Acta Informatica 35, 775-793 (1998) m@

i

© Springer-Verlag 1998

A Tree-based Mergesort

Alistair Moffat 1, Ola PeterssoR, Nicholas C. Wormald®

1 Department of Computer Science, The University of Melbourne, Parkville 3052, Australia

(e-mail: alistair@cs.mu.oz.au)

2 Department of Computer Science, Lund University, Box 118, S—221 00 Lund, Sweden; and Depart-
ment of Mathematics, Statistics, and Computer Scienéjo/University, S-351 95 ¥xjo, Sweden
(e-mail: ola@dna.lth.se)

3 Department of Mathematics, The University of Melbourne, Parkville 3052, Australia

(e-mail: N.Wormald@ms.unimelb.edu.au)

Received: 7 October 1993 / 18 July 1996

Abstract. We demonstrate that if standard Mergesort is implemented using fin-
ger search trees instead of arrays it optimally adapts to a set of measures of
presortedness not fulfilled by any other algorithm.

1. Introduction

An adaptivealgorithm is one which uses fewer resources to solve ‘easy’ prob-
lem instances than it does to solve ‘hard’ ones. For sorting, an adaptive algo-
rithm should process an-sequence ifO(n) time if the sequence is sorted, and
preferably inO(nlogn) time on any sequence, with the time for each particular
sequence depending upon the ‘nearness’ of that sequence to being sorted.

Mannila [8] established the notion of measure of presortedness quan-
tify the disorder in any input sequence, and introduced the concepptohal
adaptivity. For example, if presortedness is measured by counting the number
of pairwise inversions in the input-sequenceX, denotedinv(X), then aninv-
optimal algorithm must sork in* O(nlog(inv(X)/n)) time [8]. The intuitive
reason why this is optimal is thany binary comparison-tree that sorsery
n-sequenceX with Inv(X) < k has height2(nlog(k/n)). Several authors have
proposed other measures of presortedness, some of which are defined as we go
along.

Any particular sorting algorithm is optimally adaptive with respect to some
subset of this set of known measures of presortedness. Of great interest then is
the determination of the exact subset attained by an algorithm. The more all-
inclusive the subset, the more versatile the algorithm. For example a method that

* Preliminary versions of the results reported in this paper have been preseftt Australian
Computer Science Confl991;15th Australian Computer Science Corif992; andThird Ann. Inter-
nat. Symp. on Algorithms and Computatid®92.

1 We assume that logis defined to be logmax{2, x}).

776 A. Moffat et al.

is not only optimal with respect timv but also with respect tRuns the number
of ascending runs in the input sequence (that is, the algorithm sagguences
composed ok runs in O(nlogk) time), is in some sense more powerful than
methods that are optimally adaptive to only one of the measures.

In this paper we study the adaptivity of a Mergesort, that is, in what ways
it profits from existing order within its input. It is easy to see that a textbook
Mergesort runs ir@(n logn) time not only in the worst case but also in the best
case, and so is not adaptive at all. This lack of adaptivity stems from the fact that
no matter how ‘easy’ a single merge is, it still takes linear time in the number
of participating items. We show that by implementing the algorithm using finger
search trees rather than arrays, merging can be accomplished adaptively, that is,
some merges can take sublinear time. Thise-based Mergesors not tailored
to profit from any particular kind of presortedness, and it is therefore surprising
that it is optimally adaptive with respect to a wide range of known measures.
The main part of the paper is indeed devoted to proving this claim. Results by
the first two authors imply that it is not necessary to investigate adaptivity with
respect to all measures of presortedness, and that it suffices instead to consider
only a few, from which optimality (or non-optimality) with respect to many other
measures comes for free [11].

In Sect. 2 we define the notion of optimal adaptivity. Section 3 then presents
an adaptive merging algorithm, and shows how it can be implemented using
finger search trees. In the subsequent three sections the adaptivity of the resulting
Mergesort is analysed in terms of three different measures of presortedness. In
Sect. 4 we provdnv-optimality; in Sect. 5Remoptimality is proved, where
Rem measures the minimum number of items that must be removed to leave
a sorted sequence; and in SectSBISoptimality is examined, wher8MS is
the minimum number of monotone subsequences whose shuffle forms the input
sequence. In Sect. 7 it is shown that the obtained bounds imply optimality for
other measures too. An example of a measure for which the algorithm is not
optimal is also given. Section 8 gives experimental results that are in agreement
with the analysis of Sects. 4, 5, and 6.

Finally, note that we us®, (2, andO to indicate bounds on functions in the
manner described by Knuth [5].

2. Optimal adaptivity

The concept of an optimal algorithm with respect to a measure of presortedness
was given in a general form by Mannila [8]. In the development use the following
equivalent definitions [11].

Definition 1. Let M be a measure of presortedness. Then, for ary R and
n>1

belowy (n,k) = {7 | 7 € S, and M(r) < k}.
The setbelowy (n, k) contains all permutations that, accordingMq are at least
as presorted as the sequenewith M (X) = k.

