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Abstract. Action structures have previously been proposed as an algebra for both the
syntax and the semantics of interactive computation. Here, a class of concrete action
structures calledaction calculi is identified, which can serve as a non-linear syntax for
a wide variety of models of interactive behaviour. Each action in an action calculus is
represented as an assembly ofmolecules; the syntactic binding ofnamesis the means
by which molecules are bound together. A graphical form,action graphs, is used
to aid presentation. One action calculus differs from another only in its generators,
calledcontrols.

Action calculi generalise a previously defined action structurePIC for the π-
calculus. Several extensions toPIC are given as action calculi, giving essentially
the same power as theπ-calculus. An action calculus is also given for the typed
λ-calculus, and for Petri nets parametrized on their places and transitions.

An equational characterization of action calculi is given: each action calculusA
is the quotient of a term algebra by certain equations. The terms are generated by a
set of operators, including those basic to all action structures as well as the controls
specific toA; the equations are the basic axioms of action structures together with
four additional axiom schemata.

1 Introduction

Background

Basic calculi for computation exist in remarkable variety. Perhaps the most familiar,
at least as a “calculus”, is theλ-calculus. But others – Turing machines, register
machines, recursion equations,. . . – also deserve to be called calculi; in each case
there is a formalism, and some rules and metatheory about the combination and
transformation of terms in the formalism. The variety is such that we cannot claim
a clear understanding of thefamily of all such calculi, even though the underlying
theory of computable functions gives them semantic unity.

When we expand “computation” to include interactive behaviour, we can no longer
rest upon the intuitions of such a theory in formulating a calculus. As a consequence,
there is even greater variety among calculi which describe interactive systems. (Ex-
amples are: Petri nets, many process algebras, communicating automata, statecharts,
. . . .) So perhaps we have even less hope of classifying them. Yet it may not be
so; since the population of calculi is larger, repeated features among them may be
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more apparent. By attending tointeraction as a fundamental notion, we may reveal
regularities not hitherto detected.

The need for a classifying discipline is all the greater, for in generalising com-
putation to interaction we also move from prescriptive to descriptive models. In the
world of networks and distributed computing we cannot claim that all the systems we
study are built to a prescription. We therefore seek a descriptive theory to analyse the
phenomena of an ever more complex informatic world, which is partly “natural” and
partly man-made, and in which computation is a special case. To classify calculi for
interaction is a step towards such a theory.

Motivation and character

In this paper a mathematical framework is proposed for studying, comparing and com-
bining operational models of interaction. Each such model appears in the framework
as anaction calculus; action calculi are a special class ofaction structures[17], and
each member of the class is determined by its generators, calledcontrols. Two differ-
ent characterizations of action calculi are given, as well as a graphical presentation;
several examples of action calculi are presented both formally and graphically.

The paper prepares the way for the common treatment of the semantic interpre-
tations of all action calculi, via homomorphisms of action structures; this will be
pursued in later papers. One aim is to find a general treatment of behavioural equiv-
alences such as bisimilarity. Another aim is to classify action calculi according to
their dynamic qualities; for example, theπ-calculus has been proposed as a calculus
of mobile processes, and we seek to make this notion of mobility precise.

We now explain the motivation for action calculi. If we consider Petri nets [22],
CSP [7] and theπ-calculus [21] beside theλ-calculus [2], we find recurrent features.
The parallel composition of CSP looks like the juxtaposition (with some transition-
sharing) of Petri nets; exact translations between the two have been made on this basis.
The π-calculus has binding of names, begging comparison with the richer notion of
bound variable in theλ-calculus. Parallel reduction of a term of theλ-calculus, in the
presence of a shared valuation of the free variables, is somewhat like the interaction
between several independent agents and a shared resource; such interactions are well-
represented in Petri nets. Finally, the dynamic rules of such models are often expressed
in a similar way: the reduction of, or reaction within, certain key control configurations
(called redexesin λ-calculus, andfireable transitionsin Petri nets).

Of these common features, the use ofnamesis one of the most crucial, and
presents a fundamental challenge. The problem is that names are used in different
ways. In theλ-calculus they are variables which may be replaced by any value (or
term denoting a value); in theπ-calculus they are channels, and also variables – but
only over channels; in Petri nets they are sometimes used to identify transitions (but
not as variables over transitions). The solution adopted here is that names, even when
variables, may only stand for names. Thus we have separated the two attributes of a
name which are combined inλ-calculus (and often treated as inseparable!); a name
may vary, and it maydenote a value. In action structures we takevarying as basic,
and represent it by an abstraction operator;denotingcan be treated as a special case
of interaction, as will be seen in Sect. 5.5 where theλ-calculus is presented.

The basic ingredients of action structures – composition, tensor product, abstrac-
tion and a reaction relation – were chosen as a minimum to provide a uniform treat-
ment of features common to many calculi. (The mathematical structure defined by
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these ingredients alone may be too weak to be of independent interest; action struc-
tures should be considered mainly as a basis for the enrichments introduced here.) In
addition, action calculi provide a uniform way to introducespecificcontrol mecha-
nisms; behaviour is represented by interaction between the members of certain control
configurations. The framework hardly limits the variety of such control disciplines;
but it allows us to ask what happens if we combine them. For example, can we enrich
Petri nets by allowing them to change configuration dynamically? We can formulate
this enrichment precisely as the combination of the controls of two action calculi:
Petri nets and theπ-calculus.

The graphical presentation of action calculi suggests a strong relationship with the
interaction netsof Lafont [11], which were introduced to study the reduction of proof-
nets in linear logic; they represent a linear and deterministic model of computation.
It appears that action calculi generalise them towards non-linear, non-deterministic
behaviour. This connection deserves study.

The action structure framework was designed to accommodate not only thesyntax
(operational models) of interactive behaviour, but also itssemantics(abstract models),
via homomorphisms of action structures. To apply this treatment uniformly, we first
have to determine the class of action structures which can be considered as calculi.

Technical overview

A standard way to set up a calculus is to define a term algebra, and then provide
it with reduction rules or transition rules. But for interactive systems it has been
found helpful to use a formalism richer than a term algebra. Following ideas of
Ban̂atre and Ḿetayer [4], Berry and Boudol based their Chemical Abstract Machine
(Cham) [3] on the notion of multiset. Prompted by them, the present author imposed
a structural congruence upon theπ-calculus as part of the formal language, not of
the semantics [16]. Again, Meseguer and Montanari [12] have revealed the monoidal
structure inherent in Petri nets. Indeed, part of the reason for the success of Petri nets
is that its syntax, being graphical, reflects this structure.

Action structures impose monoidal structure. In fact they go further; they include
the operation of abstraction (parametrization) over names, and also represent dynamics
as a preorder. Both the monoidal and the additional structure are characterized by
algebraic axioms.

Let us outline how an action calculus is defined as the quotient of a term algebra.
We begin with the operators of action structures, and arrive at action calculi by three
further steps. The first step is to introducenaming constants; these give power to an
action structure to manipulate names, which act as the “wiring” or connective tissue
for all action calculi. Four equational axioms callednaming axiomsare imposed upon
the naming constants. This first step is common to all action calculi. The next step is
specific to each action calculus: we supply a family ofcontrol operators, or controls,
together with a set ofcontrol rules which define the reaction relation. The first two
steps yield a term algebra defined by all these operators; the final step is to quotient
this term algebra by the action structure and naming axioms. These quotient algebras
also have an appealing concrete presentation; each action can be considered as a
structure of molecules in the spirit of the Cham.

An action structurePIC, corresponding to a fragment of theπ-calculus [18],
was described in [17]; it now finds its place as an action calculus with just three
generators;ν (restriction),in (input) andout (output). An action calculus for Petri’s
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place-transition nets is generated byν, pre (pre-condition),post (post-condition) and
m (marking). Thus action calculi begin to achieve one of the aims of action structures
– to unite different models of concurrency in a common setting.

The action calculus concept goes beyond what was achieved in [17]. That paper
failed to express a full-fledged process calculus as an action structure (PIC falls
short of the fullπ-calculus, since it lacks the prefixing, summation and replication
constructions); instead, it showed how to build a process calculuson top of an arbitrary
action structure. We show here that this further structure is redundant; process calculi
can be exhibited as action calculi.

Organisation of the text

The main technical definitions and results1 of the paper appear in Sects. 4 and 6; the
remaining sections supply background, motivation and examples.

