often undesirable to change a
tuple’s identity during a modification. However, in general there may be
multiple candidate keys and so we propose three possible interpretations as
to what is meant by leaving the identity of a tuple unchanged. In increasing
restrictiveness, they are:

(i) the replacement tuple is identical to the originalamy (arbitrary)

candidate key

(i) the replacement tuple is identical to the original te primary
(fixed) key

(iii) the replacement tuple is identical to the original@rery candidate
key.

For each of these alternatives, we now present a formal definition.

Definition 4.7 Arelationr has akey-based modification anomalyMA,)
w.r.t. to a set of dependencigsif there exists € r and a tuplet* defined
over R such that:

(i) re SAT(X);

(i) ¢*is compatible with(r — {t});

(iii) there existsK € CK(R, X) such thatt[K] = t*[K];
(V) (r—{t})U{t"} ¢ SATE).

Definition 4.8 Arelationr has akey-based modification anomalyiBMAs)
w.r.t. to a set of dependenci8xsif it satisfies all conditions of Definition 4.7
except that condition (iii) is changed to:

(i) ¢[K,p) = t[K,);

Definition 4.9 Arelationr has akey-based modification anomalyldMA,)
w.r.t. to a set of dependencidkif it satisfies all the conditions of Definition
4.7 except that condition (iii) is changed to:

(ii") t[K] =t*[K]forall K ¢ CK(R,X);
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r r r
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Fig. 6. An example illustrating modification anomalies

The following example illustrates the previous definitions.

Example 4.3Let R = {A,B,C,D} and¥ = {ABC — D, D — C,

B —— A}. The candidate keys ard BC' and ABD and the relation

r in Fig.6 is in SATE). If the tuplet = (a2,b1,c1,d1) is changed to
t* = (ag, b1, c1, ds), resulting in the relation’, thenr has a KMA, (and
thus also a KMA). To verify this, each of the conditions of a KMAwill

be verified. Condition (i) holds sincec SAT(X). Condition (ii) follows
because both tuples irf are distinct on both candidate keys. Condition
(i) holds sincet[ABC| = t*[ABC] and (iv) holds becausg violates

B —»— A.

If ABC is chosen as the primary key, theralso has a KMA when
t is replaced by* sinceB —— A is still violated. If ABD is chosen as
the primary key, then replacingby ¢* does not constitute a KMAsince
t[ABD] # t*[ABD]. However, if instead is replaced byas, b1, ¢z, d1),
resulting in the relation”, thenr has a KMA; sincer” € SAT(X;) but
violatesB —— A.

Also, neitherr nor any other relation can have a KMAThis follows
because every attribute is prime and so any modified tuple satisfying con-
dition (iii”) must be identical to the original, but then (i) and (iv) cannot be
satisfied simultaneously.

We now use these definitions of anomalies in relation instances to define
the semantic normal forms which are free of these anomalies.

Definition 4.10 (R, X) is in key-based modification normal form 1
(KMNF,) if there doesn't exist a relation which has a KMA w.r.t. X.

Definition 4.11 (R, X) is in key-based modification normal form 2
(KMNF,) if there doesn't exist a relation which has a KMA w.r.t. 3.

Definition 4.12 (R,X) is inkey-based modification normal form 3
(KMNFs) if there doesn't exist a relation which has a KMA w.r.t. 3.

Definition 4.13 (R, X) is in key-based maodification normal form 4
(KMNF,) if there doesn't exist a relation which has a KMA w.r.t. 3.

From these definitions, it is easily seen that the following implications
hold:r has a KMA, = r has a KMA, = r has a KMA, = r has a KMA;
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and hence the following implications also hold for the corresponding normal
forms: KMNF;, = KMNF; = KMNF3 = KMNF4.

Since equivalent sets of dependencies embody exactly the same logical
information, it is important that any normal form possess the property of
beingcover insensitiva.e. the property is independent of which equivalent
cover is chosen. The classical syntactic normal forms 3NF, BCNF and 4NF
are cover insensitive since they are defined as a property of the closure of
the set of dependencies which, by definition, is the same for all equivalent
covers. We now show that all the semantic normal forms defined in this
section are also satisfy the property.

Theorem 4.1 The update anomalies KIA, KDA, KMAKMA,;, KMAg,
KMA, normal forms KINF, KDNF, KMNIF, KMNF,;, KMNF; and KMNF;
are cover insensitive.

Proof. Immediate since, by definition, a set of attributes is a candidate key

w.r.t. a set of dependencies iff itis a candidate key w.r.t. any equivalent cover
and a relation violates a set of dependencies iff it violates any equivalent set
by the definition of equivalence. O

5 KINF and 4NF

In this section, we show that 4NF and KINF, the normal form defined in
Sect. 4, are equivalent. This result also follows from the results of [16] but
our proof is more direct and is based on a stronger preliminary lemma.

Lemma 5.1 If (R, X) is notin 4NF then every nonemptye SAT(X) has
a KIA w.r.t. 3.

Proof. If (R, X) is not in 4NF then there exists a nontrivial MVED ——

Y € ¥t whereX ¢ SK(R,X). Lett be any tuple in- and lett* be the
tuple defined by* [ X] = ¢[X] andt*[A] ¢ r[A]forall A € (R — X). Such

a tuple always exists because the domains are infinite. The claim is that
has a KIA whent* is inserted into it. This is immediate from the fact that for
anyK € CK(R,X), K — X # () sinceX ¢ SK(R, X), and the definition
oft*. O

Theorem 5.1 (R, X) is in 4NF iff itis in KINF.

Proof.

If: The contrapositive, that ifK, 3J) is not in 4NF then it is not in KINF,
follows from Lemma 5.1 and the fact any relation containing a single tuple
is in SAT(X).

Only if: Let (R, X) be in 4NF and suppose to the contrary th&t X) is

not in KINF. So there exists € SAT(X) and a tuplet* ¢ r such that
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rU{t*} € SAT(Xy)butrU{t*} violates a nontrivial dependend§ — Y

or X —— Y in X. For this to occur, there has to be at least two distinct
tuples inr U {¢*} which are identical oX . But this impliesX ¢ SK(R, X)
sincer U {t*} € SAT(X;) which contradicts the assumption thét, &)
isin4NF. O

6 KDNF and 4NF

In this section the relationship between KDNF, the normal form defined in
Sect. 4, and 4NF is investigated. We prove that 4NF is a stronger condition
than KDNF and that KDNF is equivalent to the condition that the set of
constraints is equivalent to a set of FDs.

Lemma 6.1 If (R, X) is in 4NF then it is in KDNF.

Proof. Similar argument to the one used in Theorem 5.0

It was noted earlier that no relation scheme can have a KDA if the set of
constraints contains only FDs. The following example shows that even in
the presence of both FDs and MVDs, a relation scheme may have no KDA
eventhoughitis notin 4NF. In other words, 4NF is hot a necessary condition
for KDNF.

Example 6.1LetR = {A, B,C}and¥X = {A —-— B,C — B}.Theonly
candidate key is AC and so both dependencies violate 4NF. Using inference
rules A9 and A8% is equivalent to the setof FDS' = {A — B,C — B}.
However, as noted earlier, a KDA is cover insensitive and/adX) is in
KDNF becaus&’ contains only FDs.

We now introduce a restriction on the MVDs in the set of dependencies
which will ensure a necessary and sufficient condition for a relation scheme
to be in KDNF [19].

