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Abstract. Incomplete relations are relations which contain null values, whose mean-
ing is “value is at present unknown”. A functional dependency (FD) is weakly satisfied
in an incomplete relation if there exists a possible world of this relation in which the
FD is satisfied in the standard way. Additivity is the property of equivalence of weak
satisfaction of a set of FDs, say F, in an incomplete relation with the individual weak
satisfaction of each member of F in the said relation. It is well known that satisfaction
of FDs is not additive.

The problem that arises is: under what conditions is weak satisfaction of FDs
additive. We solve this problem by introducing a syntactic subclass of FDs, called
monodependentFDs, which informally means that for each attribute, say A, there is a
unique FD that functionally determines A, and in addition only trivial cycles involving
A arise between any two FDs one of which functionally determines A. We show that
weak satisfaction of FDs is additive if and only if the set F of FDs is monodependent
and that monodependence can be checked in time polynomial in the size of F.

1 Introduction

In order to handle incomplete information, Codd [7] suggested the addition to the
database domains of an unmarked null value, whose meaning is “value at present
unknown”, which we denote byunk. We call such relations, whose tuples may contain
the null valueunk, incomplete relations.

Functional Dependencies (or simply FDs) are by far the most common integrity
constraints in the real world [18, 3] and the notion of a key (derived from a given set of
FDs) [7] is fundamental to the relational model. A sound and complete axiom system
for FDs was first given in [1] (see also [18, 3]) and is known asArmstrong’s axiom
system. When considering the satisfaction of FDs in incomplete relations the transitiv-
ity rule is no longer sound. Thus, Lien [15] and Atzeni and Morfuni [2] extended FDs
so as to deal with missing information, suggesting the interpretation of “inapplicable”
or “nonexistent”, and “no information”, respectively, of the unmarked null value. A
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sound and complete axiom system for FDs holding in incomplete relations was ob-
tained by dropping the transitivity rule and adding the union and decomposition rules
[15, 2]; we shall refer to this axiom system asLien and Atzeni’s axiom system.

Let r be an incomplete relation over a relation schema R and let F be a set of
FDs over R. Furthermore, let POSS(r) denote the set ofpossible worldsrelative to r,
i. e. the set of all relations that emanate from all possible substitutions of occurrences
of unk in r by non-null values in the database domains. We say that an incomplete
relation rweakly satisfiesF (or simply satisfies F when no ambiguity arises), written
r |≈ F, if ∃ s ∈ POSS(r) such that s satisfies F on using the standard definition of an
FD [18, 3].

Weak satisfaction is notadditive [3], i. e. it may be the case that∀ X → Y ∈
F, r |≈ X → Y, but r |6≈ F. For example, the well known incomplete relation [2],
sayr1, shown in Table 1, is such thatr1 |≈ A → B andr1 |≈ B → C but r1 |6≈ {A
→ B, B → C}. This is due to the fact that∀s1 ∈ POSS(r1), s1 |6≈ A → C, which
is inferred from A→ B and B→ C by the transitivity rule of Armstrong’s axiom
system. Another example is the incomplete relation, sayr2, shown in Table 2, where
r2 |≈ A → C andr2 |≈ B → C, butr2 |6≈ {A → C, B → C}. This is due to the fact
that ∀s2 ∈ POSS(r2), the C-value of the second tuple is either 1 or 0 and therefore
eithers2 |6≈ A → C or s2 |6≈ B → C. In this case two incomparable sets of attributes,
A and B, functionally determine a common attribute C. It is an interesting fact that
it is also the case thatr2 |6≈ {A → B, B → C} and thus the second relation is also
a counterexample for the first set of FDs. Finally, another relevant example is the
incomplete relation, sayr3, shown in Table 3, wherer3 |≈ B → A and r3 |≈ AC →
B, but r3 |6≈ {B → A, AC → B}. This is due to the fact that∀s3 ∈ POSS(r3), the
A-value of the second tuple must be 0 due to B→ A and therefores3 |6≈ AC → B.

Table 1. The counter-
example relationr1

A B C
0 unk 0
0 unk 1

Table 2. The counter-
example relationr2

A B C
0 unk 0
0 0 unk

unk 0 1

Table 3. The counter-
example relationr3

A B C
0 0 unk

unk 0 0
0 1 0

The problem that is solved in this paper is to present a syntactic characterisation
of when weak satisfaction is additive. This is important when dealing with incomplete
information, since Lien and Atzeni’s axiom system, which is sound and complete for
FDs with respect to weak satisfaction of a single FD, does not, in general, cater for
weak satisfaction of a set F of FDs.

We now briefly describe the solution to the additivity problem, where F is a set of
FDs over a relation schema R. Informally, F ismonodependentif for each attribute
A there is a unique FD that functionally determines A, and in addition only trivial
cycles involving A arise between any two FDs one of which functionally determines
A. An example of a set of FDs where an attribute C is not uniquely determined is
{A → C, B → C}, and an example of a set of FDs where a non-trivial cycle arises
between two FDs is{B → A, AC → B}. It follows that these two sets of FDs are
not monodependent.

We show that we can check whether F is monodependent in time polynomial in
the size of F. We then solve the additivity problem by showing that weak satisfaction
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is additive if and only if F is monodependent. Thus, the most general class of sets of
FDs for which additivity holds is the class of monodependent sets of FDs.

