
Acta Informatica 35, 131–165 (1998)

c© Springer-Verlag 1998

Refinement of fair action systems

Ralph J.R. Back, Qiwen Xu?

Department of Computer Science,Åbo Akademi, Lemminkainenkatu 14, FIN-20520 Turku, Finland
(e-mail: backrj@ra.abo.fi)

Received: 16 March 1995 / 16 April 1997

Abstract. An action system is a framework for describing parallel or distributed
systems, for which the refinement calculus offers a formalisation of the stepwise
development method. Fairness is an important notion in modelling parallel or
distributed systems, and this paper investigates a calculus for refinement of fair
action systems. Simulations, which are proof techniques for refinement, are ex-
tended to verify fair action systems. Our work differs from others’ in that the
additional condition concerning fairness is expressed through termination of re-
lated iteration statements. For this purpose, existing proof rules for termination
are extended. In the tradition of the refinement calculus, our approach to fairness
is based on techniques developed mainly for sequential programming.

1. Introduction

An action systemis a framework for describing parallel or distributed systems.
It focuses on specifying the logical behaviours of the systems by a collection of
actions. Actions are expressed in familiar sequential programming notations, and
are executed atomically. The action systems formalism was proposed by Back
and Kurki-Suonio [5]. Similar action-based formalisms have later been used by
several other researchers, e.g., Chandy and Misra in UNITY [10], and Lamport
in TLA [18].

The refinement calculusis a formalisation of the stepwise refinement method
of program construction. It was originally designed for derivation of sequential
programs by Back [2, 3]. Afterwards it has been studied and extended by a
number of researchers (see [21, 22] among others) for the same purpose. More
recently, Back and Sere [6] extended the refinement calculus to the design of
action systems with respect tototal correctness. Reactiverefinement of action

? Current address: UNU/IIST, P.O. Box 3058, Macau (e-mail: qxu@iist.unu.edu)

132 R.J.R. Back, Q. Xu

systems was investigated by Back [4] basing on the techniques fordata refine-
ment [2, 7].

This paper extends the refinement calculus to deal with action systems
that containfairness. Fairness is an important notion in modelling parallel or
distributed systems, and was studied in the early work of Back and Kurki-
Suonio [5] on action systems. Fairness was also investigated in [4], where explicit
coding was employed to model fairness. We aim to handle fairness in the refine-
ment calculus more directly in this paper.

We are interested in refinement which preserves reactive properties. There-
fore, we need to record computation sequences in the semantics. A lower level
system refines a higher level one, if for any lower level computation, there is
a higher level computation which presents identical observations; in this case,
the higher level computation is said toapproximatethe lower level one. Refine-
ment holds between fair action systems, if for any fair lower level computation,
there is a fair higher level computation which approximates it.Simulationoffers
an effective technique to reduce the verification of the complete action systems
to the verification of individual actions (together with some other easily check-
able conditions). Simulations of fair action systems are obtained by extending
those of unfair systems. In related work on refinement of fair systems, the addi-
tional proof conditions concerning fairness are typically expressed in a temporal
logic [18, 16, 17]. However, introducing a temporal logic into the refinement cal-
culus would put an extra burden of learning a new notation on users. Moreover,
although fairness can be neatly defined using temporal modalities, verifying it
still resorts to the more basic Hoare logic style reasoning. We observe that the
concerned proof obligations can instead be expressed by termination of related
fair iteration statements. Therefore, as in the case of ordinary refinement, our
approach to fairness is based on the basic techniques developed mainly for se-
quential programming.

This paper is organised as follows. Section 2 describes the basics of refine-
ment calculus and action systems. For the sake of presentation, we first restrict
ourselves to weak fairness: in Sections 3 and 4, we investigate proof methods
for termination and total correctness of weakly fair iteration statements, and re-
finement of weakly fair action systems. Strong fairness is studied in Section 5.
Throughout the paper, a number of toy examples are used to illustrate various
proof rules. Section 6 is devoted to a more advanced case study in which a
mutual exclusion algorithm is developed. In these sections, we study forward
simulation. In Section 7, the dual notion of backward simulation is extended for
verifying fair action systems. The last section is a brief discussion.

2. Preliminaries

2.1. Refinement calculus

The basic domains of refinement calculus arise by pointwise extension from the
boolean lattice. The truth values

Refinement of fair action systems 133

Bool = {T,F}
form a complete lattice under theimplication order

F ≤ T T ≤ T F ≤ F

Complement¬, meet∧ and join∨ are respectively negation, conjunction and
disjunction.

Let Σ be a set of states. Apredicate overΣ is a functionp : Σ → Bool
which assigns a truth value to each state. The set of predicates overΣ

Pred(Σ)
def
= Σ → Bool

also forms a complete lattice under the order obtained from boolean implication
by pointwise extension: forp,q ∈ Pred(Σ)

p ≤ q iff (∀σ ∈ Σ. p σ ≤ q σ)

Complement¬, meet∧ and join∨ are defined pointwisely too, e.g., (p∧q)σ
def
=

(p σ∧q σ). The identically false predicatefalse is the bottom, and the identically
true predicatetrue is the top, of the predicate lattice. The derived combinator

⇒ is defined as usual, i.e., (p ⇒ q)
def
= (¬p ∨ q). In this paper, we assume that

binding power of various operators decreases along the usual order

functional application
¬
∨, ∧
⇒

Pointwise extension of predicates gives us predicate transformers, which are
functions of the type

Ptran(Σ,Γ)
def
= Pred(Γ) → Pred(Σ)

whereΣ andΓ are two state spaces. A program statementA is identified with
theweakest preconditionpredicate transformer [12], which maps a postcondition
q to a preconditionA q that describes the set of initial states from whichA is
guaranteed to terminate in states satisfyingq. The definition of the predicate
transformer regards a program which does not always produce the desired result
as bad as one which does not produce the result at all. In particular, a pro-
gram which cannot guarantee termination is identified with one which is totally
nonterminating.

For S, T: Ptran(Σ,Γ), the refinement orderis

S ≤ T
def
= (∀q ∈ Pred(Γ).S q≤ T q)

Intuitively, T refinesS if and only if the former guarantees any postcondition that
the latter does. Under this order, predicate transformers form a complete lattice:
the bottom isabort which maps any postcondition tofalse, and the top ismagic
which maps any postcondition totrue; meet and join are again defined point-

wisely, e.g., (S∧T)q
def
= (S q∧T q). Statementabort never guarantees anything.

134 R.J.R. Back, Q. Xu

Statementmagic is miraculous, for it promises to achieve any postcondition;
therefore, it is an imaginary statement, useful only in formal calculations. Meet
and join modeldemonicandangelic choices respectively.

A statementS is (positively) conjunctive, if for any nonempty set of predi-
cates{qi |i ∈ I },

S(∀i ∈ I .qi)
def
= (∀i ∈ I .S qi)

We call a conjunctive statement an action. Thenon-miraculous domainor guard
of actionA is defined by

gA
def
= ¬A false

An actionA is enabled in any state wheregA holds. Thetermination domainof
A is defined by

tA
def
= A true

Actions can be combined by sequential program operators to form a com-
pound action. We only mention a few structures that are particularly useful. The
sequential compositionis define as usual

(A1; A2)q
def
= A1(A2q)

It has skip (formally defined asskip q
def
= q) as unit. A guarded commandis

defined as

(b → A)q
def
= b ⇒ Aq

and it follows that

g(b → A) = b ∧ gA and t(b → A) = b ⇒ tA

It is easy to see that, as special cases,true → A = A and false → A = magic.
Nondeterministic choice is defined as

A1 [] . . . [] Am
def
= A1 ∧ . . . ∧ Am

Its guard and termination domain can be derived respectively

g(A1 [] . . . [] Am) = gA1 ∨ . . . ∨ gAm

t(A1 [] . . . [] Am) = tA1 ∧ . . . ∧ tAm

Sometimes it is convenient to use a Hoare triple to indicate a total correctness
formula: programS is totally correct with respect to preconditionp and post-
conditionq, denoted as{p} S {q}, is defined by

{p} S {q} def
= p ≤ S q

It follows that

{p} b → S {q} = {p ∧ b} S {q}

Refinement of fair action systems 135

2.2. (Unfair) action systems

When the semantics of a concurrent system is based oninterleavingobservations,
it is equivalent to a nondeterministic sequential system with respect to logical
behaviours. An action systemA is a statement of the form

|[var x • p; do A od]| : z

where,x andz are the tuples of local and global variables respectively,p is the
initialisation condition, andA is an action, perhaps a compound one. The action
is executed repeatedly, and each iteration is not interrupted, i.e.,A is treated as an
atomic statement. The initialisation condition is often omitted if it is the constant
predicatetrue.

To allow a concurrent system to be modelled within the action system format,
a parallel composition of two action systems must be mapped into another action
system. This is straightforward. Two action systems can be composed in parallel
if they have the same global but disjoint local variables. Let

Ai
def
= |[var xi • pi ; do Ai od]| : z

then

A1 ‖ A2
def
= |[var x1, x2 • p1 ∧ p2; do A1 [] A2 od]| : z

The resulting action system has the same global variables, while its local variables
are the union, its initialisation condition the conjunction and its action the choice
of the respective parts in the two component systems. Sometimes it is necessary
to hide some global variables, especially after two systems are composed in
parallel. This is indicated by

|[var l • A]|
where variables inl are made local.

2.3. Semantics and refinement order of action systems

A computationof an action systemA = |[var x • p; do A od]| : z is a finite
or infinite sequence of states generated by an execution of the action system.
The first state of the computation satisfies the initial conditionp, and any state
transition is performed by actionA (no matter whetherA is compound or not,
the transition corresponds to the complete execution of it). A finite computation
is either terminated or aborted; the former happens whenA is no longeren-
abled and the latter occurs whenA is nonterminating. The two kinds of finite
computations are distinguished

A computationinducesa trace, in which local states and all thestuttering
transitions, which are steps that do not change global states, are deleted. When
all the transitions in an infinite computation are stuttering from certain point
onwards, the induced trace is considered to be aborted. Aborted computations

136 R.J.R. Back, Q. Xu

also induce aborted traces. The semantics of an action systemA is defined as
the set of its tracestr (A); this captures theobservablebehaviours of the system.