Definition 6.1 LetX be a set of FDs and MVDs. An MVD —— Y € X
is pureif it is nontrivial and X — Y ¢ ¥t andX - R— XY ¢ 7. %
is pureif it contains only FDs or if every MVD iX is pure.

The following example illustrates the definition.

Example 6.2Let R = {4, B,C} and¥ = {A —-— B,B — C}. From
the inference rulest — C € X%t and soA —— B is not pure. The
MVD A —— B inthe se{ A —-— B,C — B} is also not pure since
A— BeXT.

The motivation for the definition is to distinguish between those MVDs
which convey ‘true’ multivalued information and those that only represent
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FD information. This notionis captured in the following lemmawhich shows
that the existence of a pure MVD is both a necessary and sufficient condition
for the set of constraints not to be equivalent to a set of only FDs. Similar
definitions aimed at ensuring that the MVDs are not FD equivalents have
also been proposed by others [40]. It is also clear, using rules A8 and A4,
that any set of FDs or MVDs has a pure cover generated by replacing each
nonpureX -— Y byX - Yif X -YinXt orbyX - R— XY if

X —>R-XYinXT,

Lemma 6.2 A setX of FDs and MVDs contains at least one pure MVD iff
3 is not equivalent to a set of FDs.

Proof.

If: Suppose to the contrary that is not equivalent to a set of FDs but
doesn’t contain a pure MVD. Then, as noted previously, if every non pure
MVD X —-— Y € X isreplaced by eitheXk — Y orX — R— XY, an
equivalent set of FDs is obtained. This is a contradiction.

Only If: Suppose to the contrary th8tcontains a pure MVDX —— Y but

3 = X whereX¢ is a set of FDs. By definition, this means tat—— Y

is implied byX¢. Then, by Theorem 7.2 in [22], there exists either— Y

orX - R— XY € 2? and, by definition of equivalence, these FDs are
also inX* thus contradicting the assumption tBat—— Y is pure. O

In order to establish the main result of this section, we firstly derive
additional preliminary lemmas.

Lemma 6.3 If X ¢ SK(R, X)), then the tablead™, whereT™ = chases;
(Tx), consists of two or more rows and all rows are identical’¥n

Proof. Let T'x, wq, wx, T™, w; andw} be as defined in Sect. 2. Firstly,
T* must consist of more than one row since otherwise one derives from
Lemma 2.2 the contradiction that € SK(R, X). Secondly, we claim that

for each attributel € X, T*[A] consists of a single dv and so all rowsIif

are identical onX. This follows from an inductive argument. Initially, by
definition of T'x, each column inX contains a single dv and so the property
holds. Then, leT” represent the tableau at any stage of the chase and assume
inductively that the property is true. If a J-rule is appliedtao produce a
new roww’, then by definition of the J-rule, for each attributec R there

is a roww in T” such that,’[B] = w[B]. So, by the induction hypothesis,
for every attributed € X, w'[A] will contain the same dv &&'[A] and the
hypothesis is again true. Alternatively, if an F-rule is applied then the dv in
each of the columns iX will remain unchanged since the F-rule does not
change dv's. O

We now use this lemma to derive a result which will be used later to
construct a relation with a deletion anomaly.
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T*
X Y Z
Wy X Y1 Z1
Wy X Y2 Z
st X Y1 Z
Wy X Y2 Z1

Fig. 7. Structure of tableald™

Lemma6.41f X —— Y is a pure MVD inX, there exists a relation
r € SAT(X) which contains at least 4 distinct tupleg, ws, w3 andwy
such thatwl[X} = U)Q[X] = LU3[X] = W4[X],W1[Y] = WQ[Y],WQ[Y] =
w3[Y],wsY] = wa[Y],wn[Z] = w3[Z],w3[Z] = we[Z],ws[Z] = w4[Z]
(whereZ = R — XY).

Proof. Form the tableallx as described in Sect. 2 and [Et = chasex
(T'x). The claimis thaf™ satisfies the conditions of the theorem from which
it follows trivially that so does(7™) for any one-to-one valuatiop. The
desired property of * can perhaps be more easily illustrated in Fig. 7.

From Lemma 6.37™ consists of more than one row and every row is
identical onX . From Lemma 2.2, one row ifi* is the rowwv, which contains
only dv’s. For notational convenience, relabghsw,. Next, X — Y ¢ X+
sinceX —— Y is pure and so, by Lemma 2.2, there must be at least one
row in 7, which we label ass, which contains a ndv in & -column and
Sows[Y] # wi[Y].

Suppose firstly that; [Z] # ws[Z]. By Lemma 2.17* satisfiesX ——

Y and so there is a rows with w3[X] = w1[X], w3[Y] = wi[Y] and
w3[Z] = wa[Z] and a roww, with wy[X] = w1 [X], wa[Y] = we[Y] and
w4]Z] = w1]Z]. These conditions also imply that, ws, wz andw, are
distinct and so satisfy the conditions of the theorem.

Alternatively, suppose that;[Z] = w;[Z]. Because by Lemma 24
contains only dv'sw,[Z] contains only dv’s in theZ-columns. Then, since
X — Z ¢ ¥ becaus&X —— Y ispure,thereisarows € T* containing
andv in aZ-column and sas[Z] # w2 [Z] andws[Z] # w1[Z] and hence
w3 must be distinct fromwy andw;. There are then three subcases to be
considered.

(@) w3[Y] = w1[Y]. Since by Lemma 2.T* € SAT(X), there must be
arowwy in T* with wy[Z] = ws[Z] andw,[Y] = we[Y]. These conditions
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alsoimply thatu, is distinct and san , w4, w3 andw, satisfy the requirements
of the lemma.

(b)wsY] = wo[Y]. Again, sincel™ € SAT(X), thereis adistinct tuple
wy With w4 [Y] = w1 [Y] andwy[Z] = w3[Z]. Again these conditions imply
thatwy is distinct and sovq, w3, wy andw, satisfy the requirements of the
lemma.

() ws[Y] # walY] andws[Y] # w1[Y]. Again, to satisfyX —— Y/,
there is a rowws with w4[Y] = w1[Y] andwy[Z] = w3[Z] and a rowws
with ws[Y] = wa[Y] andws[Z] = w3[Z]. Thenw, ws, ws andw, satisfy
the requirements of the lemman

This lemma is now used to derive the main result of this section which
shows that the condition that the set of dependencies contain only FDs is
equivalent to KDNF.

Theorem 6.1 (R, X)) is in KDNF iff 3 is equivalent to a set of FDs.

Proof.

If: Follows immediately from the facts that a KDA is cover insensitive and
that there can be no KDA when the only dependencies are FDs.

Only if: We shall show the contrapositive that3f is not equivalent to a
set of FDs then there existswith a KDA. By Lemma 6.2, there is a pure
MVD X —— Y in ¥ and by Lemma 6.4, there exists= SAT(X) of at
least four tuples with the properties specified. Relatidras a KDA since
deleting any of the four specified tuples resultXin—— Y being violated,
but the new relation is in SAB{;) sincer € SAT(X). O

7 KMNF 1, KMNF 2 and KMNF 3 and 4NF

In this section we derive results on the relationship between 4NF and the
key-based semantic normal forms KMNEKMNF; and KMNF;. The two
cases of whether the constraints contain only FDs or both FDs and MVDs
are treated separately.