The layout of the rest of the paper is as follows. In Sect. 2 we formalise in-
complete relations and define a partial order in the set of tuples of such relations. In
Sect. 3 we define the notion of FDs and their satisfaction in the context of incomplete
relations. In Sect. 4 we present our solution to the additivity problem in the form of
monodependent sets of FDs. Finally, in Sect. 5 we give our concluding remarks.

2 Relations that model incomplete information

In this section we extend relation schemas and relations so as to model incomplete
information.

We use the notation|S| to denote the cardinality of a set S. If S is a subset of
T we write S⊆ T and if S is a proper subset of T we write S⊂ T. Furthermore, S
and T areincomparableif S 6⊆ T and T 6⊆ S. At times we denote the singleton{A}
simply by A, and the union of two sets S, T, i. e. S∪ T, simply by ST. We will refer
to the cardinality of some standard encoding [10] of S as thesizeof S.

Definition 2.1 (Relation schema and relation)A relation schemaR is a finite set
of attributes which we denote by schema(R); we denote the cardinality of R by type(R).

We assume a countably infinite domain of constants,Dom, containing two distin-
guished constantsunk and inc, denoting the null values “unknown” and “inconsis-
tent”, respectively.

A type(R)-tuple (or simply a tuple whenever type(R) is understood from the context)
is a total mapping from schema(R) intoDom such that∀Ai ∈ schema(R), t(Ai) ∈Dom.
A relation over R is a finite set of type(R)-tuples.

From now on welet R be a relation schema and r be a relation over R. In addition,
we let REL(R) denote the countably infinite set of relations over R.

We note that we have actually included two types of null value in our formalism:
unkandinc. The inclusion ofunkwas motivated in the introduction and the inclusion
of inc is motivated by the fact that it allows us to easily detect unwanted inconsistency;
the latter also facilitates the construction of proofs later on.

Example 1In Table 4 we show a relation, say r, over a relation schema, say R, where
type(R) = 4 and schema(R) ={STUD, DEPT, HEAD, COURSE}. The semantics of
R are: a STUDent belongs to one DEParTment, and takes one or more COURSEs. In
addition, a department has one HEAD and each course is given by one department.
We note that if we insert the tuple,<Hanna,unk, History, inc>, into r then the History
department would have an inconsistent head.

Definition 2.2 (Projection) Theprojection of a type(R)-tuple t onto a set of attributes
Y⊆ schema(R), denoted by t[Y] (also called the Y-value of t), is the restriction of t to
Y. The projection of a relation r over R onto Y, denotedπY (r), is defined byπY (r) =
{t[Y] | t ∈ r}.

Definition 2.3 (Complete and consistent relations)A type(R)-tuple is said to be
complete if ∀Ai ∈ schema(R), t[Ai] 6= unk and t[Ai] 6= inc, i. e. t[Ai] is a non-
null value, otherwise t is said to beincomplete; t is said to beinconsistent if ∃Ai ∈
schema(R), such that t[Ai] = inc, otherwise t is said to beconsistent.
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Table 4. The students departments relation

STUD COURSE DEPT HEAD
Iris Databases Computing Dan
Iris Set Theory Computing unk

Reuven Set Theory unk unk
Naomi Programming Maths Annette
Naomi unk Maths unk

Eli Logic unk Brian

A relation r over R is said to becomplete if ∀t ∈ r, t is complete, otherwise r
is said to beincomplete (when no confusion arises we use relation to mean incom-
plete relation). A relation r over R is said to beinconsistent if ∃t ∈ r such that t is
inconsistent, otherwise r is said to beconsistent.

We let COMPLETE(R) denote the countably infinite set of all complete relations
over R.

Definition 2.4 (Less informative constants and tuples)Let r be a relation over R.
We define a partial order inDom, denoted byv, as follows:

u v v if and only ifu = v or u = unk or v = inc, whereu, v ∈ Dom.

We extendv to be a partial order in the set of type(R)-tuples as follows: ift1
and t2 are type(R)-tuples,t1 is less informative than t2 (or equivalentlyt2 is more
informative than t1), written t1 v t2, if ∀Ai ∈ schema(R),t1[Ai] v t2[Ai].

Two type(R)-tuplest1 and t2 are information-wise equivalent, i. e. t1 v t2 and
t2 v t1, if and only if t1 = t2. We observe that the set of all type(R)-tuples is a
complete lattice, with no infinite chains [8], whose bottom element is<unk, . . .,
unk> and whose top element is<inc, . . ., inc>.

We next define thejoin operator [8] of this complete lattice of tuples.

Definition 2.5 (The join operator) Let r be a relation over R. We define thejoin
operator, denoted byt, as a mapping from an ordered pair (v1, v2) in Dom×Dom to
a single value inDom as follows:v1 t v2 is the least upper bound ofv1 and v2 with
respect tov. We extendt to be a mapping from an ordered pair, (t1, t2), of type(R)-
tuples to a single type(R)-tuple as follows:t1 t t2 = t, where t is a type(R)-tuple and
∀Ai ∈ schema(R), t[Ai] = t1[Ai] t t2[Ai].

It can easily be verified thatt1 t t2 returns the least upper bound oft1 and t2,
namely the join operator realises the lattice theoretic join.

Definition 2.6 (The set of possible worlds of a relation)The set of all possible
worlds relative to a relation r over R, denoted by POSS(r), is defined by

POSS(r) = {s | s is a relation over R and there exists a total and onto mapping
f : r → s such that∀t ∈ r, t v f (t) andf (t) is complete}.