Action systemC is said to refine action systemA, denoted byA v C , if
for any traceσ of C either

(∃σ′|σ′ ∈ tr (A).σ′ � σ ∧ aborted(σ′)), or

(∃σ′|σ′ ∈ tr (A).σ′ = σ ∧ nonaborted(σ))

where� is the prefix relation (including equality). For any tracesσ and σ′

satisfying the above condition, we say thatσ′ approximatesσ; a higher level
computation approximates a lower level one if the induced traces have this rela-
tion.

2.4. Proving refinement

It is difficult to use the semantical definition to directly prove refinement. The
effective verification method, known as simulation, reduces the verification of
action systems to that of individual actions. Assume that the tuples of abstract
and concrete variables area andc, and the data refinement relation isR(a, c, z)
(wherez is the tuple of global variables used in both the higher and lower level
systems). Simulation is usually divided into so calledforward simulationand
backward simulation.

Action A is forward simulatedby actionC under data refinement relationR

A ≤f
R C

def
= R(a, c, z) ∧ Aq(a, z) ≤ C(λ(c, z).(∃a.R(a, c, z) ∧ q(a, z)))(c, z)

In this paper, we take the convention that universal quantification is implic-
itly understood. In the above definition,p, a, c and z are implicitly quantified.
Although here the various variables are bounded and consequently it is mathe-
matically correct to use any names for them, we prefer notations consistent with
ordinary programming practice, and always usea, c and z to denote the tuples
of abstract, concrete and global variables respectively.

The definition of forward simulation implies that for two states coupled byR,
if C is aborting in the concrete state, thenA is also aborting in the abstract state,
and if C is not aborting and there is a transition fromC , then eitherA is aborting
in the abstract state or there is also a transition fromA such that the two states
after the transitions are still coupled byR. Recall that a transition is stuttering
if it does not change any global variables. Therefore, the transition fromskip
is always stuttering. Moreover, ifskip ≤f

R H , then H is not aborting in any
concrete state that is related to an abstract state and its transition is stuttering,
and in fact, the next concrete state is related to the same abstract state.

Refinement of fair action systems 137

b - b

C

A ≤f
R C

or

b - b

A

R R

b

b

aborting state

R

H
b

b

b-@
@

@
@

@@

R R

skip ≤f
R H

For two actionsb → A andd → C wheregA = gC = true,

b → A ≤f
R d → C

holds if and only if

(i) d (c, z) ∧ R (a, c, z) ≤ b (a, z)

(ii) R (a, c, z) ∧ d (c, z) ∧ Aq (a, z)

≤ C(λ(c, z).(∃a.R(a, c, z) ∧ q(a, z)))(c, z)

One particularly useful situation in refinement is that the actions of the lower
level system form two groups; one group corresponds to actions of the higher
level system, and the other group contains only stuttering actions. Therefore, in
this paper, we are mainly interested in higher and lower level action systems
which respectively have the following forms:

A def
= |[var a • p; do A od]| : z

C def
= |[var c • q; do C [] H od]| : z

Forward and backward simulations of action systems present respectively a for-
ward way and a backward way of constructing a higher level computation for
a given lower level computation such that the former approximates the latter.
The existence of such constructions shows that simulations are sound as proof
rules of refinement. We next review the forward simulation techniques for unfair
action systems. The dual notion of backward simulation will be studied later.

Forward simulation of (unfair) action systems.Data refinement relationR(a, c, z)
is said to be a forward simulation betweenA andC , denoted byA ≤f

R C , if

(i) Initialisation: q(c, z) ≤ (∃a.R(a, c, z) ∧ p(a, z))
(ii) Main actions:A ≤f

R C

(iii) Stuttering actionsskip ≤f
R H

(iv) Exit condition: R∧ ¬(gC ∨ gH) ≤ ¬tA∨ ¬gA
(v) Internal convergence:R∧ tA ≤ t(do H od)

138 R.J.R. Back, Q. Xu

For any computationγ = γ0γ1...γi ... of the lower level system, based on the above
conditions, we construct below a computationα of the higher level system such
that it approximatesγ. The first condition says that there exists an abstract state
α0 which satisfies the initialisation condition of the higher level system and it is
related byR with γ0; α0 can then be chosen as the first state ofα. If γ0 is the
only element ofγ or A is aborting inα0, then letα be the computation containing
α0 one element. Otherwise, depending on whether (γ0, γ1) is a transition ofC
or H , by the second and the third conditions, either there is an abstract state
α1 such that (α0, α1) is a transition ofA and α1 is related toγ1 by R or α0

is related toγ1 by R. We repeat this process fromγ1 until either an abstract
state in whichA is aborting is found or all the concrete states are traversed. The
fourth condition guarantees that the terminated state ofγ is related either to an
aborting or a terminated abstract state. The fifth condition ensures that there are
not infinitely many consecutive stuttering transitions inγ unlessA is aborting in
the last abstract state.

γ : b - b - b - b - b - b . . .
C C HH C

α : b - b - b - b - . . .
A A A

@
@
@
@
@

@
@
@
@
@

@
@

@
@
@

HH
HH

HH
HH

HH

2.5. Fair action systems

The main component of a fair action system is a fair iteration statement. We
consider the fair iteration statement of the form

A = do A1 [] A2 [] . . . [] An od

whereAi may be associated with fairness assumptions. We consider bothweak
fairness andstrong fairness, and denote byWF(A) ⊆ {A1, . . . ,An} and
SF(A) ⊆ {A1, . . . ,An} the sets of actions associated with weak fairness and
strong fairness respectively. A computation ofA is fair if, (1) when any action
Ai in WF(A) is continuously enabled from some point onwards, there is a state
transition from it executed at a certain stage afterwards, (2) this is so when any
action inSF(A) is infinitely often enabled. Without losing the expressive power,
we follow the convention assuming thatWF(A) ∩ SF(A) = ∅.

We do not require all the actions to be treated fairly. To distinguish the three
types of actions, we put a labelwf before an action if it is associated with weak
fairness, and a labelsf if it is associated with strong fairness; undecorated actions
denote that they have no fairness requirements (the execution of such an action

Refinement of fair action systems 139

is only guaranteed under the so-calledminimal progressassumption, i.e., the
action will definitely be executed if it is the only enabled action). For an action
A, lA denotes the fairness label ofA; by abusing notation a little, we use the
same symbolA to denote the program part of the action (i.e., the part without
the fairness label). Note that we can group all the unfair actions together and
make them into one big unfair action, but there are no direct ways to combine
fair actions in general. In our setting, fairness is only associated with top level
choice; if actionAi contains further nondeterministic branches, their selection is
not subject to any fairness.

For a fair action systemA, tr (A) is the set of traces induced from its fair
computations. The semantic refinement order remains unchanged.

3. Termination and total correctness of weakly fair iteration statements

As mentioned earlier, termination will be used as a proof condition in showing
refinement. Termination is part of total correctness, while the latter in addition
requires that the program is abortion free and its terminating states satisfy a
postcondition. LetA be the fair iteration statement

do A1 [] A2 [] . . . [] An od

We denote thatA is (fairly) terminating with respect to preconditionp by

{p} A

3.1. Proof rules

Our formulation is based mainly on the work by Francez [13] as well as Manna
and Pnueli [20]. In this section, we only consider weak fairness.

To prove thatA terminates under preconditionp, we find a well-founded set
W and a family of predicatesI = {Iw|w ∈ W}. First, we show that ifp holds,
then there exists aw such thatIw holds. We next prove that execution of any
action underIw leads toIv with v ≤ w. Thirdly, we verify that if the iteration
is executed sufficiently often then the new index inIv will be strictly smaller.
Since the index set is well-founded, there cannot exist any infinite computations.

Therefore, an important concept is that some actions must decrease the in-
dexes if executed. Such actions are usually said to behelpful. However, in general
an action is only helpful in some states. Let predicater characterise the set of
states, and define

helpful(Iw, r ,A)
def
= {Iw ∧ r ∧ tA} A {∃v|v < w.Iv}

Aborting and disabled actions are helpful by the definition; intuitively, it is clear
that neither of them can contribute to infinite computations of the iteration state-
ment. Under appropriate conditions, fairness assumption ensures that certain help-
ful action will eventually be executed, but as an action may only be helpful in

140 R.J.R. Back, Q. Xu

some states, we need to be sure that the execution of other actions will either
keep the original action helpful or decrease the index. This leads us to define
another important concept

helpful or stay(Iw, r ,A)
def
= {Iw ∧ r ∧ tA} A {(∃v|v < w.Iv) ∨ (Iw ∧ r)}

It is easy to see thathelpful(Iw, r ,A) implies helpful or stay(Iw, r ,A).

Theorem 1. (Proof rule for termination of weakly fair iteration statements).
{p} A holds, if there exist a well-founded set W and a family of predicates
I = {Iw|w ∈ W} such that the following holds:

(i) p ≤ (∃w.Iw)
(ii) assume WF(A) = {AJ1, . . . ,AJk}, there exist r1, . . . , rk such that

(1) helpful or stay(Iw, ri ,Aj), for any i = 1, . . . , k and any j/= Ji

(2) helpful(Iw, ri ,AJi) and Iw ∧ ri ≤ gAJi , for any i = 1, . . . , k

(3) helpful(Iw,¬(r1 ∨ . . . ∨ rk),Ai), for any i = 1, . . . ,n

We argue the soundness of this rule by showing that a computation will not be
‘stuck’ at a levelw. Any state in a computation satisfiesIw for certainw and in
addition one of the followingk + 1 predicates

r1, . . . rk , ¬(r1 ∨ . . . ∨ rk)

If a predicateri holds in the state, then it follows from(ii) (1) that execution of
any actions other thanAJi will either decrease the index or leaveIw∧ ri satisfied.
Therefore, if the index has not already been decreased, from(ii) (2) we know that
AJi is helpful and continuously enabled, and subsequently, it will be executed
eventually by the fairness assumption, causing the index to be lowered. If none
of r1, . . . , rk hold, then(ii) (3) indicates that all actions are helpful and the index
is decreased immediately by the next transition.

