
Acta Informatica 35, 775–793 (1998)

c© Springer-Verlag 1998

A Tree-based Mergesort?

Alistair Moffat 1, Ola Petersson2, Nicholas C. Wormald3

1 Department of Computer Science, The University of Melbourne, Parkville 3052, Australia
(e-mail: alistair@cs.mu.oz.au)
2 Department of Computer Science, Lund University, Box 118, S–221 00 Lund, Sweden; and Depart-
ment of Mathematics, Statistics, and Computer Science, Växjö University, S-351 95 V̈axjö, Sweden
(e-mail: ola@dna.lth.se)
3 Department of Mathematics, The University of Melbourne, Parkville 3052, Australia
(e-mail: N.Wormald@ms.unimelb.edu.au)

Received: 7 October 1993 / 18 July 1996

Abstract. We demonstrate that if standard Mergesort is implemented using fin-
ger search trees instead of arrays it optimally adapts to a set of measures of
presortedness not fulfilled by any other algorithm.

1. Introduction

An adaptivealgorithm is one which uses fewer resources to solve ‘easy’ prob-
lem instances than it does to solve ‘hard’ ones. For sorting, an adaptive algo-
rithm should process ann-sequence inO(n) time if the sequence is sorted, and
preferably inO(n logn) time on any sequence, with the time for each particular
sequence depending upon the ‘nearness’ of that sequence to being sorted.

Mannila [8] established the notion of ameasure of presortednessto quan-
tify the disorder in any input sequence, and introduced the concept ofoptimal
adaptivity. For example, if presortedness is measured by counting the number
of pairwise inversions in the inputn-sequenceX, denotedInv(X), then anInv-
optimal algorithm must sortX in1 O(n log(Inv(X)/n)) time [8]. The intuitive
reason why this is optimal is thatany binary comparison-tree that sortsevery
n-sequenceX with Inv(X) ≤ k has heightΩ(n log(k/n)). Several authors have
proposed other measures of presortedness, some of which are defined as we go
along.

Any particular sorting algorithm is optimally adaptive with respect to some
subset of this set of known measures of presortedness. Of great interest then is
the determination of the exact subset attained by an algorithm. The more all-
inclusive the subset, the more versatile the algorithm. For example a method that

? Preliminary versions of the results reported in this paper have been presented at14th Australian
Computer Science Conf.,1991;15th Australian Computer Science Conf.,1992; andThird Ann. Inter-
nat. Symp. on Algorithms and Computation,1992.

1 We assume that logx is defined to be log2(max{2, x}).

776 A. Moffat et al.

is not only optimal with respect toInv but also with respect toRuns, the number
of ascending runs in the input sequence (that is, the algorithm sortsn-sequences
composed ofk runs in O(n logk) time), is in some sense more powerful than
methods that are optimally adaptive to only one of the measures.

In this paper we study the adaptivity of a Mergesort, that is, in what ways
it profits from existing order within its input. It is easy to see that a textbook
Mergesort runs inΘ(n logn) time not only in the worst case but also in the best
case, and so is not adaptive at all. This lack of adaptivity stems from the fact that
no matter how ‘easy’ a single merge is, it still takes linear time in the number
of participating items. We show that by implementing the algorithm using finger
search trees rather than arrays, merging can be accomplished adaptively, that is,
some merges can take sublinear time. ThisTree-based Mergesortis not tailored
to profit from any particular kind of presortedness, and it is therefore surprising
that it is optimally adaptive with respect to a wide range of known measures.
The main part of the paper is indeed devoted to proving this claim. Results by
the first two authors imply that it is not necessary to investigate adaptivity with
respect to all measures of presortedness, and that it suffices instead to consider
only a few, from which optimality (or non-optimality) with respect to many other
measures comes for free [11].

In Sect. 2 we define the notion of optimal adaptivity. Section 3 then presents
an adaptive merging algorithm, and shows how it can be implemented using
finger search trees. In the subsequent three sections the adaptivity of the resulting
Mergesort is analysed in terms of three different measures of presortedness. In
Sect. 4 we proveInv-optimality; in Sect. 5Rem-optimality is proved, where
Rem measures the minimum number of items that must be removed to leave
a sorted sequence; and in Sect. 6SMS-optimality is examined, whereSMS is
the minimum number of monotone subsequences whose shuffle forms the input
sequence. In Sect. 7 it is shown that the obtained bounds imply optimality for
other measures too. An example of a measure for which the algorithm is not
optimal is also given. Section 8 gives experimental results that are in agreement
with the analysis of Sects. 4, 5, and 6.

Finally, note that we useΘ, Ω, andO to indicate bounds on functions in the
manner described by Knuth [5].

2. Optimal adaptivity

The concept of an optimal algorithm with respect to a measure of presortedness
was given in a general form by Mannila [8]. In the development use the following
equivalent definitions [11].

Definition 1. Let M be a measure of presortedness. Then, for any k≥ 0 and
n ≥ 1,

belowM (n, k) = {π | π ∈ Sn and M(π) ≤ k}.

The setbelowM (n, k) contains all permutations that, according toM , are at least
as presorted as the sequencesX with M (X) = k.

A Tree-based Mergesort 777

The minimum number of comparisons needed to sort the permutations in a
below-set is also of interest:

Definition 2. Let M be a measure of presortedness, and Tn the set of binary
comparison trees for the set Sn of all permutations of{1, 2, . . . , n}. Then, for any
k ≥ 0 and n≥ 1,

CM (n, k) = min
T∈Tn

max
π∈belowM (n,k)

{depth ofπ in T}.