Proposition 2.1 A relation r over R is inconsistent if and only if POSS(r) =∅. �

Hereafter we assume thatunless otherwise stated relations are consistent.
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3 Functional dependencies in relations which may be incomplete

We now define Functional Dependencies (FDs) and their satisfaction in the context
of incomplete relations.

Definition 3.1 (Functional dependency)A functional dependencyover R (or sim-
ply an FD) is a statement of the form X→ Y, where X, Y⊆ schema(R). (For the
semantics of FDs see Definition 3.4.)

We call an FD of the form X→ Y, where Y⊆ X, a trivial FD. Two non-trivial
FDs of the forms X→ A and Y→ A are said to beincomparable if X and Y are
incomparable. Two non-trivial FDs of the forms XB→ A and YA→ B are said to be
cyclic.

We stress the fact that we allow FDs whose left-hand side is the empty set. We
let FD(R) be the set of all sets of FDs over R. From now on we will assume thatF
is a set of FDs over R.

Definition 3.2 (Armstrong’s axiom system) The closure of F with respect to Arm-
strong’s axiom system [1] (see also [18] and [3]), denoted byF +, is the smallest set
of FDs that contains F and satisfies the following five conditions:

FD1 Reflexivity: if Y⊆ X ⊆ schema(R), then X→ Y∈ F +.
FD2 Augmentation: if X→ Y∈ F + and W⊆ schema(R), then XW→ YW∈ F +.
FD3 Pseudo-transitivity: if X→ Y∈ F + and WY→ Z ∈ F +, then XW→ Z ∈ F +.
FD4 Union: if X → Y∈ F + and X→ Z ∈ F +, then X→ YZ∈ F +.
FD5 Decomposition: if X→ YZ∈ F +, then X→ Y∈ F + and X→ Z ∈ F +.

We observe that FD4 and FD5 are derivable from FD1, FD2 and FD3 and that
when W =∅, then FD3 is called thetransitivity rule. The closure of F with respect
to Lien and Atzeni’s axiom system [15, 2], denoted byF ∗, is the smallest set of FDs
that contains F and satisfies FD1, FD2, FD4 and FD5.

A set of FDs G over R is acover of a set of FDs F over R ifG+ = F +. The
closure of a set of attributes, X⊆ schema(R), with respect to Armstrong’s axiom
system and F, denoted asX+

F (or simply X+ whenever F is understood from the
context), is given byX+ = ∪ {Y | X → Y ∈ F +}. We note that X→ X+ ∈ F + and
thatX+ can be computed in linear time in the size of F [4]. In the sequel we use the
equivalent statements A∈ X+ and X→ A ∈ F +, interchangeably.

Definition 3.3 (Reduced and canonical sets of FDs)An FD X → Y ∈ F + is re-
duced [4] if there does not exist a set of attributes W⊂ X such that W→ Y∈ F +. A
set of FDs F isreduced if all the FDs in F are reduced.

A set of FDs F iscanonical if it is reduced and the right-hand sides of all the FDs
in F are singletons.

We note that reduced and canonical covers G of a set of FDs F can be obtained
in polynomial time in the size of F [4].

Definition 3.4 (Satisfaction of an FD) An FD X→ Y is weakly satisfied (or simply
satisfied whenever no ambiguity arises) in a relation r over R, denoted by r|≈ X→ Y,
if and only if∃s ∈ POSS(r) such that∀t1, t2 ∈ s, if t1[X] = t2[X] then t1[Y] = t2[Y].
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We note that the definition of weak satisfaction of an FD in a relation reduces to
the standard definition of the satisfaction of an FD when the relation is complete [18]
(in that case there exists exactly one s∈ POSS(r)). Furthermore, it follows from the
above definition that r must be consistent in order to satisfy an FD. The reason for this
condition is that we assume that only consistent relations are stored in the database.
A more liberal definition would only insist thatπXY (r) is consistent in order that X
→ Y be satisfied.

The following lemma, which gives a syntactic characterisation of satisfaction of
an FD, follows from Definition 3.4 (cf. Lemma 6.2 in [3]).

Lemma 3.1 Let r be a consistent relation over R and X, Y⊆ schema(R). Then r|≈ X
→ Y if and only if∀t1, t2 ∈ r, if t1[X] and t2[X] are complete andt1[X] = t2[X], then
t1[Y] t t2[Y] is consistent. �

Example 2Let r be the relation shown in Table 4 and let F ={STUD → DEPT,
COURSE→ DEPT, DEPT→ HEAD}. It can be verified that r|≈ STUD→ DEPT,
r |≈ COURSE→ DEPT and r|≈ DEPT→ HEAD are all satisfied.

The next lemma follows directly from Lemma 3.1.

Lemma 3.2 The following statements, where r is a relation over R and X, Y⊆
schema(R), are true:

1. If Y⊆ X, then∀ r ∈ REL(R), if r is consistent, then r|≈ X → Y.
2. r |≈ X → Y if and only if r|≈ X → Y−X.
3. If r |≈ X → Y, then r|≈ XW→ YW, where W⊆ schema(R).
4. r |≈ X → YZ if and only if r|≈ X → Y and r|≈ X → Z. �

As a result of the above lemma we assume without loss of generality thatF does
not contain any non-trivial FDs and that the right-hand sides of all the FDs in F are
singletons. This assumption will allow us to simplify the proofs of the results in
Sect. 4.