A Tree-based Mergesort 777

The minimum number of comparisons needed to sort the permutations in a
below-set is also of interest:

Definition 2. Let M be a measure of presortedness, andtfie set of binary
comparison trees for the sef 8f all permutations of1,2,...,n}. Then, for any
k>0andn>1,
Cnm(n, k) = TrrenTn ﬂebermﬂx(n’k){depth ofrin T}.
Given these two definitions, the notion of optimality of an adaptive sorting
algorithm is clear:

Definition 3. Let M be a measure of presortednessd #a comparison-based
sorting algorithm that usesa[X) steps on input X. We say that A is-&ptimal
or optimal with respect toM, if TA(X) = O(Cw (|X], M (X))).

The following theorem is helpful when proving the optimality of some algo-
rithm [11]:
Theorem 1. Let M be a measure of presortedness. Then
Cw (n, k) = O(n +log|/below (n, K)|).

This paper considers in detail three measures of presortednesghe num-
ber of inversions (pairs of items out of order with respect to each other) in the
input sequencelRem the minimum number of items which must be removed in
order to leave a sorted sequence; &MS the minimum value such that the
sequence can be composed by shuffling togdthmonotone sequences. Table 2
lists the values ofCy (n, k) for these three measures.

Table 1. Values ofCy (n, k)

M Cwm (n, k) Reference
Inv. ©(nlogk/n)) [8]
Rem ©(n +klogk) [8]
SMS O(nlogk) [6]

3. Adaptive merging and Tree-based Mergesort

The standard linear time algorithm for merging two sorted sequences can be
thought of as first finding the maximum of the two smallest items and then
performing a linear search for its successor in the opposite sequence. Items
smaller than the successor are transferred to the output as they are passed by
the search. This process is then repeated with the roles of the two sequences
reversed, continuing until one or the other of the two sequences is empty.

Due to the linear search the algorithm spends a linear number of comparisons
even in the best case. The reason why the search chedarear is that the
sequences are usually implemented using arrays, in which case it takes linear

778 A. Moffat et al.

time to move the output, and so, why worry about saving some comparisons?
For now, let us only count comparisons, and see what can be achieved. This
simplification will be justified shortly.

The next search that comes to mind after linear search is, of course, binary
search. In its normal form binary search is not, however, an attractive alternative,
since it might result in an algorithm requiring logarithmic time per item rather
than constant. A better choice is exponential and binary search [9]. Recall that this
algorithm finds the successor of an item in a sorted sequence by starting at one of
the endpoints and probing further and further towards the opposite endpoint, each
time doubling the distance, until the target position has been enclosed, after which
it switches to an ordinary binary search. For example, a search from location 1
for an item in location 20 of a sorted array probes locations 1, 3, 7, 15, and 31,
at which point the search changes from being exponential to binary; and then
locations 23, 19, 21, and, finally, 20. More generally, if the sought position is
at distanced from the starting point of the search, it is found in tird¢logd).

Using this search, chunks of consecutive items that do not interleave with the
other sequence are thus traversed in logarithmic time rather than linear.

The merge process can be thought of as cutting the two sequences into the
minimum number of consecutive subsequenceslocks necessary to achieve
the merge, and then interleaving the two sets of blocks to form the sorted output.
In what follows, suppose that the merged output sequence

Z = X1 Y1XoY2 - - - Xp_1Yp_1Xp Yh

consists ofb such blocks from each of the inpotsequenceX and the inpuim-
sequence’’, m < n. Note that either or both of; andY, may be empty. Given

the blocks, computing the sequengerequires no comparisons at all, and so,
using exponential and binary search, the total number of comparisons becomes

b b
0 <;|09|Xi|+izzl:logm|> =0 (blogg) =0 (mlog%).

Note that this bound matches the worst-case lower bound for merging, that
is, [log, (""™)1 = £2(mlog(n/m)). We now show that the above bound can also
be achieved when operations other than comparisons are also counted.

A finger search treq49] is a data structure for representing a sorted sequence.
Among the operations supported is searching from a ‘finger’ that points into the
sequence in time logarithmic in the ‘distance’ from the finger, that is, exponential
and binary search. There are several different ways of implementing finger search
trees, but for definiteness, our discussion assumes level linked 2—3 trees [2]; how-
ever, the results extend to other implementations too. Indeed, our investigation
was prompted by the merging algorithm given by Pugh [12] for Skip Lists, a
probabilistic finger search tree.

Suppose then that andY are sorted sequences wfand m items respec-
tively, stored as level linked 2-3 trees. Further, suppose that they are to be
merged, generating an output tréeof n + m items. In what follows, if the

A Tree-based Mergesort 779

largest item inX is no greater than the smallest itemYnthe trees are said to
be disjoint, denotedX < Y. We first consider the cost of splitting the tre¥s
andY into disjoint components that can be joined to form their merged output,
and then consider the complexity of joining a listloiisjoint 2—3 trees.

Theorem 2. Let X be a 2-3 tree, which is to be split into b disjoint 2—3 tregs X
1 <i < b, determined by the sequengeco, y1,V2, . .., Yo—1, too). That is, the
items in X are to have values that are greater than y and less than or equal
to y;. Then the splitting can be performed ir(gib:l log|Xi|) time.