Given these two definitions, the notion of optimality of an adaptive sorting
algorithm is clear:

Definition 3. Let M be a measure of presortedness, and A a comparison-based
sorting algorithm that uses TA(X) steps on input X . We say that A is M-optimal,
or optimal with respect toM , if TA(X) = O(CM (|X|, M (X))).

The following theorem is helpful when proving the optimality of some algo-
rithm [11]:

Theorem 1. Let M be a measure of presortedness. Then

CM (n, k) = Θ(n + log‖belowM (n, k)‖).

This paper considers in detail three measures of presortedness:Inv, the num-
ber of inversions (pairs of items out of order with respect to each other) in the
input sequence;Rem, the minimum number of items which must be removed in
order to leave a sorted sequence; andSMS, the minimum valuek such that the
sequence can be composed by shuffling togetherk monotone sequences. Table 2
lists the values ofCM (n, k) for these three measures.

Table 1. Values ofCM (n, k)

M CM (n, k) Reference
Inv Θ(n log(k/n)) [8]
Rem Θ(n + k logk) [8]
SMS Θ(n logk) [6]

3. Adaptive merging and Tree-based Mergesort

The standard linear time algorithm for merging two sorted sequences can be
thought of as first finding the maximum of the two smallest items and then
performing a linear search for its successor in the opposite sequence. Items
smaller than the successor are transferred to the output as they are passed by
the search. This process is then repeated with the roles of the two sequences
reversed, continuing until one or the other of the two sequences is empty.

Due to the linear search the algorithm spends a linear number of comparisons
even in the best case. The reason why the search chosenis linear is that the
sequences are usually implemented using arrays, in which case it takes linear

778 A. Moffat et al.

time to move the output, and so, why worry about saving some comparisons?
For now, let us only count comparisons, and see what can be achieved. This
simplification will be justified shortly.

The next search that comes to mind after linear search is, of course, binary
search. In its normal form binary search is not, however, an attractive alternative,
since it might result in an algorithm requiring logarithmic time per item rather
than constant. A better choice is exponential and binary search [9]. Recall that this
algorithm finds the successor of an item in a sorted sequence by starting at one of
the endpoints and probing further and further towards the opposite endpoint, each
time doubling the distance, until the target position has been enclosed, after which
it switches to an ordinary binary search. For example, a search from location 1
for an item in location 20 of a sorted array probes locations 1, 3, 7, 15, and 31,
at which point the search changes from being exponential to binary; and then
locations 23, 19, 21, and, finally, 20. More generally, if the sought position is
at distanced from the starting point of the search, it is found in timeO(logd).
Using this search, chunks of consecutive items that do not interleave with the
other sequence are thus traversed in logarithmic time rather than linear.

The merge process can be thought of as cutting the two sequences into the
minimum number of consecutive subsequences orblocks necessary to achieve
the merge, and then interleaving the two sets of blocks to form the sorted output.
In what follows, suppose that the merged output sequence

Z = X1Y1X2Y2 · · · Xb−1Yb−1XbYb

consists ofb such blocks from each of the inputn-sequenceX and the inputm-
sequenceY , m ≤ n. Note that either or both ofX1 andYb may be empty. Given
the blocks, computing the sequenceZ requires no comparisons at all, and so,
using exponential and binary search, the total number of comparisons becomes

O

(
b∑

i =1

log |Xi | +
b∑

i =1

log |Yi |
)

= O
(

b log
n
b

)
= O

(
m log

n
m

)
.

Note that this bound matches the worst-case lower bound for merging, that
is, dlog2

(n+m
m

)e = Ω(m log(n/m)). We now show that the above bound can also
be achieved when operations other than comparisons are also counted.

A finger search tree[9] is a data structure for representing a sorted sequence.
Among the operations supported is searching from a ‘finger’ that points into the
sequence in time logarithmic in the ‘distance’ from the finger, that is, exponential
and binary search. There are several different ways of implementing finger search
trees, but for definiteness, our discussion assumes level linked 2–3 trees [2]; how-
ever, the results extend to other implementations too. Indeed, our investigation
was prompted by the merging algorithm given by Pugh [12] for Skip Lists, a
probabilistic finger search tree.

Suppose then thatX and Y are sorted sequences ofn and m items respec-
tively, stored as level linked 2–3 trees. Further, suppose that they are to be
merged, generating an output treeZ of n + m items. In what follows, if the

A Tree-based Mergesort 779

largest item inX is no greater than the smallest item inY the trees are said to
be disjoint, denotedX ≤ Y . We first consider the cost of splitting the treesX
andY into disjoint components that can be joined to form their merged output,
and then consider the complexity of joining a list ofb disjoint 2–3 trees.

Theorem 2. Let X be a 2–3 tree, which is to be split into b disjoint 2–3 trees Xi ,
1 ≤ i ≤ b, determined by the sequence〈−∞, y1, y2, . . . , yb−1, +∞〉. That is, the
items in Xi are to have values that are greater than yi −1 and less than or equal
to yi . Then the splitting can be performed in O(

∑b
i =1 log |Xi |) time.

Proof. The sequence of operations considered is:

for i := 1 to b do
Xi := Split(X, yi)

endfor

where it is assumed thatSplit(X, yi) prunes fromX all items less than or equal
to yi and returns them as a separate 2–3 tree, leavingX as a depleted 2–3 tree.