Note that we do not care at which levelw the loop terminates. Some other
termination rules in literature require termination to occur when the index is
exactly the minimal element 0.

The iteration statement derived in a refinement step, and which we have
to prove terminating, may also containexit commands. Execution of anexit
command causes the iteration to stop immediately. The effect of such commands
can be coded by assignments to a special variable which once being set to a
special value disables all the actions, but the presentation is slightly neater when
the command is retained. For our purpose, theexit commands can occur at two
places: either theexit command is at the end of an entire action, or an action
is composed of two alternatives and theexit command is at the end of one
alternative. Modifying the rules to accommodate theexit commands is easy, as
only the definitions ofhelpful andhelpful or stay need to be slightly extended.
Since execution ofA;exit leads immediately to termination of the statement, we
define

Refinement of fair action systems 141

helpful(Iw, r ,A;exit)
def
= helpful or stay(Iw, r ,A;exit)

def
= T

helpful(Iw, r ,A;exit [] A′) def
= helpful(Iw, r ,A′)

helpful or stay(Iw, r ,A;exit [] A′) def
= helpful or stay(Iw, r ,A′)

Theorem 1 is valid for iteration statements withexit commands when the defi-
nitions of helpful andhelpful or stay are defined as above.

Theorem 2. (Proof rule for total correctness of weakly fair iteration state-
ments). {p} A {q}, if there exist a well-founded set W and a family of predicates
I = {Iw|w ∈ W} such that conditions (i) and (ii) in Theorem 1 and the following
hold

(iii) (∃w.Iw) ∧ gAi ≤ tAi , i = 1, . . . ,n
(iv) (1) (∃w.Iw) ∧ ¬(gA1 ∨ . . . ∨ gAn) ≤ q

(2) {∃w.Iw} A′
i {q}, for all i = 1, . . . ,n such that Ai is of the form A′i ;exit

or A′
i ;exit [] A′′

i

Condition (iii) ensures that abortion will not occur. The first and second con-
ditions in (iv) guarantee respectively that the postcondition is satisfied in the
normal terminating states and the terminating states resulted from the execution
of exit commands.

3.2. Examples

Example 1 Consider proving

{true}
do

wf : (z ≥ 150→ z := z + 1;exit [] z < 100→ z := z + 2) % actionA1

[] z := z + 2 % actionA2

od

For brevity, we assume thatz ranges over integers in this and the following a
few examples. Informally, we can argue about termination like this. The loop
can only terminate when theexit command is executed. Started with any initial
value, the two actions can only increase the value ofz and eventually make it
greater than or equal to 150. The first action is then continuously enabled, and
therefore due to fairness assumption after a number of executions of the second
action, the first action will be taken. Since the second alternative in the first action
is disabled, only the first alternative can be taken, leading to the termination of
the whole program.

We now formalise this argument. Choose natural numbers as the well founded
domain and define

Iw
def
= w = max(150− z,0)

The proof obligations(i) and (ii) are established as follows.

142 R.J.R. Back, Q. Xu

(i) (∃w.Iw) {definition of Iw}
= (∃w.w = max(150− z,0)) {let w = max(150− z,0)}
= true

(ii) Chooser1
def
= (z ≥ 150)

(1) follows from

{Iw} z := z + 2 {∃v|v ≤ w.Iv}
= {definition of Iw}

{w = max(150− z,0)} z := z + 2 {∃v|v ≤ w.v = max(150− z,0)}
≥ {let v = max(w − 2,0)}

(w = max(150− z,0)) ≤ (max(w − 2,0) = max(150− z − 2,0))
≥ {case analysis:z ≤ 150 andz > 150}

T

and{z ≥ 150} z := z + 2 {z ≥ 150}
(2)

helpful(Iw, r1, (z ≥ 150→ z := z + 1;exit [] z < 100→ z := z + 2))
= {definitions ofhelpful and r1}

helpful(Iw, z ≥ 150, (z < 100→ z := z + 2))
= {definition of helpful}
{Iw ∧ z ≥ 150∧ z < 100} z := z + 2 {∃v|v < w.Iv}

= {false} z := z + 2 {∃v|v < w.Iv}
= T

(Iw ∧ r1) ≤ g(z ≥ 150→ z := z + 1;exit [] z < 100→ z := z + 2))
= {definitions of guard andr1}

(Iw ∧ z ≥ 150)≤ (z ≥ 150∨ z < 100)
= T

(3) We first checkA2

helpful(Iw,¬r1, z := z + 2)
= {definitions ofhelpful and r1}

{Iw ∧ z < 150} z := z + 2 {∃v|v < w.Iv}
= {definition of Iw}

{w = max(150− z,0)∧ z < 150}
z := z + 2

{∃v|v < w.v = max(150− z,0)}
≥ {let v = max(w − 2,0)}

(w = 150− z) ≤ (max(w − 2,0) = max(150− z − 2,0))
= T

Refinement of fair action systems 143

Next we verifyA1

helpful(Iw,¬r1, (z ≥ 150→ z := z + 1;exit [] z < 100→ z := z + 2))
= {definitions ofhelpful and r1}

helpful(Iw, z < 150, (z < 100→ z := z + 2))
= {definition of helpful}
{Iw ∧ z < 150∧ z < 100} z := z + 2 {∃v|v < w.Iv}

= {similar to the proof forA2}
T

Example 2 Consider the loop

do
wf : (z ≥ 150→ z := z + 1;exit [] z > 100→ z := z + 2) % actionA1

[] z := z + 2 % actionA2

od

This program is the same as the previous one, except that one guard becomes
z > 100, but now it does not terminate. Should we try to carry over the previous
proof, we will notice that the last part is no longer valid. Indeed, whenz ≥ 150
holds, the alternative without theexit command can be executed infinitely instead.

3.3. Termination under continuous condition

So far, we have discussed proving termination under preconditions. However, the
termination arisen in verifying refinement is weaker in that we can assume more
than just preconditions. The following termination notion is useful when there
are actions associated with weak fairness in the higher level system. Iteration
statementA terminates under a continuous conditionp, denoted as [p] A, is
defined by

[p] A iff there are no infinite computations fromA such thatp
always holds

Obviously, if {p}A holds, then [p] A holds also. This means that we can
use the same termination rule to prove [p] A. But there are many cases where
[p] A holds, while{p}A does not. Consider the programdo z := z − 2 od
for example. It does not terminate under the preconditionz > 100, but [z >
100] do z := z − 2 od holds, because an infinite execution of the loop will
cause the value ofz to be arbitrarily small, and hence (z > 100) cannot hold
continuously.

It is easy to reduce the proof of [p] A to that of ordinary fair termination:
if A is the iteration statementdo A1 [] A2 [] . . . [] An od, then

[p] A iff {true} do p → A1 [] p → A2 [] . . . [] p → An od

144 R.J.R. Back, Q. Xu

Example 3 Returning to the example program, to prove

[z > 100] do z := z − 2 od

we only need to show

{true} do z > 100→ z := z − 2 od

which is trivial.

4. Forward simulation of weakly fair action systems

We now come to our major concern: proving refinement. Again, we restrict
ourselves to weak fairness first, and consider the case that the higher and lower
level action systems are respectively of the form:

A def
= |[var a • p; do A od]| : z

C def
= |[var c • q; do C [] H od]| : z

where

A
def
= A1 [] A2 [] . . . [] An

C
def
= C1 [] C2 [] . . . [] Cm

H
def
= H1 [] H2 [] . . . [] Hk

and fairness may be associated withAi , Ci andHi . As reviewed earlier, simulation
methods for unfair action systems reduce the verification of the complete action
systems to the verification of individual actions. We wish to extend the approach
to verify fair action systems. For the unfair case, it is enough that the compound
action A is simulated by the compound actionC , which holds if and only if
A is simulated by eachCi . However, this is not sufficient if there are fairness
assumptions inA. To formulate the fairness condition, we decomposeCi into
Ci ,1 [] Ci ,2 [] . . . [] Ci ,n such that

Aj ≤f
R Ci ,j

i.e., actionAj is (forward) simulated byCi ,j with respect to data refinement
relationR. This results in the following decomposition matrix,

A1 A2 . . . An

C1 C1,1 C1,2 . . . C1,n

C2 C2,1 C2,2 . . . C2,n

. . .
Cm Cm,1 Cm,2 . . . Cm,n

in which every lower level action simulates the higher level action in the same
column. The decompositionCi = Ci ,1 [] Ci ,2 [] . . . [] Ci ,n can be verified using
traditional refinement calculus.

Refinement of fair action systems 145

We useC ,i to denote an arbitrary lower level subaction in columni . Roughly
speaking, if a higher level actionAi must be executed due to a fairness assump-
tion, then we need to guarantee that a subactionC ,i will also be executed in
the lower level system. However, fairness is not directly associated with such
subactions, and therefore we must prove that all the subactions in other columns
will not be infinitely and exclusively executed.

Forward simulation of weakly fair action systems.Data refinement relation
R(a, c, z) is said to be a forward simulation betweenA and C , denoted by
A ≤f

R C , if

(i) Initialisation: q(c, z) ≤ (∃a.R(a, c, z) ∧ p(a, z))
(ii) Main actions:Ai ≤f

R Cj ,i , for any i = 1, . . . ,n and anyj = 1, . . . ,m
(iii) Stuttering actionsskip ≤f

R Hi , for any i = 1, . . . , k
(iv) Exit condition: R∧ ¬(gC ∨ gH) ≤ ¬tA∨ ¬gA
(v) Internal convergence:{∃a.R(a, c, z) ∧ tA(a, z)}D , where

D = do lC1 : C1;exit [] lC2 : C2;exit [] . . . [] lCn : Cn;exit
[] H1 [] . . . [] Hk

od
(vi) Fairness condition: [∃a.R(a, c, z) ∧ gAi (a, z)] C i , for any Ai ∈ WF(A),

where

C i = do Ci
1 [] Ci

2 [] . . . [] Ci
n [] H1 . . . [] Hk od, in which

Ci
j = lCj : (Cj ,1 [] . . . [] Cj ,i−1 [] Cj ,i ;exit [] Cj ,i +1 [] . . . [] Cj ,n)

The first four conditions are either the same or imply directly the corresponding
conditions in forward simulation of unfair systems. The internal convergence
condition is still used to ensure that there are not infinitely many consecutive
extra stuttering transitions unlessA is aborting; now it may happen that some
main actions must be executed due to the fairness assumptions, and the new
derived iteration statementD takes into account this situation. The last condition
is used to guarantee the fairness requirement. It implies that when actionAi is
continuously enabled the lower level computation is either finite or has aC ,i

transition.