Proof. The sequence of operations considered is:

fori:=1to b do
X = Split(X, ;)
endfor

where it is assumed th&plit(X,y;) prunes fromX all items less than or equal
toy, and returns them as a separate 2-3 tree, leaXiag a depleted 2-3 tree.

To locate the last node to be pruned a finger searcly, far performed from
the leftmost node of (what remains of), which takesO(log|X;|) time. Then,
to actually perform thé&plit, start at the parent node of the rightmost item to be
included inX; and work up the tree, duplicating every ancestor until either the
leftmost or the rightmost branch &f is reached. One of each of these pairs of
nodes, together with all of the items to the left of the duplicated node, eventually
forms the treeX;. The other node of the pair, and items to the right of it, remains
in X. At each level the children of each duplicated node are partitioned between
the original node and the duplicate node according to their range of key values,
and the level links adjusted accordingly.

This results in two trees$; andX, which are 2—-3 treegxceptthere may be
violations down the right branch of; and down the left branch of. For each
of the at most 2log|Xi| nodes thus affected a distribution step is performed,
starting from the parent nodes of the leaves of the tree:

— if the node (after the children have been partitioned) has zero children, or if
it is the root node of eitheX; or X and has only one child, it is deleted;
— if the node has one child, and the node immediately to the left (if it X)n
or right (if it is in X) has three children, a child is adopted from the sibling;
— if the node has one child, and the node immediately to the left (if it X)n
or right (if it is in X) has only two children, the child is moved to the sibling,
and the node is deleted,;
— if the node has two or three children, no action is required.

This sequence of steps tak®$1) time at each node along the cutting path from
the leaf level up to either the left or right branchXf The length of that cutting
path isO(log|X;|), and so the unzipping phase co&flog|X;|) time.

Then, at the node on the left or right branch that is at the top of the cutting
path, a child must be removed to form the root of the new ¥Xeévhen on the

780 A. Moffat et al.

left branch) or the root of the remainder of the td¢éwhen on the right branch).
We call this operation &ranch deletion

The removal of this child during a branch deletion might cause a violation
of the ‘at least two children’ rule, and a sequence of cascading node fusings
that reaches right up to the root of the larger tree. The total number of node
fusings over allSplit operations is, however, bounded by the sum of the number
of branch deletions plus the total length of the right and left branches of the trees
in the resulting forest, and so the result follows. O

In the case wherb = 2 this yields the standard result that it requires at most
O(logn +logm) = O(logn) time to split a tree into two parts of sizeandm.
Joiningb components is no more expensive than splitting:

Theorem 3. A list 2y, Z,, ..., Z, of disjoint level-linked 2-3 trees, wherge X
Zi+1, for 1 < i < b, can be concatenated to make a single level-linked 2—3 tree
in O(Zib:l log|Zi]) time.

Proof. The sequence of operations considered is given by

Z:=0
fori:=1tobdo

Z :=Join(Z,Z)
endfor

where toJoin two treesZ and Z; we begin at the rightmost node & and
the leftmost node of; and zip the two trees together, setting the level links,
until either the root ofZ or the root ofZ is reached. In either case the time
required during the zipping stage is at most proportional to the degh afhich

is O(log|Z).

The root ofZ is then inserted as an additional rightmost child of the cor-
responding node on the right branch 2f or, if it was the root ofZ that was
reached firstZ is inserted as a leftmost child of the appropriate node on the left
branch ofzi—that is, abranch insertiontakes place. If this causes that node to
have more than three children, it is split and a new child added to the parent of
that node, and so on up either the right branclz afr the left branch of;. If
the root is split a new root is added, aAdgrows by one level.

The cost of all of the zipping operations(DiZib:1 log|Zi|). The node split-
tings that take place during thebranch insertions must also be accounted for.
The splitting of a node that became a 3-node as a result of a previous branch
insertion can be charged as @l) overhead to that operation, since each such
insertion creates at most one 3-node. Pre-existing 3-nodes that cannot be charged
in this way might also be split, but any such nodes must lie on either a left
branch or a right branch of one of the original input trees, and since the total
number of such nodes (Zib:llog |Zi|), we have, summed over the sequence
of operations, that the cost of the node splittings does not dominate the cost of
Zipping the trees together. O

A Tree-based Mergesort 781

Again, in the case whebh = 2 this gives the familiar result that oin of
two 2-3 trees can be performed @(logn + logm) = O(logn) time [9].