7.1 The FD case

The main result we establish is that BCNF is equivalent to KMNEVINF
and KMNF;. Firstly, we state some elementary lemmas whose proofs are
omitted since they involve only simple applications of the inference rules.

Lemma7.11f X - A€ X andX ¢ SK(R, X)thenX A ¢ SK(R, X).

Lemma7.2 If K € CK(R,X)then there is no nontriviak — A € X
suchthatY A C K.
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Lemma731f X — A € ¥ and X ¢ SK(R,X) then for all K €
CK(R,X), K — Xt #£0.

The next lemma is needed for the construction of counter-examples in the
proofs of the main theorem concerning KMN&nd BCNF.

Lemma 7.4 LetX be a reduced set of FDs and suppose— A € ¥ and
X ¢ SK(R, X). Also, letV andY be subsets ok such thatX =V UY,
VNY =0,V #0,Y # (. Construct a relation of two tuples¢; andts,
such thatt; andt, are identical onV ™ and different elsewhere. Therhas
the following properties:

(@) r € SAT(S):
(b) t1[V] =t2[V];
(©) ta[Y] # t2f Y],
(d) t1[A] # t2[A].

Proof. Properties (a) and (b) follow from the fact tHat¢ SK(R, X) (since

X ¢ SK(R, X)) and a result on two tuple relations (Theorem 4.1 in [22]).
To establish (c), assume to the contrary thélt'| = ¢2[Y]. By definition of

r,V — Y € 7T and applying the inference rules shows thiat+ A ¢

> T contradicting the fact thaXt is reduced sinc& c X. Similarly, (d)

holds since otherwise the reduced assumption is again violated by replacing
X—>AbyV - A, O

These results are now used to establish the first main theorem of this
section that BCNF is equivalent to KMNFThe proof is rather technical, so
we provide firstly a brief sketch of the ‘if’ part of the proof, i.e. that KMINF
implies BCNF (the ‘only if’ part is immediate). We do this by showing the
contrapositive that if R, X) is not in BCNF then one can always construct
a two tuple relation which has a KMfand so R, X) is not in KMNFs.
The construction uses a result thatff, ) is notin BCNF then there exists
an FDX — A € 3 such thatX is not a superkey and then, depending on
the possible inclusion relationships betwe€n and the primary keyg,,
assigns particular values 6 and A in a two tuple relation such that the
resulting relation has a KMA

Theorem 7.1 If ¥ contains only FDs thenK, X) is in BCNF iff it is in
KMNFs;.

Proof.

Only if: As for Theorem 5.1.

If: We will establish the contrapositive that iR(3) is not in BCNF then
there exists with a KMA3. As (R, X) is not in BCNF there is a nontrivial
X — A € ¥ whereX ¢ SK(R,X) (Theorem 12.7 in [38]). However,
every set of FDs has a reduced cover and so without loss of genetabty
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assumed to be reduced akd— A an FD inX which violates BCNF. The
proof is divided into three exhaustive cases.

(a) A ¢ K, wherekK, is the primary key oR. By Lemma 7.1 XA ¢
SK(R,X) since X ¢ SK(R,X) and using the result mentioned in the
previous proof, a relation of two tuples,t; andts, which are identical on
(X A)™ and different elsewhere is in SAL{. Let¢* be the tuple obtained
by modifyingts[A] so thatt*[A] # t1[A]. The claim is that has a KMA
whent, is updated ta*. Condition (i) is satisfied becausec SAT(X),
(ii) holds sincety [ K| = t*[K,| (asA ¢ K,) andt*[K,]| # t1[A] because
r € SAT(X), (iii") holds becaused ¢ K, and (iv) is satisfied because
t1[X] = t*[X] andt,[A] # t*[A].

(b) A € K, and X N K, = (. Firstly, X # () since otherwise applying
the inference rules shows that, — A € SK(R, X) contradicting the fact
that K, € CK(R,X). Next we claim that i’ — B € X andY # (
thenY' N NS(X) = (. To verify this, suppose to the contrdfy— C' € X
andC' € Y. An application of the inference rules shows that— B
can be replaced by — C — B while maintaining equivalence and so
contradicts the assumption th&tis reduced. Construct then a relation
of two tuplest; andts, as follows. For allC' € NS(X), sett;[C] = t2[C]
and for all othelC' € R sett;[C] # t2[C]. We note that sinc& # 0, XN
NS(X) = () and sor is actually a relation, i.e; andt, are not duplicates.
Let t* be the tuple such that[X] = ¢;[X] andt*[R — X] = 2[R — X].
The claim is that- has a KMA; whents is changed ta*. To satisfy (i)
of a KMA3, we show that € SAT(X). Any FD of the form() — C'is
satisfied since; [C] = t2[C] and any FDY" — C whereY # () is satisfied
sincet [Y] # to[Y] becaus&yn NS(X) = 0. To verify (ii), firstly KN
NSX) = 0 forall K € CK(R, X) since otherwise an application of the
inference rules derives the contradiction tiat— B € SK(R, X) where
B € KNNSE). By Lemma 7.3k — X # 0 forall K € CK(R,X)
sinceX ¢ SK(R, X) and combining this wittkn NS(X) = 0 shows that
KNR—- X —NS(X) # 0 and so (ii) holds by construction efand¢*.
Condition (iii") follows by definition oft* and the fact thaf N K, = .
Condition (iv) follows by definition oft* and the fact thatd ¢ NS(X)
since otherwise the reduced assumption is violated by repla€ing A by
0 — A.

(c)A e K,andX NK, # 0. LetV = X NK,andY = X — K,
andsoX =V UY,VNY = (. Also,V # () by assumption andl” # ()
since otherwiseXA C K, sinceA € K,, and so Lemma 7.2 implies a
contradiction. By Lemma 7.4, the relatiorof two tuplest; andt,, which
are identical ori/* and different elsewhere has the properties given by the
lemma. Lett* be the tuple defined by [Y] = ¢;[Y] andt*[R — Y| =
to[R — Y]. The claim is that- has a KMA, whent; is replaced byt*.
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Condition (i) follows from (a) of Lemma 7.4. To verify (ii}y TY A C X T
from the properties of the closure and then, by LemmaR .3,V Y A # ()
for all K € CK(R,X) and so (ii) holds by definition of;, to and¢*.
Condition (iii") holds since* andt, differ only on attributes inX’ — K, and
(iv) follows from Lemma 7.4 and the constructiontf 0O

A corollary of the previous result is the following which shows that
BCNF, KMNF; and KMNF,; are also equivalent.

Corollary 7.1 If X contains only FDs, then BCNF, KMNFKMNF,; and
KMNF; are equivalent.

Proof.

KMNF, = KMNF, = KMN F5. Immediate from the definitions.
KMNF3; = BCNF: Immediate from the theorem.

BCNF = KMNF;: As for Theorem5.1. O

7.2 The FD and MVD case

In this section we generalise the results of the previous section by showing
that KMNF;, KMNF,, KMNF3 and 4NF are again equivalent when MVDs
are present in the set of constraints provided that there is also at least one
FD. First, a preliminary lemma that will be extensively used in later sections
is established.

Lemma7.5 LetX ¢ SK(R,X).If W € DEP(X)andWnX™* = (then
KnW #(forall K € CK(R,X).