γ : b - b - b - b - b - b . . .
H C ,i

α : b - b - b - b - . . .
Ai

@
@
@
@
@

@
@
@
@
@

@
@

@
@
@

HH
HH

HH
HH

HH

For any fair computationγ of C , it is known from simulation of unfair
systems that one can construct a computationα of A such that it approximates

146 R.J.R. Back, Q. Xu

γ. In particular, anAi transition is chosen inα to match aC ,i transition inγ. The
resulting computation is fair, for otherwise there must exist a higher level action
in WF(A), say Ak , whose enableness condition is satisfied but is never taken
from certain point onwards. The fairness condition implies that aC ,k transition
must be present inγ, hence a contradiction.

The fairness condition is void when there are no fairness assumptions in the
higher level system. If there are no fairness assumptions in the lower level system,
internal convergence condition is also equivalent to the one in the unfair case.
Therefore, simulation of unfair action systems is a special case of simulation of
fair action systems.

Example 4 Let two action systems be

A def
= |[do

wf : z := z + 1 % actionA1

[] z := z + 2 % actionA2

od]| : z

C def
= |[do

wf : (z ≥ 150→ z := z + 1 [] z < 100→ z := z + 2) % C1,1 [] C1,2

[] z := z + 2 % C2,2

od]| : z

The comments in the program denote the names of actions. Subactions are omit-
ted if they aremagic (in this example,C2,1 = magic). This describes a decom-
position, and for the example, we have the following corresponding matrix

z := z + 1 z := z + 2
z ≥ 150→ z := z + 1 z < 100→ z := z + 2
magic z := z + 2

In this and the next few examples, conditions (i),(iii),(iv) and (v) are triv-
ial to prove, and therefore we only concentrate on conditions (ii) and (vi). By

choosingR
def
= true as the data refinement relation, the simulation of the cor-

responding actions is easy to show. The fairness condition is implied by the
following termination formula:

{true} do
wf : (z ≥ 150→ z := z + 1;exit [] z < 100→ z := z + 2)

[] z := z + 2
od

which we have already established in Example 1.

Refinement of fair action systems 147

Example 5 Consider next the following action systems

A def
= |[do

wf : z := z + 1 % actionA1

[] z := z + 2 % actionA2

od]| : z

C def
= |[do

wf : (z ≥ 150→ z := z + 1 [] z > 100→ z := z + 2) % C1,1 [] C1,2

[] z := z + 2 % C2,2

od]| : z

The programs are the same as the previous ones, except that one guard inC
becomesz > 100, but now refinement does not hold. Indeed, whenz ≥ 150
holds, the second alternative in the first action ofC can be executed infinitely
instead, and as a result,z is only increased by 2. Should we try to carry over the
previous proof, we will then have to prove termination of the following loop:

do
wf : (z ≥ 150→ z := z + 1;exit [] z > 100→ z := z + 2)

[] z := z + 2
od

As we have already discussed in Example 2, this is not the case.

Example 6 Now consider the refinement of the following two systems:

A def
= |[do

wf : z > 100→ z := z + 1 % actionA1

[] z := z − 2 % actionA2

od]| : z

C def
= |[do

z := z − 2 % actionC1,2

od]| : z

Let data refinement relation beR
def
= true. The fairness condition is

[z > 100] do z := z − 2 od

and it is proved in Example 3.

5. Including strong fairness

In the previous sections, we have considered weak fairness. Strong fairness is
also a useful notion. In the general case, an action system may have a mixture
of weak and strong fairness. In accordance with the order of presentation in the
previous sections, we first extend the normal termination and total correctness
rules, then investigate an additional termination notion which is useful in proving
refinement, and finally we extend the refinement rule.

148 R.J.R. Back, Q. Xu

5.1. Termination and total correctness of fair iteration statements

The following is the extended rule for proving termination.

Theorem 3. (Proof rule for termination of fair iteration statements). {p} A,
if there exist a well-founded set W and a family of predicates I= {Iw|w ∈ W}
such that the following holds:

(i) p ≤ (∃w.Iw)
(ii) assume WF(A) = {AJ1, . . . ,AJk} and SF(A) = {AS1, . . . ,ASl }, there exist

r1, . . . , rk, rk+1, . . . , rk+l such that

(1) helpful or stay(Iw, ri ,Aj), for any i = 1, . . . , k and any j/= Ji

helpful or stay(Iw, rk+i ,Aj), for any i = 1, . . . , l and any j /= Si

(2) helpful(Iw, ri ,AJi) and Iw ∧ ri ≤ gAJi , for any i = 1, . . . , k

(3) helpful(Iw, rk+i ,ASi) and
{true} do [] j |j /= Si . lAj : (¬gASi ∧ Iw ∧ rk+i → Aj) od,
for any i = 1, . . . , l

(4) helpful(Iw,¬(r1 ∨ . . . ∨ rk ∨ rk+1 . . . ∨ rk+l),Ai), for any i = 1, . . . ,n

We argue its soundness as follows. The case that an intermediate state satisfiesri ,
where 1≤ i ≤ k, or¬(r1∨ . . .∨ rk ∨ rk+1 . . .∨ rk+l), is the same as in Theorem 1.
If the state satisfiesrk+i , where 1≤ i ≤ l , then it follows from conditions(ii) (1)
and (ii) (3) that execution of any action other thanASi will either decrease the
index or causeASi enabled eventually. This implies that the iteration will not be
‘stuck’ at one level. For otherwise,ASi will be enabled after a finite number of
steps, and this will happen infinitely often. Then the associated strong fairness
ensures thatASi will be executed.

Note although condition(ii) (3) is termination of yet another iteration state-
ment, the new program has one action less and therefore the proof process will
come to an end.

Theorem 4. (Proof rule for total correctness of fair iteration statements).
{p} A {q}, if there exist a well-founded set W and a family of predicates
I = {Iw|w ∈ W} such that conditions (i), (ii) in Theorem 3 and the following
hold

(iii) (∃w.Iw) ∧ gAi ≤ tAi , for any i = 1, . . . ,n
(iv) (1) (∃w.Iw) ∧ ¬(gA1 ∨ . . . ∨ gAn) ≤ q

(2) {∃w.Iw} A′
i {q}, if Ai is of the form A′i ;exit or A′

i ;exit [] A′′
i

The proof rules for weakly fair iteration statements are special cases wherel = 0.

Example 7 Consider a program with strong fairness

do
sf : (z ≥ 150∧ t → z := z + 1;exit [] z < 100→ z := z + 2) % actionA1

[] z, t := z + 2,¬t % actionA2

od

Refinement of fair action systems 149

This program terminates. Although the alternative with theexit command is no
longer continuously enabled, the fairness notion is now strongly fair, and as the
result, the command will be executed eventually. For a more rigorous proof, we
can use the same family of predicates{Iw} as in Example 1

Iw
def
= w = max(150− z,0)

and in fact a large part of the previous argument. Only whenz ≥ 150, we turn

to the condition associated with strong fairness instead. Letr1
def
= (z ≥ 150). We

need to prove

{true} do ¬gA1 ∧ Iw ∧ z ≥ 150→ z, t := z + 2,¬t od

wheregA1 = (z ≥ 150∧ t) ∨ z < 100. Note that having only one action, this
program is simpler than the original one, and indeed its termination is trivial to
prove.

5.2. Termination under infinitely often condition

The really useful termination notion in proving refinement when there are actions
associated with strong fairness is as follows:

〈p〉 A iff there are no infinite computations fromA such thatp holds
initially and infinitely often after

It is easy to see that{p} A implies〈p〉 A, but the other direction does not hold.
For example,〈z > 100〉 do z := z−2 od holds but{z > 100} do z := z−2 od
does not. It can also be noted that〈p〉 A implies [p] A, but the other way is not
true. One such example is that [z > 100∧t] do z := z−2 [] (z := z+1; t := ¬t) od
holds but〈z > 100∧ t〉 do z := z − 2 [] (z := z + 1; t := ¬t) od does not.

Verifying 〈p〉 A is rather difficult, and in fact, the property expressed by
〈p〉 A falls into the most general class in temporal logic, the so calledreactivity.
But looking at the general proof rule for reactivity in [20], we notice that it is still
unnecessary to assume real knowledge of temporal logic, because most premises
are given in Hoare logic style and all the temporal operators occur in the same
formula 1. Therefore, if we rewrite it by a new correctness formula we end
up with a proof rule for it without mentioning any temporal operators. More
precisely, define

{p}〈r 〉 A 〈q〉 iff under the preconditionp, a computation ofA is either
finite, or if r holds infinitely often thenq holds eventually

To take into account of the ‘goal’q, we extend the definitions ofhelpful and
helpful or stay. More precisely, for an ordinary actionA, let

helpful(Iw, r ,q,A)
def
= {Iw ∧ r ∧ tA} A {(∃v|v < w.Iv) ∨ q}

helpful or stay(Iw, r ,q,A)
def
= {Iw ∧ r ∧ tA} A {(∃v|v < w.Iv) ∨ q ∨ (Iw ∧ r)}

1 The actual form of the temporal formula isp ∧� ♦ r ⇒ ♦q

150 R.J.R. Back, Q. Xu

The incremental definitions ofhelpful andhelpful or stay for actions withexit
commands remain unchanged (except for the parameters). Note that the new defi-
nitions are conservative extensions of the old ones, as the latter can be considered
as special cases of the former withq = false. The following is an alternative
formulation of the reactivity rule in [20].