Using trees the merging algorithm can be described as an interleaved sequence
of Splits andJoins:

function Merge(X:tree Y :treg):tree

Z:=0;i:=0
while X Z(or Y Z () do
=i+l
Xi = Split(X,y;)
Z :=Join(Z, %)
Y; = Split(Y, %)
Z :=Join(Z,Y;)
endwhile
return Z

end

Here x; andy;, the sequences of splitting items, are always the smallest
remaining items in the (shrinking) treésandY; and, for descriptive purposes,
it is assumed that reference to the first item of an empty tree returns the value +
Note that each of the trees involved is subject to eitha@n or Split opera-
tions, but not both. For 2-3 trees, thieins andSplits on the same tree cannot
be interleaved without affecting the given analysis, since the amortized bounds
on the numbers of node splittings and fusings rely on there being no other inter-
vening operations [9]. Theorems 2 and 3, and the observation that each tree is
only subject to one type of operation now provide the following bound on the
cost of merging two level-linked 2-3 trees:

Theorem 4. Let X and Y be two sorted sequences of n and m items, respectively,
m < n, which are represented as level-linked 2—-3 trees. Further let the tree Z be
the result of merging X and Y :

Z= X1Y1X2Y2 e Xb_le_j_Xbe,

where X= X1Xz...Xp, Y = Y1Y2...Yy, and either or both of Xand Y, might
be empty. Then Z can be computed in

b b
n n
o) <b+§log|xi +;Iog|Yi|> =0 (blogB) =0 (mloga)
time in the worst case.

Carlsson, Levcopoulos, and Petersson [3] have also described a merging al-
gorithm similar to this. In their solution, however, the output sequence is not in
the same format as the input sequences.

The Tree-based Mergesort is now obvious. The items in the input segience
are inserted intm singleton 2—3 trees i(n) time. Next, the trees are pairwise

782 A. Moffat et al.

merged in the order they appeared in the input, building trees of size 2, then 4,
then 8, and so on. Afteflog, n] passes a single tree remains. Finally, it takes
©(n) time to traverse that tree and copy the items to the desired output location.

4. Inversions

We now turn our attention to the adaptivity of the new Mergesort with respect
to the number of inversions, which is formally defined as

Inv(X) = [{@i,j)|1<i <j <nandx > X}|.

Over the years several sorting algorithms that adapiidave been devised;
for example, Mehlhorn’s A-Sort [9] and Mannila’s Local Insertion Sort [8] are
both Inv-optimal, requiringO(nlog(k/n)) time to sort ann-sequenceX with
Inv(X) = k inversions. Here it is shown that the same bound applies to the
Tree-based Mergesort.

We first need the following result describing the cost of a single merge.

Lemma 5. Let X and Y be sorted sequences of n and m items, respectively, and
let I be the number of inversions in the concatenation XY :

I=[{G,))]1<i<n,1<j<m andx >y}
Then X and Y can be merged in timgl@n + logm + /1).
Proof. As before, it is supposed that the sorted output sequence is
Z = X1Y1XoY2 -+ Xp—1Yb—1Xp Yb,

where either or both oi; and Y, might be empty. Also, len, = |X;| and
m =1Y;|, 1<i <b. Then, by Theorem 4Z can be computed in time

b b b—1
o) <b+ZIogni +Zlogm> =0 <b+logn+logm+ZIog(m -ni+1)>
i=1 i=1

i=1

The number of inversions equals

b—1 b
m - n|.
" 51

i=1 =i+

To prove the lemma it is sufficient to show thet = O(l), where

b—1

T=b+ Z log(m - Ni+1).
i-1

Without loss of generality (we simply exchange the roleXadndY if it is not
the case) it may be assumed that

A Tree-based Mergesort 783

b—1
T< b+22|ogm.

i=1

Making the substitutiomy = kb/(b — i) yields

b—1 b—1
T < b+2) logk +2> log(b/(b—i))
i=1 i=1
b—1

O(b) +2 logk.

i=1

In order to boundr'? from above use is made of the simple fact that

(éa)zépéaiz,

for any positive integep, which follows from the Cauchy-Schwarz inequality.
Settingp = 2 gives

b—1 2
T2<0Mb?) +4- (Z Iogki> .
i=1

The summation on the right hand side can similarly be manipulated by setting
p=b—1to yield

b—1
O +4-(b—1)-> (logk)?

i=1

b—1
= O<b2+Zb-k.->
-
= O(b2+zm -(b—i))

i=1

T2

IN

The sum is bounded by, becausary > 1 for 1 < i < b — 1 implies that
| = 2(b?), and because

b—1 b—1
lzZ(m' 1):Zm~(bi).
i=1 j=i+1 i=1

Hence, both terms af®(l), and the lemma follows. O

b

=i+

It is now possible to show that Tree-based Mergesohvsoptimal:

Theorem 6. Tree-based Mergesort sorts any n-sequence X witlXhw k in
time O(nlog(k/n)), which is optimal with respect to Inv.

784 A. Moffat et al.

Proof. Denote the time consumed BYy(n, k). First, note that Tree-based Merge-
sort is worst-case optimal, that is, it runs @(nlogn) on any input. Second,
let M(n/2,1) be the time required to merge two sorted sequences/ Bfitems
each withl inversions by Lemma 5. Then there is a constant 0 such that

T(n,k) < c-nlogn

M (g,l> < c-(logn+ V1)

We show by induction om that there exists a functioin) > 0 such that

T(n,k) < 3cn <1 +log(1 +E)> —f(n).