Proof. By Theorem 3.1, any two tuple relatierfor which the tuples are the
same except for those attributesiinis in SAT(X). Hencer € SAT(Xg)

and sak NW # () because the two tuples must be distinct on every candidate
key. O

We now present the main result of this section which shows that 4NF
and KMNF; are equivalent. As before, we first briefly outline the main idea
of the ‘If’ part of the proof for the benefit of the reader (the ‘Only If’ partis
again immediate). The ‘If’ part is established by showing the contrapositive
that if (R, X) is not in 4NF then one can construct a relation which has a
KMA 3 and so R, Y) is not in KMNFs. The construction is based on the
result that there exists an MVD or FD M where the lhs is not a superkey
if (R, X) is not in 4NF and then constructing a relation with specific values
for the attributes in the dependency so that resulting relation has asKMA
The technical complexity and length of the proof arises from the fact that
different techniques are needed for constructing the relation depending on
whether the dependencies are standard or not and on the relationship between
the attributes in the |hs of the dependency and the primary key
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Theorem 7.2 If X is a set of FDs and MVDs containing at least one non-
trivial FD, then (R, X) is in 4NF iff it is KMNF;.

Proof.

Only if: As for Theorem 5.1.

If: We shall show the contrapositive that ®(3) is not in 4NF then it is

not in KMNF;s. Because 4NF is cover insensitiig,is assumed to be pure
and reduced without loss of generality. Then sinBeX) is not in 4NF, it
follows from Lemma 4.3 in [36] that there exists a dependend imhich
violates 4NF. In the proof, the complementary rule (rule A4) is needed and
so X —— Y will often be written asX —— Y |Z whereZ = R — XY

We shall now consider several cases separately.

(a) There exist nonstandard dependenciesifhe FD and MVD cases
are considered separately.

(a.1) There exists a nonstandard AD —+ B € X. B cannot be a
superkey or else an application of the inference rules shows)timia
superkey and so the Ihs of every dependencXiis a superkey thus con-
tradicting the assumption thaR(X) is not in 4NF. Also,B ¢ K for all
K € CK(R, X) since otherwise the inference rules show the contradiction
that K — B € SK(R, X). Construct then the tabled as in Lemma 2.2,
let T* = chasex(Tp) and letr be any one-to-one valuation @f;. Then
by Lemma 6.3y contains at least two tuples and all tuples are identical on
B. We then claim that has a KMA; when someB value inr is changed
to a new value. Condition (i) follows from Lemma 2.1; (ii) holds because
r € SAT(X}) and B is not prime; (iii) holds becausB is not prime and
(iv) holds because the new relation violafes: B.

(a.2) There exists a nonstandard MMD—— Y|Z € X: Let K, be
the primary key ofR. Since there is at least one FDXy R ¢ CK(R, X)
and so there is at least one attribielisjoint from K,. We then claim that
B cannot be a superkey. To verify this, suppose to the contraryihgia
superkey and tha® € Y (by symmetry the same argument holdBiE 7).
Then sinceB is a superkeyB — Z € X and so, by inference rule A9,

() — Z € ¥ T contradicting the assumption thatis pure.

As before, construct the tabledy as in Lemma 2.2, |l = chasex;
(T’5) and letr be any one-to-one valuation @f;. Then by Lemma 6.3;
contains at least two tuples and all tuples are identicdboNext we claim
that there are two tuples; andts, such that[Z] # t2[Z]. This follows
since if all rows are equal o#, then they must be equal tg; on Z since
dv’s are not changed during the chase and so, by Lemm#2:2,7Z ¢ T
which implies, by inference rule A9, that— Z which again contradicts the
pure assumption. We then claim thatas a KMA; whents[B] is changed
to avalue* disjoint from the values in. Condition (i) follows from Lemma
2.1; (i) holds because for ank’ € CK(R,X), if B ¢ K then the new
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relation is in SATE ) because € SAT(Xy) and if B € K, then the new
relation is in SATE ;) becausé™ is disjoint from the values in; (i) holds
because3 ¢ K, and (iv) holds since; [Z] # t2[Z] and the property of*.

(b) All dependencies i are standard If the only violations of 4NF
are caused by FDs, there can be no MVDgrbecause if there is, the
Ihs of the MVD must be a superkey contradicting the fact as pure
and Theorem 7.1 then shows that, &) is not in KMNF;. Alternatively,
suppose there iX —— Y € X violating 4NF, i.e. the MVD is nontrivial
and X ¢ SK(R,X). We shall now show that there exists a relation which
has a KMA;. Split each of the setX’, Y andZ into a set which intersects
with K, and a set which is disjoint fromf{}, and soX —— Y'|Z is written
asX'Xy —»— Y'Yy Z'Z;, whereX = X' X, Y =YY}, Z = Z'Z;, and
X'Y'Z' N K, = (. Again, several subcases are considered.

(b.1) X;, = 0. Define a relation of two tuples,t; andt,, such that;
andt. are different on every attribute. Obviousty,e SAT(X) sinceX
contains only standard dependencies. Then define the ttigJe [ X] =
t1[X], t*[R — X] = t2| R — X]. The claim is that has a KMA; whent; is
replaced by*. Condition (i) of a KMAg follows from the definition of and
(i) holds follows from Lemma 7.3 and the fact th&t ¢ SK(R, X). Also,
t*[Kp] = t2[K,)] sinceX}, = () and so (iii") holds. Condition (iv) follows
from Z # () (sinceX —— Y is nontrivial) and the definitions of andt*.

(b.2) X}, # (). We now break the proof up into several subcases.

(b.2.1.1) There doesn't exist a dependend imith a subset ok, on the
lhs. It follows from this assumption that” # () since otherwise the MVD
X'Xy —— Y'Yy|Z'Z could be written as\;, —— Y'Y}|Z'Z. Construct
r of two tuplest; andts, such that;[X] = t2[Xx] andt,[B] # ta[B] for
all B € R — Xj,. Definet* by t*[X] = ¢,[X] andt*[R — X| = t2[R — X].
We claim that- has a KMA; whent; is replaced by*. Firstly,r € SAT(X)
because, [B] # t2[B] forall B € R — X}, and so the only dependency that
r could violate is one with a subset &f;, on the lhs and by (b.2.1.1) this
cannot occur. Next, by Lemma 7R,— X # () forall K € CK(R,X)and
so by definition ofr andt*, t*[K] # t;[K] and thus (ii) holds. Condition
(ii") holds because* andt, differ only on X’ and (iv) holds becaugé and
t; agree onX yet differ onY andZ.

(b.2.2) There exists a dependenc®iwith a subset oK, as the Ihsin
otherwords, there exists eith&, —— V orX; — A € Zwith X; C X.
Consider firstly the MVD case.

(b.221)X; —— V|U € X. Write X;, —— V|U as X; ——
V'V |U'U;, where, as beforel;, and W), are the intersection ok, with
V andU. Firstly, by property (ii) of DEPJ is equal to a union of elements
of DEP(X}) and at least one of thes&], must be disjoint froni.X; ) since
otherwisel/ C (X},)" contradicting the assumption thtis pure.
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We now construct a relation which has a KNUA&ince, as noted earlier,
R # K, and sinceR = X, V'V, U'Uy, eitherV’ # () or U’ # 0. Assume
thatV’ £ (). By symmetry, the same argument applie§'if£ (). Construct
r of two tuples; andt,, which are identical on all attributes except those in
W and modifyr by replacingts by the tuplet* defined byt*[V'] # ¢1[V’]
andt* andt, are identical elsewhere. The claim is thatas a KMA; whent,
is replaced by*. Condition (i) follows from Theorem 3.1, (ii) holds because
of Lemma 7.5 and the fact that only th€ values int, are modified and
(iii") holds for the same reason. Finally, (iv) is valid since the tupfeand
t, agree onX;, but differ onU andV'.

