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Abstract. We unify the parallel composition rule of assumption-commitment specifi-
cations for respectively state-based and message-based concurrent processes. Without
providing language-dependent definitions, we first assume that the model of a process
can be given as a set of `sequences' (e.g., traces, state sequences). Then we assume
the existence of a merging operator that captures the compositionality of that model.
On this basis, we formulate a semantic parallel composition rule for assumption-
commitment specifications wherein the merging operator behaves as a parameter.
Then, by providing suitable language-specific definitions for the model of a process
and the merging operator, we transform the semantic rule into syntactic ones, both
for the state-based and message-based approaches to concurrency.

1 Introduction

In the concurrent programming community, communication between processes is usu-
ally modeled in two ways. The first one uses shared variables as a mean for com-
munication and the other one uses distributed message passing. Both approaches are
well established and have their own advantages and disadvantages.

In both cases, certain compositional methods for the development of parallel or
distributed systems are based on the assumption-commitment paradigm as this ap-
proach is called within the message-based concurrency community, also referred to
as the rely-guarantee paradigm within the state-based concurrency community. Exam-
ples may be found in e.g. [2, 17, 18, 21, 22, 26, 29, 31]. Intuitively, an assumption-
commitment specification of an open system (a process or a process network) asserts
that the commitment of a system holds provided that the system operates in an envi-
ronment that respects the assumption. In such state-based and message-based composi-
tional methods, parallel rules have been devised to compose assumption-commitment
specifications of parallel processes. These composition rules are usually hard to con-
struct because of mutual dependency: each process belongs to the environment of the
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other ones and the commitment of a process thus influences the assumptions of the
other ones.

Although this problem exists whatever communication model is adopted (state-
based or message-based), the corresponding assumption-commitment methods evolved
to different rules for parallel composition. In the state-based approach, a typical
premise of the rule for deducing a specification of Pl P2 from the specifications
of P, and P2 is of the form AV C1 = A2 [ 17, 27, 29, 30], where A is the assumption
of Pl lIP2, Cl the commitment of P1 , and A2 the assumption of P2 , i.e. the most
prominent operator is disjunction. In the message-based approach, the corresponding
premise is of the form A A Cl = A2 [18, 21, 31, 32], where A, Cl and A2 are as
before, i.e. the most prominent operator is conjunction. Essentially, disjunction in the
state-based case comes from the use of predicates on state transitions: a transition of
P, lIP2 is either a transition of Pl or a transition of P2. Conjunction in the message-
based case comes from the use of trace predicates: a joint communication of P l (lP2
is both a communication of Pl and a communication of P2.

The purpose of this paper is to establish more explicit relations between two spe-
cific parallel rules for assumption-commitment specifications. To achieve this goal,
we show that the parallel rules for state-based and message-based approaches are
particular instances of the same semantic rule. This semantic rule, which is inde-
pendent of the communication mechanism, takes its origin in [2, 4] and has been
further investigated in [12]; however, the version proposed here is slightly different
and more similar to the one in [3]. It is also more abstract in the sense that parallel
composition is represented by a semantic merging operator ® that can be instantiated
in several ways. Actually, this operator reflects the compositionality of the computa-
tional model. The soundness proof of the semantic rule can be carried out without a
concrete (language-dependent) definition for this operator.

Section 2 introduces the semantic basis of our approach, the semantic assumption-
commitment specifications and the semantic parallel composition rule. Furthermore
a check-list is given for deriving the syntactic rules. Section 3 gives the syntax and
the operational readiness semantics for both state-based processes and message-based
processes in order to be able to detect deadlocks and their absence. Section 4 shows
that the parallel composition rule for state-based assumption-commitment specifica-
tions is an instance of the semantic parallel composition rule. The same is done in
Sect. 5 for the parallel composition rule for message-based assumption-commitment
specifications. Related work is further discussed in Sect. 6.

2 Semantic analysis

The proposed semantic model is quite general; only a few constraints are imposed.
Indeed, we first introduce computations as labeled sequences but, intentionally, do
not define the elements of these sequences, nor the labels. This abstraction makes
the model independent of the kind of communication behavior. It can be instan-
tiated for, e.g., message-based concurrency (sequences of messages) or state-based
concurrency (sequences of states). Then, based upon sets of computations, semantic
assumption-commitment specifications are introduced. Finally, the semantic rule for
parallel composition is given.

Definition I (Computation) A computation is a non-empty sequence
t,	 12	 13

=Xo	 Xi —X2—^...
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where the Xi 's are the configurations and l i 's the labels of the computation. These
configurations and labels will be made more concrete in the message-based and state-
based cases. We use k to range over indexes:

— lk.o, denotes the kill label of or (k > 0),
— Xk.a denotes the kth configuration of or (k > 0),
— of k denotes the prefix of a ending with Xk.a,
— faf denotes the length of a, i.e. the index of the last configuration in a if a is

finite, and oo, otherwise.