For conveniencd,(n) is not specified until later. Two cases are considered sep-
arately:l < n%?2 andl > n%2,

Suppose first thdt < n%2. Recall that in effect Tree-based Mergesort s¥rts
by recursively sorting the two halve§ andX; of X and then merging them. To
account for these three tasks th@aversions are partitioned into three categories:
those that are removed by the recursive soXgfthose removed by the recursive
sort of X,; and those that are removed during the final merge. Denote the numbers
of inversions in these three categoriesihyi,, andis, respectively. That ig; is
the number of inversions on items ¥ induced by items irXy; i, is the number
of inversions on items iX; induced by items inXy; andiz is the number of
inversions on items X, induced by items iX;. Thenk =i; +i, +i3, and, by
the inductive hypothesis, the sorting time is bounded by

n . n . n .
TR <T (501) +T (5002) +M (551s)
n 2I1 2I2 n .
< 305 2+Iog(1+?)+log(1+?) —2f(§)+clogn+c\/g.

By the concavity of the log-function, the first term is maximised when i, =
(k —i3)/2, which yields

T(n,k) < 3cn (1 +log(1 +X ; '3)> - 2f(g) +clogn +cy/is
k—ig

k 1 -
3cn <1+Iog(1 +n)) +3cnlog 1+E —2f(%)+clogn+c\ﬁ3
n

k n+k—is n -
3cn <1 +log(1 +n)) +3cnlog ik 2f(§) +clogn + c\/g.

In order to eliminatas the terms involvings are bounded above by expanding
the second term:

n+k—is - _ i3 Ig -
3nlog == +Vis = 3 (i - ot) Vi
< _3n|3+\/g.

n+k

A Tree-based Mergesort 785
This is maximised wher/iz = (n+k)/(6n), and, sinc& < n%?2, has a maximum
value of,/n/12. Hence,

k cy/n n
T(n,k) < 3cn (1 +log(1 +n)> + 1 " 2f(§) +clogn.

Now setf (n) = ¢ - (1/n +logn + 2) (which is positive fom > 0). Then

k cy/n n n
T(n,k) < 3cn <1 +log(1 +n)) + 12 2c <\/;+ IogE + 2> +clogn
= 3cn <1 +log(1 +E)) -C ((\/E — %Z)ﬁ+ logn + 2>
< 3cn <1 +log(1 +E)) —f(n),
as required.

The same bound must also be shown for the case Wwhenn32. In this
case the worst-case optimality of the algorithm can be directly applied to yield

T(n,k) < cnlogn

< 3cn <1 +log(1 +E)) —f(n)

whenn > 1 andk > n%?2,

To complete the inductive proof it remains to establish a base case; this is
easily done by considering = 1, for which Zn(1 + log(1 +k/n)) — f (n) allows
at least zero comparisons and the algorithm never consumes any. O

5. Out of place items

Another intuitively attractive measure of presortednessR&m For an n-
sequenceX, Rem(X) is the minimum number of items that must be removed
to leave a sorted sequence. This is equivalemt toinus the length of a longest
ascending (not necessarily consecutive) subsequene ook and Kim [4]
described an adaptive variant of Quicksort that uSés + k logk) time on av-
erage to sort a sequence wien(X) = k; and more generally Mannila showed
both that Local Insertion Sort attains the same bound in the worst case and that
this performance is sufficient fdRemoptimality [8].

Tree-based Mergesort is al&emoptimal:

Theorem 7. Tree-based Mergesort sorts any n-sequence X with(Rgmk in
time O(n + k logk), which is optimal with respect to Rem.

Proof. By the definition ofRem X has an ascending subsequence of length
n — Ren(X), and for the purposes of the analysis one such subsequence is as-
sumed to be fixed. At each stage of the sorting process each item is categorized as

786 A. Moffat et al.

being eitherinplace, stable or unstable The items that are part of the ascend-
ing subsequence are always inplace; the remaifeg(X) items are initially
unstable; and at the beginning of the sorting process there are no stable items.

Recall that sorting takes place by the building of larger and larger trees, with
all initial trees consisting of a single item. An unstable iterhecomes stable if
there are inplace items, andxy in the same tree as, such thatx, < x < Xq.

That is,x becomes stable when there are smaller and larger items in the same
tree that were originally part of the longest ascending subsequence. Note that
once an unstable item becomes stable it cannot revert to unstable.

At each intermediate stage of the sorting process each tree consists of a
number (possibly zero) of unstable items, followed by a mixture of stable items
and inplace items, followed by another series of unstable items. Figure 1 shows
a possible pair of trees that are about to be merged. Unstable items are denoted
by u in the first tree andU in the second; stable items IsyandS; and inplace
items byi andl. One possible outcome of the merge is also shown, and, in
this example, one unstable item (the rightmaktvould, for the next merge, be
considered to be stable. Note that during the merging there can be no interaction
between the two middle sections, containing inplace and stable items, since all the
inplace items form an ascending subsequence, and all stable items are surrounded
by inplace items.

luuiisiiu Jurssirrn |
l ’

[UUuiisiilssullll \

Fig. 1. Stable and unstable items

Let us now charge the cost of the varidbglit andJoin operations involved
in a single merge to the unstable items that caused them, as follows. Unstable
items that remain unstable after the merge are cha@gd time, since they
are simply merged in linear fashion at the beginning and end of the output
tree, and the worst that can happen is that two comparisons are consumed per
unstable item. Unstable items that become stable are more expensive, and are
chargedO(logn), since they might appear anywhere in the output tree. Finally,
a single charge oO(logn) suffices to cover all of the stable and inplace items,
since the cost of angplits within these two blocks has already been charged to
the unstable item that caused t8elit. This final fee is paid for out of ‘petty
cash’ rather than charged to any particular item.