To locate the last node to be pruned a finger search foryi is performed from
the leftmost node of (what remains of)X, which takesO(log |Xi |) time. Then,
to actually perform theSplit, start at the parent node of the rightmost item to be
included inXi and work up the tree, duplicating every ancestor until either the
leftmost or the rightmost branch ofX is reached. One of each of these pairs of
nodes, together with all of the items to the left of the duplicated node, eventually
forms the treeXi . The other node of the pair, and items to the right of it, remains
in X. At each level the children of each duplicated node are partitioned between
the original node and the duplicate node according to their range of key values,
and the level links adjusted accordingly.

This results in two trees,Xi andX, which are 2–3 trees,exceptthere may be
violations down the right branch ofXi and down the left branch ofX. For each
of the at most 2 log2 |Xi | nodes thus affected a distribution step is performed,
starting from the parent nodes of the leaves of the tree:

– if the node (after the children have been partitioned) has zero children, or if
it is the root node of eitherXi or X and has only one child, it is deleted;

– if the node has one child, and the node immediately to the left (if it is inXi)
or right (if it is in X) has three children, a child is adopted from the sibling;

– if the node has one child, and the node immediately to the left (if it is inXi)
or right (if it is in X) has only two children, the child is moved to the sibling,
and the node is deleted;

– if the node has two or three children, no action is required.

This sequence of steps takesO(1) time at each node along the cutting path from
the leaf level up to either the left or right branch ofX. The length of that cutting
path isO(log |Xi |), and so the unzipping phase costsO(log |Xi |) time.

Then, at the node on the left or right branch that is at the top of the cutting
path, a child must be removed to form the root of the new treeXi (when on the

780 A. Moffat et al.

left branch) or the root of the remainder of the treeX (when on the right branch).
We call this operation abranch deletion.

The removal of this child during a branch deletion might cause a violation
of the ‘at least two children’ rule, and a sequence of cascading node fusings
that reaches right up to the root of the larger tree. The total number of node
fusings over allSplit operations is, however, bounded by the sum of the number
of branch deletions plus the total length of the right and left branches of the trees
in the resulting forest, and so the result follows. ut

In the case whereb = 2 this yields the standard result that it requires at most
O(logn + logm) = O(logn) time to split a tree into two parts of sizen andm.

Joiningb components is no more expensive than splitting:

Theorem 3. A list Z1, Z2, . . . , Zb of disjoint level-linked 2–3 trees, where Zi ≤
Zi +1, for 1 ≤ i < b, can be concatenated to make a single level-linked 2–3 tree
in O(

∑b
i =1 log |Zi |) time.

Proof. The sequence of operations considered is given by

Z := ∅
for i := 1 to b do

Z := Join(Z , Zi)
endfor

where toJoin two treesZ and Zi we begin at the rightmost node ofZ and
the leftmost node ofZi and zip the two trees together, setting the level links,
until either the root ofZ or the root ofZi is reached. In either case the time
required during the zipping stage is at most proportional to the depth ofZi , which
is O(log |Zi |).

The root ofZi is then inserted as an additional rightmost child of the cor-
responding node on the right branch ofZ , or, if it was the root ofZ that was
reached first,Z is inserted as a leftmost child of the appropriate node on the left
branch ofZi —that is, abranch insertiontakes place. If this causes that node to
have more than three children, it is split and a new child added to the parent of
that node, and so on up either the right branch ofZ or the left branch ofZi . If
the root is split a new root is added, andZ grows by one level.

The cost of all of the zipping operations isO(
∑b

i =1 log |Zi |). The node split-
tings that take place during theb branch insertions must also be accounted for.
The splitting of a node that became a 3-node as a result of a previous branch
insertion can be charged as anO(1) overhead to that operation, since each such
insertion creates at most one 3-node. Pre-existing 3-nodes that cannot be charged
in this way might also be split, but any such nodes must lie on either a left
branch or a right branch of one of the original input trees, and since the total
number of such nodes isO(

∑b
i =1 log |Zi |), we have, summed over the sequence

of operations, that the cost of the node splittings does not dominate the cost of
zipping the trees together. ut

A Tree-based Mergesort 781

Again, in the case whenb = 2 this gives the familiar result that aJoin of
two 2–3 trees can be performed inO(logn + logm) = O(logn) time [9].

Using trees the merging algorithm can be described as an interleaved sequence
of Splits andJoins:

function Merge(X:tree; Y :tree):tree
Z := ∅; i := 0
while X 6= ∅ or Y 6= ∅ do

i := i + 1
Xi := Split(X, yi)
Z := Join(Z , Xi)
Yi := Split(Y , xi)
Z := Join(Z , Yi)

endwhile
return Z

end

Here xi and yi , the sequences of splitting items, are always the smallest
remaining items in the (shrinking) treesX andY ; and, for descriptive purposes,
it is assumed that reference to the first item of an empty tree returns the value +∞.

