
Acta Informatica 35, 921–949 (1998)

c© Springer-Verlag 1998

Fusion and simultaneous execution
in the refinement calculus

Ralph-Johan Back1,, Michael Butler2

1 Department of Computer Science,Åbo Akademi, Lemmink̈aisenkatu 14,
FIN-20520 Turku, Finland (e-mail: backrj@abo.fi)

2 Department of Electronics and Computer Science, University of Southampton, Highfield,
Southampton SO17 1BJ, United Kingdom (e-mail: M.J.Butler@ecs.soton.ac.uk)

Received: 12 February 1996 / 25 August 1998

Abstract. In the refinement calculus, program statements are modelled as
predicate transformers. A product operator for predicate transformers was
introduced by Martin [18] and Naumann [25] using category theoretic con-
siderations. In this paper, we look more closely at the refinement-oriented
properties of this operator and at its applications. We also generalise the
definition of the product operator to form what we call a fusion operator.
Together, the fusion and product operators provide us with algebraic ways of
composing program statements in the refinement calculus in order to model
effects such as conjunction of specifications, simultaneous execution, and
embedding of smaller programs into larger contexts.

1 Introduction

Dijkstra introduced weakest-precondition predicate transformers as a means
of verifying total correctness properties of sequential programs [9]. There-
finement calculusof Back [2], Morgan [21], and Morris [23] builds on this,
regarding specifications and programs uniformly as predicate transformers.
In the refinement calculus, the required behaviour of the program is specified
as an abstract, possibly non-executable, program which is then refined by a
series of correctness-preserving transformations into an efficient, executable
program. The notion of correctness-preserving transformation is modelled
by a refinement relation between programs which is transitive, thus support-
ing stepwise refinement, and is monotonic w.r.t. program constructors, thus
supporting piecewise refinement. All transformation laws are derived from
properties of predicate transformers.

922 R.-J. Back, M. Butler

The refinement calculus provides sequential composition and various
choice and assignment operators that are generalisations of Dijkstra’s op-
erators, and the applications of these operators are well-known. However,
the applications of an operator representing simultaneous execution of pro-
gram statements are less well developed in the refinement calculus. Such
an operator was introduced by Martin [18] and by Naumann [25] using cat-
egory theoretic considerations. Thisproduct1 operator combines predicate
transformers by forming the cartesian product of their state spaces. In this
paper, we examine the product operator, looking at various distributivity and
refinement preserving properties of the operator. We show that the operator
can be used to model simultaneous execution and to extend the state spaces
of statements so they can be more easily matched with other statements.
These features turn out to be important for embedding programs in larger
environments, and for composing programs as used, for example, in the
action system formalism [4].

The existing choice operators in the refinement calculus can be used
to model disjunction of program specifications, but not for conjunction of
specifications. We generalise the definition of the product operator slightly
to form what we call afusionoperator. This operator can be used to model
conjunction of specifications. Furthermore, the product operator turns out
to be a special case of the fusion operator thus simplifying some of the proof
effort.

We use the higher-order logic formalisation of the refinement calculus
of Back and von Wright [6]. Here, a refinement logic is built up in a layered
fashion, starting with booleans, which are then lifted to predicates, and then
to predicate transformers using pointwise extension. If possible, we reason
about predicate transformers purely at the predicate transformer level, but
sometimes it is necessary to go to the predicate, and boolean levels. By
having all three levels, we have the freedom to do this. There are examples
of proof at all three levels in the appendix.

To simplify the development of the operators and their algebraic prop-
erties, we make the minimal assumptions on the structure of state spaces.
In particular, we don’t explicitly model program variables in the state. To
make the theory useful for practical program development, we introduce a
simple layer of syntactic sugaring that allows us to easily model program
variables as cartesian components of the state.

The paper is organised as follows. Section 2 introduces the refinement
calculus basics. Although this section is long, the material is straightforward
and standard and is useful for a proper understanding of the later material.
Section 3 introduces the fusion operator, the product operator and the de-

1 The direction of arrows in [18] and [25] are the reverse of what we use, so our product
operator corresponds to their co-product operator.

Fusion and simultaneous execution in the refinement calculus 923

rived product operator showing that the product operator is a special case of
the fusion operator. Section 4 shows how the fusion operator models con-
junction of specifications and compares our operator with some alternative
approaches. Section 5 shows how the product operators model simultaneous
execution. Section 6 looks at the notion ofleast data refinement, which pro-
vides a general mechanism for calculating data refinements of commands. It
is shown how this notion applies to the product operators. Section 7 looks at
some further uses of the product operator such as embedding commands in
larger program contexts and composing action systems for modelling con-
current systems. These applications were our initial motivation for studying
the product and fusion operators.

Some of the results here have appeared previously in an earlier paper [3].
However, this paper contains important new material, in particular, a com-
prehensive treatment of program variables, comparisons of our definitions
with some alternative definitions and results on the least data refinement of
products.

2 Refinement calculus basics

We work withtermsof higher-order logic as described, for example, in [11].
A term in higher-order logic is an expression in a typed lambda calculus
possibly having free variables. We writet[x := e] for the termt with all
free occurrences of variablex replaced by terme. The type of a term can be
atomic, e.g.,Bool, a function from type to type,T1 → T2, or the cartesian
product of types,T1 × · · · × Tn.

Predicate lattice

A predicateover a set of statesΣ is a boolean functionp : Σ → Bool which
assigns a truth value to each state. The set of predicates onΣ is denoted
P Σ:

P Σ =̂ Σ → Bool.

We define theentailment orderingon predicates by pointwise extension: for
p, q : P Σ,

p ≤ q =̂ (∀σ : Σ · p σ ⇒ q σ).

The identically false predicate is denoted⊥, and the identically true predicate
is denoted>. Negation, conjunction, and disjunction of (similarly-typed)
predicates are defined by pointwise extension, so that, e.g.,

(p ∧ q) σ =̂ (p σ ∧ q σ).

924 R.-J. Back, M. Butler

For state spaceΣ, the set of predicatesP Σ is a complete lattice under the
entailment ordering. Conjunction and disjunction represent meet and join
respectively, while> and⊥ represent top and bottom respectively.

Relational lattice

A relation from Σ to Γ is a functionP : Σ → P Γ that maps each stateσ
to a predicate onΓ . We write

Σ ↔ Γ =̂ Σ → P Γ .

This view of relations is isomorphic to viewing them as predicates on the
cartesian spaceΣ × Γ . The domain and range of relationP are denoted
dom P andran P respectively. Conjunction and disjunction of relations are
defined pointwise, so that, e.g.,(P ∧Q) σ =̂ (P σ)∧ (Q σ). Theinclusion
orderingon relations is defined by pointwise extension: forP, Q : Σ ↔ Γ ,

P ≤ Q =̂ (∀σ : Σ · P σ ≤ Q σ).

For state spacesΣ andΓ , the set of relationsΣ ↔ Γ is a complete lattice
under the inclusion ordering. We writeP ;Q : Σ ↔ Λ for the relational
composition ofP : Σ ↔ Γ andQ : Γ ↔ Λ, andP−1 for the inverse
relation. For functionf : Σ → Γ , we writef−1 for the relation(λγ ·λσ·γ =
fσ) : Γ ↔ Σ.

Predicate transformer lattice

A predicate transformeris a functionS : P Γ → P Σ from predicates to
predicates. We write,

Σ 7→ Γ =̂ P Γ → P Σ.

Note the reversal ofΓ andΣ: program statements in Dijkstra’s calculus
are identified with weakest-precondition predicate transformers that map a
postconditionq : P Γ to the weakest preconditionp : P Σ such that the
program is guaranteed to terminate in a final state satisfyingq whenever the
initial state satisfiesp. For program statementS : Σ 7→ Γ , we say thatS
hassourceΣ (the initial state space) andtarget Γ (the final state space).
Programs need not have identical initial and final state spaces. Note that, in
order to aid intuition, we sometimes discuss commands from an operational
viewpoint, though our formal reasoning is always in terms of predicate
transformers.