We observe that Lemma 3.2 shows that satisfaction is closed under reflexivity
(FD1), augmentation (FD2), union (FD4) and decomposition (FD5). On the other
hand, as was demonstrated in Table 1, satisfaction is not closed under pseudo-
transitivity (FD3).

It was shown in [1] (see also [18, 3]) that Armstrong’s axiom system is sound
and complete for complete relations. On the other hand, when considering incomplete
relations Armstrong’s axiom system is no longer sound, since as was just noted the
pseudo-transitivity rule (and thus also the transitivity rule) is no longer sound in this
case. A sound and complete axiom system for FDs holding in incomplete relations
was obtained in [15, 2] by dropping the pseudo-transitivity rule from Armstrong’s
axiom system, thus obtaining the inference rules FD1, FD2, FD4 and FD5.

We now generalise the definition of satisfaction of a single FD to satisfaction of
a set of FDs and discuss the semantics of this definition.

Definition 3.5 (Satisfaction of a set of FDs)A set of FDs F over R isweakly satis-
fied (or simply satisfied whenever no ambiguity arises) in a relation r over R, denoted
by r |≈ F, if and only if∃s ∈ POSS(r) such that∀ X → Y∈ F, s |≈ X → Y.

The following lemma follows from the above definition and the fact that Arm-
strong’s axiom system is sound and complete for complete relations.
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Lemma 3.3 Let r be a relation over R and F be a set of FDs over R. Then r|≈ F if
and only if r |≈ F +. �

Definition 3.6 (Additive satisfaction) Following [3] we will say that satisfaction is
additive with respect to a class of relations, sayRC, and a class of sets of FDs, say
FC, whenever:∀ r ∈ RC, ∀ F ∈ FC, r |≈ F, if and only if there exists a reduced cover
G of F such that∀ X → Y∈ G, r |≈ X → Y.

We note that additivity corresponds to the rule for introducing a conjunction on
the right-hand side of a sequent in the sequent calculus [9]. The next example shows
that in Definition 3.6 we cannot relax the condition that G is a reduced cover.

Example 3Consider the relationr1 shown in Table 1 and let F ={A → B, AB →
C}. It can easily be verified thatr1 |≈ A → B and r1 |≈ AB → C but r1 |6≈ F. On
the other hand, if we let G ={A → B, A → C}, i.e. G is a reduced cover of F, then
r1 |6≈ A → C.

An immediate consequence of the above definition is that satisfaction is additive
with respect to COMPLETE(R) and FD(R). It is well known that satisfaction isnot
additive with respect to REL(R) and FD(R) due to the fact that transitivity is no
longer sound for weak satisfaction [15, 2] (see Table 1). We also note, as we have
shown in Tables 2 and 3, the fact that satisfaction being not additive with respect to
REL(R) and FD(R) is not necessarily due to the lack of transitivity. The following
proposition summarises these two facts.

Proposition 3.4 The following statements are true:

1. Satisfaction is additive with respect to COMPLETE(R) and FD(R).
2. Satisfaction isnot additive with respect to REL(R) and FD(R).�

The lack of additivity for satisfaction with respect to REL(R) and FD(R) gives rise
to the problem that Lien and Atzeni’s axiom system, which is sound and complete
with respect to satisfaction of a single FD, does not, in general, cater for satisfaction
of a set F of FDs. In the sequel we refer to this lack of additivity for satisfaction with
respect to REL(R) and FD(R) asthe additivity problem.

We close this section by mentioning that the time complexity of deciding whether
r |≈ F is polynomial in the sizes of r and F. A polynomial-time algorithm for deciding
whether r|≈ F, designated by CHASE(r, F), can be derived directly from Theorem
6.4 in [3] on using Theorem 3 in [11]. The algorithm is analogous to the standard
chase procedure for FDs [11] and is defined as follows.

Let Dum = {⊥1,⊥2, . . . ,⊥q} be a set of distinguished non-null values inDom
which do not appear in r, and let q denote the finite number of distinct occurrences
of unk in r. For the purpose of defining the chase procedure we extend the partial
order in Dom as follows:⊥i v ⊥j if and only if i ≤ j, and for all non-null values
v appearing in r, we have that∀⊥i ∈ Dum, ⊥i v v but v 6v ⊥i. The pseudo-code
for the algorithm CHASE(r, F), where F is canonical, which given the inputs r and F
returns a relation whose tuples are more informative than the tuples of r, is presented
in Algorithm 1.
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Algorithm 1 (CHASE(r, F))

1. begin
2. Tmp := r;
3. i := 1;
4. for each A ∈ schema(R)do
5. for each t ∈ Tmp such that t[A] =unk do
6. t[A] := ⊥i;
7. i := i + 1;
8. end for
9. end for
10. while ∃t1, t2 ∈ Tmp and ∃ X → A ∈ F such thatt1[X] = t2[X]

and t1[A] /= t2[A] do
11. t1[A] := t1[A] t t2[A];
12. t2[A] := t1[A] t t2[A];
13. end while
14. return Tmp;
15. end.

The following proposition states an important property of the chase procedure
[3, 11], which will be useful in the next section. (Note that Dum⊆ Dom.)