Over the course of the whole sort each unstable item is chamy@d at
most logn times, since it participates in lag merges; andO(logn) at most
once, since it can only convert from unstable to stable once. In total, ovkr all
initially unstable items, the total charge @&k logn).

Some expenses have also been charged to petty cash, described by the recur-
rence

A Tree-based Mergesort 787

(o) n=1
P(n) = { 2.P(n/2) +O(logn) n>1

which isO(n).

Thus the running time for Tree-based Mergesort omasequenceX with
Rem(X) = k is O(n + klogn). This then gives the theorem, sinoe+ klogn =
O(n + klogk). O

6. Shuffled monotone sequences

Now consider the adaptivity of Tree-based Mergesort with respeSMe:
SMSX) = min{k | X can be partitioned int& monotone sequenckes

This is quite a general measure of sortedness. If we ltagkebsets of a random
permutation; sort each into either ascending or descending order; and then inter-
leave them in any order subject only to the constraint that the elements out of
each shuffle must appear in that sorted order (either ascending or descending);
we will have a sequenck for which SMSX) < k.

In this section we prove that Tree-based Mergeso8MS-optimal, running
in O(nlogk) time on a sequence that is the shufflekomonotone sequences.
The only other algorithm which is known to b@MSoptimal is Slabsort of
Levcopoulos and Petersson [6], and that algorithm is not optimal with respect to
Inv.

The analysis is in an amortized sense, making use of a potential fudction
measure the amount of ‘indebtedness’ currently in the data structure. Following
Tarjan [13], we define the amortized tingg of the i'th operation to beg =
ti + &; — ®;_1, wheret; is the actual time of thé'th operation,®; is the value
of the potential function after thth operation has taken place, adg is the
potential before any of the operations have taken place.

The worst-case tim@& required by a sequence ofoperations is then given
by T=>1ti = (XL, &) +Po — &y, that is, the sum of the amortized cost of
the operations plus the net decrease in potential over the whole sequence.

Suppose thaBMYX) = k, that is, it is possible to decompose the input
sequenc into k monotone shuffles. Lef, ...,) be any fixed decomposition
of sizek, such that itenmx; is a member of shuffl&;, 1 <5 <Kk.

We will say thatx; is guardedby shuffle§ if there are itemsq andx, such
thatg =s; =j; x < x < Xg; andx, X, andx, are all currently contained in
the same tree. That is; is guarded by a shuffle when there are both smaller
and larger items from that shuffle in the same tree; amitially, whenx; is the
only item in its tree, the only shuffle that it is guarded by is its o&p,

Define theguardedness;; of any itemx; to be the number of shuffles that
guardx;. At the beginning of the sorting; = 1, for all i. During the mergings
affectingx;, g; is non-decreasing, and at the end of the sorting ¢ < k, for
all'i. Finally, letting In denote log take as the potential function

788 A. Moffat et al.

=" —clng,
i

wherec is a constant that will be fixed below. Note that in our analysis the
potential function is always negative. This in no way diminishes the validity of the
amortized argument, since we are only interested in tracking relative movements
in value. Suppose tha; is the value of the functiow after theith merge takes
place.

Consider one merge, in which two trees eachng® items are merged to
make a single tree of items. For the purposes of the analysis it is supposed that
the least and greatest items within each shuffle are identified for each input tree.
That is, the (at most)Kishuffle extrema are noted. Looselyslab is defined to
be the items in the input trees whose values are between an adjacent pair of these
shuffle extrema, including either or both of the extremal items if they belong to
shuffles that guard the slab. More preciselyxifandx, are shuffle extrema and
there is no shuffle extremum such thatx, < X; < Xy, then the slab defined by
(Xa, Xp) contains all itemsg from the two inputs trees such that < X < X,
plus x, if it is in a shuffle guardings,, plusx, if it is in a shuffle guardingk,.

Thus, if any item is the only item from its shuffle in the merge, it forms a slab
all by itself.

Without explicitly identifying the slabs, the main merge can be thought of as
first merging the two ‘sides’ in the first slab; then merging the two sides in the
second slab; and so on until the left and right sides of the final slab have been
merged.

Let us now consider one of these ‘slab merges’. Figure 2 sketches one possible
configuration, with items represented by circles, shuffles by looped lines, and a
shuffle that continues from the left side to the right side shown by a dotted line.
Both the left sequence and the right sequence have already been ordered, and we
seek at this stage to merge those two ordered lists.

Suppose that there aré items in total within the slab, that of them are on
the right side, and, without loss of generality, that n’ — r. By the definition
of a slab, all items on the right side have the same guardednsayg, Similarly,
all items on the left side have the same guardedness, whikh-isj, where
k’ is the total number of shuffles guarding items in this slab merge. After the
merge alln’ items in the slab have = k’, since all items will be guarded by
all shuffles guarding any items in the slab. No items can escape this remorseless
increase in guardedness.