Theorem 5. (Proof rule for reactivity of fair iteration statements).
{p}〈r 〉 A 〈q〉, if there exist a well-founded set W and a family of predicates
I = {Iw|w ∈ W} such that the following holds:

(i) p ⇒ ((∃w.Iw) ∨ q)
(ii) assume WF(A) = {AJ1, . . . ,AJk} and SF(A) = {AS1, . . . ,ASl }, there exist

r1, . . . , rk, rk+1, . . . , rk+l such that

(1) helpful or stay(Iw, ri ,q,Aj), for any i = 1, . . . , k and any j/= Ji

helpful or stay(Iw, rk+i ,q,Aj), for any i = 1, . . . , l and any j /= Si

(2) helpful(Iw, ri ,q,AJi) and Iw ∧ ri ≤ gAJi , for any i = 1, . . . , k

(3) helpful(Iw, rk+i ,q,ASi) and
{Iw ∧ rk+i }〈r 〉 do [] j |j /= Si . Aj od 〈q ∨ gASi ∨ ¬Iw〉
for any i = 1, . . . , l

(4) {Iw ∧ ¬(r1 ∨ . . . ∨ rk ∨ rk+1 . . . ∨ rk+l) ∧ tAi } Ai {(∃v|v ≤ w.Iv) ∨ q}
helpful(Iw,¬(r1 ∨ . . . ∨ rk ∨ rk+1 . . . ∨ rk+l) ∧ r ,q,Ai)
for any i = 1, . . . ,n

The second condition of(ii) (3) is similar to the one in the termination rule:
eventually, the execution of actions other thanASi either leads to the goalq, or
ASi enabled, or a change in the index. The change in(ii) (4) reflects the extra
assumption that predicater holds infinitely often, and the second condition can
be interpreted as saying that every occurrence ofr brings us closer to the goal
q. Termination formula

〈p〉 A

can be expressed as

{p}〈p〉 A 〈¬(gA1 ∨ . . . ∨ gAn)〉

5.3. Weak invariants

The above general rule is often difficult to use. Fortunately, in many practical
cases, one can design special rules which are easier to use albeit incomplete.
Below we introduce one special rule. For a programA, a weak invariant is a
predicate which holds eventually in any infinite computations ofA and remains
so afterwards. Our interest in weak invariants is due to the following property:
for an iteration statementA, if q is a weak invariant of it, then

〈p〉 A if {p ∧ q} A

Refinement of fair action systems 151

We prove this by showing that if〈p〉 A does not hold, then{p ∧ q} A does
not hold either. If〈p〉 A does not hold, then there exists an infinite computation
such thatp holds infinitely often. Sinceq is a weak invariant, it holds after a
finite number of steps, and therefore after at most some other finite steps, bothp
andq hold. The suffix of the original computation from that position onwards is
also an infinite computation ofA, and consequently,{p∧ q} A does not hold
either.

Actually, termination is a special case where the weak invariant isfalse, and
the rule for fair termination can be easily extended to prove weak invariants.

Theorem 6 (Proof rule for weak invariants). q is a weak invariant of iteration
statementA under precondition p, if there exist a well-founded set W and a
family of predicates I= {Iw|w ∈ W} such that the following holds:

(i) p ⇒ ((∃w.Iw) ∨ q)
(ii) same as in Theorem 3 excepthelpful(Iw, ri ,Aj), helpful or stay(Iw, ri ,Aj)

etc. are replaced byhelpful(Iw, ri ,q,Aj) and helpful or stay(Iw, ri ,q,Aj)
etc.

(iii) {(∃w.Iw) ∧ q} Ai {q}, for any i = 1, . . . ,n

The last condition guarantees that, in a computation ofA, once q holds, it
remains so afterwards. Sometimes this condition does not hold even whenq
is indeed a weak invariant, becauseq may become false again in the first few
occurrences. In this case, one can first find a predicateq1 which is set to false
until q is stabilised, and prove instead thatq1 ∧ q is a weak invariant.

Example 8 Consider proving

〈z > 100〉 do z := z − 2 od

We first show thatz < 100 is a weak invariant. This is straightforward, and we
shall not present the details here. The second step is to show

{z > 100∧ z < 100} do z := z − 2 od

which is trivial, since the precondition is equivalent tofalse.

5.4. Refinement of fair action systems (general case)

It is easy to extend the simulation rules to general fair action systems: all the
proof conditions of Section 4 remain the same except the fairness condition has
to be modified to take into account of strong fairness. Suppose the action systems
and decomposition matrix are the same as in the previous section.

Forward simulation of fair action systems.Data refinement relationR(a, c, z) is
said to be a forward simulation betweenA andC , denoted byA ≤f

R C , if

(i) Initialisation: q(c, z) ≤ (∃a.R(a, c, z) ∧ p(a, z))

152 R.J.R. Back, Q. Xu

(ii) Main actions:Ai ≤f
R Cj ,i , for any i = 1, . . . ,n, j = 1, . . . ,m

(iii) Stuttering actionsskip ≤f
R Hi , for any i = 1, . . . , k

(iv) Exit condition: R∧ ¬(gC ∨ gH) ≤ ¬tA∨ ¬gA
(v) Internal convergence:{∃a.R(a, c, z) ∧ tA(a, z)} D , where

D = do lC1 : C1;exit [] lC2 : C2;exit [] . . . [] lCn : Cn;exit
[] H1 [] . . . [] Hk

od
(vi) Fairness condition: [∃a.R(a, c, z) ∧ gAi (a, z)] C i holds if Ai ∈ WF(A),

and 〈∃a.R(a, c, z) ∧ gAi (a, z)〉 C i holds if Ai ∈ SF(A), for i = 1, . . . ,n,
where

C i = do Ci
1 [] Ci

2 [] . . . [] Ci
n [] H1 . . . [] Hk od, in which

Ci
j = lCj : (Cj ,1 [] . . . [] Cj ,i−1 [] Cj ,i ;exit [] Cj ,i +1 [] . . . [] Cj ,n)

Example 9 Let two action systems be

A def
= |[do

sf : z := z + 1 % actionA1

[] z := z + 2 % actionA2

od]| : z

C def
= |[var t • t = T;

do
sf : (z ≥ 150∧ t → z := z + 1 [] z < 100→ z := z + 2) % C1,1 [] C1,2

[] z, t := z + 2,¬t % C2,2

od]| : z

The simulation of the corresponding actions is obvious, and the data refinement

relation can be chosen asR
def
= true. The fairness condition is implied by the

following termination formula:

{true} do
sf : (z ≥ 150∧ t → z := z + 1;exit [] z < 100→ z := z + 2)

[] z, t := z + 2,¬t
od

which is proved in Example 7.

Example 10Now consider the refinement of the following two systems:

A def
= |[do

sf : z > 100→ z := z + 1 % actionA1

[] z := z − 2 % actionA2

od]| : z

C def
= |[do

z := z − 2 % actionC1,2

od]| : z

Refinement of fair action systems 153

Let R be true. The fairness condition is

〈z > 100〉 do z := z − 2 od

which is proved in Example 8.

5.5. A special case

One useful case in practice is that each higher level action corresponds exactly
to one lower level action. The remaining lower level actions are stuttering ones.
Since this situation occurs often, it is useful to derive a special rule. Let two
action systems be

A def
= |[var a • p; do A od]| : z

C def
= |[var c • q; do C [] H od]| : z

where

A
def
= A1 [] A2 [] . . . [] An

C
def
= C1 [] C2 [] . . . [] Cn

H
def
= H1 [] . . . [] Hk

A special rule for proving forward simulation of fair action systems. A ≤f
R C if

(i) Initialisation: q(c, z) ≤ (∃a.R(a, c, z) ∧ p(a, z))
(ii) Main actions:Ai ≤f

R Ci , for any i = 1, . . . ,n
(iii) Stuttering actions:skip ≤f

R Hi , for any i = 1, . . . , k
(iv) Exit condition: R∧ ¬(gC ∨ gH) ≤ ¬tA∨ ¬gA
(v) Internal convergence:{∃a.R(a, c, z) ∧ tA(a, z)}D , where

D = do lC1 : C1;exit [] lC2 : C2;exit [] . . . [] lCn : Cn;exit [] H od
(vi) Fairness condition: [∃a.R(a, c, z) ∧ gAi (a, z)] C i holds if Ai ∈ WF(A),

and 〈∃a.R(a, c, z) ∧ gAi (a, z)〉 C i holds if Ai ∈ SF(A), for i = 1, . . . ,n,
where

C i = do C1 [] . . . [] Ci−1 [] lCi : Ci ;exit [] Ci +1 [] . . . [] Cn [] H od

6. A case study

As a more advanced example, we consider the refinement of a mutual exclusion
algorithm, studied earlier in a temporal logic framework by Kesten, Manna and
Pnueli [17]. LetCSi be a flag denoting whether or not processi is in its critical
section by values 1 or 0 respectively. Mutual exclusion requires that the two
processes are not in their critical sections at the same time. LetpcA

i be the
program counter of processi , initially set to 1. An abstract mutual exclusion
algorithm can be described as follows:

var pcA
1 ,pcA

2 • (pcA
1 = pcA

2 = 1)∧ (CS1 = CS2 = 0);