Section 2 reviews the basic definition of action structures. Section 3 reviews the
action structurePIC, an exemplar for the general definition of action calculus. Sec-
tion 4 defines action calculi formally in terms of their concrete presentation, molecular
forms; a graphical presentation calledaction graphsis also defined. Section 5 gives
examples of action calculi; it first shows howPIC can be extended to richer action
calculi by adding further generators, then presents both the typedλ-calculus and Petri
nets as action calculi. Action graphs are freely used, especially to present control
rules. Section 6 gives the algebraic characterization of action calculi; it shows that
each action calculus is isomorphic to the quotient of a term algebra by the action
structure axioms together with four further axiom schemata. Section 7 identifies fur-
ther lines of investigation. In particular, it sketches the recently discoveredcontrol
structures[14], which are action structures with additional structure. Each set of con-
trols equipped with dynamic rules determines not only an action calculus, but also
a category of control structures in which the action calculus is initial; these control
structures are therefore semantic interpretations of the action calculus.

2 Action structures reviewed

In this section we recall from [17] the basic notion of an action structure. We first
give it in category-theoretic terms, then elaborate it algebraically. A little familiarity
with the notion of monoidal category will help the reader, but no further knowledge
of categories is needed.

2.1 Definition (Action structure) A (dynamic) action structureA is a strict monoidal
category, with two extra items:

– a setXA referred to asnames, and for eachx ∈ XA an endo-functor uponA
known as anabstractor;

– a preorder↘A over each hom-set ofA, called reaction, which is preserved by
composition, monoidal product and abstraction, and for which the units are mini-
mal.

1 The results in this paper were first announced, without proofs, in [19]. However, the six axioms of
that paper have here been reduced to four.
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If the preorder is the identity relation, or is not supplied,A is called astatic action
structure.

More succinctly, an action structure is a preordered strict monoidal category with an
indexed set of endo-functors.

2.2 Algebraic elaboration

We shall work with the following algebraic characterization of action structures.
An action structureA possesses, first, a monoid (MA,⊗, ε) of objects; these are

the objects of the category and we shall call themarities. We shall usek, `,m, n, . . .
to range over arities. An arity may be, for example, a sequence of sorts (likeint,
bool) under concatenation; in the special case when there is only one sort, 1, the
monoidMA is just the natural numbers under addition. With each namex is associated
an arity; if this isk, we writex : k. For a vector~x = x1 · · ·xr of names with arities
k1 · · · kr, we write~x : k wherek = k1 ⊗ · · · ⊗ kr.

For each pairm,n of aritiesA possesses, second, a familyAm,n of actions; they
are the morphisms ofA as a category. Ifa is a member of this set we writea : m→n
and callm andn the sourceand target arities ofa; we even abuse terminology by
calling m→n just the arity ofa. We shall usea, b, c, . . . to range over actions.

Third, sinceA is a monoidal category with abstractors, there is a unit action
idm : m→m for each aritym, the operations of composition· , tensor or monoidal
product⊗, and an abstraction operatorabx for eachx ∈ XA. They obey the following
arity rules:

idm : m→m
a : k→` b : `→m

a · b : k→m

a : k→m b : `→n

a⊗ b : k ⊗ `→m⊗ n

x : k a : m→n

abxa : k ⊗m→k ⊗ n

Note that composition is written forwards; we writea·b where the standard in category
theory is to writeb ◦ a.

The status ofA as a static action structure is expressed by eight equational axioms,
which we now give. Here (and later) we imagine arities to be ascribed in any way
which respects the arity rules, and which gives the same arity to each side of an
equation:

a · id = a = id · a a · (b · c) = (a · b) · c
a⊗ idε = a = idε ⊗ a a⊗ (b⊗ c) = (a⊗ b)⊗ c
id ⊗ id = id (a · b)⊗ (c · d) = (a⊗ c) · (b⊗ d)
abxid = id abx(a · b) = (abxa) · (abxb).

Finally, a dynamic action structure possesses a reaction relation↘A, often written
as just↘ . It is a preorder on eachAm,n, soa↘ a′ implies thata anda′ have the
same source and target arities. Reaction is preserved by the operations·, ⊗, andabx,
i.e. a↘ a′ implies b⊗ a↘ b⊗ a′, abxa↘ abxa′, etc. The identities are required to
be minimal for the reaction relation, i.e.id↘ a implies a = id.
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2.3 Intuition

We think of tensor product (⊗) as parallel composition. Reactions withina and within
b can occur independently withina⊗b. But there may be reactionsa⊗b↘ c which do
not arise froma alone or fromb alone; these represent communication or interaction
betweena andb. In particular,a andb may “use” the same namex, and the manner
of use may constitute communication viax as a channel.

Abstractionabx allows parametrization upon the namex (not upon arbitrary val-
ues, as inλ-abstraction). Whenx is a channel as just described, then abstraction upon
x allows one to vary the interfacex, i.e. to vary the partners with which communi-
cation viax may take place.

Compositiona · b does not representsequentialcomposition. We may think of an
action as anactivity; then fora : k→` andb : `→m the arity` describes an interface
through which, in the compositiona · b, the activity ofb may be influenced by that
of a. We may think of this influence asinformation flowing across the interface, any
time during the continuing activity ofa andb. (Software terms for this are “dataflow”
or “pipelining”.)

Although tensor product and composition differ in how they permit interaction,
they also have common features. Indeed this must be so, since any tensor product
a⊗ b is expressible as a composition (a⊗ id) · (id⊗ b), and the identitiesid contribute
nothing to interaction.

The examples of reaction in Sect. 3 will clarify these intuitions.

3 An action structure for the π-calculus

In this section we define an action structurePIC, corresponding to a fragment of
the π-calculus. It is studied more fully in Part II of [17]. Here we shall use it as an
exemplar and motivation for the definition of action calculi to be given in Sect. 4.

We take the arities ofPIC to be (N,+, 0) – the natural numbers under addition.

3.1 Particles

PIC formalises two basic features of theπ-calculus; the passage of names through
ports which are also names, and the localisation of names by restriction. The con-
stituents of an action inPIC are theparticles π, given by

π ::= x(~y) | x〈~y〉 | νx .

The first two kinds areinput andoutput particles. In the input particlex(~y) the vector
~y consists of distinct names, which are binding occurrences. The third kind is a
restriction particle, and its name occurrence is also binding.

3.2 Actions

The essential part of anaction of PIC is just a collection of particles. It would be a
multiset, were it not for the binding discipline. We wish to allow an action to contain
a sequence such as

. . . x(y) y〈z〉 . . .
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representing the receipt of a namey followed by its use as a port. Thus the first
occurrence ofy binds the second. Adopting the convention that the scope of a binding
extends to the right, we therefore declare thebody ~π of an action to be apartial
sequence

π1 . . . πn

of particles; that is, a sequence in which we allow the commutationππ′ = π′π of any
adjacent pair, if neither binds a name occurring in the other. An actiona : m→n is
a particle form

a = (~x)~π 〈~y〉 ,
where~x is anm-vector of distinct names, theimported names, and~y is ann-vector
of names (not necessarily distinct), theexported names. The imported names in a
particle form are bound. The scope of each bound name – either imported or bound
by a particle – extends to the right of its binding occurrence, and includes the exported
names. We identify actions which only differ by alpha-conversion (change of bound
names). For clarity, we may enclose a sequence~π in square brackets.

As an example, let

a = (u) [ u〈x〉 ] 〈u〉 , b = (v) [ v(w) w〈y〉 x(z) ] 〈z〉 ;

then the compositea ·b will impose the substitution{u/v} upon the body ofb, yielding

a · b = (u) [ u〈x〉 u(w) w〈y〉 x(z) ] 〈z〉 .

We now define all the action structure operations forPIC.

3.3 Operations

First, the identities are given by

idm
def
= (~x)〈~x〉 (~x : m) .

We shall apply substitutions likeσ = {~u/~v}, where~v is a vector of distinct names, to
various syntactic formsF ; we denote byσF the result of simultaneously replacing
each free occurrence ofvi in F by the correspondingui, first alpha-convertingF to
change any bound uses of~u. Note that only a name can replace a name; this contrasts
with the more familiar form of substitution in which arbitrary terms replace variables.

Composition, product and abstraction are given as follows, where we assume
a = (~u)~π 〈~v〉, b = (~x) ~% 〈~y〉 and that neither binds a name occurring in the other:

a · b def
= (~u)~π σ~% 〈σ~y〉 (σ = {~v/~x})

a⊗ b
def
= (~u~x)~π ~% 〈~v~y〉

abxa
def
= (x~u)~π 〈x~v〉 .