Fusion and simultaneous execution in the refinement calculus 925

The refinement orderingon predicate transformers is defined by point-
wise extension: forS, T : Σ 7→ Γ ,

S ≤ T =̂ (∀q : P Γ · S q ≤ T q).

The refinement ordering on predicate transformers models the notion of
total-correctness preserving program refinement. A total-correctness speci-
fication is typically given as a precondition-postcondition pair(pre, post),
and program (i.e., predicate transformer)S satisfies(pre, post) if pre ≤
(S post). Now, for programsS andT , S ≤ T holds if and only ifT satisfies
any specification satisfied byS. Transitivity of the refinement ordering is
inherited from transitivity of implication by pointwise extension

For state spacesΣ andΓ , the set of predicate transformersΣ 7→ Γ is a
complete lattice under the refinement ordering. The bottom element is the
predicate transformerabort that maps each postcondition to⊥, and the top
element is the predicate transformermagic that maps each postcondition to
>. Theabort statement is never guaranteed to terminate, while themagic
statement ismiraculoussince it is always guaranteed to establish any post-
condition. A miraculous statement cannot be implemented. For statement
S, halt S =̂ S > describes those initial states under whichS is guaranteed
to terminate, whilegd S =̂ ¬(S ⊥) (calledguard of S) describes those
initial states under whichS behaves non-miraculously.

Conjunction and disjunction of (similarly-typed) predicate transformers
are defined pointwise, so that, e.g.,(S ∧T) q =̂ (S q)∧ (T q). Conjunction
of statements modelsdemonic nondeterministic choicebetween executing
S andT (i.e., each alternative must establish the postcondition), whereas
disjunction modelsangelic nondeterministic choice(i.e., some alternative
must establish the postcondition). Ifhalt S = ¬halt T , thenS∨T becomes
a deterministic choice, while ifgd S = ¬gd T , thenS ∧ T becomes a
deterministic choice.

Predicate transformer category

Sequential composition of program statements is modelled by functional
composition of predicate transformers: the sequential composition ofS :
Σ 7→ Γ andT : Γ 7→ Λ is S;T : Σ 7→ Λ, where forp : P Λ,

(S;T) p =̂ S (T p).

The program statementskipΣ is modelled by the identity predicate trans-
former onP Σ.

Predicate transformers form a category: the categoryPTran has state
spaces as objects and predicate transformers as arrows. IfΣ, Γ are state
spaces, then each predicate transformerS : Σ 7→ Γ is an arrow with source

926 R.-J. Back, M. Butler

Σ and targetΓ . For composition of arrows, we use sequential composition
and, as the identity arrow of objectΣ, we useskipΣ . As required forPTran
to be a category, we have

skipΣ ;S = S = S; skipΓ ,

S; (T ;U) = (S;T);U.

Embedding functions, predicates, and relations

Given a relationP : Σ ↔ Γ , theangelic update statement{P} : Σ 7→ Γ
anddemonic update statement[P] : Σ 7→ Γ are defined by

{P} q σ =̂ (∃γ : Γ · (P σ γ) ∧ (q γ))
[P] q σ =̂ (∀γ : Γ · (P σ γ) ⇒(q γ)).

When started in a stateσ, {P} angelically chooses a new stateγ such
that Pσγ holds, while[P] demonically chooses a new stateγ such that
Pσγ holds. If no such new state exists then{P} aborts, while[P] behaves
as magic. Angelic update is monotonic w.r.t. relational inclusion, while
demonic update is anti-monotonic:

P ≤ Q ⇒ {P} ≤ {Q} ∧ [P] ≥ [Q].

Sequential composition distributes through both updates:

{P}; {Q} = {P ;Q} and [P]; [Q] = [P ;Q].

For predicatep : P Σ, let p : Σ ↔ Σ be the correspondingtest relation
for p, i.e., (λσ · λσ′ · p σ ∧ σ = σ′). Then we write{p} for {p} and[p]
for [p]. {p} models theassertstatement that behaves asskip if p holds,
otherwise it aborts.[p] models theguard statement that behaves asskip if
p holds, otherwise it behaves asmagic.

Given a functionf : Σ → Γ , thedeterministic update statement〈f〉 :
Σ 7→ Γ is defined by

〈f〉 q σ =̂ q (f σ).

〈f〉 simply changes the state fromσ to fσ. Let f̃ be the the deterministic
relation corresponding to functionf , i.e.,(λσ ·λγ ·f σ = γ). Then we have
{f̃} = 〈f〉 = [f̃].

Fusion and simultaneous execution in the refinement calculus 927

Homomorphic properties

All predicate transformersS constructed using the operators described above
will be monotonic, i.e.,p ≤ q ⇒ S p ≤ S q. Predicate transformerS is
bottom homomorphicif S ⊥ = ⊥ (i.e., S never behaves miraculously),
and top homomorphicif S > = > (i.e., S always terminates). Predicate
transformerS is conjunctiveif S (∧i ∈ I · qi) = (∧i ∈ I · S qi), for
non-emptyI. S is universally conjunctiveif it is conjunctive and top ho-
momorphic.Disjunctiveanduniversally disjunctivepredicate transformers
are defined dually. Demonic update statements are universally conjunctive,
angelic update statements are universally disjunctive, and deterministic up-
date statements are both. Furthermore, the assert statement is conjunctive
while the guard statement is disjunctive. The operators∧ and; preserve the
conjunctivity of their operands, while∨ and; preserve the disjunctivity of
their operands.

Each of∧, ∨, and; preserve refinement of monotonic predicate trans-
formers, e.g.,S ≤ S′ ⇒ S;T ≤ S′;T . We consider this to be an essential
property since it allows for piecewise refinement of programs.

In Dijkstra’s original calculus, all statements were non-miraculous and
conjunctive [9].

Normal form

Conjunctive predicate transformers can be written in a normal form involv-
ing an assertion followed by a demonic update: for conjunctiveS, there
exists a predicatep and relationQ such that

S = {p}; [Q].

Thus, if we want to show that any conjunctiveS enjoys some property, we
can do so by showing that{p}; [Q] satisfies it for anyp, Q.

Dually, disjunctive predicate transformers have a normal form: for dis-
junctiveS, there exists a predicatep and relationQ such that

S = [p]; {Q}.

Notation for specification and programming

Ordinary program constructs such as conditionals, recursions, and assign-
ments may be modelled using the basic operators presented above. A recur-
sive statement has the form(µX · F X) (least fixed-point ofF) whereX
ranges overΣ 7→ Σ andF is a function fromΣ 7→ Σ to Σ 7→ Σ. F should
be monotonic (w.r.t. refinement) for its least fixed-point to exist, and this

928 R.-J. Back, M. Butler

is guaranteed ifF X is constructed fromX using the operators described
above. Conditional and loop statements are defined as:

if p then S else T fi =̂ [p];S ∧ [¬p];T
do p → S od =̂ (µX · if p then S;X else skip fi).

Program variables may be modelled as cartesian components of the state
space, and a multiple assignmentx, y := d, e in a state space with three
components, representing program variablesx, y, z, may be modelled by
the deterministic update:

〈λx, y, z · (d, e, z)〉.
We introduce a layer of syntactic sugaring to deal with program variables

in a more conventional fashion. A program variable has a name and a type
and we writex : T for program variable namedx with typeT . Sometimes
we omit the type of a variable if it is not relevant or can be understood from
context. We write2

(var (x1 : Σ1, . . . , xm : Σm) 7→ (y1 : Γ1, . . . , yn : Γn) · S)

to say that statementS reads from program variablesx1 . . . xm and writes
to program variablesy1 . . . yn. S then has type

(Σ1 × · · · × Σm) 7→ (Γ1 × · · · × Γn).