(b.2.22)X; — A € X. Firstly, by Lemma 7.24 ¢ K, because
X, € K,. ThenX; ¢ SK(R,X) sinceX, C K, and so there exists
W € DEP(Xj}) such thath’ N (X;)* = (. Choose any such/ and
construct a relation of two tuples¢; andto, wheret; [R—W| = ta[R— W]
andt;[B] # to[B] for all B € W. Modify r by replacingt, with the tuple
t* defined byt*[A] # t1[A] andt*[R — A] = t;[R — A]. The claim is that
has a KMA; whent, is replaced by*. Condition (i) follows from Theorem
3.1. The compatibility condition (ii) holds since by Lemma 7Zpandt,
differon K'NW forall K’ ¢ CK(R, X)and sa* andt, differ on K’ since
t*[W] = to[W]. Condition (iii") holds becausé'[A] # ¢1[A] andA ¢ K,
while (iv) holds becausg andt; agree onX; yet differ onA. 0O

A simple corollary of the previous theorem is the following important
result that 4NF is also equivalent to KMNBEnd KMNF,.

Theorem 7.3 If 3 contains at least one FD then 4NF is equivalent to
KMNF;, KMNF, and KMNF;.

Proof. As for Corollary 7.1. O

We note that the requirement in Theorem 7.3 that the set of dependencies
contain at least one FD is necessary for the equivalence of 4ANF and KMNF
To verify this, if there are only MVDs in the set of dependencies then the
only candidate key i€ since only trivial FDs are implied by a set of MVDs
[22]. So every attribute iR is prime and it follows from the definitions of
modification anomalies thaf, X)) is in KMNF3. However, any nontrivial

MVD violates the 4NF condition sinc& is the only candidate key and

so every relation scheme with only MVDs in the set of dependencies is in
KMNF3 yet not in 4NF.

8 KMNF 4 and 4NF
8.1 The FD case

In this section we show that the syntactic normal form equivalent to KMNF
is a new normal form, what we refer to @asime attribute normal form
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(PANBP. This new normal form is stronger than 3NF yet weaker than BCNF.

We also show that PANF is not equivalent to EKNF, another normal form

that lies between 3NF and BCNF, and that the simplest version of the well
known synthesis algorithm generates schemes which are in PANF.

Definition 8.1 LetX be a reduced set of FDsR( X)) is in prime attribute
normal form(PANF) if for every FDX — A € 3, eitherX € CK(R, X)
or X A contains only prime attributes.

It is easily seen from this definition that PANF lies between 3NF and
BCNF and the following examples show that this inclusion is strict.

Example 8.1Let R = {A,B,C,D} and¥ = {AB — C,CD — AB,

BD — A}. The candidate keys aréD and BD and so R, X)) is in 3NF
sinceC is a prime attribute, but®, 32) is notin PANF sinced is not a prime
attribute.

Example 8.2LetR = {A,B,C,D}andX¥ = {AB — C,AB — D,C —
B}. It can be easily verified that the only candidate keysAafand AC
and so R, X) is in PANF since the Ihs of the first two FDs is a candidate
key and, in the FOC' — B, bothC and B are prime. HoweverZ®’ — B
violates BCNF.

We now show the equivalence of PANF and KMNF

Theorem 8.1 If 3 contains only FDs, then/{, ¥) is in KMNF; iff it is in
PANF.

Proof.
If: Suppose to the contrary thak(X) is in PANF yet is not in KMNR.
Then there exists andt € r such that an FDX — A is violated whernt
is modified tot*. By definition of a KMA, the new relation is in SAT)
and soX ¢ SK(R,X) and hence, by the definition of PANK A contains
only prime attributes. This is a contradiction since, by definition of a KIMA
t[X A] is unchanged during the update and’§e—+ A cannot be violated.

Only if: The contrapositive that if, X2) is not in PANF then it is not
in KMNF 4 will be established. If R, X) is not in PANF there existX —
A € ¥ such thatX ¢ SK(R,X) and X A contains a nonprime attribute.
If A is nonprime then the same construction used in (a) of the proof of
Theorem 7.1 shows thaf?(3:) is not in KMNF;. Alternatively if A is
prime thenX must contain nonprime attributes Xfcontains only nonprime
attributes then the same construction used in (b) of Theorem 7.1 shows that
(R, %) is notin KMNF,. Alternatively, suppos& contains both prime and
nonprime attributes wher¥ is the set of prime attributes andis the set
of nonprime attributes. The conditions of Lemma 7.4 are satisfied and the
same construction used in (c) of Theorem 7.1 shows tRakl is not in
KMNF4. O
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We note that since KMNFis cover insensitive, then a corollary of this
theorem is that PANF is also cover insensitive, a result that is not immediate
from the definition of PANF.

Another normal form, namelglementary key normal for(EKNF) [41],
also lies between 3NF and BCNF. We now demonstrate that EKNF and
PANF are not comparable. Firstly we recall the definition of EKNF.

Definition 8.2 Suppose thak contains only FDs and leK — A an FD
in . ThenX — A is elementanyif there doesn’t exist a nontrivial FD
X' — A € X7 such thatX’ C X.

We note that it follows from this definition that every FD in a reduced
set of FDs is elementary.

Definition 8.3 Let R be a relation schemexX a set of FDs andK <
CK(R, X). ThenK is anelementary keyf for some attributed, K — A

is an elementary FD. An attribute which belongs to some elementary key is
called anelementary key attribute

Definition 8.4 Let R be a relation scheme ari a set of FDs. R, X) is in
elementary key normal fordEKNF) if for every nontrivial FDX — A €
¥, eitherX € CK(R,X) or A is an elementary key attribute.

The first example, taken from [41], shows that a scheme can be in PANF
but not in EKNF, while the second example demonstrates the converse.

Example 8.3Let R = {A,B,C} and¥ = {A — B,B — A}. The
candidate keys at¢C andBC'. Neither candidate key is elementary because
neither AC — B nor BC — A is an elementary FD and so there are
no elementary key attributes. Henck, &) is not in EKNF since if one
considers the FDI — B thenA ¢ CK(R, X) andB is not an elementary
key attribute. However K, ) is in PANF since every attribute iR is prime.

Example 8.4As in Example 8.1, lekR = {A, B,C, D} and¥X = {AB —
C,CD — AB,BD — A}. Both the candidate keyBD and C'D are
elementary because of the FD9 — AB, BD — A and soB, C and

D are elementary key attributes. Thug, &) is EKNF since botiC' D and
BC are superkeys and is an elementary key attribute. However, as noted
previously, &, X) is not in PANF becaus4d is not prime.

We now address the problem of generating relation schemes which are
in PANF. We start with the simplest version [32] of the synthesis algorithm
[6] for generating 3NF schemes. Other versions of the algorithm combine
schemes which result from dependencies having the same, or equivalent,
left-hand sides. We conjecture that Theorem 8.2 is also valid for these alter-
natives versions.
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ALGORITHM 8.1. A SYNTHESIS ALGORITHM FOR
ACHIEVING 3NF.