Thusa⊗ b is simply the juxtaposition of the two actions; no order is dictated by the
concatenation of the bodies, since the convention ensures that~π~% = ~%~π in this case.
But in a · b the substitutionσ may replace some names free in~% by names bound in
~π, and then~π (σ~%) /= (σ~%)~π.

It is a routine matter to verify the action structure axioms.
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3.4 Dynamics

The reduction relation↘1 of PIC is defined as follows. Whenevera contains a
subsequence likeu〈~v〉u(~w), i.e. whenevera takes the form

(~x)~π [ u〈~v〉u(~w) ] ~% 〈~y〉

(after suitable commutations), we have

a ↘1 (~x)~π σ~% 〈σ~y〉,

whereσ is the substitution{~v/~w}. We callu〈~v〉u(~w) a redex of a. As an illustration,
continuing the example at the end of 3.2 we have

a · b = (u)[ u〈x〉u(w)w〈y〉x(z) ]〈z〉
↘1 (u)[ x〈y〉x(z) ]〈z〉
↘1 (u)〈y〉 .

Note thata · b has two reductions, even thougha and b alone have none. Note also
that the port of a redex (in the example, firstu thenx) may be free or bound.

In contrast, consider:

a = (u) [ u〈x〉 u(v) ] 〈v〉 , b = (v) [ w〈v〉 w(z) ] 〈z〉 .

In this case, botha and b contain redexes, so we havea↘1a′ = (u) [ ] 〈x〉 and
b↘1b′ = (v) [ ] 〈v〉. In a · b there is no requirement thata react beforeb, so we have
two reaction sequences:

a · b ↘1 a′ · b ↘1 (u) [ ] 〈x〉
a · b ↘1 a · b′ ↘1 (u) [ ] 〈x〉 .

This illustrates the point made in 2.3 that composition represents dataflow, not se-
quential composition.

One can check that↘1 is preserved by the operations; for examplea↘1 a′ implies
b · a↘1 b · a′. The reaction relation↘ is defined to be (↘1)∗, the transitive reflexive
closure of reduction.

3.5 Discussion

PIC has considerable expressive power; for example it encodes the linearλ-calculus
naturally, mimickingβ-reduction by reaction. The encoding is along the lines of [16].
But PIC needs to be extended if it is to be a useful calculus of processes. The
extensions toPIC defined in Sect. 5 below provide the expressive power of the original
π-calculus, while remaining entirely within the framework of action structures.

We shall now show howPIC is an instance of a more general construction. We
begin by showing how all actions with empty bodies can be generated.
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3.6 Naming actions

We call the following actionsnaming actions:

〈x〉 : 0→1
def
= ( )[ ] 〈x〉

ω : 1→0
def
= (x)[ ] 〈 〉 .

It is easy to show that every actiona = (~x)[ ] 〈~y〉, with an empty body, can be
expressed in terms of naming actions via the action structure operations as defined
in 3.3. For example,

(xy)[ ] 〈yy〉 = ω ⊗ aby〈y〉 .
These body-free actions are just concerned with wiring; they form the export vector
from the import vector by copying, permuting and discarding.

3.7 Control constants

Each particleπ of PIC may have some free and some binding occurrences of names.
Indeed, if we ignore dynamics, the only difference among the three kinds of particle is
in the number of free and bound names they carry. We therefore reveal the generality
of particle formation more clearly if we simply declare that there are (forPIC) three
control constants

ν : 0→1
out : 1+m→0

in : 1→m ,

and that for any control constantK : m→n there are particles of the form

〈~y〉K(~x) (|~y| = m, |~x| = n)

where the names~x are distinct and binding. Thus our three forms ofPIC particleνx,
x〈~y〉 andx(~y) are more truly written

〈 〉ν(x) , 〈x~y〉out( ) , 〈x〉in (~y) .

Note that the free names in each particle are written first, since the scope of the names
bound by the particle must not include them.

In fact, we can associate with each control constantK an action(~x)[ 〈~x〉K(~y) ]〈~y〉
containing just a single particle. Thus forPIC we define

ν
def
= ( )[ 〈 〉ν(x) ]〈x〉

out
def
= (x~y)[ 〈x~y〉out( ) ]〈 〉

in
def
= (x)[ 〈x〉in (~y) ]〈~y〉 .

It is now easy to show thateveryaction inPIC is expressible in terms of the naming
actions and control constants, via the action structure operations.

Moreover, the dynamics ofPIC is elegantly expressible in these terms. Let us
define

outx : m→0
def
= (〈x〉⊗ idm) · out

inx : 0→m
def
= 〈x〉 · in ;
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then it can be verified that the reaction relation forPIC given in 3.4 is the smallest
preorder↘ preserved by the action structure operations, and obeying the rule

outx ⊗ inx ↘ idm .

Thus we see clearly what is specific toPIC: its set of control constants, their arities,
and their dynamics as expressed by the above rule. In a similar way we may define a
wide variety of action structures, each one determined by a given setK of control
constants and a set of dynamic rules calledcontrol ruleswhich determine their mean-
ing. According to Definition 4.12 to follow, each action structure built in this way
(with reaction rules also given forK ) is an action calculus, denoted byAC(K ).
PIC = AC(ν, out, in ) is just a special case of this uniform construction.

However, the action calculi generated in this way are not sufficiently general; they
lack an important control feature. In these calculi, ifa↘ a′ is a possible reaction,
then it may occur in any context; there is no way to delay it until some other activity
is complete, or to make it conditional on the outcome of that activity. Definitions 4.4
and 4.12 will remove this deficiency.

4 Controls and molecular forms

In this section we formally define a class of action structures which we shall call
action calculi. Their actions are more general than the particle forms discussed in the
preceding section; in fact a particle〈~y〉K(~x) is a special case of a richer construction
which we shall call amolecule. This notion of molecule is similar to that of Berry
and Boudol [3]; one difference is that our molecules can bind one another, since a
molecule is a name-binding operator. The molecules of any action calculus are formed
from generators which we shall callcontrol operators, or simply controls.

A control operator is a generalisation of the notion of control constant; its purpose
is to control the activity of subactions. An example is the guarding constructiona.P
of CCS;P cannot act untila has happened. Sequential compositionP ;Q in CSP is
another example;Q cannot act untilP has finished acting. Lambda abstraction in the
lazy λ-calculus is a third example; the redex (λxM )N must be reduced beforeM is
reducible.

An action calculus will be determined by a setK of controls, which we call a
signature, together with a setR of control rules which we shall define later. We let
K range over controls.

4.1 Definition (Control) A control ~K is an operator which allows the construction
of an actionK(~a) from a sequence~a of actions, subject to arule of arity having the
following form:

a1 : m1→n1 · · · ar : mr→nr
K(a1, . . . , ar) : m→n

(χ)

where the side-conditionχ may constrain the integerr and the aritiesmi, ni,m, n. If
r is fixed, it is called therank of K; otherwise we say thatK hasvariable rank .

An example of a signature isK = {ν, out, in}; with appropriate arity rules and
control rules it determinesPIC, presented formally in Sect. 5.1. Its controls all have
rank 0; that is, they are control constants. Another example isK = {λ, ap}, where
λ has rank 1; in Sect. 5.5 we see that it determines theλ-calculus (either simply typed
or type-free, depending on the arity monoid).
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From now on we assume a fixed denumerable name-setX. We also impose a
constraint upon the monoidM of arities of an action calculus, bearing in mind its
operational purpose. We require thatM be freely generated by a set ofprime arities
p, q, . . . , and that names be associated only with prime arities, infinitely many names
with each prime.

We are now ready for our first presentation of action calculi, in terms of syntactic
constructions known asmolecular forms.

4.2 Definition (Molecules and molecular forms)Let K be a signature. Themolec-
ular forms over K are syntactic objects; they consist of the actionsa defined as
follows, in terms ofmoleculesµ:

a ::= (~x) ~µ 〈~u〉 (~x : m, ~u : n, a : m→n)

µ ::= 〈~v〉K~b (~y) (~v : k, ~y : `, K~b : k→`) .

Moleculesλ, µ, . . . are binding operators. In the above moleculeµ, the names〈~v〉
occur free; they are the means by which it is bound into an action. In the above action
a, any name-vector in round brackets – either at the head ofa or at the right end of
a molecule in~µ – is binding, and its scope extends rightwards to the end ofa. Names
which are not thus bound are free ina. We writefn a for the free names ofa. Alpha-
conversion of bound names is allowed. We assume that no name has more than one
binding occurrence in any molecule or action.