Letu be a tuple of program variables of the formx1 : Σ1, . . . , xm : Σm.
We shall useu both as a quantified variable, e.g.,(λu · t) and as the term
(x1, . . . , xn). Let u[xi := e] be the tupleu with xi replaced by expression
e and letu \ xi be the tupleu with xi removed. More generally, we may
write u[v := E] andu \ v, wherev is a list of program variables andE is a
list of expressions. We write(var u · S) for (var u 7→ u · S).

We require thatvar distributes through the statement connectives:

(var u 7→ v · S ∧ T) =̂ (var u 7→ v · S) ∧ (var u 7→ v · T)
(var u 7→ v · S ∨ T) =̂ (var u 7→ v · S) ∨ (var u 7→ v · T)

(var u · S;T) =̂ (var u · S); (var u · T).

Assignment is defined in terms of deterministic update:

(var u · v := E) =̂ 〈λu · u[v := E]〉.
Letb be a boolean term whose free variables may include program variables.
The nondeterministic update statementx := x′ | b assigns some valuex′

2 This is not the same as introducing local variables.

Fusion and simultaneous execution in the refinement calculus 929

satisfyingb to program variablex. This is defined in terms of demonic
update:

(var u · v := v′ | b) =̂ [λu · λu′ · b ∧ (u′ \ v′ = u \ v)],

whereu′ is formed fromu by replacing eachxi : Ti in u with x′
i : Ti.

Assertions and guards may be written using boolean terms as follows:

(var u · {b}) =̂ {λu · b}
(var u · [b]) =̂ [λu · b].

Writing predicates as(var u · b), which is syntactic sugar for(λu · b),
we can work in a style that is similar to Dijkstra’s weakest-precondition
calculus. For example, while Dijkstra has

wp(v := E, post) =̂ post[v := E],

we have

(var u · v := E)(var u · post) = (var u · post[v := E]).

Let pre andpost be boolean terms. It is easy to show that

(var u · {pre}; v := v′ | post′)

is the least statement satisfying the precondition-postcondition pair(var u ·
pre), (var u · post). Implementing this specification involves constructing
a statementS such that(var u · {pre}; v := v′ | post′) ≤ S. If post refers
to variables of bothv andv′, then the specification(var u · {pre}; v := v′ |
post) can relate the before and after states in the manner of B [1], VDM [16],
and Z [26] specifications. A statement of the form(var u · {pre} v := v′ |
post) is called aspecification statement[20] (we usually omit the sequential
composition operator from a specification statement). A sorting algorithm,
for example, may be specified by

var s : seq T · s := s′ | (sorted s′) ∧ (permutation s s′).

Rules for the stepwise refinement of specification statements into standard
programming constructs may be found in [2,21,23].

In the rest of this paper, we use identifiersa, b for boolean terms,p, q for
predicates,P, Q for relations, andS, T for predicate transformers.

930 R.-J. Back, M. Butler

3 Product and fusion

We writeΓ1 × Γ2 for the cartesian product of typesΓ1 andΓ2. Given two
predicatesq1 andq2 their product is denotedq1 × q2 and is defined as follows:

Definition 1 For q1 : P Γ1, q2 : P Γ2, q1 × q2 is of typeP (Γ1 × Γ2)
where forγ1 : Γ1, γ2 : Γ2,

(q1 × q2) (γ1, γ2) =̂ (q1 γ1) ∧ (q2 γ2).

Note that predicates of the formq1 × q2 only form rectangular subsets of
P (Γ1 × Γ2) so that arbitraryq : P (Γ1 × Γ2) cannot be represented as
q1 × q2.

Next we are interested in a product operator for arrows. Consider first
the product of functions: the product off1 : Σ → Γ1 andf2 : Σ → Γ2 is
denotedf1 4 f2 and has typeΣ → Γ1 × Γ2 (× binds tighter than arrows).
It is defined as follows:

Definition 2 (f1 4 f2) σ =̂ (f1σ, f2σ).

Now, consider two predicate transformers which have a common source
but distinct targets:

S1 : Σ 7→ Γ1, S2 : Σ 7→ Γ2.

The product ofS2 andS2 would have typeΣ 7→ Γ1 × Γ2. Since we wish
S1 to establishq1 andS2 to establishq2, we could propose that

(S1 4 S2) (q1 × q2) = S1q1 ∧ S2q2.

Of course this is not a full definition since, in general,q : P (Γ1 × Γ2)
cannot be represented byq1 × q2. So we approximateq by its rectangular
subsets:

(S1 4 S2) q = (∃q1 : P Γ1; q2 : P Γ2 | q1 × q2 ≤ q ·
(S1 4 S2) (q1 × q2)).

This concept is illustrated in Fig. 1. The full definition is:

Definition 3 For S1 : Σ 7→ Γ1, S2 : Σ 7→ Γ2, S1 4 S2 is of type
Σ 7→ Γ1 × Γ2, where forq : P (Γ1 × Γ2):

(S1 4 S2) q =̂ (∃q1 : P Γ1; q2 : P Γ2 | q1 × q2 ≤ q · S1q1 ∧ S2q2).

Similar definitions may be found [18] and [25].
Definition 3 may be generalised to define what we call afusionoperator

that combines commands with common sources and common targets as
follows:

Fusion and simultaneous execution in the refinement calculus 931

Γ1

Γ2

q

Fig. 1. Approximatingq with rectangular subsets

Definition 4 For S1, S2 : Σ 7→ Γ , S1 �S2 is of typeΣ 7→ Γ , where for
q : P Γ :

(S1 �S2) q =̂ (∃q1, q2 : P Γ | q1 ∧ q2 ≤ q · S1q1 ∧ S2q2).

It is easy to show that the fusion operator is commutative and associative
and that it preserves the monotonicity, conjunctivity and disjunctivity of
its operands. Fusion also preserves the refinement of its operands. In fact,
fusion enjoys a slightly stronger property:

Theorem 5 For monotonic predicate transformers,

{halt S2};S1 ≤ S′
1 ⇒ (S1 �S2) ≤ (S′

1 �S2).

This allows the termination condition of one operand to be used as an as-
sumption when refining the other operand

The fusion of two commands only terminates if both operands terminate:

halt(S1 �S2) = halt S1 ∧ halt S2.

Letπ1 andπ2 be the projections fromΓ1 ×Γ2 to Γ1 andΓ2 respectively:

π1 : Γ1 × Γ2 → Γ1, π2 : Γ1 × Γ2 → Γ2,
π1(γ1, γ2) = γ1, π2(γ1, γ2) = γ2.

The inverses ofπ1 andπ2 are relations:

π−1
1 : Γ1 ↔ Γ1 × Γ2 π−1

2 : Γ2 ↔ Γ1 × Γ2.

Now the demonic update

[π−1
1] : Γ1 7→ Γ1 × Γ2,

932 R.-J. Back, M. Butler

starts in a stateγ1 : Γ1 and ends in a state(γ′
1, γ

′
2) : Γ1 × Γ2 such that

γ1 = γ′
1 andγ′

2 is chosen nondeterministically.
GivenS1 : Σ 7→ Γ1, the predicate transformer

S1; [π−1
1] : Σ 7→ Γ1 × Γ2

is a ‘lifted’ version ofS1 that behaves asS1 on the first component of the final
state, and nondeterministically writes any value to the second component.
Similarly for S2; [π−1

2]. Now we have that the product operator(4) is a
special case of fusion:

Theorem 6 For S1 : Σ 7→ Γ1, S2 : Σ 7→ Γ2,

S1 4 S2 = S1; [π−1
1] � S2; [π−1

2].

The proof of this theorem is given in the appendix. Because of the theo-
rem, the product operator inherits several important properties directly from
the fusion operator including preservation of monotonicity and conjunctiv-
ity. Preservation of disjunctivity does not follow since[π−1

2] is not disjunc-
tive, but disjunctivity can be proved separately [25]. Most importantly for
piecewise refinement, preservation of refinement does follow:

Theorem 7 For monotonic predicate transformers,

{halt S2};S1 ≤ S′
1 ⇒ (S1 4 S2) ≤ (S′

1 4 S2).