Input: A relational scheme R and a reduced
set¥ of FDs.

Output: A dependency preserving, lossless
decomposition of R into 3NF.

Method:

For each FD X — A € X, create the scheme XA.
If there is no scheme which contains a

candidate key K then create an extra scheme
which contains K alone.

We now show that the relation schemes generated by Algorithm 8.1 are
in PANF.

Theorem 8.2 Each of the relation schemes generated by Algorithm 8.1 is
in PANF.

Proof. If the relation scheme is a candidate key then the result is immediate,
so alternatively assume that it is the scheRie= X A which corresponds
to the FDX — A € X. From the properties of projected FDs [22, 32]
any FD which holds inR’ must also hold inR. We show firstly thatX
is a candidate key irR’. X € SK(R',X) becauseR’ = X A. Also,
X € CK(R',X) since if not there exist& € CK(R',X) with K C X,
and soKk — A € X which contradicts the assumption thsit — A is
reduced. We now show that any other FD— B which holds inR’ satisfies
PANF. We divide the proof into the two casBs= A andB # A.

(&) B = A. For this case, it follows that = X since otherwis® C X
and this violates the property th&it — Aisreduced and sB — B satisfies
PANF.

(b) B # A. Firstly, sinceR’ = XA thenB € X and so, from Lemma
7.2,Y ¢ X and thusy’ = AX’ whereX’ ¢ X. X’ is prime inR’ since
X € CK(R',X) and so it remains to show thatis prime. Assume it is
not. SinceAX’ — BandR' = AX, AX — B € SK(R,X) and so there
existsK € CK(R',X) suchthatX C AX — B. Then sinced is not prime
in R, K C X — Band soK C X becaus&3 € X which contradicts the
fact thatX — A is reduced using the same argument as in the previous
paragraph. O

8.2 The FD and MVD case

We now address the problem of deriving necessary and sufficient conditions
forarelation scheme to be in KMNRhen both FDs and MVDs are present.
We proved in the previous section thatin the case where the set of constraints
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contains only FDs, KMNFis a weaker condition than BCNF. The following
example shows that similarly, in the case where the set of constraintsincludes
both MVDs and FDs, 4NF is a stronger condition than is required for a
relation scheme to be in KMNF

Example 8.5Let R = {G,S,T,H} andX = {G - T.T — G,G ——
H}. It can be verified that the candidate keys @®H and H ST and that
the MVD G —— H is pure. R, X) is not in 4NF because none of the lhs
is a superkey yet, as will be seen in the next theorem, it is not in KMNF
because every attribute is prime.

We now present the main theorem of this section which gives a necessary
and sufficient condition for a relation scheme to have no KMA

Theorem 8.3 If X contains atleast one pure MVD, theR,(X) is in KMNF,
iff every attribute inR is prime.

Proof.

If: Consider any- € SAT(X). Since every attribute iR is prime, any
modification which leaves the prime attributes of a tuple unchanged doesn’t
change the tuple and schas no KMA, violation.

Only if: We shall establish the result by showing the contrapositive that if
there is a nonprime attribute then there existwith a KMA, anomaly.
Firstly, since a KMA, is cover insensitive, then without loss of generalily

is assumed to be pure and reduced. Also, if the original set of dependencies
3} contains a pure MVD then, by Lemma 6.2, a pure reduced covex for
must contain at least one MVD.

Firstly, if 3 contains a nonstandard dependency then the same construc-
tions used in (a) of Theorem 7.3 shows th&t &) is not in KMNF, so we
willassume that all dependencies are standard. Conside¢ ary— Y |Z €
3. Because&x is pure, X ¢ SK(R, X) since otherwis&X — Y € X+ con-
tradicting the pure assumption. Sinégy’Z = R and by assumptio
contains a nonprime attribute, eithBtZ contains a nonprime attribute or
only X contains a nonprime attribute. We now consider each case in turn.

Y Z contains a nonprime attributén this case, the same argument used
in (b.2.2) of Theorem 7.3 shows tha?(X) is not in KMNF;.

Only X contains a nonprime attributéVrite X as X'X,, where X’
contains only nonprime attributes arkj, contains only prime attributes.

We firstly show that we can restrict attention to the case whérés a
subset of the Ihs of every MVD i&. Otherwise, sinc&’ contains all the
nonprime attributes iRk, this implies that either the rhs of an MVD, or

its complement, contains honprime attributes and so the previous argument
shows that R, X) is not in KMNF;.

We now want to show that there exists € DEP(X,,) such thatl" =
X'Y Z. The proof of this assertion is presented as a separate lemma (Lemma
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8.1). Construct then a relationof two tuples,t; andt,, such that;[R —
W] = to[R — W] andt,[B] # to[B] for all B € W. Replacets by ¢*
defined byt*[X'] = t;1[X'] andt*[R — X'] = t3[R — X']. The claim is
thatr has a KMA, whent; is replaced by*. Condition (i) follows from
Theorem 3.1. Condition (ii) holds because SAT(X;) andt* andt, are
equal on prime attributes, which also implies condition (iii”). Finally, (iv)
holds becaus#’ NY # () andW N Z # () and so by definition of andt*,

t; andt* agree onX but differ on bothy" andZ. 0O

In order to derive the lemma needed for the completion of the theorem
we need the following algorithm for calculating DEP(X) [3, 27]. Our version
is a simplification of that in [27] since the set of constraints is reduced and
so the rhs of an FD contains a single attribute.

ALGORITHM 8.2. An algorithm for generating
DEP(X)
Input: A relation scheme R, a reduced set of
FDs and MVDs ¥, and a set of attributes
X.
Output: DEP(X)
Method:
var : U U", V' V" W:sets of attributes;

OLDDEP, NEWDEP: sets of sets of attributes;
1: NEWDEP:= {{A}|A€ X} U{R—- X},

repeat

OLDDEP := NEWDEPR

2: for each U ——Vor U—VeXdo
3 U":=U{W|(W ¢ NEW.DEP)and (WnNnU #0)};
4: V.=V -U";
5: if V"4
then
for each W ¢ NEWDEPdo
6: if WnNV?#£Q)and (WNV"#£W)
then
7: NEWDEP := (NEW.DEP-{IW})U
{Wnv"w-v"};
od
od

until (NEWDEP = OLDDEP);

We also note that in this algorithm, if a s&tis in NEW_DEP at any
iteration thenX —— Z € X*. We now use the algorithm establish the
following lemma.
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Lemma 8.1 Let X’ be a nonempty set of attributes and ¥be a reduced
set of FDs and MVDs such that the lhs of every MVXirtontains X”.
Then, for any MVDX'X —— Y|Z € X, DEP(X) = {X1,..., X,
X'YZ} whereX = X; ... X,,.

Proof. Initially, becauseR = X'XYZ, NEW.DEP = {Xq, ..., X,,
X'Y Z} and we shall now prove that NEWWEP never changes. We con-
sider separately the two cases of whether the dependency tested at line 2 of
Algorithm 8.1 is an MVD or an FD.