154 R.J.R. Back, Q. Xu

do do
(A1

1) wf : pcA
1 = 1 (A1

2) wf : pcA
2 = 1

→ CS1 := 0;pcA
1 := 2 → CS2 := 0;pcA

2 := 2
[] (A2

1) sf : pcA
1 = 2∧ CS2 /= 1 [] (A2

2) sf : pcA
2 = 2∧ CS1 /= 1

→ CS1 := 1;pcA
1 := 1 → CS2 := 1;pcA

2 := 1
od : CS1,CS2 od : CS1,CS2

Since one process can only enter its critical section when the other process is
not in a critical section, mutual exclusion property is obviously satisfied. Strong
fairness ensures that one process will enter the critical section if the other process
leaves its critical section infinitely often. Note that weak fairness cannot guarantee
this, since it does not rule out the possibility that one process waits while the
other process enters and exits the critical section all the time. There are two
reasons that this abstract algorithm should be refined: first,CS1 and CS2 are
logical variables used to express specifications and hence are not like program
variables (the latter can be tested, for example); second, although strong fairness
ensures that each process will eventually enter its critical section, one process
may have to wait for an arbitrarily long time if the other process is very fast
and enters the critical section again before the first process finishes the boolean
test. The next action system models the well-known Peterson’s algorithm which
overcomes these problems

var pcC
1 ,pcC

2 , y1, y2, s • (pcC
1 = pcC

2 = 1)∧ (CS1 = CS2 = 0)∧ s = 1;

do do
(C1

1) wf : pcC
1 = 1→ (C1

2) wf : pcC
2 = 1→

(CS1, y1) := (0,F); (CS2, y2) := (0,F);
pcC

1 := 2 pcC
2 := 2

[] (H1) wf : pcC
1 = 2→ [] (H2) wf : pcC

2 = 2→
(y1, s) := (T,1); (y2, s) := (T,2);
pcC

1 := 3 pcC
2 := 3

[] (C2
1) pcC

1 = 3∧ (¬y2 ∨ s = 2) [] (C2
2) pcC

2 = 3∧ (¬y1 ∨ s = 1)
→ CS1 := 1;pcC

1 := 1 → CS2 := 1;pcC
2 := 1

od : CS1,CS2 od : CS1,CS2

For easy reference, let us denote the higher level processes byAi and the lower
level processes byCi . The actions inAi are labelled byA1

i andA2
i ; the actions

in Ci are labelled byC1
i , Hi and C2

i . Apart from the new program counters,
the lower level system has three additional variablesy1, y2 and s with which
the access of the critical sections are controlled. ProcessCi indicates the wish
of entering its critical section by settingyi to value T. Variable s is used to
record which process is the later one to request access; when both processes are
contesting access, the one requested earlier gets the right. Therefore, the waiting
time for each process is bounded, because its first two actions only depend on the
program counter for enableness and after the second action which sets variables
yi ands, the other process can at most access the critical section once.

Refinement of fair action systems 155

Note that now the first two actions inCi are associated with weak fairness
and the third action has no fairness requirement at all; this is because some
fairness requirements have been achieved through explicit programming.

Let

a
def
= pcA

1 ,pcA
2

c
def
= pcC

1 ,pcC
2 , y1, y2, s

z
def
= CS1,CS2

The refinement relation basically relates the program counters under an invariant

R(a, c, z)
def
= R1(a, c, z) ∧ R2(a, c, z) ∧ inv(c, z)

where

Ri (a, c, z)
def
= (pcA

i = 1∧ pcC
i = 1)∨ (pcA

i = 2∧ pcC
i = 2)

∨(pcA
i = 2∧ pcC

i = 3∧ yi)

and inv(c, z) is

(CS1 = 1⇒ y1 ∧ (¬y2 ∨ s = 2))∧ (pcC
1 = 2∨ pcC

1 = 3⇒ CS1 = 0)
∧(CS2 = 1⇒ y2 ∧ (¬y1 ∨ s = 1))∧ (pcC

2 = 2∨ pcC
2 = 3⇒ CS2 = 0)

∧(pcC
1 = 1∨ pcC

1 = 2∨ pcC
1 = 3)∧ (pcC

2 = 1∨ pcC
2 = 2∨ pcC

2 = 3)
∧(s = 1∨ s = 2)

Checking simulation of actions is straightforward. The less trivial part of it
is to show

A2
1 ≤f

R C2
1 (and the symmetrical caseA2

2 ≤f
R C2

2)

which as we indicated earlier, is divided into

pcC
1 = 3∧ (¬y2 ∨ s = 2)∧ R(a, c, z) ≤ pcA

1 = 2∧ CS2 /= 1 (∗)

and

pcC
1 = 3∧ (¬y2 ∨ s = 2)∧ R(a, c, z) ∧ (CS1 := 1;pcA

1 := 1)q(a, z) (∗∗)
≤ (CS1 := 1;pcC

1 := 1)(λ(c, z).(∃a.R(a, c, z) ∧ q(a, z)))(c, z)

Lemma 1.

(pcC
1 = 3∧ (¬y2 ∨ s = 2)∧ R(a, c, z))

= (pcA
1 = 2∧ pcC

1 = 3∧ y1 ∧ (¬y2 ∨ s = 2)∧ R2(a, c, z) ∧ inv(c, z))

Proof. Direct from the definition ofR. �

Therefore, (*) holds because

pcC
1 = 3∧ (¬y2 ∨ s = 2)∧ R(a, c, z)

= {Lemma 1}
pcA

1 = 2∧ pcC
1 = 3∧ y1 ∧ (¬y2 ∨ s = 2)∧ R2(a, c, z) ∧ inv(c, z)

≤{y1 ∧ (¬y2 ∨ s = 2)≤ ¬(y2 ∧ (¬y1 ∨ s = 1)),
inv(c, z) ≤ (CS2 = 1⇒ y2 ∧ (¬y1 ∨ s = 1))}

pcA
1 = 2∧ ¬(y2 ∧ (¬y1 ∨ s = 1))∧ (CS2 = 1⇒ y2 ∧ (¬y1 ∨ s = 1))

≤pcA
1 = 2∧ CS2 /= 1

156 R.J.R. Back, Q. Xu

Lemma 2.

(CS1 := 1;pcA
1 := 1)q(a, z) = q(1,pcA

2 ,1,CS2)

Proof. Direct from the predicate transformer for assignments. �

Lemma 3.

(CS1 := 1;pcC
1 := 1)(λ(c, z).(∃a.R(a, c, z) ∧ q(c, z)))

≥(∃a.y1 ∧ (¬y2 ∨ s = 2)∧ R2(a, c, z) ∧ inv(c, z) ∧ q(1,pcA
2 ,1,CS2))

Proof. : Direct from the predicate transformer for assignments. �

Thus, (**) follows from Lemmas 1, 2 and 3.
As for fairness conditions, the ones concerningA1

1 and A1
2 are easy, since

when they are enabled the corresponding lower level actions are also enabled
and they are associated with the same kind of fairness notion.

Let C 2
1 be the following loop

do
(C1

1) wf : pcC
1 = 1→ (CS1, y1) := (0,F); pcC

1 := 2
[] (H1) wf : pcC

1 = 2→ (y1, s) := (T,1);pcC
1 := 3

[] (C2′
1) pcC

1 = 3∧ (¬y2 ∨ s = 2)→ CS1 := 1;pcC
1 := 1;exit

od

The fairness condition forA2
1 is implied by

{(pcC
1 = 2∨ (pcC

1 = 3∧ y1)) ∧ inv(c, z)} C 2
1 ‖ C2

Informally this is easy to understand. Because of the fairness assumption ofH1,
the control will eventually reachC2′

1 with y1 being set toT. Then processC2

can at most execute each of its actions once before reaching its third action after
settings to 2, and gets blocked afterwards. ThenC2′

1 becomes the only enabled
action, and will therefore be executed, causing the loop to terminate.

A formal proof is quite lengthy. Since only weak fairness is present in the
iteration statement, we use the proof rule in Theorem 1. Choose the well-founded
domain as the lexicographic product over natural numbers, and define

Iw
def
= (I 1

w ∨ I 2
w) ∧ ipc

I 1
w

def
= pcC

1 = 2∧ w = (2,0)

I 2
w

def
= pcC

1 = 3∧ y1

∧((pcC
2 = 3∧ s = 1∧ w = (1,3))

∨(pcC
2 = 1∧ w = (1,2))

∨(pcC
2 = 2∧ w = (1,1))

∨(pcC
2 = 3∧ s = 2∧ w = (1,0))

)

ipc
def
= ipc1 ∧ ipc2

ipci
def
= pcC

i = 1∨ pcC
i = 2∨ pcC

i = 3

The proof obligations in the termination rule are established as follows.

Refinement of fair action systems 157

(i) (∃w.Iw)
= {definition of Iw and predicate calculus}

(pcC
1 = 2∨ (pcC

1 = 3∧ y1

∧((pcC
2 = 3∧ (s = 1∨ s = 2))∨ pcC

2 = 1∨ pcC
2 = 2))∧ ipc

≥ {predicate calculus}
(pcC

1 = 2∨ (pcC
1 = 3∧ y1

∧(pcC
2 = 3∨ pcC

2 = 1∨ pcC
2 = 2)∧ (s = 1∨ s = 2)))∧ ipc

≥ {inv ≤ (pcC
2 = 3∨ pcC

2 = 1∨ pcC
2 = 2)∧ (s = 1∨ s = 2) }

(pcC
1 = 2∨ (pcC

1 = 3∧ y1)) ∧ inv

(ii) Let r1
def
= r3

def
= r4

def
= false, r2

def
= pcC

1 = 2, corresponding respectively to
actionsC1

1 ,C1
2 , H2 andH1 associated with weak fairness.

(1) helpful or stay(Iw, ri ,Aj) holds trivially whenri = false, and the case
for r2 follows from the following facts

(a) helpful(Iw, true,C1
1)

≥ {definition of helpful}
{Iw} C1

1 {∃v|v < w.Iv}
= {definition of C1

1 }
{Iw ∧ pcC

1 = 1} (CS1, y1) := (0,F); pcC
1 := 2 {∃v|v < w.Iv}

= {definition of Iw}
{false} (CS1, y1) := (0,F); pcC

1 := 2 {∃v|v < w.Iv}
= T

(b) helpful(Iw, true,C2′
1)

= {definitions ofhelpful or stay andC2′
1 }

T

(c) {Iw ∧ r2} C1
2 {Iw ∧ r2}

≥ {definitions ofIw, r2, C1
2 and correctness formula}

(pcC
1 = 2∧ w = (2,0)∧ ipc)

≤ ((CS2, y2) := (0,F); pcC
2 := 2)(pcC

1 = 2∧ w = (2,0)∧ ipc)
≥ {predicate transformer for assignments}

pcC
1 = 2∧ w = (2,0)∧ ipc ≤ (pcC

1 = 2∧ w = (2,0)∧ ipc1)
≥ {predicate calculus}

T

(d) {Iw ∧ r2} H2 {Iw ∧ r2}
≥ {definitions ofIw, r2, H2 and correctness formula}

(pcC
1 = 2∧ w = (2,0)∧ ipc)

≤ ((y2, s) := (T,2);pcC
2 := 3)(pcC

1 = 2∧ w = (2,0)∧ ipc)
≥ {predicate transformer for assignments}

pcC
1 = 2∧ w = (2,0)∧ ipc ≤ (pcC

1 = 2∧ w = (2,0)∧ ipc1)
≥ {predicate calculus}

T

158 R.J.R. Back, Q. Xu

(e) {Iw ∧ r2} C2
2 {Iw ∧ r2}

≥ {definitions ofIw, r2, C2
2 and correctness formula}

(pcC
1 = 2∧ w = (2,0)∧ ipc)