Note that each of the trees involved is subject to eitherJoin or Split opera-
tions, but not both. For 2–3 trees, theJoins andSplits on the same tree cannot
be interleaved without affecting the given analysis, since the amortized bounds
on the numbers of node splittings and fusings rely on there being no other inter-
vening operations [9]. Theorems 2 and 3, and the observation that each tree is
only subject to one type of operation now provide the following bound on the
cost of merging two level-linked 2–3 trees:

Theorem 4. Let X and Y be two sorted sequences of n and m items, respectively,
m ≤ n, which are represented as level-linked 2–3 trees. Further let the tree Z be
the result of merging X and Y :

Z = X1Y1X2Y2 . . . Xb−1Yb−1XbYb,

where X = X1X2 . . . Xb, Y = Y1Y2 . . . Yb, and either or both of X1 and Yb might
be empty. Then Z can be computed in

O

(
b +

b∑
i =1

log |Xi | +
b∑

i =1

log |Yi |
)

= O
(

b log
n
b

)
= O

(
m log

n
m

)

time in the worst case.

Carlsson, Levcopoulos, and Petersson [3] have also described a merging al-
gorithm similar to this. In their solution, however, the output sequence is not in
the same format as the input sequences.

The Tree-based Mergesort is now obvious. The items in the input sequenceX
are inserted inton singleton 2–3 trees inΘ(n) time. Next, the trees are pairwise

782 A. Moffat et al.

merged in the order they appeared in the input, building trees of size 2, then 4,
then 8, and so on. Afterdlog2 ne passes a single tree remains. Finally, it takes
Θ(n) time to traverse that tree and copy the items to the desired output location.

4. Inversions

We now turn our attention to the adaptivity of the new Mergesort with respect
to the number of inversions, which is formally defined as

Inv(X) = ‖{(i , j) | 1 ≤ i < j ≤ n andxi > xj }‖.

Over the years several sorting algorithms that adapt toInv have been devised;
for example, Mehlhorn’s A-Sort [9] and Mannila’s Local Insertion Sort [8] are
both Inv-optimal, requiringO(n log(k/n)) time to sort ann-sequenceX with
Inv(X) = k inversions. Here it is shown that the same bound applies to the
Tree-based Mergesort.

We first need the following result describing the cost of a single merge.

Lemma 5. Let X and Y be sorted sequences of n and m items, respectively, and
let I be the number of inversions in the concatenation XY :

I = ‖{(i , j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m, and xi > yj }‖.

Then X and Y can be merged in time O(logn + logm +
√

I).

Proof. As before, it is supposed that the sorted output sequence is

Z = X1Y1X2Y2 · · · Xb−1Yb−1XbYb,

where either or both ofX1 and Yb might be empty. Also, letni = |Xi | and
mi = |Yi |, 1 ≤ i ≤ b. Then, by Theorem 4,Z can be computed in time

O

(
b +

b∑
i =1

logni +
b∑

i =1

logmi

)
= O

(
b + logn + logm +

b−1∑
i =1

log(mi · ni +1)

)

The number of inversions equals

I =
b−1∑
i =1


mi ·

b∑
j =i +1

nj


 .

To prove the lemma it is sufficient to show thatT2 = O(I), where

T = b +
b−1∑
i =1

log(mi · ni +1).

Without loss of generality (we simply exchange the roles ofX andY if it is not
the case) it may be assumed that

A Tree-based Mergesort 783

T ≤ b + 2
b−1∑
i =1

logmi .

Making the substitutionmi = ki b/(b − i) yields

T ≤ b + 2
b−1∑
i =1

logki + 2
b−1∑
i =1

log(b/(b − i))

= O(b) + 2
b−1∑
i =1

logki .

In order to boundT2 from above use is made of the simple fact that(
p∑

i =1

ai

)2

≤ p
p∑

i =1

a2
i ,

for any positive integerp, which follows from the Cauchy-Schwarz inequality.
Settingp = 2 gives

T2 ≤ O(b2) + 4 ·
(

b−1∑
i =1

logki

)2

.

The summation on the right hand side can similarly be manipulated by setting
p = b − 1 to yield

T2 ≤ O(b2) + 4 · (b − 1) ·
b−1∑
i =1

(logki)
2

= O

(
b2 +

b−1∑
i =1

b · ki

)

= O

(
b2 +

b−1∑
i =1

mi · (b − i)

)

The sum is bounded byI , becausemi ≥ 1 for 1 ≤ i ≤ b − 1 implies that
I = Ω(b2), and because

I ≥
b−1∑
i =1


mi ·

b∑
j =i +1

1


 =

b−1∑
i =1

mi · (b − i).

Hence, both terms areO(I), and the lemma follows. ut
It is now possible to show that Tree-based Mergesort isInv-optimal:

Theorem 6. Tree-based Mergesort sorts any n-sequence X with Inv(X) = k in
time O(n log(k/n)), which is optimal with respect to Inv.

784 A. Moffat et al.

Proof. Denote the time consumed byT(n, k). First, note that Tree-based Merge-
sort is worst-case optimal, that is, it runs inO(n logn) on any input. Second,
let M (n/2, I) be the time required to merge two sorted sequences ofn/2 items
each withI inversions by Lemma 5. Then there is a constantc > 0 such that

T(n, k) ≤ c · n logn

M
(n

2
, I
)

≤ c · (logn +
√

I)

We show by induction onn that there exists a functionf (n) > 0 such that

T(n, k) ≤ 3cn

(
1 + log(1 +

k
n

)

)
− f (n).

For convenience,f (n) is not specified until later. Two cases are considered sep-
arately:I ≤ n3/2 and I > n3/2.