By Theorem 4, there is a constantsuch that the actual cost of the slab

merge is
/

n
< c+ + —_—
t <c+c(r 1)Inr T

since each of the two sequences is broken into at mostl sections. The
amortized cost of a slab merge is then given by
g = (+d -9
!

rlj_lfcn’lnk’+c(n’fr)ln(k’fj)+crlnj.

IN

c+c(r+1)In

A Tree-based Mergesort 789

. top of slab

left side:
k' — j shuffles
n' —r items

right side:
7 shuffles
T items

bottom of slab

Fig. 2. Decomposition into slabs

Considered as a function ¢f this is maximized whef = rk’/n’. Substituting
for j and dividing byc gives

3 n’ (n" —r)k’ rk’
— < 1+(+1lIn —n'Ink’+(—r)In——+rIn—
c - () r+1 () n’ !

= 1+rinn+Inn =+ Inr +1)—n’Ink’

n —r
+(n' —r)in +(" —r)Ink’+rinr +rink’ —rinn’
n/
— / ! n —r
= 1+Inn"—=(r+2DInr+2)+nN" —r)In = +rinr
n —r
< 1+Inn"+(M —r)in
n/
< 1+Inn’,

with the last inequality following from the assumption that{r)/n’ < 1. That
is, the amortized cost of each slab merge is logarithmic in the number of items
contained in the slab.

Denote byn; the number of items involved in theth slab merge when
merging two trees ofi /2 items each. The amortized cost of the merge can now
be obtained by summing the amortized costs of the at mosiab merges:

K
Zc(l +1Inn;) < c-min{n, 4k(1 + In(n/4k))},
i=1

where the first alternative in the right hand side corresponds to thencasék.
The amortized time for the entigort is then bounded by the recurrence

790 A. Moffat et al.

0(1) n<1
A(n)=< 2-A(n/2)+0(n) l<n<4k
2-A(n/2) +O(k(1 + log(n/4k))) n > 4k

ExpandingA(n) in terms ofA(n/2), thenA(n/4), and so on, gives

log 7 — n logn
Z k2' 1+Iog(4k>)+ > n)

i=log z

An)

i=0
n n n
k+klog) E7k~ﬂlogﬂ+nlog4k)

log 4z —1 log 7 —1
o(k+k|og Sy 2k Y 2‘i+nlog4k)
i=0 i

O(nlogk).
The actual time required by the sort (after- 1 merges) is now
T(n) =A(N) + Py — P_1.

SinceA(n) = O(nlogk), $9 = 0, and®d,_1 > —cnlnk, it has been proved that
the algorithm runs irD(n logk) time, that is

Theorem 8. Tree-based Mergesort sorts any n-sequence X withMS k in
time O(nlogk), which is optimal with respect to SMS.

7. Other measures

To fully appreciate the adaptivity of Tree-based Mergesort it should be evaluated
against the framework for adaptive sorting developed by Petersson and Mof-
fat [11]. This framework is illustrated in the Hasse diagram of Figure 3, which
illustrates a partial order on measures of presortedness.

Broadly speaking, each edge in the diagram is a containment relation on
optimality, with all optimal algorithms for the higher measure automatically in-
heriting optimality for any connected lower measures. For example, consider the
measurefRemandBlock; Block is the number of items in a sequence that receive
a new successor when the sequence is sorted [3]. The edgeRieamio Block
reflects the fact thagvery Blockoptimal algorithm is alsdRemoptimal. Con-
versely, the presence of upward paths frBiock to Loc, Hist, andReg means
that an algorithm that is n@&lock-optimal cannot be optimal with respect to any
of the higher measures. For details of these measures and the exact relationship
that is captured by the edges of the diagram the interested reader is referred
to [11].

Each adaptive sorting algorithm corresponds tdeacriptor line across the
diagram, and the goal of the algorithm designer is to develop an algorithm that is
optimally adaptive with respect to the highest possible combination of measures.

A Tree-based Mergesort 791

Reg
Hist Loc SMS
Block Osc Enc
Rem Inv=DS SUS
Exc=Ham Maz=Par Runs

Fig. 3. Partial order on measures of presortedness

To establish lower bounds on the location of the descriptor corresponding to
some algorithm proofs of optimality are needed, such as those of Theorems 6, 7,
and 8. Those three theorems show respectively that the descriptor for Tree-based
Mergesort crosses abovev, aboveRem and aboveSMS

To establish upper bounds on the location of the descriptor for an algorithm
sequences must be described that are nearly sorted according to the measure, but
for which the algorithm is not optimal. For example, consider mhgequence
constructed as follows. First, let

Xi =(ilogn,ilogn+1,... (i +1)logn — 1),

for 0 <i < n/logn. Second, leX be the concatenation of a random permu-
tation of the subsequences. ThenBlock(X) < n/logn, and aBlock-optimal
algorithm must sort it inO(n + Block(X) log Block(X)) = O(n) time [3]. How-
ever, on this sequence Tree-based Mergesort @gasoglogn) time, and so
cannot beBlock-optimal. The adaptive mergesort of Carlsson, Levcopolous, and
Petersson [3] iBlock-optimal; on the other hand it is neithémv-optimal nor
SMS-optimal.