≤ (CS2 := 1;pcC
2 := 1)(pcC

1 = 2∧ w = (2,0)∧ ipc)
≥ {predicate transformer for assignments}

pcC
1 = 2∧ w = (2,0)∧ ipc ≤ (pcC

1 = 2∧ w = (2,0)∧ ipc1)
≥ {predicate calculus}

T

(2) This follows from

helpful(Iw, true,H1)
≥{definition of helpful}
{Iw} H1 {∃v|v < w.Iv}

= {definition of H1}
{Iw ∧ pcC

1 = 2} (y1, s) := (T,1);pcC
1 := 3 {∃v|v < w.Iv}

= {definitions ofIw and correctness formula}
pcC

1 = 2∧ w = (2,0)∧ ipc ≤ ((y1, s) := (T,1);pcC
1 := 3)(∃v|v < w.Iv)

≥{definition of Iv and predicate transformer for assignments}
pcC

1 = 2∧ w = (2,0)∧ ipc
≤ (∃v|v < w.((pcC

2 = 3∧ v = (1,3))∨ (pcC
2 = 1∧ v = (1,2))

∨(pcC
2 = 2∧ v = (1,1)))∧ ipc1)

≥{ipc ≤ pcC
2 = 1∨ pcC

2 = 2∨ pcC
2 = 3}

T

Iw ∧ r2

= {definition of r2}
Iw ∧ pcC

1 = 2
≤{definition of H1}
gH1

(3) This follows from (a), (b), (2) and

(f) {Iw ∧ ¬(r1 ∨ r2 ∨ r3 ∨ r4)} C1
2 {∃v|v < w.Iv}

≥ {definitions ofIw, ri , C1
2 and the correctness formula}

(pcC
1 = 3∧ y1 ∧ pcC

2 = 1∧ w = (1,2)∧ ipc)
≤ ((CS2, y2) := (0,F); pcC

2 := 2)(∃v|v < w.Iv)
= {definition of Iv and predicate transformer for assignments}

(pcC
1 = 3∧ y1 ∧ pcC

2 = 1∧ w = (1,2)∧ ipc)
≤ (∃v|v < w.((pcC

1 = 2∧ w = (2,0))
∨(pcC

1 = 3∧ y1 ∧ v = (1,1)))∧ ipc1)
≥ {predicate calculus}

T

Refinement of fair action systems 159

(g) {Iw ∧ ¬(r1 ∨ r2 ∨ r3 ∨ r4)} H2 {∃v|v < w.Iv}
≥ {definitions ofIw, ri , H2 and correctness formula}

pcC
1 = 3∧ y1 ∧ pcC

2 = 2∧ w = (1,1)∧ ipc
≤ ((y2, s) := (T,2);pcC

2 := 3)(∃v|v < w.Iv)
= {definition of Iv and predicate transformer for assignments}

pcC
1 = 3∧ y1 ∧ pcC

2 = 2∧ w = (1,1)∧ ipc
≤ (∃v|v < w.((pcC

1 = 2∧ w = (2,0))
∨(pcC

1 = 3∧ y1 ∧ v = (1,0)))∧ ipc1)
≥ {predicate calculus}

T

(h) {Iw ∧ ¬(r1 ∨ r2 ∨ r3 ∨ r4)} C2
2 {∃v|v < w.Iv}

≥ {definitions ofIw, ri , C2
2 and correctness formula}

pcC
1 = 3∧ y1 ∧ pcC

2 = 3∧ s = 1∧ w = (1,3)∧ ipc
≤ (CS2 := 1;pcC

2 := 1)(∃v|v < w.Iv)
= {definition of Iv and predicate transformer for assignments}

pcC
1 = 3∧ y1 ∧ pcC

2 = 3∧ s = 1∧ w = (1,3)∧ ipc
≤ (∃v|v < w.((pcC

1 = 2∧ w = (2,0))
∨(pcC

1 = 3∧ y1 ∧ v = (1,2)))∧ ipc1)
≥ {predicate calculus}

T

7. Backward simulation

It is known that forward simulation alone is not complete, i.e., there exist cases
that semantically refinement holds between two systems but the fact cannot be
proved by constructing a forward simulation. This happens when a nondetermin-
istic choice is made earlier in the higher level system than in the lower level
system. One simple example is as follows:

Example 11Consider the refinement of the following two unfair systems:

A def
= |[var a • a = 0;

do
a = 0→ (z := z + 1;a := 1 [] z := z + 1;a = 2)

[] a = 1→ z := z + 1 [] a = 2→ z := z + 2
od]| : z

C def
= |[var c • c = 0;

do
c = 0→ z := z + 1;c := −1

[] c = −1 → (c := 1 [] c := 2)
[] c = 1→ z := z + 1 [] c = 2→ z := z + 2

od]| : z

160 R.J.R. Back, Q. Xu

Action systemA immediately makes a choice whether to increasez by 1 or
2 afterwards, whereas action systemC postpones that until the next step. To
deal with situations like this, backward simulation has been proposed. A related
method involves introducing the so called prophecy variables [1]. Backward
simulation of action systems is based on backward simulation of actions. In
refinement calculus, actionA is backward simulatedby action C under R, is
defined as follows:

A ≤b
R C

def
= (∀a.R⇒ Aq) ≤ C(∀a.R⇒ q)

This definition is difficult to verify directly (unlike the definition for forward
simulation), and consequently, is not suitable as the proof obligation. In practice,
we can use a condition based on the following property. Suppose the next-state
relations of actionsA and C are denoted respectively byn A and n C, then
A ≤b

R C if the following two conditions hold

(i) R(a′, c′, z′)∧nC(c, z)(c′, z′) ≤ (∃a.R(a, c, z)∧ (¬tA(a, z)∨nA(a, z)(a′, z′)))

(ii) ¬tC(c, z) ≤ (∃a.R(a, c, z) ∧ ¬tA(a, z))

Again, we study refinement of action systems of the following forms:

A def
= |[var a • p; do A od]| : z

C def
= |[var c • q; do C [] H od]| : z

Backward simulation of (unfair) action systems.Data refinement relationR(a, c, z)
is said to be a backward simulation betweenA andC , denoted byA ≤b

R C ,
if R is a total relation and the following holds

(i) Initialisation: R∧ q ≤ p
(ii) Main actions:A ≤b

R C
(iii) Stuttering actions:skip ≤b

R H
(iv) Exit condition:¬(gC ∨ gH)(c, z) ≤ (∃a.R(a, c, z) ∧ (¬tA∨ ¬gA)(a, z))
(v) Internal convergence:¬t (do H od)(c, z) ≤ (∃a.R(a, c, z) ∧ ¬tA(a, z))

Backward simulation gets the name from the way that the corresponding higher
level computations are constructed. For any computationγ of C , a computation
α of A is built backwards. Ifγ is finite, this construction is straightforward. If
γ is infinite, one resorts to a continuity argument. For this to work, the action
systems must satisfy some conditions. One sufficient condition is to require that
the higher level action systemA to be internally continuous (or in Abadi &
Lamport’s terminology, it has noinfinite invisible nondeterminism), i.e., both the
set {a|p(a, z)} and the set{a′|nA(a, z)(a′, z′)} are finite for allz and a, z, z′

respectively.
For the above example, we can choose data refinementR(a, c, z) as

(a = 0∧ c = 0)∨ (a = 1∧ (c = −1∨ c = 1))∨ (a = 2∧ (c = −1∨ c = 2))

Checking the conditions of backward simulation amounts to routine calculation
and is hence omitted.

Refinement of fair action systems 161

We now extend backward simulation to verify fair action systems. Consider
the higher and lower level action systems respectively of the form:

A def
= |[var a • p; do A od]| : z

C def
= |[var c • q; do C [] H od]| : z

where

A
def
= A1 [] A2 [] . . . [] An

C
def
= C1 [] C2 [] . . . [] Cm

H
def
= H1 [] H2 [] . . . [] Hk

Decomposition of lower level actions is now with respect to backward simulation:
as indicated by the matrix,

A1 A2 . . . An

C1 C1,1 C1,2 . . . C1,n

C2 C2,1 C2,2 . . . C2,n

. . .
Cm Cm,1 Cm,2 . . . Cm,n

Ci is decomposed intoCi ,1 [] Ci ,2 [] . . . [] Ci ,n such thatAj ≤b
R Ci ,j .

Backward simulation of fair action systems.Data refinement relationR(a, c, z) is
said to be a backward simulation betweenA andC , denoted byA ≤b

R C , if
R is a total relation and the following holds

(i) Initialisation: R∧ Q ≤ P
(ii) Main actions:Ai ≤b

R Cj ,i , for any i = 1, . . . ,n and anyj = 1, . . . ,m
(iii) Stuttering actionsskip ≤b

R Hi , for eachi = 1, . . . , k
(iv) Exit condition:¬(gC ∨ gH)(c, z) ≤ (∃a.R(a, c, z) ∧ (¬tA∨ ¬gA)(a, z))
(v) Internal convergence:¬tD(c, z) ≤ (∃a.R(a, c, z) ∧ ¬tA(a, z)), where

D = do lC1 : C1;exit [] lC2 : C2;exit [] . . . [] lCn : Cn;exit
[] H1 [] . . . [] Hk

od
(vi) Fairness condition: [∃a.R(a, c, z) ∧ gAi (a, z)] C i holds if Ai ∈ WF(A),

and 〈∃a.R(a, c, z) ∧ gAi (a, z)〉 C i holds if Ai ∈ SF(A), for i = 1, . . . ,n,
where

C i = do Ci
1 [] Ci

2 [] . . . [] Ci
n [] H1 . . . [] Hk od, in which

Ci
j = lCj : (Cj ,1 [] . . . [] Cj ,i−1 [] Cj ,i ;exit [] Cj ,i +1 [] . . . [] Cj ,n)

The soundness of the backward simulation can be argued as follows. For
any fair computationγ of C , it is known from the results about backward
simulation of unfair systems that one can construct a computationα of A such
that it approximatesγ with Ai transitions matchingC ,i transitions. Whenα is
finite, the construction is finite, andα is fair (all finite computations are fair).
We next consider the case thatα is infinite.