Suppose first thatI ≤ n3/2. Recall that in effect Tree-based Mergesort sortsX
by recursively sorting the two halvesX1 andX2 of X and then merging them. To
account for these three tasks thek inversions are partitioned into three categories:
those that are removed by the recursive sort ofX1; those removed by the recursive
sort ofX2; and those that are removed during the final merge. Denote the numbers
of inversions in these three categories byi1, i2, andi3, respectively. That is,i1 is
the number of inversions on items inX1 induced by items inX1; i2 is the number
of inversions on items inX2 induced by items inX2; and i3 is the number of
inversions on items inX2 induced by items inX1. Thenk = i1 + i2 + i3, and, by
the inductive hypothesis, the sorting time is bounded by

T(n, k) ≤ T
(n

2
, i1
)

+ T
(n

2
, i2
)

+ M
(n

2
, i3
)

≤ 3c
n
2

(
2 + log(1 +

2i1
n

) + log(1 +
2i2
n

)

)
− 2f (

n
2

) + c logn + c
√

i3.

By the concavity of the log-function, the first term is maximised wheni1 = i2 =
(k − i3)/2, which yields

T(n, k) ≤ 3cn

(
1 + log(1 +

k − i3
n

)

)
− 2f (

n
2

) + c logn + c
√

i3

= 3cn

(
1 + log(1 +

k
n

)

)
+ 3cn log

1 + k−i3
n

1 + k
n

− 2f (
n
2

) + c logn + c
√

i3

= 3cn

(
1 + log(1 +

k
n

)

)
+ 3cn log

n + k − i3
n + k

− 2f (
n
2

) + c logn + c
√

i3.

In order to eliminatei3 the terms involvingi3 are bounded above by expanding
the second term:

3n log
n + k − i3

n + k
+
√

i3 = 3n

(
− i3

n + k
− i 2

3

2(n + k)2
− · · ·

)
+
√

i3

≤ − 3ni3
n + k

+
√

i3.

A Tree-based Mergesort 785

This is maximised when
√

i3 = (n+k)/(6n), and, sincek ≤ n3/2, has a maximum
value of

√
n/12. Hence,

T(n, k) ≤ 3cn

(
1 + log(1 +

k
n

)

)
+

c
√

n
12

− 2f (
n
2

) + c logn.

Now setf (n) = c · (
√

n + logn + 2) (which is positive forn > 0). Then

T(n, k) ≤ 3cn

(
1 + log(1 +

k
n

)

)
+

c
√

n
12

− 2c

(√
n
2

+ log
n
2

+ 2

)
+ c logn

= 3cn

(
1 + log(1 +

k
n

)

)
− c

(
(
√

2 − 1
12

)
√

n + logn + 2

)

< 3cn

(
1 + log(1 +

k
n

)

)
− f (n),

as required.
The same bound must also be shown for the case whenk > n3/2. In this

case the worst-case optimality of the algorithm can be directly applied to yield

T(n, k) ≤ cn logn

≤ 3cn

(
1 + log(1 +

k
n

)

)
− f (n)

whenn ≥ 1 andk > n3/2.
To complete the inductive proof it remains to establish a base case; this is

easily done by consideringn = 1, for which 3cn(1 + log(1 +k/n)) − f (n) allows
at least zero comparisons and the algorithm never consumes any. ut

5. Out of place items

Another intuitively attractive measure of presortedness isRem. For an n-
sequenceX, Rem(X) is the minimum number of items that must be removed
to leave a sorted sequence. This is equivalent ton minus the length of a longest
ascending (not necessarily consecutive) subsequence inX. Cook and Kim [4]
described an adaptive variant of Quicksort that usesO(n + k logk) time on av-
erage to sort a sequence withRem(X) = k; and more generally Mannila showed
both that Local Insertion Sort attains the same bound in the worst case and that
this performance is sufficient forRem-optimality [8].

Tree-based Mergesort is alsoRem-optimal:

Theorem 7. Tree-based Mergesort sorts any n-sequence X with Rem(X) = k in
time O(n + k logk), which is optimal with respect to Rem.

Proof. By the definition of Rem, X has an ascending subsequence of length
n − Rem(X), and for the purposes of the analysis one such subsequence is as-
sumed to be fixed. At each stage of the sorting process each item is categorized as

786 A. Moffat et al.

being eitherinplace, stable, or unstable. The items that are part of the ascend-
ing subsequence are always inplace; the remainingRem(X) items are initially
unstable; and at the beginning of the sorting process there are no stable items.

Recall that sorting takes place by the building of larger and larger trees, with
all initial trees consisting of a single item. An unstable itemx becomes stable if
there are inplace itemsxp and xq in the same tree asx, such thatxp < x < xq.
That is, x becomes stable when there are smaller and larger items in the same
tree that were originally part of the longest ascending subsequence. Note that
once an unstable item becomes stable it cannot revert to unstable.

At each intermediate stage of the sorting process each tree consists of a
number (possibly zero) of unstable items, followed by a mixture of stable items
and inplace items, followed by another series of unstable items. Figure 1 shows
a possible pair of trees that are about to be merged. Unstable items are denoted
by u in the first tree andU in the second; stable items bys andS; and inplace
items by i and I . One possible outcome of the merge is also shown, and, in
this example, one unstable item (the rightmostu) would, for the next merge, be
considered to be stable. Note that during the merging there can be no interaction
between the two middle sections, containing inplace and stable items, since all the
inplace items form an ascending subsequence, and all stable items are surrounded
by inplace items.

u u i i s i i u U I S S I I I I

↓ ↓

u U u i i s i i I S S u I I I I

Fig. 1. Stable and unstable items

Let us now charge the cost of the variousSplit andJoin operations involved
in a single merge to the unstable items that caused them, as follows. Unstable
items that remain unstable after the merge are chargedO(1) time, since they
are simply merged in linear fashion at the beginning and end of the output
tree, and the worst that can happen is that two comparisons are consumed per
unstable item. Unstable items that become stable are more expensive, and are
chargedO(logn), since they might appear anywhere in the output tree. Finally,
a single charge ofO(logn) suffices to cover all of the stable and inplace items,
since the cost of anySplits within these two blocks has already been charged to
the unstable item that caused theSplit. This final fee is paid for out of ‘petty
cash’ rather than charged to any particular item.