(a) The MVD caseBy the assumption of the lemma, any MMD ——
V € X can be written asX'U’ —— V whereU = X'U’. Consider
V" =V —U" defined atline 4. ObviouslX'Y Z C U” sinceX'NU = X’
and soV” N X'Y Z = () and thus the test at line 6 fails whéin = X'Y 7.
The only other elements in NEMBEP are the attributes ik and the second
test at line 6 fails for these and so NEREP remains unchanged.

(b) The FD caseConsider the effect on NEMDEP if instead the FD
U — V is applied at line 2. Sinc& is reducedV consists of a single
attribute. We shall break the proof up into the following subcases.

(b.1)V € X. NEW_DEP is unaltered sincE is already in NEWDEP.

(b.2)V € X'. We shall show that NEWDEP is unchanged by assuming
the contrary and deriving a contradiction. Siricds a single attribute}’
is added to NEWDEP at line 7 and s&X —— V € X% and since the
Ihs and rhs of every MVD ir® are disjoint, a simple application of the
inference rules shows thaX” — V)X —— Y € X*. This contradicts the
assumption thak is reduced and so NEWEP remains unchanged.

(b.3)V € Y. As before, assume to the contrary that NED@#P changes
and thusV’ is added to NEWDEP and saX —— V e ST If V = Y
then the assumption that every MVD is left-reduced is contradicted since
X' # (), and ifV C Y the inference rules show that X —— V € I+
contradicting the assumption that every MVD is right-reduced.

(b.4)V € Z. Same argument used in (b.3)O

We note that in the case that does not contain a pure MVD (sB
is equivalent to a set of FDs), then the necessary and sufficient condition
reduces to the one given in Theorem 8.1. We also note that the condition in
Theorem 8.3 is not equivalent to the normal form PANF defined in Sect. 8.1
since the relation scheme in Example 8.2 is in PANF yet contains a nonprime
attribute.

9 Fact-based modification anomalies and 4NF

In this section we consider again the relationship between 4NF and the main-
tenance of database integrity when tuples are modified, but under different
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assumptions to those used in Sect. 4. Instead of the tuple being the basic
unit of information, in this section we use tifect-based approactvhich

assumes that only certain subsets of a tuple, called facts, are the basic infor-
mation units for retrieval and update. The fact-based has been widely used
in research relating to database design and database semantics [5, 10, 39].

Iffacts are the basic information units, then itis desirable that the integrity
of arelation is maintained when facts are updated and so a fact-based update
anomaly is considered to occur when the update of a fact results in a violation
of the integrity constraints. In general, an update to arelation can be either an
insertion, a deletion or a modification of a tuple but in this section attention
is restricted to the modification of tuples. This is because we believe that
this case can be adequately handled without using null values, whereas a
complete analysis of the insertion and deletion of facts require the use of
null values and thus has been left as a topic for future investigation.

The final issue to be addressed before formally defining a fact-based
modification anomaly is to choose the attribute sets for the set of facts. The
approach adopted here, and elsewhere, is to use the attribute sets corre-
sponding to the FDs and MVDs. However even in this approach there are
still several choices. The first is to use only the FDs and MVDXiThe
second is to recognise the symmetrical nature of MVDs and also include
the complementary MVDs (Rule A4). The last is to include derived depen-
dencies and so use any nontrivial dependenc&in We allow for each of
these possibilities and formally define three types of fact-base modification
anomalies.

Definition 9.1 Arelationr has afact-based modification anomalyAMA,)
w.rt. areduced sek of FDs and MVDs if there exists a tuplec » and a
tuplet* defined ovelR such that:

(i) r e SAT(X);

(i) ¢*is compatible with(r — {t}) (See Sect. 4);

(iii) The set of attributes on whichandt* differ is a subset of AT @ where
d € ¥ and ATT() are the attributes ini;

(V) {r—{t}} u{r'} (SATE).

Some observations on the above definition are appropriate at this point. A
reduced set of dependencies is used in this definition because a dependency
in such a set cannot have their Ihs or rhs decomposed and so are irreducible
units of information [14]. Condition (ii) requires that the update satisfy key-
uniqueness since, as mentioned in Sect. 1, this is a fundamental property of
the relational model which is easily enforceable. We note, however, thatthere
is no concept of the maintenance of a tuple’s identity during a modification
and so there’s no equivalent to condition (iii) of Definition 4.7. We now use
the definition to define a normal form for relation schemes which ensures
that these violations can never occur.
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Definition 9.2 (R, X) is in fact modification normal form IFMNF,) if
there doesn't exist which has an FMA

We now extend these definitions to allow for different sets of facts.

Definition 9.3 Arelationr has afact-based modification anomalyR2MA)
if it satisfies all the conditions of Definition 9.1 except that condition (iii) is
changed to:

(iii") The set of attributes on whichand¢* differ is a subset of AT @
whered € ¥’ and¥ =X U{X -— R— XY|X -— Y € X}

Definition 9.4 (R, X) is in fact modification normal form ZFMNF,) if
there doesn't exist r which has an FMA

We note that in the case where the set of constraints contains only FDs,
an FMA; and an FMA are identical and thus so are FMN&nd FMNFR,.

Definition 9.5 Arelationr has afact-based modification anomalyiBMA3)
if it satisfies all the conditions of Definition 9.1 except that condition (iii) is
changed to:

(iii") The set of attributes on which and¢* differ is a subset of AT &
whered € .

Definition 9.6 (R, X) is in fact modification normal form IFMNFs3) if
there doesn'’t exist which has an FMA.

The following example illustrates the previous definitions.

Example 9.1Let R = {A,B,C}, ¥ = {A — B,B — C} andr is as
shown in Fig. 8. Them has a FMA, a FMA; and a FMA when (2,2, 1)

is updated t02, 1, 2) since the attribute8C = ATT (B — C) and the
resulting relationy”, is in SAT(X;) (sinceA is the only candidate key) but
violates the FDB — C.

It follows directly from the definitions of modification anomalies that
the following relationships hold: a relationhas an FMA = r has an
FMAs = r has an FMA, and thus in relation schemes: a relation scheme
(R,X)isin FMNF; = (R, X)isin FMNR = (R, X)) is in FMNF,.

We show the equivalence between 4NF and the modification normal
forms.

Theorem 9.1 The following conditions are equivalent:
() (R,X)isin4NF;
(i) (R,X)isin FMNFs;

(i) (R,)isin FMNFy;
(iv) (R,)isin FMNF,.
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A B C A B C
1 1 1 replace<2, 2, 1> by <2,1,2>0 1
2 2 1 2 1 2

Fig. 8. An example illustrating modification anomalies

Proof.

(i) = (di) : As for Theorem 5.1.

(74) = (i7i) : Follows directly from the definitions of the normal forms.
(7i1) = (iv) : Follows directly from the definitions of the normal forms.
(iv) = (i) : We shall prove the contrapositive that (X)) is not in 4NF
then it is not in FMNR. If (R, X) is not in 4NF then, by the results in [35,
36], there exists a nontrivial dependenky— Y or X —— Y € 3 such
thatX is not a superkey. We now construct a relatiomhich has an FMA
by considering separately the cases wh€i€ is not a superkey andl'Y is

a superkey.

(a) XY is not a superkeyrrom the properties of DEP there exi$l5 ¢
DEP(XY') such thatW N (XY)* = (. Construct a two tuple relation
for which the two tuples are identical on all attributes except tho$& inf
any value of an attributd € Y is changed to a value that is notiinthen
r has an FMA from Theorem 3.1 and Lemma 7.5.