162 R.J.R. Back, Q. Xu

Whenα is infinite, there is no way to build it directly. Instead, for each prefix
of γ, one constructs a computation prefix ofA which approximates the former.
All the resulting higher level computation prefixes form a tree whose nodes are of
the form (s,L) wheres is a higher level state andL is the set of indexes of those
lower level states that are coupled withs by the data refinement relation, and two
nodes are connected if there is a transition between them. Since the construction
is infinite, the tree is also infinite. Because of the internal continuity assumption,
the computation tree is finitely branching, and it follows from the well known
König lemma that there exists an infinite computation, which we take asα. It
has the following property: any prefix ofα must also be a computation prefix
constructed corresponding to a prefix ofγ. Similar argument as in the case of
forward simulation shows thatα is a fair computation ofA and it is easy to
see thatα approximatesγ.

Example 12 Consider refinement between the following two systems:

A def
= |[var a • a = 0;

do
wf : a = 0→ (z := z + 1;a := 1 [] z := z + 1;a = 2) %actionA1

[] a = 0→ z := z − 1 [] a = 1→ z := z + 1 [] a = 2→ z := z + 2
% actionA2

od]| : z

C def
= |[var c • c = 0;

do
wf : c = 0→ z := z + 1;c := −1 % actionC1,1

[] c = −1 → (c := 1 [] c := 2) % actionH
[] c = 0→ z := z − 1 [] c = 1→ z := z + 1 [] c = 2→ z:= z + 2

% actionC2,2

od]| : z

These action systems are the same as in the last example, except we have in-
troduced fairness to one action and added a new unfair action in each system
(so that the fairness assumption indeed makes a difference). To prove backward
simulation, we can still use the same data refinement relation

(a = 0∧ c = 0)∨ (a = 1∧ (c = −1∨ c = 1))∨ (a = 2∧ (c = −1∨ c = 2))

The fairness condition is implied by the following termination formula

{c = 0}
do

wf : c = 0→ z := z + 1;c := −1;skip % actionC1,1

[] c = −1 → (c := 1 [] c := 2) % actionH
[] c = 0→ z := z − 1 [] c = 1→ z := z + 1 [] c = 2→ z := z+2

%actionC2,2

od

which is easy to prove.

Refinement of fair action systems 163

8. Discussion

According to our knowledge, Abadi and Lamport [1] were the first to use sim-
ulations, called refinement mappings by them, to verify refinement of fair sys-
tems. Refinement of similar systems have been studied using temporal logics in,
e.g., [17] where the systems are expressed using fair transition systems, and [16]
where systems are based on joint actions. Our work differs from these in that
our formalism stays entirely within the tradition of the refinement calculus. In
particular, the proof condition concerning fairness is expressed by termination
of derived iteration statements instead of temporal logic formulas. Other related
work includes [23], where Singh studied refinement of UNITY programs, which
have a more restricted fairness notion.

However, our method as well as all the other ones that we are aware of for fair
systems suffers the shortcoming that the number of involved proof obligations is
huge for even relatively small size applications. Therefore, machine support is
essential. Mechanical tools for refinement calculus have been investigated; e.g.,
the Refinement Calculator system [9] has been developed on the HOL theorem
prover [14]. Up till now, most of such tools still lack the automation that is
desired in practical software verification. However, recent advance in theorem
proving techniques, such as those implemented in PVS [11], has indicated it is
possible to build tools with a substantial degree of automation.

We have not considered completeness of the method in depth. There are two
issues involved: first, completeness of termination rules, and second, complete-
ness of the simulation rules. The earlier version [8] of this paper had given a set
of slightly simpler termination rules, but it turned out that they were incomplete.
The current rules follow closely those of Manna and Pnueli [20], and in view
of their completeness results, we expect that ours are also complete. The rules
in [8] are sound and easier to use when applicable, but due to the limit of space,
we do not include them here. Forward simulation and backward simulation were
shown to be jointly complete for a large class of systems, see e.g., [15]; on the
other hand, simulation techniques are known to be incomplete in a number of
situations when liveness (of which fairness is the most useful special case) is
present. One example which cannot be proved by simulation is as follows:

A def
= |[var i • (z = 0∧ i ≥ 0);do i > 0 → z := z + 1; i := i − 1 od]| : z

C def
= |[var b • (z = 0∧ b = T); do b → z := z + 1 [] wf : b → b := F od]| : z

In the higher level systemA, the initial value ofi can be any natural number.
The traces ofA are any finite sequences of states in whichz is increased by
1 from the initial value 0. The traces of the lower level systemC are the same
set, as the fairness assumption ensures that the guard will be disabled eventually.
This example is typically not possible to verify by forward simulation (since the
higher level system decides the number of iterations when the action system is
initialised, hence it makes the nondeterministic choice earlier than the lower level
system), but we cannot apply backward simulation either, because the higher level
system is not internally continuous. We are aware that Jonsson [15] proposed a

164 R.J.R. Back, Q. Xu

weaker condition than internal continuity and the above example can indeed be
verified, but his new condition, as observed in [19], lacked the key feature of
simulation techniques, namely, it did not reduce global verification about infinite
computations to that of individual actions.

Acknowledgement.We thank Michael Butler, Kai Engelhardt, Kaisa Sere, Yih-Kuen Tsay and Jockum
von Wright for a number of discussions and comments. The work reported here was carried out within
the IRENE-project supported by the Academy of Finland.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoret. Comput. Sci.82, 253–
284 (1991)

2. Back, R.: Correctness preserving program refinements: Proof theory and applications. Mathe-
matical Center Tracts No.131, Mathematical Centre, Amsterdam, 1980.

3. Back, R.: A calculus of refinements for program derivations. Acta Inf.25, 593–624 (1988)
4. Back, R.: Refinement calculus, part II: Parallel and reactive programs. In: De Bakker, J.W.,

De Roever, W.-P., Rozenberg, G. (eds.) REX workshop on refinement of distributed systems.
Proceedings, Nijmegen, the Netherlands 1989. (Lect. Notes Comput. Sci., vol. 430) Berlin Hei-
delberg New York: Springer 1990

5. Back, R., Kurki-Suonio, R.: Decentralization of process nets with centralized control. In: 2nd
ACM SIGACT-SIGOPS symp. on principles of distributed computing. Proceedings. (pp. 131–
142) ACM 1983

6. Back, R., Sere, K.: Stepwise refinement of parallel algorithms. Sci. of Comput. Prog.13, 133–180
(1990)

7. Back, R., von Wright, J.: Refinement calculus, part I: Sequential programs. In: De Bakker,
J.W., De Roever, W.-P., Rozenberg, G. (eds.) REX workshop on refinement of distributed
systems. Proceedings, Nijmegen, the Netherlands 1989. (Lect. Notes Comput. Sci., vol. 430)
Berlin Heidelberg New York: Springer 1990

8. Back, R., Xu, Q.-W.: Fairness in action systems. Technical report No.159, Åbo Akademi,
Finland (1995).

9. Butler, M.J., L̊angbacka, T.: Program derivation using the refinement calculator. In: Von Wright,
J., Grundy, J., Harrison, J. (eds.) The 1996 international conference on theorem proving in higher
order logics. Proceedings, Turku, Finland 1996. (Lect. Notes Comput. Sci., vol. 1125) Berlin
Heidelberg New York: Springer 1996

10. Chandy, K., Misra, J.: Parallel program design: A foundation. Reading, MA: Addison–Wesley
1988

11. Owre, S., Shankar, N., Rushby, J.M.: User guide for the PVS specification and verification
system. Comput. Sci. Lab., SRI International, Menlo Park, CA, USA 1993

12. Dijkstra, E.: A Discipline of programming. Englewood Cliffs, NJ: Prentice–Hall 1976
13. Francez, N.: Fairness. Berlin Heidelberg New York: Springer 1986
14. Gordon, M.J.C., Melham, T.F. (eds): Introduction to HOL: A theorem proving environment for

higher order logic. New York: Cambridge University Press 1993
15. Jonsson, B.: Simulations between specifications of distributed systems. In: Baeten, J.C.M.,

Groote, J.F. (eds.) 2nd International Conference on Concurrency Theory (CONCUR’91). Pro-
ceedings, Amsterdam, the Netherlands, 1991. (Lect. Notes Comput. Sci., vol. 527) Berlin Hei-
delberg New York: Springer 1991

16. Jonsson, B.: Compositional specification and verification of distributed systems. ACM Trans.
Program. Lang. Syst.16(2), 259–303 (1994)

17. Kesten, Y., Manna, Z., Pnueli, A.: Temporal verification of simulation and refinement. In: De
Bakker, J.W., De Roever, W.-P., Rozenberg, G. (eds.) REX school a decade of concurrency:
Reflections and perspectives. Proceedings, Noordwijkerhout, the Netherlands, 1993. (Lect. Notes
Comput. Sci., vol. 803) Berlin Heidelberg New York: Springer 1994

Refinement of fair action systems 165

18. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.16(3), 872–923
(1994)

19. Lynch, N., Vaandrager, F.: Forward and backward simulations for timing-based systems. In: De
Bakker, J.W., De Roever, W.-P., Rozenberg, G. (eds.) REX workshop on real-time: Theory in
practice. Proceedings, Mook, the Netherlands, 1991. (Lect. Notes Comput. Sci., vol. 600) Berlin
Heidelberg New York: Springer 1992

20. Manna, Z., Pnueli, A.: Completing the temporal picture. Theoret. Comput. Sci.83(1), 97–130
(1991)

21. Morgan, C.: Programming from specifications. Englewood Cliffs, NJ: Prentice–Hall 1990
22. Morris, J.: A theoretical basis for stepwise refinement and the programming calculus. Sci. of

Comput. Prog.9, 287–306 (1987)
23. Singh, A.: Program refinement in fair transition systems. Acta Inf.30, 503–535 (1993)

This article was processed by the author using the LaTEX style file pljour1m from Springer-Verlag.