Although the fusion operator is commutative and associative, the product
operator is neither. This is because of the difference in the product structures
of the states, i.e.,Σ1×Σ2 6= Σ2×Σ1 andΣ1×(Σ2×Σ3) 6= (Σ1×Σ2)×Σ3.
We need to rearrange the states to get equality, e.g.,

S1 4 S2 = (S2 4 S1); 〈λx, y · (y, x)〉.
Let$1 and$2 be the projections fromΣ1×Σ2 toΣ1 andΣ2 respectively.

The projections give the following deterministic updates:

〈$1〉 : Σ1 × Σ2 7→ Σ1 and 〈$2〉 : Σ1 × Σ2 7→ Σ2.

The statement〈$1〉 starts in a state(σ1, σ2) and ends in the stateσ1 simply
discarding the second component. The derived product operator combines
commands with distinct sources and distinct targets, and is defined as fol-
lows:

Definition 8 For S1 : Σ1 7→ Γ1, S2 : Σ2 7→ Γ2, S1 ⊗S2 is of type
Σ1 × Σ2 7→ Γ1 × Γ2, where

S1 ⊗S2 =̂ 〈$1〉;S1 4 〈$2〉;S2.

Fusion and simultaneous execution in the refinement calculus 933

We extend the program variable syntax for fusion, product and derived
product as follows:

(var u 7→ v · S1 �S2) =̂ (var u 7→ v · S1)
� (var u 7→ v · S2)

(var u 7→ (v1, v2) · S1 4 S2) =̂ (var u 7→ v1 · S1)
4 (var u 7→ v2 · S2)

(var (u1, u2) 7→ (v1, v2) · S1 ⊗S2) =̂ (var u1 7→ v1 · S1)
⊗ (var u2 7→ v2 · S2).

Thus with the fusion operator, commands read from and write to the same
variables, with the product operator they read from the same variables but
write to separate variables and with the derived product operator they also
read from separate variables.

4 Conjoining specifications

Fusion acts as a form of ‘co-refinement’ operator:

Theorem 9 For predicate transformersS1 andS2, S1 �S2 solves:

{halt S2};S1 ≤ X (1)

{halt S1};S2 ≤ X, (2)

and furthermore, for any conjunctiveY that solves (1) and (2),

S1 �S2 ≤ Y. (3)

(See appendix for proof of this theorem.) Thus for conjunctiveS1 andS2,
S1 �S2 is the least conjunctive predicate transformer satisfying (1) and (2).
Note thatS1 �S2 is not a true refinement ofS1 since it cannot replaceS1,
but rather it can replace{halt S2};S1.

Theorem 9 means that the fusion operator can be used to conjoin two
specifications to form a specification that refines both specifications within
their combined termination condition. This allows us to describe program
requirements separately and them combine them. For example, consider the
following two requirements:

R1 =̂ (var x : real · {x ≥ 0} x := x′ | x′2 = x)
R2 =̂ (var x : real · x := x′ | x′ ≥ 0).

The fusionR1 �R2 specifies a program that calculates the positive square
root ofx.

The following theorem provides a simple way of calculating the fusion
of two program specifications:

934 R.-J. Back, M. Butler

Theorem 10 For relationsP, Q : Σ ↔ Γ , and predicatesp, q : P Σ,

{p}; [P] � {q}; [Q] = {p ∧ q}; [P ∧ Q].

Proof of this theorem is given in the appendix.
This clearly illustrates that the effect of the fusion operator is to reduce the

(demonic) nondeterminism of the terminating behaviour of both commands.
In the case that the intersection of the nondeterminism in both commands
is empty, then the fusion behaves magically, e.g.,

(var x · x := x′ | x′ > 0 � x := x′ | x′ < 0) = magic.

In terms of the program variable syntax, Theorem 10 is represented as:

var u · ({a1} v := v′ | b1) � ({a2} v := v′ | b2)
= var u · {a1 ∧ a2} v := v′ | b1 ∧ b2.

Alternative definitions

It is easy to show that the demonic choice of specifications results in dis-
junction of postconditions, i.e.,

{p1}; [Q1] ∧ {p2}; [Q2] = {p1 ∧ p2}; [Q1 ∨ Q2].

Fusion then is almost a dual of demonic choice. Since all conjunctive com-
mands have a normal form{p}; [Q], we could define an alternative fusion
operator for conjunctive commands which really is a dual of the demonic
choice as follows:

{p1}; [Q1] ⊕ {p2}; [Q2] =̂ {p1 ∨ p2}; [Q1 ∧ Q2].

This operator results in a true co-refinement, i.e.,S1 ≤ S1 ⊕ S2 and not
just {halt S2};S1 ≤ S1 ⊕ S2. However it is not the least conjunctive co-
refinement so that use of this operator could result in specifications being
strengthened unnecessarily when being combined. More seriously, this op-
erator is not guaranteed to preserve refinement of its operands. As a coun-
terexample, consider

S1 = {x > 0} x := x − 1
S′

1 = if x > 0 then x := x − 1 else x := x + 1 fi
S2 = x := x′ | x′ 6= x.

It is easy to show thatS1 ⊕ S2 6≤ S′
1 ⊕ S2 even thoughS1 ≤ S′

1. These
weaknesses rule⊕ out as a useful co-refinement operator.

Fusion and simultaneous execution in the refinement calculus 935

Leino and Manohar [17] have shown that the following operator does
yield the the least conjunctive co-refinement of two specification statements:

{p1}; [Q1] ♦ {p2}; [Q2] =̂ {p1 ∨ p2}; [p1 ⇒ Q1 ∧ p2 ⇒ Q2].

Here(p ⇒ Q)σσ′ =̂ pσ ⇒ Qσσ′. Using this to define specification conjunc-
tion does give an operator that preserves refinement. However, unlike our
fusion operator, this operator does not allow the termination condition of
one command to be assumed when refining the other.

Morgan [22] has developed an operatorut on predicate transformers such
that 2S is the least-refined predicate transformer that is both universally
conjunctive and refinesS. It is easy to show for universally conjunctiveS1
andS2 (i.e.,S1 andS2 always terminate), that

2(S1 ∨ S2) = S1 �S2.

We say that two specifications{p}; [P] and{q}; [Q] arecontradictory
in some initial stateσ if σ has a successful outcome in each specifica-
tion, but does not have a successful outcome in their fusion, i.e.,σ holds
in p, q, dom P, anddom Q, but not indom (P ∧ Q). For those contra-
dictory initial states, the fusion of both specifications behaves miraculously.
Ward [29] has defined a conjunction combinator for specification statements
where the combination behaves asabort when both specifications are con-
tradictory. Thus, in Ward’s case, a contradictory combination may be refined
by any statement whereas, in our case, it is unimplementable. Furthermore,
Ward’s combinator is not refinement preserving.

5 Simultaneous execution

We have already seen the product operator for functions. The product oper-
ator for relations is defined as follows:

Definition 11 For relationsP1 : Σ ↔ Γ1, P2 : Σ ↔ Γ2, P1 4 P2 is a
relation of typeΣ ↔ Γ1 × Γ2, where

P1 4 P2 =̂ P1;π−1
1 ∧ P2;π−1

2 .

From Theorem 10 (fusion of specification statements) we can then show
that the product operator combines with specification statements and deter-
ministic updates in the following manner:

Theorem 12 For p1, p2 : P Σ, andP1 : Σ ↔ Γ1, P2 : Σ ↔ Γ2,

{p1}; [P1] 4 {p2}; [P2] = {p1 ∧ p2}; [P1 4 P2].