Over the course of the whole sort each unstable item is chargedO(1) at
most logn times, since it participates in logn merges; andO(logn) at most
once, since it can only convert from unstable to stable once. In total, over allk
initially unstable items, the total charge isO(k logn).

Some expenses have also been charged to petty cash, described by the recur-
rence

A Tree-based Mergesort 787

P(n) =

{
O(1) n = 1
2 · P(n/2) + O(logn) n > 1

which is O(n).
Thus the running time for Tree-based Mergesort on ann-sequenceX with

Rem(X) = k is O(n + k logn). This then gives the theorem, sincen + k logn =
Θ(n + k logk). ut

6. Shuffled monotone sequences

Now consider the adaptivity of Tree-based Mergesort with respect toSMS:

SMS(X) = min{k | X can be partitioned intok monotone sequences}.

This is quite a general measure of sortedness. If we takek subsets of a random
permutation; sort each into either ascending or descending order; and then inter-
leave them in any order subject only to the constraint that the elements out of
each shuffle must appear in that sorted order (either ascending or descending);
we will have a sequenceX for which SMS(X) ≤ k.

In this section we prove that Tree-based Mergesort isSMS-optimal, running
in O(n logk) time on a sequence that is the shuffle ofk monotone sequences.
The only other algorithm which is known to beSMS-optimal is Slabsort of
Levcopoulos and Petersson [6], and that algorithm is not optimal with respect to
Inv.

The analysis is in an amortized sense, making use of a potential functionΦ to
measure the amount of ‘indebtedness’ currently in the data structure. Following
Tarjan [13], we define the amortized timeai of the i ’th operation to beai =
ti + Φi − Φi −1, whereti is the actual time of thei ’th operation,Φi is the value
of the potential function after thei ’th operation has taken place, andΦ0 is the
potential before any of the operations have taken place.

The worst-case timeT required by a sequence ofn operations is then given
by T =

∑n
i =1 ti =

(∑n
i =1 ai

)
+ Φ0 − Φn, that is, the sum of the amortized cost of

the operations plus the net decrease in potential over the whole sequence.
Suppose thatSMS(X) = k, that is, it is possible to decompose the input

sequenceX into k monotone shuffles. Let (S1, . . . , Sk) be any fixed decomposition
of sizek, such that itemxi is a member of shuffleSsi , 1 ≤ si ≤ k.

We will say thatxi is guardedby shuffleSj if there are itemsxl andxg such
that sl = sg = j ; xl ≤ xi ≤ xg; and xl , xi , andxg are all currently contained in
the same tree. That is,xi is guarded by a shuffle when there are both smaller
and larger items from that shuffle in the same tree asxi . Initially, when xi is the
only item in its tree, the only shuffle that it is guarded by is its own,Ssi .

Define theguardednessgi of any itemxi to be the number of shuffles that
guardxi . At the beginning of the sortinggi = 1, for all i . During the mergings
affecting xi , gi is non-decreasing, and at the end of the sorting 1≤ gi ≤ k, for
all i . Finally, letting ln denote loge, take as the potential function

788 A. Moffat et al.

Φ =
∑

i

−c ln gi ,

where c is a constant that will be fixed below. Note that in our analysis the
potential function is always negative. This in no way diminishes the validity of the
amortized argument, since we are only interested in tracking relative movements
in value. Suppose thatΦi is the value of the functionΦ after thei th merge takes
place.

Consider one merge, in which two trees each ofn/2 items are merged to
make a single tree ofn items. For the purposes of the analysis it is supposed that
the least and greatest items within each shuffle are identified for each input tree.
That is, the (at most) 4k shuffle extrema are noted. Loosely, aslab is defined to
be the items in the input trees whose values are between an adjacent pair of these
shuffle extrema, including either or both of the extremal items if they belong to
shuffles that guard the slab. More precisely, ifxa andxb are shuffle extrema and
there is no shuffle extremumxc such thatxa < xc < xb, then the slab defined by
(xa, xb) contains all itemsxi from the two inputs trees such thatxa < xi < xb,
plus xa if it is in a shuffle guardingxb, plus xb if it is in a shuffle guardingxa.
Thus, if any item is the only item from its shuffle in the merge, it forms a slab
all by itself.

Without explicitly identifying the slabs, the main merge can be thought of as
first merging the two ‘sides’ in the first slab; then merging the two sides in the
second slab; and so on until the left and right sides of the final slab have been
merged.

Let us now consider one of these ‘slab merges’. Figure 2 sketches one possible
configuration, with items represented by circles, shuffles by looped lines, and a
shuffle that continues from the left side to the right side shown by a dotted line.
Both the left sequence and the right sequence have already been ordered, and we
seek at this stage to merge those two ordered lists.