In a above,~x are called theimported namesand~u theexported ones. Thebody
~µ = µ1 · · ·µr, sometimes written[ µ1, . . . , µr ], is a possibly emptypartial sequence
of molecules, in which any two adjacent molecules may be commuted if neither binds
a name occurring free in the other.

As an example, supposeK contains controlsK1,K2,K3 of rank 0, 1, 0 respectively;
then, under suitable rules of arity, a possible action is

a = (x1x2x3) [ 〈x1〉K1 (u1u2), 〈x2x〉K2b (v), 〈u2x2v〉K3 (w) ] 〈u1x〉
whereb = (z)〈u2zy〉 .

Note that in this case no adjacent pair of molecules can be commuted, since the first
two bind names in their successors.

4.3 Action graphs

Molecular forms can be presented graphically byaction graphs, which we now de-
scribe informally.

We shall use rectangles for actions and ovals for molecules. For an actiona with
arity 3→ 2 and a moleculeµ whose control construction has arity 2→ 1 we draw
respectively

a
�� ��µsss cc cc s

Rectangles and ovals are nested alternately. Asource (•) stands for a binding oc-
currence of a name; asink (◦) stands for a bound or free occurrence. To each sink
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corresponding to a bound occurrence, an arc is drawn from the source which binds
it; each free occurrence of a name is labelled by the name. Here is the graph which
represents the example displayed above:
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Such diagrams help in understanding action calculi; in particular, we shall use them
to display control rules. The graphs can be treated with rigour, and will be formally
presented in Ole Jensen’s forthcoming PhD thesis [10]. They may be preferred to
molecular forms for many purposes.

We now define the action structure operations over molecular forms.

4.4 Definition (Action calculi: statics)A static action calculuscomprises a signature
K , together with the action structure whose actions are the molecular forms overK ,
and whose operations are defined as follows. Assumea = (~u)~λ 〈~v〉 andb = (~x) ~µ 〈~y〉 are
molecular forms in which no name which is bound in one occurs in the other. Then
we define

idm
def
= (~x)〈~x〉 (~x : m)

a · b def
= (~u)~λ σ~µ 〈σ~y〉 (σ = {~v/~x})

a⊗ b
def
= (~u~x)~λ ~µ 〈~v~y〉

abxa
def
= (x~u)~λ 〈x~v〉

where{~v/~x} is the simultaneous substitution of~v for ~x.
We call this the static action calculus overK , and denote it byACs(K ).

These operations are easily represented graphically. We shall not define the operations
on graphs formally, but just suggest them to the reader as follows:

ss cc a b
b

a
a

s c
-
- -�

?c �
?cx\

x\

id2 a · b a⊗ b abxa

In constructing the graph ofabxa, an arc is taken from the new source (shown) to
each sink labelledx in a, and the labelx is removed (shown asx\).

It is easy to establish the following, justifying our definition:

4.5 Proposition With the operations of Definition 4.4,ACs(K ) is a static action
structure.
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We now introduce the naming actions exactly as forPIC (see 3.6):

4.6 Definition (Naming actions)Thedatum 〈x〉 (for each namex) and thediscard
ω are actions defined as follows:

〈x〉 def
= ( )〈x〉

ω
def
= (x)〈 〉 .

We also generalise the control constants ofPIC (see 3.7) to controloperations:

4.7 Definition (Control operations)Each controlK, is defined as acontrol operation
upon molecular forms as follows:

K(~a)
def
= (~x) 〈~x〉K~a(~y) 〈~y〉 (~x, ~y not free in~a) .

It is now easy to establish

4.8 Proposition (Generation) All actions in ACs(K ) can be defined using data,
discard and controls together with the action structure operations.

However,ACs(K ) is not freely generated in this way. Certain equations, such as
〈x〉 · ω = idε, hold in ACs(K ) but are not provable from the axioms of action
structures. This fact motivates our introduction of further axioms in Sect. 6.

4.9 Derived abstraction

The reader may query the definition of abstractionabxa
def
= (x~u)~λ 〈x~v〉, for a =

(~u)~λ 〈~v〉. Why is x exported? Indeed, ifa : m → n one might expect the arity
abxa : k ⊗m→n rather thanabxa : k ⊗m→k ⊗ n. In fact we may define another
(but non-functorial) form of abstraction as follows:

(x)a : k ⊗m→n
def
= (x~u)~π 〈~v〉 .

Then we can easily show that(x)a andabxa are interexpressible, thus:

(x)a = abxa · (ω ⊗ id)
abxa = (x)(〈x〉⊗ a) .

It appears that each form of abstraction has advantages; neither is clearly more con-
venient for all purposes.

We can think of the free namesfn a of a as the names upon whicha “depends”
non-trivially. Another way of thinking ofa “depending” uponx is thatabxa should
differ from abya for any y not free ina. This intuition is justified by the following:

4.10 PropositionFor every actiona and namex, each of the equationsabxa = id⊗a
and (x)a = ω ⊗ a holds if and only ifx does not occur free in an actiona.

Indeed this is suggested by our action graphs; in the graph forabxa, if x is not free
in a then no arcs are added in addition to the horizontal one.
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We now introduce reaction rules, in order to provide the dynamics of molecular
forms.

4.11 Definition (Control rule) A control rule over a signatureK takes the form

t[~a] ↘ t′[~a] ,

wheret and t′ are terms built from metavariables~a using data, discard and controls
together with the action structure operations.

The use of termst (rather than molecular forms) in presenting control rules anticipates
the term algebra introduced in Sect. 6. The use of metavariables~a is not strictly
necessary, since the above rule amounts simply to the infinite family of rules gained
by replacing~a by terms. But, as our examples show, the use of metavariables often
allows a finite presentation of the family.

4.12 Definition (Action calculi: dynamics)A (dynamic) action calculuscomprises a
signatureK and a setR of control rules overK , together with the action structure
ACs(K ) equipped with the smallest reaction relation↘ which satisfies the rulesR
(for all replacements of metavariables~a by actions).

We call this the (dynamic) action calculus overK and R, and denote it by
AC(K ,R).

Note thatACs(K ) is essentiallyAC(K ,∅). WhenR is understood, we often write
AC(K ) to meanAC(K ,R).

We have seen that the reaction relation ofPIC= AC(ν, out, in ) is generated by
the control rule

outx ⊗ inx ↘ idm,

where outx = (〈x〉 ⊗ id) ·out and inx = 〈x〉 · in ; that is, it is the smallest preorder
preserved by the action structure operations which satisfies this rule.

Expressed in molecular form, the control rule ofPIC is

(~y) [ 〈x~y〉out, 〈x〉in (~z) ] 〈~z〉 ↘ (~y) 〈~y〉 .
It may also be presented graphically:
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The controlling power of controls (not of rank 0) is due to the fact that a reac-
tion relation need not be preserved by controls; e.g. we may havea↘ a′ but not
Ka↘Ka′.

Control mechanisms of arbitrary complexity may be introduced into action calculi;
we do not expect to postulate a basic family of controls which is in some sense
complete. But the action calculus framework can save work in setting up calculi for
interaction, since only the controls need to be specified – and indeed may be shared
among the calculi. It also allows us more readily to compare and classify such calculi,
on the basis of their controls and associated dynamic rules.

We conclude this section by mentioning briefly the simplest action calculus of all.
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4.13 The trivial action calculus

The simplest action calculus isACs(∅). It consists just of body-free molecular forms
(~x)[ ] 〈~y〉, with the identity relation as reaction relation. Proposition 4.8 asserts that it
is generated by the naming actions together with the action structure operations. The
graphical forms contain no ovals (molecules); they are just “wiring”. We may think
of ACs(∅) as the connective tissue which we use to build more interesting action
calculi; we present several examples of these in the following section.

5 Examples of action calculi

We start this section with a review ofPIC, which is justAC(ν, out, in ). This is the
essentialπ-calculus, as it contains no more than the basic controls for restriction and
name-passing. Then we enumerate a sequence of fragments ofπ-calculi, with addi-
tional controls:boxing (which may also be calledguarding), choiceand replication.
These all come intoπ-calculus as defined in [15], and together they appear to provide
the same expressive power. We continue with an action calculus for theλ-calculus in
5.5, and conclude the section by outlining an action calculus of Petri nets in 5.6. In
most cases we use action graphs to illustrate the control rules.