936 R.-J. Back, M. Butler

Theorem 13 For f1 : Σ → Γ1, f2 : Σ → Γ2,

〈f1〉 4 〈f2〉 = 〈f1 4 f2〉.
Theorem 13 is represented in our program variable syntax as follows:

(var (v1, v2) · v1 := E1 4 v2 := E2)
= (var (v1, v2) · v1, v2 := E1, E2),

whereE1 can depend on bothv1 andv2, and similarly forE2. Thus, the
product operator models simultaneous execution of assignments to separate
variables.

With the product operator, both commands have access to the initial
values of each others variables. With the derived product operator, we have

(var (v1, v2) · v1 := E1 ⊗ v2 := E2)
= (var (v1, v2) · v1, v2 := E1, E2),

whereE1 (resp.E2) is independent ofv2 (resp.v1).
Theorem 12 is represented as:

(var (v1, v2) · {a1} v1 := v′
1 | b1 4 {a2} v2 := v′

2 | b2)
= (var (v1, v2) · {a1 ∧ a2} v1, v2 := v′

1, v
′
2 | b1 ∧ b2).

In this case,b1 is independent ofv′
2 so thatb1 does not constrain the value

assigned tov2, and similarly forb2. In the case of the derived product,a1
andb1 are also independent ofv2 and vice versa.

When composing commands using the product operator, it can be useful
to have some algebraic laws available. For example, we have the following
distribution through if-statements:

(var u · S 4 (if g then T1 else T2 fi))
= (var u · if g then (S 4 T1) else (S 4 T2) fi).

In certain cases, a product may be replaced by a sequential composition:
if a2, b2 are independent ofv1, then

(var (v1, v2) · {a1} v1 := v′
1 | b1 4 {a2} v2 := v′

2 | b2)
= (var (v1, v2) · ({a1 ∧ a2} v1 := v′

1 | b1) ; ({a2} v2 := v′
2 | b2)).

It is necessary to havea2 in the first assertion because without it, in a state
where the command{a1} v1 := v′

1 | b1 behaves magically and the command
{a2} v2 := v′

2 | b2 aborts, the product would abort whereas the sequential
composition would behave magically (sincemagic;S = S). See [3] for a
fuller list of the properties of the operators.

Fusion and simultaneous execution in the refinement calculus 937

Alternative definitions

Abrial has defined a parallel operator for the B AMN notation [1] which
is equivalent to our derived product. He only works with conjunctive com-
mands and so can define the operator in terms of the relational product on
normal forms (similar to our Theorem 12):

{ p1 × p2 }; [Q1 ⊗Q2].

(Here,Q1 ⊗Q2 =̂ $1;Q1 4 $2;Q2.) It is arguable that this is an
easier way of defining simultaneous execution than our more general product
operator. However, with our definition we can also form the product of
disjunctive commands which is useful for data refinement as we shall see in
the next section.

An alternative way of defining simultaneous execution would be as a
special case of the least conjunctive co-refinement operator, in the same
way that the product is a special case of fusion:

S1♦′S2 =̂ S1; [π−1
1] ♦ S2; [π−1

2].

However this would give strange results when combining a terminating
command with a nonterminating command, e.g.,

(var x, y · abort ♦′ y := y′|b) = (var x, y · x, y := x′, y′|b).

The command on the right hand side assigns an arbitrary value tox but
it always terminates, thus a nonterminating command could be “fixed” by
combining it in parallel with a terminating one!

To properly model a system that aborts on one component of the state and
terminates on the other would require a pair of predicate transformers. This
would not allow us to freely interchange single specifications with parallel
commands as we require when working with the refinement calculus.

6 Data refinement

The well-known technique of data refinement involves replacing abstract
program variables with concrete program variables using an abstraction
relation [12]. In the refinement calculus, the abstraction relation is modelled
by an abstraction command, and we say thatS : Σ 7→ Σ is data refined by
S′ : Σ′ 7→ Σ′ under abstraction commandα : Σ′ 7→ Σ if [1,10,24,27]:

α;S ≤ S′;α.

For a more comprehensive treatment of data refinement of predicate trans-
formers see [1,10,24,27]. Here we will simply look at how data refinement
distributes through the fusion and product operators.

938 R.-J. Back, M. Butler

For predicate transformerT , theright adjoint of T , denotedT r, satisfies

T ;T r ≤ skip skip ≤ T r;T.

T has a right adjoint if and only ifT is universally disjunctive [27]. In this
case,T r is universally conjunctive. For relationP , it can be shown that

{P}r = [P−1].

So-calledforward data refinement corresponds to the case where the
abstraction commandα is universally disjunctive, in which case,α will
have right adjointαr. Furthermoreα andαr will have normal forms{P}
and[P−1] respectively. It is easily shown thatα;S;αr is the least forward
data-refinement ofS, i.e.,

α;S ≤ (α;S;αr);α, and

α;S ≤ X;α ⇒ α;S;αr ≤ X.

Thus, givenS andα, we calculate a data refinement ofS by refiningα;S;αr.
Laws for distributing forward data refinement through statement structures
may be found in [10,27]. For example,

α;S;T ;αr ≤ (α;S;αr); (α;T ;αr).

Laws such as these allow us to calculate data refinements of compound
statements by calculating data refinements of the component statements.

Typically, the abstraction command is represented by a boolean termI
relating the abstract and concrete variables. In terms of our program variable
syntax, the least data refinement of(var a · S) is given by:

{var c 7→ a · I}; (var a · S); [var a 7→ c · I].

Note that{var c 7→ a · I}r = [var a 7→ c · I].
We are interested in howα andαr distribute from the left and from the

right in α; (S1 �S2);αr. We do have sub-distributivity from the left:

Lemma 14 For disjunctiveα,

α; (S1 �S2) ≤ (α;S1) �(α;S2).

There is a similar sub-distributivity law for the product operator.
In considering distribution ofαr from the right, we shall restrict our

attention to the case whereS1 andS2 are conjunctive. SinceS1 andS2 are
conjunctive andαr is universally conjunctive,(S1 �S2);αr has the normal
form

({p1}; [P1] � {p2}; [P2]) ; [Q]
= {p1 ∧ p2} ; [(P1 ∧ P2)]; [Q]
= {p1 ∧ p2} ; [(P1 ∧ P2);Q].

Fusion and simultaneous execution in the refinement calculus 939

We cannot proceed further since, at the level of relations, we do not have
the required sub-distributivity, i.e.,

(P1 ∧ P2);Q 6≥ (P1;Q) ∧ (P2;Q).

This is because the conjunction on the right hand side has no influence on
intermediate states. IfQ is of the formQ1 ⊗Q2 then we do get the following
distributivity for relational product:

Lemma 15 For P1 : Σ ↔ Γ1, P2 : Σ ↔ Γ2, Q1 : Γ1 ↔ Φ1, Q2 : Γ2 ↔
Φ2,

(P1 4 P2); (Q1 ⊗Q2) = (P1;Q1) 4(P2;Q2).

Proof of this lemma is given in the appendix.
This leads to the following theorem about distribution of the least data

refinement through the product operators:

Theorem 16 Assumeα has the form{P1 ⊗P2}. Let α1 = {P1}, α2 =
{P2}. Then for conjunctiveS1, S2,

α; (S1 4 S2);αr ≤ (α;S1;αr
1) 4 (α;S2;αr

2)
α; (T1 ⊗T2);αr ≤ (α1;T1;αr

1) ⊗ (α2;T2;αr
2).

Proof of this theorem is given in the appendix.
This theorem shows how the least data refinement can be pushed through

both product operators. In terms of our program variable syntax, the abstrac-
tion commands here may be represented by:

α = {var (c1, c2) 7→ (a1, a2) · I1 ∧ I2}
α1 = {var c1 7→ a1 · I1}
α2 = {var c2 7→ a2 · I2},

whereI1 is independent ofa2, c2 andI2 is independent ofa1, c1.
In Theorem 16, we have relied on the fact that the product operator can be

used to compose both disjunctive and conjunctive commands. A definition
of product that only worked with conjunctive commands would not have
allowed us to work with data refinement in this way.