Suppose that there aren′ items in total within the slab, thatr of them are on
the right side, and, without loss of generality, thatr ≤ n′ − r . By the definition
of a slab, all items on the right side have the same guardedness,j say. Similarly,
all items on the left side have the same guardedness, which isk′ − j , where
k′ is the total number of shuffles guarding items in this slab merge. After the
merge alln′ items in the slab havegi = k′, since all items will be guarded by
all shuffles guarding any items in the slab. No items can escape this remorseless
increase in guardedness.

By Theorem 4, there is a constantc such that the actual costti of the slab
merge is

ti ≤ c + c(r + 1) ln
n′

r + 1
,

since each of the two sequences is broken into at mostr + 1 sections. The
amortized cost of a slab merge is then given by

ai = ti + Φi − Φi −1

≤ c + c(r + 1) ln
n′

r + 1
− cn′ ln k′ + c(n′ − r) ln(k′ − j) + cr ln j .

A Tree-based Mergesort 789

Fig. 2. Decomposition into slabs

Considered as a function ofj , this is maximized whenj = rk ′/n′. Substituting
for j and dividing byc gives

ai

c
≤ 1 + (r + 1) ln

n′

r + 1
− n′ ln k′ + (n′ − r) ln

(n′ − r)k′

n′ + r ln
rk ′

n′
= 1 + r ln n′ + ln n′ − (r + 1) ln(r + 1) − n′ ln k′

+(n′ − r) ln
n′ − r

n′ + (n′ − r) ln k′ + r ln r + r ln k′ − r ln n′

= 1 + lnn′ − (r + 1) ln(r + 1) + (n′ − r) ln
n′ − r

n′ + r ln r

≤ 1 + lnn′ + (n′ − r) ln
n′ − r

n′
≤ 1 + lnn′,

with the last inequality following from the assumption that (n′ − r)/n′ ≤ 1. That
is, the amortized cost of each slab merge is logarithmic in the number of items
contained in the slab.

Denote byni the number of items involved in thei ’th slab merge when
merging two trees ofn/2 items each. The amortized cost of the merge can now
be obtained by summing the amortized costs of the at most 4k slab merges:

4k∑
i =1

c(1 + lnni) ≤ c · min{n, 4k(1 + ln(n/4k))},

where the first alternative in the right hand side corresponds to the casen ≤ 4k.
The amortized time for the entiresort is then bounded by the recurrence

790 A. Moffat et al.

A(n) =




O(1) n ≤ 1
2 · A(n/2) + O(n) 1 < n ≤ 4k
2 · A(n/2) + O(k(1 + log(n/4k))) n > 4k

ExpandingA(n) in terms ofA(n/2), thenA(n/4), and so on, gives

A(n) = O


log n

4k −1∑
i =0

k2i ·
(

1 + log
(n

2i · 4k

))
+

log n∑
i =log n

4k

n




= O


(k + k log

n
4k

)
·

log n
4k −1∑

i =0

2i − k ·
log n

4k −1∑
i =0

2i i + n log 4k




= O
((

k + k log
n
4k

)
· n

4k
− k · n

4k
log

n
4k

+ n log 4k
)

= O(n logk).

The actual time required by the sort (aftern − 1 merges) is now

T(n) = A(n) + Φ0 − Φn−1.

SinceA(n) = O(n logk), Φ0 = 0, andΦn−1 ≥ −cn ln k, it has been proved that
the algorithm runs inO(n logk) time, that is

Theorem 8. Tree-based Mergesort sorts any n-sequence X with SMS(X) = k in
time O(n logk), which is optimal with respect to SMS .

7. Other measures

To fully appreciate the adaptivity of Tree-based Mergesort it should be evaluated
against the framework for adaptive sorting developed by Petersson and Mof-
fat [11]. This framework is illustrated in the Hasse diagram of Figure 3, which
illustrates a partial order on measures of presortedness.

Broadly speaking, each edge in the diagram is a containment relation on
optimality, with all optimal algorithms for the higher measure automatically in-
heriting optimality for any connected lower measures. For example, consider the
measuresRemandBlock; Block is the number of items in a sequence that receive
a new successor when the sequence is sorted [3]. The edge fromRem to Block
reflects the fact thatevery Block-optimal algorithm is alsoRem-optimal. Con-
versely, the presence of upward paths fromBlock to Loc, Hist, andReg means
that an algorithm that is notBlock-optimal cannot be optimal with respect to any
of the higher measures. For details of these measures and the exact relationship
that is captured by the edges of the diagram the interested reader is referred
to [11].

Each adaptive sorting algorithm corresponds to adescriptor line across the
diagram, and the goal of the algorithm designer is to develop an algorithm that is
optimally adaptive with respect to the highest possible combination of measures.

A Tree-based Mergesort 791

Fig. 3. Partial order on measures of presortedness

To establish lower bounds on the location of the descriptor corresponding to
some algorithm proofs of optimality are needed, such as those of Theorems 6, 7,
and 8. Those three theorems show respectively that the descriptor for Tree-based
Mergesort crosses aboveInv, aboveRem, and aboveSMS.