(b) XY is a superkeyWe firstly claim thatZ, whereZ = R — XY, is
nonempty. This is because if the dependency is an FD Zhismonempty
becauseX is not a superkey, and if the dependency is an MVD theis
nonempty because the dependency is nontrivial. Thefilass a superkey,
XY — Z € ¥ and combining with the fact that —— Y € X+ and
inference rule A9 theX — Z € X*. Then from Lemma 2.2, there has to
be a nontrivial FDV' — A € X for every attributed € Z since otherwise
the ndv in romwx [A] could not be changed to a dv. Construct then a two
tuple relation for which the two tuples agree &1 and disagree elsewhere.
If the value of an attributed € Z is now changed so that the two tuples
disagree o, thenr has an FMA sinceV — A € X, the new relation is
in SAT(X;) (from Lemma 7.3 and the fact that — Z € ) but violates
X—>A O

10 Related work

The first paper to address the problem of providing a formal justification for
the use of normal forms and formalising the concept of an update anomaly
was by Bernstein and Goodman [7]. Based on the concept of an update
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‘affecting’ some sets of attributes but not others, they provided formal def-
initions of three types of update anomalies (insertion anomalies, deletion
anomalies and replacement anomalies) and proved that BCNF is a necessary
and sufficient condition for the avoidance of each type of update anomaly.
They also investigated the usefulness of BCNF in the context of multiple
relations and showed that in this setting, having individual relation schemes
in BCNF does not guarantee an absence of processing difficulties. However,
these conclusions were based on the stnamigersal instance assumption
(UIA) and it was later shown [20] that if one replaced the UIA assumption
by the less restrictive and now widely accepteshk instance approadR,

18, 30], then most of the problems encountered by Bernstein and Goodman
in the context of multiple relations disappear. More recently, Vossen used a
similar approach and derived similar results to Bernstein and Goodman in
a slightly different fashion [39]. We have not included this approach in this
paper as it was addressed in an allied paper where it was shown that 4NF
is equivalent to an absence of insertion anomalies in the sense of Bernstein
and Goodman [37].

The original work on the relationship between normal forms and key-
based update anomalies is due to Fagin [16, 17]. In the earlier paper, Fagin
showed that BCNF and 4NF were equivalent to the property that every
relation in SATE) is also in SATE) and then used this property to de-
fine the normal forms PJ/NF for join dependencies. In the later paper the
approach was generalised to consider include domain constraints and the
normal form DK/NF and key-based update anomalies were defined. The
main differences between this paper and of Fagin’s work is that we have ex-
tended his approach, where only insertions and deletions were considered,
to the modification of tuples and also extended his results on insertion and
deletions anomalies by deriving necessary and sufficient conditions for an
absence of key-based deletion anomalies. Another difference is that we as-
sume that attribute domains are infinite whereas Fagin considered the effect
of finite domains.

Another approach to justifying the use of BCNF is due to Biskup [8].
Similar to the approach in Sect. 9, sets of attributes were considered to be
the fundamental units of information (which were referred tmbjects,
but these sets were the |hs of FDs rather than all the attributes in an FD as in
Sect. 9. Two object normal forms were proposed based on the requirement
of being able to insert unique objects into a relation without violating the
constraints. It was then shown that one of the normal forms is equivalent to
BCNF and the other is equivalent to single key BCNF. In a later paper [9],
this approach was extended to the multiple relation setting with inclusion and
exclusion dependencies also being allowed. None of the semantic properties
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considered in this paper are comparable to the one used by Biskup and the
other major difference is that MVDs are considered in this paper.

An approach similar to the one used in Sect. 9 was used by Chan in hisin-
vestigations into the relationship between update anomalies and BCNF [10].
He considered the cases where facts are defined by the constraints and, alter-
natively, independently of the constraints and defined insertion anomalies,
deletion anomalies and replacement anomalies. As mentioned earlier, we
feel that a more complete investigation of the relationship between normal
forms and fact-based insertion and deletion anomalies requires the incor-
poration of null values into the definitions of dependency satisfaction and
normal forms and have not pursued the issue in this paper. There are sev-
eral other differences between Chan’s work and ours. Chan considered only
FD constraints but investigated the relationship between normal forms and
update anomalies in multiple relations using the weak-instance approach
mentioned earlier, whereas we have considered both FDs and MVDs but
only in the context of single relations. Moreover, Chan’s definition of a re-
placement anomaly, while similar in principle to ours, differs in important
from the definition of a modification anomaly given in Sect. 9. In his defini-
tion, the attributes whose values can be changed are a fixed set of attributes
defined by the user and replacements which violate key uniqueness are per-
mitted. In contrast, in our definitions any value can be changed as long as
the corresponding attributes is part of a constraint but key violations are not
permitted.

11 Conclusions

In this paper, we have addressed the problem of providing a formal justifi-
cation for the use of 4NF in relational database design. We have formally
defined three different semantic properties that it is desirable that a relation
scheme should possess. These properties are: an absence of redundancy, an
absence of key-based update anomalies and an absence of fact-based update
anomalies. For each of the properties, normal forms were defined (called
semantic normal forms) which encapsulate the relevant property. The rela-
tionship between 4NF and the semantic normal forms was then investigated.
For some of the semantic normal forms, we proved that, depending on the
types of constraints permitted, either BCNF or 4NF are equivalent condi-
tions to the semantic normal forms, but for other semantic normal forms the
equivalent syntactic normal forms are weaker than BCNF or 4NF. In partic-
ular, for the semantic normal form which is free of a key-based modification
anomaly in which no candidate key value is changed, we proved that in the
case of the only constraints being FDs, the equivalent syntactic normal form

is a new normal form which lies between 3NF and BCNF. Similarly, in the
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KDNF

PANF = KMNF4
BCNF

Fig. 9. The relationship between normal forms for the FD case

KDNF

KMNF4 4ANF  =RFNF
= KINF

= KMNF1 = KMNF2 = KMNF3
= FMNF1 = FMNF2 = FMNF3

Fig. 10.The relationship between normal forms for the FD and MVD case

case of both FD and MVD constraints, the equivalent syntactic normal form
was shown to be a weaker condition than 4NF. The relationship between
the normal forms introduced in this paper and the classical normal forms is
summarised in Figs. 9 and 10.

There are several other issues related to the work in this paper that war-
rant further investigation. Firstly, we have assumed in this paper that nulls
are not present and a more thorough approach would be to extend the results
of this paper to the case where nulls are present. A second issue is the justi-
fication of the normal forms used when join dependencies [28] are present.
The definition of redundancy given in Sect. 3 is applicable to any type of
relational constraint and we are currently investigating the normal forms
which ensure an absence of redundancy in the presence of join dependen-
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cies. Interestingly, preliminary research [34] has shown that a condition that

is weaker than both PJ/NF [17] and 5NF [21] is equivalent to the absence of

redundancy. The final issue is to extend the approach used in this paper to
develop a formal foundation for database design in the newer data models
such as nested relational and object-oriented models. Little work has been
devoted to database design for object-oriented models and while normal

forms have been defined for nested relations [21, 24, 25, 29] none have been
derived from fundamental semantic objectives. Preliminary research has in-

dicated that the redundancy elimination approach used in Sect. 3 extends
naturally to nested relations and may provide the basis for understanding

and deriving nested normal forms.
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