Note that it is still possible to work with data refinement using only a
product operator for conjunctive commands as Abrial shows [1]. He derives
an equivalent first order formulation of data refinement (i.e., without quan-
tification over predicates) which allow him to show that ifS1 is data refined
by S′

2 under abstraction relationR1 (written S1 ≤R1 S′
1) andS2 ≤R S′

2,
then

S1 ⊗S2 ≤R1 ⊗ R2 S′
1 ⊗S′

2.

940 R.-J. Back, M. Butler

However this approach does not allow us to work with the least data refine-
ment of a product. In [28], von Wright shows that the least data refinement
of a conjunctive command can sometimes be disjunctive. He gives an ex-
ample command whose only conjunctive data refinement is infeasible (i.e.,
magic) but which does have a disjunctive data refinement that in some con-
texts can be refined by a feasible conjunctive command. Thus the least data
refinement approach provides a richer environment in which to reason and
this is supported by our product operator.

Backwarddata refinement corresponds to the case whereα is universally
conjunctive. However, universally conjunctiveα does not sub-distribute
from the left, nor does universally disjunctiveαr sub-distribute from the
right, so we cannot distribute backwards data refinement through the fusion
and product operators.

7 Other applications of product

Embedding

Suppose we want to embed a statement(var v · S) in a context in which a
larger list of variablesu is being operated on. We require that the variables
u \ v should remain unchanged. This is achieved using the product operator
as follows:

embedu · (var v · S) =̂ (var u 7→ (v, v) · u := u);
((var v · S) 4 (var v · skip));
(var (v, v) 7→ u · u := u)

where v = u \ v.

The statements(var u 7→ (v, v) · u := u) and(var (v, v) 7→ u · u := u)
simply rearrange the ordering of program variables. It can be shown that
this embedding preserves refinement, i.e., ifS ≤ S′, then

(embedu · S) ≤ (embedu · S′).

Furthermore, although the product operator is only commutative and
associative up to isomorphism, it is fully commutative and associative within
an embedding:

(embedu · S1 4 S2) = (embedu · S2 4 S1)
(embedu · (S1 4 S2) 4 S3) = (embedu · S1 4(S2 4 S3)).

Embedding is important for procedure calling. We model a procedure
by simply associating a statement with a procedure name, e.g.,

Proc =̂ (var v · S).

Fusion and simultaneous execution in the refinement calculus 941

Calling a procedure is then modelled by embedding the statement associated
with the procedure name in the appropriate place:

T ; (var u · Proc);U =̂ T ; (embedu · S);U.

Embedding allows us to use the same procedure in different program variable
contexts.

Extension and modification

Given a statement(var v · S1), we can use the product operator to extend
it’s functionality with a statementS2:

(var v · S1) extn (var (v, w) 7→ w · S2)
=̂ ((var (v, w) 7→ v · v := v); (var v · S1)) 4 (var (v, w) 7→ w · S2).

Here,S2 may add extra program variables which it writes to, as well as
being able to read the variables ofS. Extension ofS1 by S2 is sometimes
known as superposition. As an example, we have:

(var x · x := e) extn (var (x, y) 7→ y · y := x + y)
= (var (x, y) · x, y := e, x + y).

The product operator can be used to modify an existing statement. Sup-
pose we wish to modify(var u · S1) so that the value it writes to variables
v is determined by(var u 7→ v · S2) instead. This is achieved as follows:

(var u · S1) mod (var u 7→ v · S2)
=̂ (((var u · S1); (var u 7→ v · v := v)) 4 (var u 7→ v · S2));

(var (v, v) 7→ u · u := u)
where v = u \ v.

For example,

(var (x, y) · x, y := d, e) mod (var (x, y) 7→ x · x := f)
= (var (x, y) · x, y := f, e).

Both extension and modification preserve refinement of their operands.
In [3], we describe a summation operator, a categorical dual to the product
operator which is shown to model late-binding of procedures. This opera-
tor in combination with extension and modification can be used to model
inheritance in object oriented programming [3,19].

942 R.-J. Back, M. Butler

M =̂




var m : Int
initially m := 0
action a : m = 0 −→ m := 1
action c : m = 1 −→ m := 0




N =̂




var n : Int
initially n := 0
action b : n = 0 −→ n := 1
action c : n = 1 −→ n := 0




Fig. 2. Example action systems

Composing action systems

Theaction systemformalism of Back and Kurki-Suonio [4] uses predicate
transformers to model parallel programs. An action system consists of a
state space determined by some program variables, an initialisation predi-
cate transformer, and a set of action predicate transformers. Execution of an
action system proceeds by firstly executing the initialisation, then, repeat-
edly, executing an enabled action (an actionA is enabled whengd A holds).
Typically, an action is written in the form(var u · g −→ S), whereg is a
boolean term, and

(var u · g −→ S) =̂ (var u · [g];S).

In the case thatS is always enabled, i.e.,gd S = >, then

gd (var u · g −→ S) = (var u · g).

Figure 2 gives two examples of such action systems.
Two action systems may be composed in parallel by forming the union

of their program variables, composing their initialisations such that they are
executed simultaneously, and forming the union of their actions. Embedding
is used to embed the actions in the composite state space. Conventionally,
the initialisations are demonic updates[I1], [I2], and their composition is
simply [I1 ∧ I2]. The product operator provides a way of composing more
general initialisations achieving the same effect.

In [7], a correspondence between action systems and Hoare’s CSP [13] is
described. Based on CSP parallel composition, a version of parallel compo-
sition of action systems is introduced in which commonly labelled actions
from the respective action systems are composed such that they are exe-
cuted simultaneously. This represents synchronised updating of states, and
can be modelled using the product operator. To combine the action systems

Fusion and simultaneous execution in the refinement calculus 943

M andN of Figure 2, the action labelledc from bothM andN must be
synchronised:

(m = 1 −→ m := 0) 4 (n = 1 −→ n := 0)
= m = 1 ∧ n = 1 −→ m, n := 0, 0.

The synchronised parallel composition of action systemsM andN is then:

M ‖ N =




var m, n : Int
initially m, n := 0, 0
action a : m = 0 −→ m := 1
action b : n = 0 −→ n := 1
action c : m = 1 ∧ n = 1 −→ m, n := 0, 0




Superposition refinement of action systems is described in [5], where
superposition on individual actions is described in terms of sequential com-
position. Our extension operator could be used instead.

8 Conclusions

We have investigated the fusion and product operators for predicate trans-
formers showing that they satisfy a variety of algebraic laws and have sev-
eral important applications. These algebraic laws describe properties such
as how the operators preserve refinement and distribute through existing
constructors of the refinement calculus. The operands of the fusion operator
may write to the same final state while those of the product operators write
to separate final states; this means that the fusion operator may introduce
miraculousness while the product operator never does, i.e.,4 preserves
⊥-homomorphism, while� does not.

Our fusion operator is useful as an operator for conjoining specifications
that, most importantly, is refinement preserving. It compares favourably with
some alternative definitions since it may be applied to disjunctive as well
as conjunctive commands and it allows the termination condition of one
command to be assumed when refining the other. Furthermore, we found it
easier to prove certain properties of the fusion operator (e.g., Theorem 10)
than of the product operator. Thus the fusion operator served as a useful
vehicle for developing properties of the product operators.

We showed that the product operator models simultaneous execution of
statements and that, combined with projection updates, it can be used to
embed small programs (e.g., procedures) into larger contexts. Simultaneous
execution and embedding are also important for composing action systems.
Of course, the idea of using categorical products as models of simultaneous
execution in programming languages is not new (see, for example, [15]).