In one case, theπ-calculus with boxing, we state a theorem which asserts that the
action calculus represents, in a precise sense, the fragment of theπ-calculus to which
it corresponds. Similar theorems are believed to hold in the other cases.

Our presentation in each case is quite brief, since (once the arities are defined)
each action calculus is determined just by its controls and their dynamics. ForPIC
and its extensions, we take the arities to be the natural numbers. For theλ-calculus
and Petri nets we need a little more structure on the arities.

5.1 Basicπ-calculus:PIC = AC(ν, out, in )

Controls ν, out, in (rank 0)

Arity rules ν : 0→1
out : 1+m→0 in : 1→m

Derived controls outx
def
= (〈x〉⊗ idm)·out

inx
def
= 〈x〉·in

Control rule outx ⊗ inx ↘ idm

One might have expected the control rule to be stated in the form

〈~y〉·outx ⊗ inx ↘ 〈~y〉 ;

but in fact these two rules generate the same reaction relation, because of the closure
conditions. In Sect. 4.4 we presented this control rule in graphical form.
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5.2π-calculus with boxing:AC(ν, out, box)

We now present a more realistic fragment of theπ-calculus. In order to emphasize
that the representation is precise, we shall present the calculus and its reduction rules
first as a process calculus in the style of [15], then as an action calculus. Finally,
we state a proposition which asserts that the latter is a faithful representation of the
former.

The termsP of the process calculusP are

P ::= 0|x〈~y〉|x(~y).P |P |Q|(νx)P .

The first is the empty process; the second is a message~y sent along channelx; the
third is the input alongx of a message which is bound to~y in the continuationP ;
the fourth is parallel composition; the last is restriction. This variant ofπ-calculus
allows input guardsx(~y).P , but notoutput guardsx〈~y〉.P . It was introduced as the
ν-calculusby Honda and Tokoro [8], who show that output guarding can in fact be
defined in terms of input guarding. (See [9] for a fuller presentation.)

As in [15], we first define a structural congruence relation≡ over process terms,
by the following equations:

P ≡ Q wheneverP is alpha-convertible toQ ;
P |Q ≡ Q|P, P |(Q|R) ≡ (P |Q)|R, P |0≡ P ;
(νx)(νy)P ≡ (νy)(νx)P, (νx)(P |Q) ≡ P |(νx)Q (x not free inP ) .

Then the reduction relation→ over terms is the smallest closed under structural
congruence which obeys the following rules:

comm : x〈~z〉 | x(~y).P → {~z/~y}P

par :
P→P ′

P | Q→P ′ | Q res :
P→P ′

(νx)P→ (νx)P ′

Note in particular that fromP → P ′ we cannot inferx(~y).P → x(~y).P ′; the input
prefix guards the reduction ofP .

We now define the action calculusAC(ν, out, box), in the same style asPIC:

Controls ν, out (rank 0)
box (rank 1)

Arity rules ν : 0→1 out : 1+m→0
a : m→n

boxa : 1→n

Derived controls outx
def
= (〈x〉⊗ idm)·out

boxxa
def
= 〈x〉·boxa

Control rule outx ⊗ boxxa ↘ a

It is clear thatin : 0→m is redundant in the presence ofbox, as it is essentially
box idm.

In Sect. 4.4 we presented the simpler ruleoutx⊗ inx↘ id both in molecular form
and graphically. To show the correspondence, let us do the same for thebox rule. In
molecular form it is
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(~y) [ 〈x~y〉out, 〈x〉boxa(~z) ] 〈~z〉 ↘ a ,

while in graphical form it is
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We now address the question of how the process calculusP is embedded in
AC(ν, out, box). In fact, we shall define a translation̂(−) : P → AC(ν, out, box).
The translationP̂ will always have arity 0→0, and is defined as follows (using〈~y〉
to stand for〈y1〉⊗ · · · ⊗ 〈yr〉):

0̂
def
= id0

x̂〈~y〉 def
= 〈x~y〉 · out

\x(~y).P
def
= 〈x〉 · box((~y)P̂ )

\P | Q def
= P̂ ⊗ Q̂

\(νx)P
def
= ν · (x)P̂ .

We should observe that not every actiona : 0→0 of AC(ν, out, box) lies in the image
of this translation. In particular, sincêP has always arity 0→0, the action parameter
of a box molecule always has arity of formm→0, and hence thebox molecule binds
no names. In fact the action calculus framework allows dataflow between processes in
a way in which the standardπ-calculus (and in particular the fragmentP considered
here) does not.

The following theorem asserts thatAC(ν, out, box) representsP faithfully, via
our translation.

Theorem For all P andQ in P :

(1) P ≡ Q iff P̂ = Q̂ .
(2) If P→Q thenP̂ ↘1 Q̂ .
(3) If P̂ ↘1 a then for someP ′, P→P ′ and P̂ ′ = a .

We omit the proof. It is best done with the help of a (partial) inverse translation from
AC(ν, out, box) to P ; this can be defined inductively on the structure of molecular
forms.

5.3π-calculus with boxing and choice:AC(ν, out, box, choose)

The foregoingπ-calculusP can be refined in several ways, and we shall briefly
discuss action calculi corresponding to two of them. In each case there should be no
difficulty in proving a theorem which asserts that the correspondence is faithful.
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The first refinement is to add choice. We shall restrict consideration to choice
among inputs. This amounts to replacing the input formx(~y).P by a finite sum of
such forms; then thecomm rule is changed to

comm : x〈~z〉 | (. . . + x(~y).P + . . .) → {~z/~y}P
To match this in an action calculus, we simply add a controlchooseof variable rank
and modify the control rule, as follows:

Controls ν, out (rank 0)
box (rank 1)
choose (variable rank)

Arity rules ν : 0→1 out : 1+m→0
a : m→n

boxa : 1→n
a1 : 0→n · · · ar : 0→n

choose(a1, . . . , ar) : 0→n

Derived controls outx
def
= (〈x〉⊗ idm)·out

boxxa
def
= 〈x〉·boxa

Control rule outx ⊗ choose(~b1, boxxa, ~b2) ↘ a

The reader should have no difficulty in defining controls to allow choice among both
inputs and outputs, as in [15].

5.4π-calculus with boxing and replication:AC(ν, out, box, rep)

Our second refinement ofP is to add replication. We consider a more specific
construction than the form !P of [15], but one which covers most current uses of
replication. We add a new form !x(~y).P with reduction rule

rep : x〈~z〉 | !x(~y).P → {~z/~y}P | !x(~y).P .

The matching action calculus is as follows:

Controls ν, out (rank 0)
box, rep (rank 1)

Arity rules ν : 0→1 out : 1+m→0
a : m→n

boxa : 1→n
a : m→0

rep a : 1→0

Derived controls outx
def
= (〈x〉⊗ idm)·out

boxxa
def
= 〈x〉·boxa

repxa
def
= 〈x〉·rep a

Control rules outx ⊗ boxxa ↘ a
outx ⊗ repxa ↘ a⊗ repxa
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The graphical form of the second control rule is
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A more explicit form of the rule is

〈~z〉·outx ⊗ repxa ↘ 〈~z〉·a⊗ repxa ,

which shows clearly that a copy of the replicated action is “spun off” with parameters
~z received viax.

All our extensions ofPIC can of course be combined into

AC(ν, out, box, choose, rep) ;

for practical purposes this appears to be as expressive as theπ-calculus as presented
in [15]. The originalπ-calculus [21] contained an operator calledmatching, which is
also expressible as a control.

5.5λ-calculus:LAMC = AC(λ, ap)

The controls inLAMC represent lambda-abstraction and function application. To
state their arity rules we need a little more structure upon the arity monoidM , freely
generated by a setP of primes. We require exponentiation, in the form of an injective
map⇒: M ×M→P . Thus for each pairm,n of arities there is a prime “functional”
arity m ⇒ n. (Since⇒ is injective, the setP of primes is at least denumerably
infinite.)