Proposition 3.5 Let r be a consistent relation over R and F be a set of FDs over R.
Then r|≈ F if and only if CHASE(r, F) is consistent, or equivalently, CHASE(r, F)∈
POSS(r). �

It can be verified that CHASE(r, F) is unique only up to the order in which the
constants in Dum are assigned to the null attribute values in r. This is due to the fact
that the for loops beginning at lines 4 and 5 of Algorithm 1 do not specify the order
in which these statements are to be executed.

Example 4Let r be the relation shown in Table 4 and let F ={STUD → DEPT,
COURSE→ DEPT, DEPT→ HEAD}. CHASE(r, F) is shown in Table 5, where
during the execution of CHASE(r, F) the occurrence ofunk in the fifth tuple of r was
replaced by⊥1 and the occurrenceunk in the sixth tuple of r was replaced by⊥2. It
can be verified that CHASE(r, F) is consistent and that r|≈ F holds.

Table 5. The relation CHASE(r, F)

STUD COURSE DEPT HEAD
Iris Databases Computing Dan
Iris Set Theory Computing Dan

Reuven Set Theory Computing Dan
Naomi Programming Maths Annette
Naomi ⊥1 Maths Annette

Eli Logic ⊥2 Brian
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4 Monodependent sets of functional dependencies

In this section we solve the additivity problem for weak satisfaction of a set F of
FDs. Intuitively, a set of FDs F over R is monodependent if for each attribute A∈
schema(R) there exists a unique FD that functionally determines A and, in addition,
only trivial cycles involving A, such as XA→ A, arise between any two FDs one
of which functionally determines A. We show that we can check whether F is mon-
odependent in time polynomial in the size of F. We then solve the additivity problem
by showing that weak satisfaction is additive if and only if F is monodependent. We
believe that monodependent sets of FDs arise naturally in the real world, since they
avoid ambiguity in the representation of the semantics of a set of FDs.

Definition 4.1 (A monodependent set of FDs)A set of FDs F, over R, is amonode-
pendentset of FDs over R (or simply monodependent, whenever R is understood from
the context) if∀ A ∈ schema(R), the following two conditions are true:

1. Whenever there exist incomparable FDs, X→ A, Y→ A ∈ F +, then X∩ Y→ A
∈ F +.

2. Whenever there exist cyclic FDs, XB→ A, YA→ B ∈ F +, then either Y→ B ∈ F +

or (X ∩ Y)A→ B ∈ F +.

An immediate consequence of the above definition is that if G is a cover of a set
of FDs F over R, then F is monodependent if and only if G is monodependent.

We observe that the two defining conditions of monodependent sets of FDs corre-
spond to the two defining properties ofconflict freesets ofmulti-valued dependencies
(MVDs) [17, 15, 5]. In particular, condition (1) corresponds to theintersection prop-
erty and condition (2) corresponds to thesplit-freedom property. We further observe
that the set of MVDs that are logically implied by a monodependent set of FDs may
not be conflict free and thus monodependence is a weaker notion than conflict free-
dom. For example, let R ={A → B, B → A} be a set of FDs over R, with schema(R)
= {A, B, C}. It can easily be verified that R is monodependent but that the set of
MVDs logically implied by R is not conflict free.

Example 5Examples of sets of FDs that arenot monodependent are:{A → B, B →
C}, {A → C, B → C} and{B → A, AC → B}.

Examples of monodependent sets of FDs are:{A → B, C → D}, {BC → A, AC
→ B}, {B → A, A → B} and{BC → A, C → B}.

The next theorem shows that if F satisfies the intersection property, then the closure
of F with respect to Armstrong’s axiom system (i.e.F +) is equal to the closure of F
with respect to Lien and Atzeni’s axiom system (i.e.F ∗).

Theorem 4.1 When F satisfies the intersection property thenF + = F ∗.

Proof. We assume without loss of generality that F is canonical, since, as noted after
Definition 4.1, F is monodependent if and only if every cover of F is monodependent.

Obviously,F ∗ ⊆ F +, since Lien and Atzeni’s axiom system can be derived from
Armstrong’s axiom system. We conclude the proof by showing thatF + ⊆ F ∗; we use
induction on the minimal number of times, say k, the pseudo-transitivity rule (FD3)
is used in order to obtainF +.
(Basis): If k = 0, then the result is immediate.
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(Induction): Assume the result holds when the minimal number of times FD3 was
used in obtainingF + is k, with k ≥ 0; we then need to prove that the result holds
when the minimal number of times FD3 was used in obtainingF + is k+1. Suppose
that the last time FD3 was used in the process of obtainingF + from F, the FD XW
→ Z was added to a state G ofF +, where X→ Y ∈ G, WY → Z ∈ G, assuming
that W∩ Y = ∅.

Without loss of generality we can assume that Z ={A} is a singleton, since
otherwise we can apply FD3|Z| times, once for each A∈ Z, and then apply the
union rule to obtain XW→ Z ∈ F +. Moreover, we can assume that A6∈ XW, since
otherwise XW→ A is a trivial FD and can be derived by using the reflexivity rule. In
addition, we can assume that A6∈ Y, since otherwise the result follows by inductive
hypothesis and the use of the decomposition rule if Y6= {A}.