944 R.-J. Back, M. Butler

Some of the theoretical results for the product operator may be found in
[25] and [18], in particular, the preservation of junctivity. We have gener-
alised these definitions to include the fusion operator. Also our approach is
different: we develop a product operator for predicates and use properties
of this when reasoning about predicate transformers, whereas Martin [18]
uses a categorical construction that promotes products and co-products in
the category of functions to the category of relations and then to the category
of predicate transformers, and Naumann [25] takes a more direct approach
working within the category of predicate transformers. The lifting of the op-
erators to the program variable level, and the theorems about the distribution
of the fusion and product operators with specification statements (e.g., The-
orem 10) are ours. We believe that the extension and modification operators
are new in the theory of predicate transformers as is the fusion operator.

Our derived product agrees with Abrial’s parallel operator [1] on con-
junctive commands. However, unlike Abrial’s, our operator can also be ap-
plied to disjunctive commands and in Section 6 we showed that this allowed
us easily to work with the least data refinement of products which provides
a rich environment for reasoning about data refinement.

In [3], we describe a summation operator, a dual to the product opera-
tor. This operator is shown to model late-binding of procedures. It is also
shown to be a special case of the existing choice operators of the refinement
calculus; to that extent it is not an extension of the existing calculus, unlike
the fusion operator.

Hoogendijk and Backhouse [14] have investigated products of relations
and shown them to satisfy similar distributivity properties as our operator on
predicate transformers. However, with a relation one has to choose between
whether its domain represents termination or guardedness, and whether non-
determinism should be demonic or angelic, whereas all of these possibilities
may be modelled with predicate transformers, i.e., relationP can be embed-
ded into the appropriate predicate transformer lattice in at least four different
ways:

[P], {dom P}; [P], {P}, [dom P]; {P}.

The higher order logic we use is equivalent in expressive power to set
theory. For example, predicates could be modelled as sets and predicate
transformers as functions from sets to sets. Indeed this is the approach taken
in [1,25]. We prefer to work with higher order logic since it ties in with an
on-going effort [8] that we have been involved in on providing tool support
for program refinement using the HOL theorem-proving system [11].

Traditionally, reasoning about weakest precondition formulae tends to be
carried out at the predicate and predicate transformer levels without ever in-
troducing explicit state to work at the boolean level. However, we could only

Fusion and simultaneous execution in the refinement calculus 945

carry out certain proofs at the boolean level, e.g., Theorem 10, so having all
three levels gave us more freedom. Although we made minimal assumptions
about the structure of the state, we are able to deal with program variables in
the conventional fashion by introducing a simple layer of syntactic sugaring.

Appendix: Proofs

Lemma 17 For p1 : P Γ1, p2 : P Γ2, 〈π1〉p1 ∧ 〈π2〉p2 = p1 × p2.

Lemma 18 For projectionsπ1, π2,

[π−1
1]; 〈π1〉 = skip, 〈π1〉; [π−1

1] ≤ skip,

[π−1
2]; 〈π2〉 = skip, 〈π2〉; [π−1

2] ≤ skip.

Lemma 19 For q1, q2 : P Σ1 × Σ2, [π−1
1] q1 × [π−1

2] q2 ≤ q1 ∧ q2.

Theorem 6For S1 : Σ 7→ Γ1, S2 : Σ 7→ Γ2,

S1 4 S2 = S1; [π−1
1] � S2; [π−1

2].

Proof. For q : P (Γ1 × Γ2),

(S1; [π−1
1] � S2; [π−1

2]) q

= (∃q1, q2 : P (Γ1 × Γ2) | q1 ∧ q2 ≤ q · (S1; [π−1
1] q1) ∧ (S2; [π−1

2] q2))
≤ {Lemma 19}

(∃q1, q2 : P (Γ1 × Γ2) | [π−1
1]q1 ×[π−1

2]q2 ≤ q · (S1; [π−1
1] q1)

∧ (S2; [π−1
2] q2))

≤ {takeq′
1 = [π−1

1]q1, q′
2 = [π−1

2]q2}
(∃q′

1 : P Γ1; q′
2 : P Γ2 | q′

1 × q′
2 ≤ q · S1q

′
1 ∧ S2q

′
2)

= (S1 4 S2) q.

(S1 4 S2) q

= (∃q1 : P Γ1; q2 : P Γ2 | q1 × q2 ≤ q · S1q1 ∧ S2q2)
= {Lemma 17}

(∃q1 : P Γ1; q2 : P Γ2 | 〈π1〉q1 ∧ 〈π2〉q2 ≤ q · S1q1 ∧ S2q2)
= {Lemma 18}

(∃q1 : P Γ1; q2 : P Γ2 | 〈π1〉q1 ∧ 〈π2〉q2 ≤ q ·
(S1; [π−1

1]; 〈π1〉 q1) ∧ (S2; [π−1
2]; 〈π2〉 q2))

≤ {takeq′
1 = 〈π1〉q1, q′

2 = 〈π2〉q2}
(∃q′

1, q
′
2 : P (Γ1 × Γ2) | q′

1 ∧ q′
2 ≤ q · (S1; [π−1

1] q′
1) ∧ (S2; [π−1

2] q′
2))

= (S1; [π−1
1] � S2; [π−1

2]) q. ut

946 R.-J. Back, M. Butler

Theorem 9For predicate transformersS1 andS2, S1 �S2 solves:

{halt S2};S1 ≤ X (4)

{halt S1};S2 ≤ X, (5)

and furthermore, for any conjunctiveY that solves (1) and (2),

S1 �S2 ≤ Y. (6)

Proof. Firstly, S1 �S2 solves (4):

(S1 �S2) q = (∃q1, q2 : P Γ | q1 ∧ q2 ≤ q · S1q1 ∧ S2q2)
≥ S1q ∧ S2>
= {S2>};S1 q.

Similarly, S1 �S2 solves (5). Finally,S1 �S2 satisfies (6):

(S1 �S2) q = (∃q1, q2 : P Γ | q1 ∧ q2 ≤ q · S1q1 ∧ S2q2)
≤ {Y satisfies (4) and (5)}

(∃q1, q2 : P Γ | q1 ∧ q2 ≤ q · Y q1 ∧ Y q2)
= {Y conjunctive}

(∃q1, q2 : P Γ | q1 ∧ q2 ≤ q · Y (q1 ∧ q2))
≤ {Y monotonic}

Y q. ut

Theorem 10For relationsP, Q : Σ ↔ Γ , and predicatesp, q : P Σ,

{p}; [P] � {q}; [Q] = {p ∧ q}; [P ∧ Q].

Proof. It is easy to show that{p ∧ q}; [P ∧ Q] solves (4) and (5), thus by
Theorem 9({p}; [P] � {q}; [Q]) ≤ {p∧ q}; [P ∧Q]. To show the reverse,
we have forr : P Γ , σ : Σ,

Fusion and simultaneous execution in the refinement calculus 947

{p ∧ q}; [P ∧ Q] r σ

= {by definition}
p σ ∧ q σ ∧ (∀σ′ : Γ · (P σ σ′) ∧ (Q σ σ′) ⇒ r σ′)

= {pointwise extension}
p σ ∧ q σ ∧ ((λσ′ : Γ · P σ σ′) ∧ (λσ′ : Γ · Q σ σ′) ≤ r)

= { {p}; [P] (λσ′ : Γ · P σ σ′) σ
= p σ ∧ (∀σ′ : Γ · (P σ σ′) ⇒(λσ′ : Γ · P σ σ′) σ′)
= p σ ∧ (∀σ′ : Γ · (P σ σ′) ⇒(P σ σ′))
= p σ }

{p}; [P] (λσ′ : Γ · P σ σ′) σ ∧
{q}; [Q] (λσ′ : Γ · Q σ σ′) σ ∧
((λσ′ : Γ · P σ σ′) ∧ (λσ′ : Γ · Q σ σ′) ≤ r)

⇒ {takeq1 = (λσ′ : Γ · P σ σ′), q2 = (λσ′ : Γ · Q σ σ′) }
(∃q1, q1 : P Γ · (q1 ∧ q2 ≤ r) ∧ {p}; [P] q1 σ ∧ {q}; [Q] q2 σ)

= (∃q1, q1 : P Γ | q1 ∧ q2 ≤ r · {p}; [P] q1 ∧ {q}; [Q] q2) σ

= ({p}; [P] � {q}; [Q]) r σ. ut

Lemma 15ForP1 : Σ ↔ Γ1, P2 : Σ ↔ Γ2,Q1 : Γ1 ↔ Φ1, Q2 : Γ2 ↔ Φ2,

(P1 4 P2); (Q1 ⊗Q2) = (P1;Q1) 4(P2;Q2).