Controls λ (rank 1)
ap (rank 0)

Arity rules
a : m→n

λa : ε→m⇒n
ap : (m⇒n)⊗m→n

Control rules σ : (λa⊗ id) · (x)b ↘ {λa/x}b (a : m→n, x : m⇒n)
β : (λa⊗ idm) · ap ↘ a (a : m→n)

Theσ rule distributes the “code”λa to all points where it is used. The substitution
{λa/x} means that any free occurrence〈x〉 of x in b –and this is the only possible kind
of free occurrence– is replaced byλa. This rule can in fact be replaced by rules which
perform the substitution incrementally, rather than in a single step; this bringsLAMC
into closer correspondence with theλσ-calculus of explicit substitutions (Abadi et
al [1]).
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Theβ rule corresponds toβ-reduction. It is revealing to compare it with thebox
rule of Sect. 4.4. In molecular form it is

(~y) [ λa(x), 〈x~y〉ap(~z) ] 〈~z〉 ↘ a ,

while in graphical form it is
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The two controlsλ andap were introduced in [20] for the more general purpose of
lifting an arbitrary action calculusAC(K ) to higher order. (In that paper, the code
λa was writtenpaq.) Thus theLAMC as presented here is just the lifting ofAC(∅).
This illustrates again the sharing of controls among different action calculi.

Our prescription of the arity monoid (M,⊗, ε) for LAMC allows some freedom.
One alternative is to take the monoidfreely generatedby some basic elementsB and
the binary operation⇒; in that case, the primes areP = B ∪ {m⇒n | m,n ∈ M}
and are all distinct, so we have effectively the simply typedλ-calculus. But in general,
our requirement that⇒: M ×M→P be an injection allows thatp = p⇒p for some
prime p. In that case, we have the type-freeλ-calculus embedded inLAMC. The
embedding is quite easy to define, just as we defined an embedding of (part of) the
π-calculus in 5.2; we omit details. As an example, consider theλ-termΩ = ωω where

ω = λx.xx (self-application). Definecopy
def
= (x)〈xx〉 and letb = copy · ap; thenΩ

and its infinite reduction are represented by

(λb⊗ λb) · ap ↘ λb · b ↘ (λb⊗ λb) · ap ↘ . . . ,

the first two reductions being by theβ andσ rules respectively. Theσ reduction
appears thus in graphical form:

�� ��
�
�

�
�b s cc s cλ ap�
-- - HHj

λb · copy · ap ↘ (λb⊗ λb) · ap

�
�

�
�b sλ

�
�

�
�b sλ �� ��

apcc s c�


?

6

-

5.6 Petri nets:NETC = AC(ν,m, pre, post)

We shall present as an action calculusNETC, one of the action structures for Petri
nets which were outlined in [17]. It consists first of a monoidal category of place-
transition nets in the spirit of Meseguer and Montanari [12]. What is new here is the
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parametrization of nets both on places and on transitions. There are just two prime
arities:p andt. The name-setX is partitioned into two infinite sets; theplace-names
p, q, . . . : p and thetransition-namest, u, . . . : t.

The first control is restriction (ν), in common withPIC. The other controls cor-
respond to marking a place (m), and declaring a place to be either a pre-condition
(pre) or a post-condition (post) of a transition. Here are the constituents ofNETC:

Controls ν, m, pre, post (rank 0)

Arity rules ν : ε→p(p ∈ {p,t}) m : p→ε
pre : p⊗ t→ε post : p⊗ t→ε

Derived controls m~p
def
= 〈p1〉·m⊗ · · · ⊗ 〈pk〉·m (~p : pk)

pret~p
def
= 〈p1t〉·pre⊗ · · · ⊗ 〈pkt〉·pre (~p : pk)

postt~q
def
= 〈q1t〉·post⊗ · · · ⊗ 〈q`t〉·post(~q : p`)

trans~p;~q
def
= ν · (t) (pret~p ⊗ postt~q)

Control rule m~p ⊗ trans~p;~q ↘ m~q ⊗ trans~p;~q

We shall first consider actions of arityε→ ε; they are just place-transition nets in
which some or all of the places and transitions bear names, each name occurring at
most once in a net. To each arc and each token of a net corresponds a single particle.
Here are three examples of Petri nets as they are usually drawn, together with their
algebraic forms:

a = pretp1
⊗ posttq1q2

⊗mq2
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c = ν ·(t)b
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The expressions for the first two nets,a and b, should be clear on inspection of
the definition of derived controls. Note particularly thatevery place and transition is
named in these two nets.

Now compareb with the third netc, whose transition is not named. The name has
been hidden by composing restriction,ν, with an abstraction.

This difference between named and un-named transitions is crucial for the alge-
braic operations upon nets inNETC. In forming the product of two nets, like-named
places and transitions are coalesced. Thus the two productsa⊗b anda⊗c are different:
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a⊗ b
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Let us now use this distinction to explain the control rule – especially the rôle played
by ν in the rule. Considera⊗ c first. According to the normal understanding of Petri
nets, the un-named transition ofa ⊗ c can fire – as it can inc alone. Indeed, this is
allowed by our control rule, since we note that

c = mp2p2p3 ⊗ transp2p3;q2 ,

so the rule allows the reactionc↘ c′, where

c′ = mp2q2 ⊗ transp2p3;q2 ;

a token has been removed from each ofp2, p3 and one placed onq2, exactly as is
dictated by the conventional net firing rule.

Now considera⊗b. According to the normal understanding of Petri nets, its single
transition cannot fire (since it lacks a precondition); therefore, because product (⊗)
must preserve reaction, the single transition ofb must be unable to react inNETC.
Indeed, the control rule does not allow it to react, since it contains no restriction.

In NETC, a net must be seen only as apartial description of the pre- and post-
conditions on its named transitions, since a coalescence can add further conditions.
It is only when a transition’s name is restricted (i.e. removed from the net-diagram)
that we can assume its description to becomplete, and thus know when it may fire.

This shows thatNETC contains more than Petri nets as they are normally con-
sidered; it contains also partial descriptions of nets. Such partial descriptions can be
combined by product and composition; they can also be instantiated, using abstrac-
tions. Such instantiation may even coalesce two existing (named) places; for example
the netb′ = 〈p2〉 · (p3)b (not shown) is likeb except that placep3 is coalesced with
placep2.

Hitherto we have drawn Petri nets in the conventional way. As an example of
how they appear as action graphs, here is the reactionc↘ c′ discussed above. Note
how a control moleculeν represents an un-named transition.
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mp2p2p3 ⊗ transp2p3;q2 ↘ mp2q2 ⊗ transp2p3;q2
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We now have two ways to present Petri nets graphically; the conventional way, and
as action graphs. It appears that the former is just a streamlined version of the latter,
exploiting the particular nature of theNETC controls.

Space prevents us from discussing the constructions of this action calculus further,
but several points arise even from what has been said.

First, it appears that the notion of restrictionν is of general significance, not
merely confined to theπ-calculus.

Second, it seems worth pursuing the theory of parametric Petri nets; its algebraic
treatment appears remarkably natural, and can be based on four simple controls.

Third, it is worth considering how to combine the basic ideas of net theory with
the dynamic reconfiguration suggested by theπ-calculus, within the single framework
of action calculi. The form of the control rule inNETC ensures that the structure of
a net remains unchanged after the firing of a transition, as is standard in net theory;
but in the context of action calculi it is easy to propose variants of the rule which
allow some reconfiguration to occur.

Fourth, it is striking that only controls with rank 0 are needed to define nets. This
suggests that careful study is needed to determine in what sense parametric controls
add expressive power to action calculi.

6 The equational theory of action calculi

We shall now give an alternative characterisation of action calculi, which reveals
clearly their algebraic status.

The characterisation is this: For each setK of controls, the action calculus
AC(K ) is isomorphic to the quotient of a term algebra by a certain congruence.
The terms are generated by the data, discard, action structure and control operators;
the congruence is induced by the basic action structure axioms together with further
axioms. The latter, which we shall call thenamingaxioms, are common to all action
calculi.

To define the terms we first introduce constants〈x〉 : ε→ p (for eachx : p) and
ω : p→ε (for eachp), corresponding to the naming actions.

6.1 Definition (Terms) The terms over K , denoted byT(K ), are generated as
follows (we lets, t range over terms):

t ::= id|s · t|s⊗ t|abxt|〈x〉|ω|K~t
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where the constructions have arities dictated by the arity rules. The notions offree
nameandbound nameare standard;abx bindsx and〈x〉 represents a free occurrence
of x. The set of names free int is denoted byfn t.

6.2 Definition (Derived operations)We define an alternative form(x)t of abstrac-
tion (see also 4.8, 4.9) and thepermutations pmn as follows, together with some
abbreviations:

(1) (x)t
def
= abxt · (ω ⊗ id)

(~x)t
def
= (x1) · · · (xr)t (~x = x1 · · ·xr, all distinct, r ≥ 0)

〈~x〉 def
= 〈x1〉⊗ · · · ⊗ 〈xr〉 (~x = x1 · · ·xr, r ≥ 0)

(2) pmn
def
= (~x~y)〈~y~x〉 (~x : m, ~y : n) .