Now, it is must be the case that X→ Y is a non-trivial FD, since otherwise XW→
A ∈ F + can be derived by using the augmentation and decomposition rules. Therefore,
we have that Y6⊆ X. Now, if it were the case that X and Y are incomparable, then
W(Y ∩ X) → A ∈ F +, since F satisfies the intersection property, with W(Y∩ X) ⊂
XW. The result follows, since by inductive hypothesis it must be the case that∃ V
⊆ W(Y ∩ X) such that V→ U ∈ G, with A ∈ U, and therefore XW→ A ∈ F +

can be derived by using at some point in the derivation process the augmentation and
decomposition rules.

Finally, if it were the case that X⊂ Y, then WY→ A ∈ F + is not reduced. Now,
suppose that WY→ A can be reduced to V→ A ∈ F +. We claim that V = XW.
Obviously XW⊂ V is not possible, since in this case V→ A would not be reduced.
Also, V and XW cannot be incomparable, since otherwise V→ A would again not be
reduced due to the fact that F satisfies the intersection property. So, assume that V⊂
XW. In this case the result follows, since by inductive hypothesis∃V ′ ⊆ V such that
V ′ → U ∈ G, with A ∈ U, and therefore XW→ A ∈ F + can be derived by using
at some point in the derivation process the augmentation and decomposition rules.
Therefore, our claim that V = XW is proved and thus XW→ A ∈ F + is reduced.

Now, since XW→ A ∈ F +, there must exist a reduced FDV ′ → A ∈ F. If
V ′ ⊆ XW the result follows, since XW→ A ∈ F + can then be derived by using
at some point in the derivation process the augmentation and decomposition rules.
Next consider the case whenV ′ and XW are incomparable. Since F satisfies the
intersection propertyV ′∩ XW → A ∈ F +, with (V ′∩ XW) ⊂ XW; the result follows
by inductive hypothesis and the fact that XW→ A ∈ F + can be derived by using at
some point in the derivation process the augmentation and decomposition rules. So
it only remains to consider the case when XW⊂ V ′. However, this contradicts the
fact thatV ′ → A is reduced. �

The converse of Theorem 4.1 is, in general, false. For example, let F ={A →
C, B → C} be a set of FDs over R, with schema(R) ={A, B, C}. It can be easily
verified thatF + = F ∗ but that F does not satisfy the intersection property, since∅ →
C 6∈ F +.

The next lemma gives an alternative characterisation of a monodependent set of
FDs rephrased in terms of a canonical set of FDs.

Lemma 4.2 A set of FDs F over R is monodependent if and only if∀ A ∈ schema(R),
the following two conditions are true, where G is a canonical cover of F:

1. There exists at most one FD in G of the form X→ A, and if X→ A ∈ G, then∀ B
∈ X, A 6∈ (schema(R)− AB)+.
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2. Whenever X→ A, Y→ B ∈ G, then either A6∈ Y or Y⊆ (X ∩ Y)A.

Proof. If: Assume that the above two conditions are true and that G is a canonical
cover of F. For the first part of the definition of monodependence assume that there
exist incomparable FDs, X→ A, Y → A ∈ F +. We need to show that X∩ Y → A
∈ F +. Let W → A ∈ G be the single FD in G that functionally determines A.

Assume that W6⊆ X and thus W6= ∅. Thus∃ B ∈ W such that B6∈ X. Therefore
we deduce that A∈ (schema(R)− AB)+, since X⊆ schema(R)− AB. A contradiction
has arisen implying that W⊆ X. Similarly, we can deduce that W⊆ Y. Since W⊆
X and W⊆ Y, it follows that W⊆ XY; since W→ A ∈ G, this implies that X∩ Y
→ A ∈ F +.

For the second part of the definition of monodependence assume that there exist
cyclic FDs, XB→ A, YA → B ∈ F +. We need to show that either Y→ B ∈ F + or
(X ∩ Y)A → B ∈ F +. Let W→ A, Z → B ∈ G be the two FDs in G that functionally
determine A and B, respectively.

Assume that W6⊆ XB and thus W 6= ∅. Thus ∃ C ∈ W such that C6∈ XB.
Therefore we deduce that A∈ (schema(R)− AC)+, since XB⊆ schema(R)− AC. A
contradiction has arisen to the first condition of this lemma implying that W⊆ XB.
Similarly, Z ⊆ YA is implied, since A 6= B. The result follows, since either of the
following two assertionsare true. Firstly, A 6∈ Z implies that Z⊆ Y and thus Y→
B ∈ F +. Secondly, Z⊆ (W ∩ Z)A implies that (W∩ Z)A → B ∈ F + is a non-trivial
FD. Therefore, (XB∩ YA)A → B ∈ F +, since (W∩ Z)A ⊆ (XB ∩ YA)A, and thus
(X ∩ Y)A → B ∈ F +, since A 6∈ X and B 6∈ Y.

Only if: Assume that F is monodependent. For the first condition above, it follows
that there exists at most one FD in G of the form X→ A, since G is canonical.
Assume that X→ A ∈ G. Next, if X = schema(R)− A or X = ∅, then trivially ∀
B ∈ X, A 6∈ (schema(R)− AB)+. So, assume that∅ ⊂ X ⊂ schema(R)− A. Next,
let W = schema(R)− AB be a set of attributes such that B∈ X and assume to the
contrary that A∈W +. It follows that X and W are incomparable and thus W∩ X ⊂
X. However, W∩ X → A 6∈ G, since G is canonical. This contradicts the fact that F
is monodependent. Therefore∀ B ∈ X, A 6∈ (schema(R)− AB)+.