To establish upper bounds on the location of the descriptor for an algorithm
sequences must be described that are nearly sorted according to the measure, but
for which the algorithm is not optimal. For example, consider then-sequence
constructed as follows. First, let

Xi = 〈i logn, i logn + 1, . . . , (i + 1) logn − 1〉,

for 0 ≤ i < n/ logn. Second, letX be the concatenation of a random permu-
tation of the subsequencesXi . ThenBlock(X) ≤ n/ logn, and aBlock-optimal
algorithm must sort it inO(n + Block(X) logBlock(X)) = O(n) time [3]. How-
ever, on this sequence Tree-based Mergesort usesΘ(n log logn) time, and so
cannot beBlock-optimal. The adaptive mergesort of Carlsson, Levcopolous, and
Petersson [3] isBlock-optimal; on the other hand it is neitherInv-optimal nor
SMS-optimal.

Using the transitivity of the diagram, the descriptor for Tree-based Mergesort
thus crosses betweenRem and Block; crosses aboveInv and belowLoc; and
aboveSMS and belowReg. Hence, to fully understand its adaptivity it remains
to analyse its behaviour with respect toOsc, the amount of oscillation in a
sequence [7]. This is left as an open problem. Our knowledge of the adaptivity
of Tree-based Mergesort is summarized as follows:

792 A. Moffat et al.

Corollary 9. Tree-based Mergesort is optimal with respect to the measures Exc,
Rem, Max, Inv, Runs, SUS , Enc, and SMS .

No other known sorting algorithm is optimal with respect to the same com-
bination of measures as Tree-based Mergesort. In fact, the only other sorting
algorithm that can compete in terms of proven adaptivity is Mannila’s Local
Insertion Sort, the descriptor for which is known to cross immediately above
Block, Loc, andRuns[11].

8. Experimental behaviour

Figure 4 shows the adaptivity of the Tree-based Mergesort in an experimental
setting. Each point in the graph indicates the number of comparisons per item
expended when sorting a sequence ofn = 65,536 items with a pseudo-randomly
controlled amount of presortedness according to one of the three measures dis-
cussed above [10]. That is, the three curves demonstrate the adaptivity of the
algorithm with respect toInv, Rem, andSMS. As the value of the measure in-
creases (note thatInv is normalized byn, and that the graph is plotted as a
function of the average number of inversions per item) so too does the number
of comparisons consumed.

1 10 100 1000 10000

Presortedness: Inv/n, Rem, SMS

0

5

10

15

20

25

C
om

pa
ris

on
s

pe
r

ite
m

Inv
Rem
SMS

Fig. 4. Comparisons required to sort 65,536 items

It is also interesting to compare the behaviour of the Tree-based Merge-
sort with other methods for sorting. Table 2 shows the time taken by the Tree-
based Mergesort and two other sorting algorithms when sortingn = 10,000 and
n = 100,000 integers on a Sun workstation. The Bentley-McIlroy [1] Quicksort
implementation is probably the best general-purpose sorting programme devised
to date; while the Splaysort implementation [10] is a good example of an adaptive
sorting algorithm. In the first section of the table the integers are fully presorted;
in the second they are random.

A Tree-based Mergesort 793

Table 2. Time to sortn items (seconds)

Method Sorted Random
10,000 100,000 10,000 100,000

Quicksort [1] 0.13 1.55 0.16 1.97
Splaysort [10] 0.05 0.50 0.24 3.99
Tree-based Mergesort 0.21 2.16 2.21 29.09

Although the number of comparisons expended by the Tree-based Merge-
sort is small when the list is sorted, the constant factor on the running time is
large, and it cannot compete with either the Bentley-McIlroy Quicksort or the
Splaysort if speed is the primary selection criteria, even on fully sorted lists. This
is unsurprising given the complexity of the required tree manipulations.

Acknowledgements.We thank Gary Eddy, who undertook the implementation of the Tree-based
Mergesort reported in Sect. 8. We also thank the referees for their helpful comments. This work was
in part supported by the Australian Research Council.

References

1. J.L. Bentley, M.D. McIlroy: Engineering a sorting function. Softw. Pract. Exper.23, 1249–1265
(1993)

2. M.R. Brown, R.E. Tarjan: Design and analysis of a data structure for representing sorted lists.
SIAM J. Comput.9, 594–614 (1980)

3. S. Carlsson, C. Levcopoulos, O. Petersson: Sublinear merging and Natural Mergesort. Algo-
rithmica 9, 629–648 (1993)

4. C.R. Cook, D.J. Kim: Best sorting algorithms for nearly sorted lists. Comm. ACM23, 620–624
(1980)

5. D.E. Knuth: Big omega and big omicron and big theta. SIGACT News8, 18–24 (1976)
6. C. Levcopoulos, O. Petersson: Sorting shuffled monotone sequences. Inf. Comput.112, 37–50

(1994)
7. C. Levcopoulos, O. Petersson: Adaptive Heapsort. J. Algorithms14, 395–413 (1993)
8. H. Mannila: Measures of presortedness and optimal sorting algorithms. IEEE Trans. Comput.

C-34, 318–325 (1985)
9. K. Mehlhorn: Data Structures and Algorithms, Vol. 1: Sorting and Searching. Berlin: Springer

1984.
10. A. Moffat, G. Eddy, O. Petersson: Splaysort: fast, versatile, practical. Softw. Pract. Exper.26,

781–797 (1996)
11. O. Petersson, A. Moffat: A framework for adaptive sorting. Discrete Appl Math.59, 153–179

(1995)
12. W. Pugh: Skip lists: a probabilistic alternative to balanced trees. Comm. ACM33, 668–676

(1990)
13. R.E. Tarjan: Amortized computational complexity. SIAM J. Algebraic Discrete Met6, 306–318

(1985)