Note thatpmn is defined using aparticular vector ~x~y of distinct variables; when
α-conversion is proven, we shall be justified in choosing these variables at will.

6.3 Definition (Theory AC) Theequational theory AC is the set of equations upon
terms generated by the action structure axioms together with the followingnaming
axioms:

γ : (x)t = ω ⊗ t (x 6∈ fn t)
δ : (x)(〈x〉⊗ idm) = idp⊗m (x : p)
ζ : pkm · (t⊗ s) = (s⊗ t) · p`n (s : k→`, t : m→n)
σ : (〈y〉⊗ idm) · (x)t = {y/x}t (t : m→n) .

An equivalent form ofγ is abxt = id ⊗ t; as we saw in Proposition 4.10, this is
one way of asserting thatx does not appear free in the molecular form corresponding
to t. The axiomδ asserts essentially that abstracting a name from the corresponding
datum is just the identity. The axiomζ is one of the coherence laws which assert that
the permutationsp constitute asymmetryon the underlying monoidal category; the
other two coherence conditions are provable inAC. Finally,σ asserts that to compose
a datum with an abstraction is the same as doing a textual substitution.

It is easy to see, informally, that these axioms hold when we think oft as a
molecular form. The essence of what follows is that these simple truths areall we
need to assert, above the action structure axioms, to characterize molecular forms
completely.

We shall writeT(K )/AC to mean the quotient of the term algebraT(K ) by
the congruence induced by the theoryAC. In order to prove that this quotient is
isomorphic to the static action calculusACs(K ) (presented in molecular form) we
first prove several consequences of the theoryAC. We shall writeAC ` s = t to mean
that s = t is provable inAC.
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6.4 Proposition The following are provable inAC:

(1) 〈x〉 · ω = idε

(2) (x)(s · t) = (x)s · t (x 6∈ fn t)
α : (3) (x)t = (y){y/x}t (y 6∈ fn t)

(4) (x)(t⊗ id) = (x)t⊗ id
(5) (x)(s⊗ t) = (x)s⊗ t (x 6∈ fn t)
(6) abxt = (x)(〈x〉⊗ t)
(7) abxt = id ⊗ t (x 6∈ fn t)
(8) (~x~y)t = (pmn ⊗ id) · (~y~x)t (~x : m,~y : n)
(9) (~x)〈~x〉 = id .

Proof

(1) AC ` 〈x〉 · ω = 〈x〉 · (x)idε γ
= idε . σ

(2) AC ` (x)(s · t) = abxs · (x)t 6.2(1)
= abxs · (ω ⊗ t) γ
= abxs · (ω ⊗ id) · t
= (x)s · t . 6.2(1)

(3) AC ` (y){y/x}t = (y)((〈y〉⊗ id) · (x)t) σ
= (y)(〈y〉⊗ id) · (x)t (2)
= (x)t . δ

(4) AC ` (x)(t⊗ id) = (x)({x/x}t⊗ id)
= (x)((〈x〉⊗ id)·(x)t⊗ id) σ
= (x)((〈x〉⊗ id ⊗ id) · ((x)t⊗ id))
= (x)(〈x〉⊗ id ⊗ id) · ((x)t⊗ id) (2)
= (x)t⊗ id . δ

(5) AC ` (x)(s⊗ t) = (x)((s⊗ id) · (id ⊗ t))
= (x)(s⊗ id) · (id ⊗ t) (2)
= ((x)s⊗ id) · (id ⊗ t) (4)
= (x)s⊗ t .

(6) AC ` abxt = abxt · (x)(〈x〉⊗ id) δ
= (x)(t · (〈x〉⊗ id)) 6.2(1)
= (x)(〈x〉⊗ t) .

(7) AC ` abxt = (x)(〈x〉⊗ t) (6)
= (x)((〈x〉⊗ id) · (id ⊗ t))
= (x)(〈x〉⊗ id) · (id ⊗ t) (2)
= id ⊗ t . δ

(8) AC ` (pmn ⊗ id) · (~y~x)t = (~x~y)(〈~y~x〉⊗ id) · (~y~x)t 6.2(2), (5)∗

= (~x~y)((〈~y~x〉⊗ id) · (~y~x)t) (2)∗

= (~x~y)t . σ∗
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(9) Induction on length of~x. Basis true by definition. Step:
AC ` (x~y)〈x~y〉 = (x)(~y)(〈~y〉 · (〈x〉⊗ id))

= (x)((~y)〈~y〉 · (〈x〉⊗ id)) (2)
= (x)(〈x〉⊗ id) induction
= id . δ ut

To demonstrate our isomorphism, we define translations back and forth between
ACs(K ) andT(K )/AC, and prove that they are inverse to one another.

We begin with a translation̂(−) : ACs(K )→ T(K )/AC. The translation̂a is
defined inductively on the structure of the molecular forma. First we translate each
a ∈ ACs(K ) to a term without assuming thata is subject to alpha-conversion and
commutation of molecules. Then we show that, ifa can be transformed tob by these
operations, their translations are provably equal inAC. The translation̂(−) is therefore
well-defined fromACs(K ) to T(K )/AC.

Note that some notations –e.g.〈x〉– are used both within molecular forms and for
terms. This abuse of notation is always consistent with our translation; it sometimes
makes the translation look like an identity function.

6.5 Definition (Translating molecular forms to terms) The function(̂−) is defined
inductively as follows:

\(~x) ~µ 〈~y〉 def
=

{
(~x)〈~y〉 if ~µ is empty

(~x)(〈~u〉 ·K~̂c · \(~x′)~µ′〈~y〉) if ~µ = λ~µ′, whereλ = 〈~u〉K~c (~x′).

The following is easily proved by induction ona:

6.6 Proposition fnâ = fn a.

Using this, the following can be proved simultaneously by induction ona:

6.7 Proposition The translation(̂−) preserves alpha-convertibility and substitution,
i.e.

(1) If b is an alpha-variant ofa thenα ` b̂ = â ;
(2) If σ is a substitution{~y/~x} thenα ` σ̂a = σâ .

Now we complete the proof that

6.8 Proposition The translation(̂−) : ACs(K )→T(K )/AC is well-defined.

Proof. We have already shown that the translations of alpha-variant molecular forms
are provably equal terms (byα). It remains to show that the translations of forms
which only differ by admissible commutation of molecules are provably equal inAC.

It will be enough to show fora : ε→n that

if a1 = µ1µ2 a anda2 = µ2µ1 a thenAC ` â1 = â2 ,

providedµ1 andµ2 are commutable. So let

µ1 = 〈 ~u1〉K1~c1(~v1) andµ2 = 〈 ~u2〉K2~c2(~v2) ,

where ~v1 are not free inµ2 and ~v2 are not free inµ1. Then
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AC ` â1 = 〈 ~u1〉 ·K1 ~̂c1 · (~v1)(〈 ~u2〉 ·K2 ~̂c2 · (~v2)â)
= 〈 ~u1〉 ·K1 ~̂c1 · ab~v1(〈 ~u2〉 ·K2 ~̂c2) · (~v1~v2)â

= 〈 ~u1〉 ·K1 ~̂c1 · (id ⊗ 〈 ~u2〉·K2 ~̂c2) · (~v1~v2)â by 6.4(7)
= (〈 ~u1〉·K1 ~̂c1 ⊗ 〈 ~u2〉·K2 ~̂c2) · (~v1~v2)â

= (〈 ~u2〉·K2 ~̂c2 ⊗ 〈 ~u1〉·K1 ~̂c1) · pm2m1
· (~v1~v2)â by ζ

= (〈 ~u2〉·K2 ~̂c2 ⊗ 〈 ~u1〉·K1 ~̂c1) · (~v2~v1)â by 6.4(8)
= â2 by symmetry. ut

It is worth noting that we have used all four axiomsγ, δ, ζ andσ in establishing
this well-definedness.

When working inAC we shall often abbreviateAC ` t = u to t = u, giving
reasons (e.g. the axiom used) where necessary.

From now on we shall write a superscriptM thus

idM ·M ⊗M abM
x 〈x〉M ωM KM

on the seven operations defined over molecular forms in Definitions 4.4, 4.6 and 4.7,
to distinguish them from the corresponding term-building operations inT(K ). Our
next task is to show that, as we expect, our translation respects this correspondence.