For the second condition above, assume that X→ A, Y → B ∈ G but that both
A ∈ Y and Y 6⊆ (X ∩ Y)A. Assume that B6∈ X. Then we can derive X(Y− A) →
B ∈ F + by using the pseudo-transitivity rule. Now, Y6⊆ X(Y − A), since A 6∈ X.
Furthermore, X(Y− A) 6⊆ Y, since X(Y− A) ⊂ Y would contradict the fact that G
is canonical. Therefore, Y and X(Y− A) are incomparable and thus by the first part
of the definition of monodependence Y∩ (X(Y − A)) → B ∈ F +. This leads to a
contradiction of G being canonical, since Y∩ (X(Y − A)) ⊂ Y.

Assume that B∈ X. A contradiction to F being monodependent arises as follows.
The assumption that A∈ Y implies that Y− A → B 6∈ F +, since G is canonical.
Now, Y 6⊆ (X ∩ Y)A implies that (X∩ Y)A ⊂ Y. Therefore, it is also true that (X
∩ Y)A → B 6∈ F +, since G is canonical. The result follows, since either A6∈ Y or Y
⊆ (X ∩ Y)A must hold. �

The following theorem utilises the previous lemma.

Theorem 4.3 Monodependence of a set of FDs F over R can be checked in time
polynomial in the size of F.

Proof. It was shown in [16] that a canonical cover G of a set of FDs F over R can be
obtained in time polynomial in the size of F. The result follows by Lemma 4.2.�
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The following lemma shows that monodependence implies additivity.

Lemma 4.4 Let F be a set of monodependent FDs over R. Then∀r ∈ REL(R), if∀ X
→ Y∈ F, r |≈ X → Y, then r|≈ F.

Proof. Assume without loss of generality that F is a canonical set of FDs, noting that
a canonical cover is reduced. We show that if∃ r ∈ REL(R) such that∀ X → Y ∈ F,
r |≈ X → Y, but r 6|≈ F, then F cannot be monodependent as assumed. Let r be such
a relation. By Proposition 3.5 it follows that CHASE(r, F) is inconsistent. We call an
execution of lines 11 and 12 in Algorithm 1 achase stepand we say that the chase
stepapplies the FD X→ A ∈ F to the tuplest1 and t2. We conclude the result by
induction on the minimal number of chase steps, k, required to show that CHASE(r,
F) is inconsistent.
(Basis): At least two chase steps are needed to show that CHASE(r, F) is inconsistent,
since by assumption∀ X → Y ∈ F, r |≈ X → Y. Thus consider the case when k
= 2. Suppose the second chase step applies the FD X→ A ∈ F to the tuplest1
and t2. Then after the first chase step is appliedt1[X] = t2[X] but t1[A] t t2[A] is
inconsistent. Without loss of generality assume that the first chase step applies the
FD Y → B ∈ F to the tuplest2 and t3 in r. There are two cases to consider.
Case 1:B = A. In this case the first chase step applies the FD Y→ A to t2 and
t3 resulting in t1[A] t t2[A] being inconsistent. It follows thatt1[A] t t3[A] is
inconsistent in r, since otherwiset1[A] t t2[A] is inconsistent in r implying that one
chase step is sufficient to show that CHASE(r, F) is inconsistent. Now, if X = Y,
then one chase step which applies the FD X→ A to the tuplest1 and t3 in r is
sufficient to show that CHASE(r, F) is inconsistent, thus X6= Y. The result that F is
not monodependent now follows by the assumption that F is canonical, since X→
A and Y→ A must be incomparable FDs and X∩ Y → A 6∈ F +.

Case 2:B 6= A. In this case the first chase step applies Y→ B to t2 and t3 in r
resulting int1[B] = t2[B]. Furthermore,t1[A] t t2[A] is inconsistent in r, since k = 2.
It follows that B∈ X, otherwise one chase step would suffice to show that CHASE(r,
F) is inconsistent.

Now suppose that A6∈ Y. Then we can derive (X− B)Y → A ∈ F + by pseudo-
transitivity, where X6⊆ (X − B)Y, since B 6∈ Y. Now, if (X − B)Y 6⊆ X, then (X−
B)Y → A and X → A are incomparable. Furthermore, (X− B) ⊂ X and therefore
(X − B) → A 6∈ F +, since F is canonical. Thus, there exists a canonical set of FDs
G such that W→ A, X → A ∈ G, where W⊆ (X − B)Y. The result that F is not
monodependent follows from Case 1 by replacing F with G. Therefore, we assume
that (X− B)Y ⊆ X, implying that (X− B)Y ⊂ X, since B 6∈ Y. This contradicts the
fact that F is canonical, since (X− B)Y → A ∈ F +.

We therefore suppose that A∈ Y. The result that F is not monodependent now
follows, since Y→ B and X→ A are cyclic FDs and in addition the following two
assertions are true.