Using the transitivity of the diagram, the descriptor for Tree-based Mergesort
thus crosses betwedrRem and Block; crosses abovénv and belowlLoc; and
aboveSMS and belowReg Hence, to fully understand its adaptivity it remains
to analyse its behaviour with respect @sc, the amount of oscillation in a
sequence [7]. This is left as an open problem. Our knowledge of the adaptivity
of Tree-based Mergesort is summarized as follows:

792 A. Moffat et al.

Corollary 9. Tree-based Mergesort is optimal with respect to the measures Exc,
Rem, Max, Inv, Runs, SUS, Enc, and SMS.

No other known sorting algorithm is optimal with respect to the same com-
bination of measures as Tree-based Mergesort. In fact, the only other sorting
algorithm that can compete in terms of proven adaptivity is Mannila’s Local
Insertion Sort, the descriptor for which is known to cross immediately above
Block, Loc, andRuns[11].

8. Experimental behaviour

Figure 4 shows the adaptivity of the Tree-based Mergesort in an experimental
setting. Each point in the graph indicates the number of comparisons per item
expended when sorting a sequencenaf 65,536 items with a pseudo-randomly
controlled amount of presortedness according to one of the three measures dis-
cussed above [10]. That is, the three curves demonstrate the adaptivity of the
algorithm with respect ténv, Rem and SMS As the value of the measure in-
creases (note thdhv is normalized byn, and that the graph is plotted as a
function of the average number of inversions per item) so too does the number
of comparisons consumed.

%59 —o0—Inv
—— Rem
%20— —2— SMS
@
Q15
[%2]
c
2
‘= 10
IS
Q.
g
5 -
@)

f Ty T T T d
1 10 100 1000 10000

Presortedness: Inv/n, Rem, SMS

Fig. 4. Comparisons required to sort 65,536 items

It is also interesting to compare the behaviour of the Tree-based Merge-
sort with other methods for sorting. Table 2 shows the time taken by the Tree-
based Mergesort and two other sorting algorithms when sontinglL0,000 and
n = 100,000 integers on a Sun workstation. The Bentley-Mcllroy [1] Quicksort
implementation is probably the best general-purpose sorting programme devised
to date; while the Splaysort implementation [10] is a good example of an adaptive
sorting algorithm. In the first section of the table the integers are fully presorted,;
in the second they are random.

A Tree-based Mergesort 793

Table 2. Time to sortn items (seconds)

Method Sorted Random
10,000 100,000 10,000 100,000
Quicksort [1] 0.13 1.55 0.16 1.97
Splaysort [10] 0.05 0.50 0.24 3.99
Tree-based Mergesort 0.21 2.16 221 29.09

Although the number of comparisons expended by the Tree-based Merge-
sort is small when the list is sorted, the constant factor on the running time is
large, and it cannot compete with either the Bentley-Mcllroy Quicksort or the
Splaysort if speed is the primary selection criteria, even on fully sorted lists. This
is unsurprising given the complexity of the required tree manipulations.

AcknowledgementsWe thank Gary Eddy, who undertook the implementation of the Tree-based
Mergesort reported in Sect. 8. We also thank the referees for their helpful comments. This work was
in part supported by the Australian Research Council.

References

1. J.L. Bentley, M.D. Mcllroy: Engineering a sorting function. Softw. Pract. Exp8r1249-1265
(1993)
2. M.R. Brown, R.E. Tarjan: Design and analysis of a data structure for representing sorted lists.
SIAM J. Comput.9, 594-614 (1980)
3. S. Carlsson, C. Levcopoulos, O. Petersson: Sublinear merging and Natural Mergesort. Algo-
rithmica 9, 629-648 (1993)
4. C.R. Cook, D.J. Kim: Best sorting algorithms for nearly sorted lists. Comm. 28M20-624
(1980)
5. D.E. Knuth: Big omega and big omicron and big theta. SIGACT N8wk8—-24 (1976)
6. C. Levcopoulos, O. Petersson: Sorting shuffled monotone sequences. Inf. Coir#p37-50
(1994)
7. C. Levcopoulos, O. Petersson: Adaptive Heapsort. J. Algoritt¥n895-413 (1993)
8. H. Mannila: Measures of presortedness and optimal sorting algorithms. IEEE Trans. Comput.
C-34, 318-325 (1985)
9. K. Mehlhorn: Data Structures and Algorithms, Vol. 1: Sorting and Searching. Berlin: Springer
1984.
10. A. Moffat, G. Eddy, O. Petersson: Splaysort: fast, versatile, practical. Softw. Pract. E&per.
781-797 (1996)
11. O. Petersson, A. Moffat: A framework for adaptive sorting. Discrete Appl Me8h153-179
(1995)
12. W. Pugh: Skip lists: a probabilistic alternative to balanced trees. Comm. Bg8NM68-676
(1990)
13. R.E. Tarjan: Amortized computational complexity. SIAM J. Algebraic Discrete6/1806—-318
(1985)