6.9 Proposition The translation(̂−) preserves the action structure operations, data,
discard and controls, i.e. the following are provable inAC:

(1) îdM = id (5) [〈x〉M = 〈x〉
(2) [a·Mb = â · b̂ (6) ω̂M = ω

(3) \a⊗Mb = â⊗ b̂ (7) \KM(~c) = K~̂c .

(4) \abM
x a = abxâ

Proof

(1) By 6.4(9).
(2) Leta = (~u)~λ 〈~x〉 andb = (~v) ~µ 〈~y〉, where (after suitable alpha-conversion) no name

bound in one occurs in the other. We use induction on the length of~λ. If ~λ is
empty thena = (~u)〈~x〉 and â = (~u)〈~x〉. Also b̂ = (~v)b̂0 where b0 = ~µ 〈~y〉. Now
a·Mb = (~u) σ~µ 〈σ~y〉, whereσ = {~x/~v}; so[a·Mb = (~u) σ̂b0 = (~u) σb̂0 by 6.7(2). On the
other hand

â · b̂ = (~u)〈~x〉 · (~v)b̂0

= (~u)(〈~x〉 · (~v)b̂0) by 6.4(2)
= (~u) σb̂0 by σ .

If ~λ = λ~λ′, whereλ = 〈~w〉K~c (~u′), then leta′ = (~u′) ~λ′ 〈~x〉. Then

[a·Mb = (~u)(〈~w〉 ·K~̂c ·\a′ ·Mb) by definition of (̂−)
= (~u)(〈~w〉 ·K~̂c · â′ · b̂) by induction
= (~u)(〈~w〉 ·K~̂c · â′) · b̂ by 6.4(2)
= â · b̂ .
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(3) It is an easy induction to prove that\a⊗M idM = â⊗ id, and that\idM⊗Mb = id⊗ b̂.
Then we can use case (2) above to deduce\a⊗Mb = (â⊗ id) · (id ⊗ b̂) = â⊗ b̂ .

(4) From 4.9 we have thatabM
x a = (x) M(〈x〉M⊗Ma). So

\abM
x a = (x)( \〈x〉M⊗Ma) by definition

= (x)([〈x〉M ⊗ â) by case (3)
= (x)(〈x〉⊗ â) by (5)
= abxâ by 6.4(6).

(5), (6), (7) Immediate. ut

We now turn to the translation in the other direction, fromT(K )/AC to ACs(K ).
We first define the obvious translation fromT(K ):

6.10 Definition (Translating terms to molecular forms) Define [[−]] : T(K ) →
ACs(K ) inductively as follows:

[[ id]]
def
= (x)〈x〉 [[ 〈x〉]] def

= 〈x〉M

[[s · t]] def
= [[s]] ·M [[ t]] [[ ω]]

def
= ωM

[[s⊗ t]]
def
= [[s]] ⊗M [[ t]] [[ K(~t)]]

def
= KM[[~t]] .

[[abxt]]
def
= abM

x [[ t]]

The following is an easy induction:

6.11 Proposition fn[[ t]] ⊆ fn t.

We cannot expect equality here; note that for terms we havefn (s · t) = fn s ∪ fn t,
but in general for molecular formsfn (a · b) /= fn a∪ fn b; considera = 〈x〉M, b = ωM.

The following is also an easy induction, since [[−]] is defined inductively on
term-structure:

6.12 PropositionThe translation[[−]] preserves the action structure operations, data,
discard, controls and substitution.

We now come to the important property of [[−]]:

6.13 PropositionThe translation[[−]] is a well-defined function fromT(K )/AC to
ACs(K ); that is, if AC ` s = t then[[s]] = [[ t]] .

Proof It is enough to prove the result wheǹs = t is an instance of a basic axiom
of action structures or one of the naming axioms. In each case, one uses the fact that
[[−]] is defined inductively on the structure of terms. In the case ofδ, it therefore
remains to show that(x) M(〈x〉M⊗M idM

m) = idM
p⊗m; this is routine calculation with the

operations as defined in 4.4 and 4.6. The caseζ is similar. In the case ofσ, one also
needs [[{y/x}t]] = {y/x}[[ t]] (Proposition 6.12). The case forγ ` (x)t = ω⊗ t (x 6∈ fn t)
works just becausefn [[ t]] ⊆ fn t (Proposition 6.11). For since alsox 6∈ fn [[ t]], we
have

[[ (x)t]] = (x) M[[ t]] by definition
= ωM ⊗M [[ t]] by Props 4.8,6.11
= [[ω ⊗ t]] by definition. ut
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We are now ready to prove that the molecular forms are, effectively, normal forms for
the theoryAC. We have already established that the two translations(̂−) and [[−]] are
well-defined betweenACs(K ) andT(K )/AC. We next show that they are mutually
inverse:

6.14 PropositionFor all termst, AC ` [̂[ t]] = t.

Proof Straightforward, since [[−]] is defined inductively via the operations, and̂(−)
preserves all of them (Proposition 6.9).ut

6.15 PropositionFor all molecular formsa, [[ â]] = a.

Proof We proceed inductively on the size ofa. The base case is easy. Now suppose
a = (~x)λ~λ′ 〈~y〉. If λ = 〈~z〉K~c(~x′) then

â = (~x)(〈~z〉 ·K~̂c · â′) wherea′ = (~x′) ~λ′ 〈~y〉 .

So we have

[[ â]] = (~x) M(〈~z〉M ·M KM[[ ~̂c ]] ·M [[ â′]])
= (~x) M(〈~z〉M ·M KM~c ·M a′) by induction
= a by calculation.

Finally, with Propositions 6.7–6.9 and 6.12–6.15 we have established

6.16 Theorem (Molecular normal form) The translations(̂−) and [[−]] between
ACs(K ) and T(K )/AC constitute a static isomorphism of action structures, which
moreover preserves the control operationsK ∈ K , the data〈x〉, the discardω and
the substitutions{~y/~x}.

This static isomorphism may be extended to a dynamic one by defining a reaction
relation↘ either onACs(K ) or on T(K ) by control rules, and transferring it to
the other by use of the static isomorphism.

7 Related and future work

Since action calculi are a special class of action structures of an operational character,
it is important to find the abstract interpretations of each calculus as a particular class
of action structures. Indeed, this was a prime reason for inventing the action structure
framework. The first step in this direction is taken by Mifsud, Milner and Power [14].
Given a signatureK and setR of control rules overK , a category CS(K ,R) of
action structures with added structure is defined called thecontrol structuresoverK
andR; the action calculusAC(K ,R) (equipped also with the naming and control
operations of 4.6 and 4.7) is shown to be initial in CS(K ,R). These categories are
characterized by equational axioms which depend only mildly uponK .

Action calculi rely on the concept ofnaming, since this is the means of building
molecular structures, and of defining those configurations which are susceptible to
reaction (redexes). Although explicit namesx, y, . . . are handy for this purpose, nam-
ing structure can in fact be presented more abstractly. Gardner [5] has defined a class
of closed (i.e. name-free) action calculi, and demonstrates a precise correspondence
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with those presented here. Hermida and Power [6] have given a name-free treatment
of control structures; theirfibrational control structuresprovide deeper mathematical
insight into the nature of the interpretations of action calculi.

Since there is a well-developed model theory for theλ-calculus, one expects
existing models to take their place naturally as control structures. It remains to verify
that this is so, or to tackle any problems which prevent it being so. For process
calculi there is not such a well-developed model theory, but the same task must be
attempted for models which do exist. In particular, CSP and its failures model should
be examined in this framework. Another approach to modelling process calculi has
been to quotient the syntactic algebra by a congruence, the most common being
bisimilarity. Some work in this direction is being done by Mifsud [13] for a version
of the π-calculus. A more general problem is to find a notion of bisimilarity which
applies uniformly to all – or a large class of – action calculi. This appears to require
some constraint upon the form which control rules may take.

This raises a broader question: Can we find means of classifying action calculi
in terms of their control rules? Once we have set up the action calculus framework,
it is evident that the entire difference between one action calculus and another lies
in their dynamics; we have thus provided a setting in which the variety of dynamic
disciplines can be analysed.

Acknowledgements.I owe much to intense discussions with Yoram Hirshfeld, around Christmas 1993. We
explored many paths, attractive and thorny; many were cul-de-sacs, but the exploration contributed to the
present ideas. I thank Adriana Compagnoni, Philippa Gardner, Ole Jensen, Benjamin Pierce, John Power
and Peter Sewell, for many suggestions which have improved the paper.

References
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