Firstly, (X − B) → A 6∈ F + due to the fact that by assumption F is canonical.
Secondly,t1[B] = t3[B] in r, since Y → B was applied tot2 and t3 and k = 2.
Moreover,t1[(X ∩ Y)] = t3[(X ∩ Y)] in r, since botht1[(X ∩ Y)] = t2[(X ∩ Y)] in
r and t2[(X ∩ Y)] = t3[(X ∩ Y)] in r. Furthermore,t2[A] = t3[A] in r, since A ∈ Y,
and thereforet1[A] t t3[A] is inconsistent in r. Thus, if (X∩ Y)B → A ∈ F +, then
due to the assumption that F is canonical one chase step which applies the FD (X
∩ Y)B → A to t1 and t2 would suffice to show that CHASE(r, F) is inconsistent. It
therefore follows that (X∩ Y)B → A 6∈ F + which is equivalent to ((X− B) ∩ (Y −
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A))B → A 6∈ F +, since B 6∈ Y and A 6∈ X. (Recall that (X− B) → A 6∈ F +.) The
result that F is not monodependent follows.
(Induction): Assume the result holds when the minimal number of chase steps required
to show that CHASE(r, F) is inconsistent is k, with k≥ 2; we then need to prove
that the result holds when the minimal number of chase steps required to show that
CHASE(r, F) is inconsistent is k+1. Suppose the last chase step applies the FD X
→ A ∈ F to the tuplest1 and t2 in the penultimate state of r during the execution
of CHASE(r, F). Then after the penultimate chase step is appliedt1[X] = t2[X] but
t1[A] t t2[A] is inconsistent. Without loss of generality assume that the penultimate
chase step applies the FD Y→ B ∈ F to the tuplest2 andt3 in the state prior to the
penultimate state of r during the execution of CHASE(r, F).

The result follows by an argument similar to the basis step noting that if k or less
steps are sufficient to show that CHASE(r, F) is inconsistent, then the result follows
by inductive hypothesis. �

The following lemma shows that additivity implies monodependence.

Lemma 4.5 Let F be a set of FDs over R and assume that∀r ∈ REL(R), if∀ X → Y
∈ F, r |≈ X → Y, then r|≈ F. Then F is monodependent.

Proof. We show that if F is not monodependent, then∃ r ∈ REL(R) such that∀ X
→ Y ∈ F, r |≈ X → Y but r 6|≈ F. There are two cases to consider.
Case 1:There exist incomparable FDs X→ A, Y → A ∈ F + but X ∩ Y → A 6∈ F +.
Let Rest = schema(R)− XYA and let r ∈ REL(R) be the relation shown in Table 6.

It can be verified that∀ V → T ∈ F, r |≈ V → T, since the only FDs that are not
weakly satisfied in r are of the form W→ A, where W⊆ X ∩ Y, which is justified
by Lemma 3.2 due to the assumption that X∩ Y → A 6∈ F +. The result now follows
due to the fact that r6|≈ F, since it can easily be verified that∀ s ∈ POSS(r), either s
6|≈ X → A or s 6|≈ Y → A.

Table 6. The relation pertaining to Case 1

X ∩ Y X − Y Y − X A Rest
0 . . . 0 0 . . . 0 unk . . . unk 0 unk . . . unk
0 . . . 0 0 . . . 0 0 . . . 0 unk unk . . . unk
0 . . . 0 unk . . . unk 0 . . . 0 1 unk . . . unk

Case 2:There exist cyclic FDs, XB→ A, YA → B ∈ F +, however Y→ B 6∈ F +

and (X∩ Y)A → B 6∈ F +. Let Rest = schema(R)− XYAB and let r ∈ REL(R) be
the relation shown in Table 7.

The only FDs that are not weakly satisfied in r are of the form W→ B, where W
⊆ Y, or of the form W→ B, where W⊆ (X ∩ Y)A. These violations are justified
by Lemma 3.2 due to the assumption that Y→ B 6∈ F + and (X∩ Y)A → B 6∈ F +.
The result now follows due to the fact that r6|≈ F, since it can easily be verified that
∀ s ∈ POSS(r), s6|≈ YA → B. �

The following theorem summarises Lemmas 4.4 and 4.5.

Theorem 4.6 Weak satisfaction is additive with respect to REL(R) and a class of sets
of FDs FC if and only if all the sets of FDs inFC are monodependent.�
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Table 7. The relation pertaining to Case 2

X ∩ Y X − Y Y − X A B Rest
0 . . . 0 0 . . . 0 unk . . . unk 0 0 unk . . . unk
0 . . . 0 0 . . . 0 0 . . . 0 unk 0 unk . . . unk
0 . . . 0 unk . . . unk 0 . . . 0 0 1 unk . . . unk

5 Concluding remarks

We have solved the additivity problem by showing in Theorem 4.6 that the largest
class of sets of FDs for which additivity holds with respect to the set of all relations
over a fixed schema is the class of monodependent sets of FDs. Furthermore, by
Theorem 4.3 monodependence of a set of FDs F can be checked in time polynomial
in the size of F.

Weak satisfaction corresponds topossibility, that is the existence of a possible
relation that satisfies a set of FDs. It is also possible to definestrong satisfaction
which corresponds tonecessity, that is to say the situation when all possible relations
satisfy a set of FDs. Strong satisfaction has the advantage over its weak counterpart,
since in this case the satisfaction of FDs need not be rechecked after each update of
a null value to a non-null value in an incomplete relation. On the other hand, strong
satisfaction is, in general, stricter than weak satisfaction. A sound and complete axiom
system for FDs which caters for both strong and weak satisfaction and a polynomial
time algorithm for the implication problem thereof can be found in [13].

It would be an interesting research topic to extend the results presented herein to
or-sets[12], i.e. allowing, instead of any occurrence ofunk, a finite set of possible
values, one of which is the true value. Another interesting research topic, which was
taken up in [14], is an extension of the formalism presented herein to deal with
inclusion dependencies [6] in the presence of incomplete information.
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