Proof.

(P1 4 P2); (P1 ⊗Q2) σ (φ1, φ2)
= (∃γ1, γ2 · (P1 4 P2) σ (γ1, γ2) ∧ (Q1 ⊗Q2) (γ1, γ2) (φ1, φ2))
= (∃γ1, γ2 · P1 σ γ1 ∧ P2 σ γ2 ∧ Q1 γ1 φ1 ∧ Q2 γ2 φ2)
= (∃γ1 · P1 σ γ1 ∧ Q1 γ1 φ1) ∧ (∃γ2 · P2 σ γ2 ∧ Q2 γ2 φ2)
= P1; Q1 σ φ1 ∧ P2;Q2 σ φ2

= (P1;Q1) 4(P2;Q2) σ (φ1, φ2) ut

This leads easily to the following lemma:

Lemma 20 For conjunctiveS1, S2, universally conjunctiveT1, T2,

(S1 4 S2) ; (T1 ⊗T2) = S1;T1 4 S2;T2.

Theorem 16Assumeα has the form{P1 ⊗P2}. Letα1 = {P1},α2 = {P2}.
Then for conjunctiveS1, S2,

α; (S1 4 S2);αr ≤ (α;S1;αr
1) 4 (α;S2;αr

2)
α; (T1 ⊗T2);αr ≤ (α1;T1;αr

1) ⊗ (α2;T2;αr
2).

948 R.-J. Back, M. Butler

Proof. First:

αr = {P1 ⊗P2}r

= [(P1 ⊗P2)−1]
= [P−1

1 ⊗ P−1
2]

= [P−1
1] ⊗ [P−1

2]
= αr

1 ⊗ αr
2

Then:

α; (S1 4 S2);αr = α; (S1 4 S2); (αr
1 ⊗ αr

2)
= {Lemma 20,αr

1, α
r
2 universally conjunctive}

α; (S1;αr
1 4 S2;αr

2)
≤ {Lemma 14,α disjunctive}

α;S1;αr
1 4 α;S2;αr

2

Next:

α; (T1 ⊗T2);αr = α; (〈π1〉;T1 4 〈π2〉;T2);αr

≤ {Above}
α; 〈π1〉;T1;αr

1 4 α; 〈π2〉;T2;αr
2

≤ {Since{P1 ⊗P2}; 〈πi〉 ≤ 〈πi〉; {Pi}, i ∈ 1..2 }
〈π1〉;α1;T1;αr

1 4 〈π2〉;α2;T2;αr
2

= α1;T1;αr
1 ⊗ α2;T2;αr

2 ut

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press 1996

2. Back, R.J.R.: Correctness Preserving Program Refinements: Proof Theory and Appli-
cations. Tract 131, Mathematisch Centrum, Amsterdam, 1980

3. Back, R.J.R., Butler, M.J.: Exploring summation and product operators in the refinement
calculus. In: M̈oller, B. (ed.) Mathematics of Program Construction, 1995, LNCS 947,
Berlin Heidelberg New York: Springer 1995

4. Back, R.J.R., Kurki-Suonio, R.: Decentralisation of process nets with centralised con-
trol. In: 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing,
pp. 131–142, 1983

5. Back, R.J.R., Sere, K.: Superposition refinement of parallel algorithms. In: Parker, K.A.,
Rose, G.A. (eds) FORTE’91. Amsterdam: North-Holland 1992

6. Back, R.J.R., von Wright, J.: Refinement concepts formalised in higher order logic.
Form. Asp. Comput.5: 247–272 (1990)

7. Butler, M.J.: Stepwise refinement of communicating systems. Sci. Comput. Programm.
27(2): 139–173 (1996)

Fusion and simultaneous execution in the refinement calculus 949

8. Butler, M.J., Grundy, J., L̊angbacka, T., Ruǩsėnas, R., von Wright, J.: The refinement
calculator: proof support for program refinement. In: Groves, L., Reeves, S. (eds) Formal
Methods Pacific’97, Springer Series in Discrete Mathematics and Theoretical Computer
Science. Berlin Heidelberg New York: Springer 1997

9. Dijkstra, E.W.: A Discipline of Programming. Englewood Cliffs, N.J.: Prentice-Hall
1976

10. Gardiner, P.H.B., Morgan, C.C.: Data refinement of predicate transformers. Theor. Com-
put. Sci.87: 143–162 (1991)

11. Gordon, M., Melham, T.: Introduction to HOL. Cambridge University Press 1993
12. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: European Symposium

on Programming, LNCS 213, Berlin Heidelberg New York: Springer 1986
13. Hoare, C.A.R.: Communicating Sequential Processes. Englewood Cliffs, N.J.: Prentice-

Hall 1985
14. Hoogendijk, P.F., Backhouse, R.C.: Relational programming laws in the tree, list, bag,

set hierarchy. Sci. Comput. Prog.22(1–2): 67–105 (1994)
15. Jifeng, He, Hoare, C.A.R.: Categorical Semantics of Programming Languages. In: Math-

ematical Foundations of Programming Semantics, LNCS 442, Berlin Heidelberg New
York: Springer 1990

16. Jones, C.B.: Systematic Software Development using VDM – Second Edition. Engle-
wood Cliffs, N.J.: Prentice-Hall 1990

17. Leino, K.R.M., Manohar, R.: Joining specification statements. Available from
http: //www.research.digital.com/SRC/personal/Rustan Leino
/papers.html ,
July 1996

18. Martin, C.E.: Preordered Categories and Predicate Transformers. D.Phil. Thesis, Pro-
gramming Research Group, Oxford University, 1991

19. Mikhajlova, A., Sekerinski, E.: Class refinement and interface refinement in object-
oriented programs. In: FME’97, LNCS 1313, Berlin Heidelberg New York: Springer
1997

20. Morgan, C.C.: The specification statement. ACM Trans. Program. Lang. Syst.10(3):
403–419 (1988)

21. Morgan, C.C.: Programming from Specifications. Englewood Cliffs, N.J.: Prentice-Hall
1990

22. Morgan, C.C.: The cuppest capjunctive capping, and Galois. In: Roscoe, A.W. (ed.) A
Classical Mind: Essays in Honour of C.A.R. Hoare. Englewood Cliffs, N.J.: Prentice-
Hall 1994

23. Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus.
Sci. Comput. Program.9(3): 298–306 (1987)

24. Morris, J.M.: Laws of data refinement. Acta Inf.26: 287–308 (1989)
25. Naumann, D.A.: Two-Categories and Program Structure: Data Types, Refinement Cal-

culi, and Predicate Transformers. Ph.D. Thesis, University of Texas at Austin, 1992
26. Spivey, J.M.: The Z Notation - A Reference Manual. Englewood Cliffs, N.J.: Prentice-

Hall 1989
27. von Wright, J.: The lattice of data refinement. Acta Inf.31(2): 105–135 (1994)
28. von Wright, J.: A unified theory of data refinement.Åbo Akademi University, Dept. of

Computer Science, February 1994
29. Ward, N.: Adding specification constructs to the refinement calculus. In: FME’93, LNCS

670, Berlin Heidelberg New York: Springer 1993