We suppose that k is finite and does not exceed Iaf .

In this semantic analysis, we consider specifications as sets of computations. Safety
sets, that play an important role in the rest of this paper, are closed under finite
prefixes and under limits. Closure under limits means: whenever all finite prefixes of
a computation are in a set, the complete computation is in the set. Conversely, closure
under finite prefixes means: whenever a computation is in a set, all its finite prefixes
are in the set.

Definition 2 (Closed Sets) Let S be a set of computations. S is closed under finite
prefixes if

Va:aES='(Vk:aIkES)

S is closed under limits if

Va:aES=(`dk:QIkES)

S is a safety set if S is closed under finite prefixes and S is closed under limits.

The sets S&, SC and OC for assumption-commitment specifications of a process P
are introduced to specify the interaction between the process and its environment.

— Sk is a safety set that characterizes those computations that satisfy the assumptions
on the environment,

— SC is a safety set that characterizes those computations that satisfy safety com-
mitments of the process, hence assumptions that can be made by other processes.

— OC is a set that characterizes those computations that satisfy other commitments
of the process, especially liveness commitments.

We then use C to denote the pair (SC, OC). This notation indicates that the safety
commitments, represented by SC at the semantic level, are clearly identified from
other commitments. The rules in [2, 3] focus on the particular case where SC is the
smallest safety set greater than SC fl OC but keeping this generality allows a direct
mapping into the specifications of [ 17, 21] that we want to consider in this paper.

Example I We later consider a tuple (pre, rely, guar, post) of predicates. Then, SA,.
SC, and OC are the sets of computations allowed by (pre, rely), (guar), and (post)
respectively.

Given these sets, assumption-commitment specifications can be interpreted in several
ways (see [2, 3, 13] for a detailed discussion). The simplest interpretation is given by
Sk —^ C: if the (complete) computation satisfies the assumptions, it must satisfy all the
commitments. When only safety commitments are considered, a second interpretation
is given by SA > SC: if the computation satisfies the assumptions up to step k, then it
must satisfy the commitments up to step k. A third interpretation is given by SA @ SC:
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the commitments hold initially and, if the computation satisfies the assumptions up
to step k — 1, then it must satisfy the commitments up to step k. The last considered
interpretation is based on a separate treatment for the safety commitments; it is given
by SA@@C which is a combination of S& --* C and SA @ SC.

Definition 3 (Semantic specification) Let or be a computation:

orE(S&—r C) def oES&='aESCAaEOC

orE(S&>SC) = Vk:UIk ESA= aIk ESC

QE(S&@SC) 
def

 (aloESC)A(Vk>O:alk-1ES& = alk ESC)

aE(S4@,C) 
def

 aE(SA—+C)AaE(SA@SC)

This paper aims at the unification of specific rules for assumption-commitment spec-
ifications of message-based and state-based processes. The former [ 18, 21, 31] are
interpreted by SA@C whereas the latter [17, 27, 30] are interpreted by SA — C.
Fortunately, as proved in Sect. 4, the latter can be equivalently interpreted by SA@—,C
which is thus the appropriate candidate for formulating the semantic rule.

Then, we denote by M(P) C SA@_,C that a process P is correct w.r.t. speci-
fication S&@C; M(P) (the model of P) is the set of computations of P; specific
definitions for state-based and message-based processes are given later.

We also need to represent parallel composition at the semantic level. Keeping as
much generality as possible, we consider that the computations of P1llP2 are given
by M(P1) p, ®p2 M(P2) where ,Ql and 132 are the bases of P1 and P2 respectively,
and the semantic operator ® on sets of computations is defined in terms of the more
basic operator ® on computations.

Definition 4 (Conjoining) Let Si (i = 1, 2) be sets of computations:

Si 01 &, S2 
cle

f {a 1 90'1 E Si, a2 E S2 : 3^ ®Qz (al, Q2, Q)}

Specific definitions for 0 are deliberately omitted at this stage. Usually, ® takes
computations Ql of P1 , Q2 of P2 and merges them into a computation or of P l II P2. In
fact, the only requirements imposed upon this 0 operator are

(1) Q, ®0, (ol, 02, o) lol I =1021= lal

(2) R, ®pi (al , Q2, Q) = Vk : p, 00, (Q1 I k , a2I k, Q l k)

The requirement for computations of parallel processes to be of equal length seems to
be a strong requirement. For instance, the traces of message-based parallel processes
are usually defined from their projections onto the channels of their subprocesses.
However, traces of equal length can be obtained by shuffling arbitrary communications
over other channels. Indeed, let T(P) be the set of traces of P. Then M(P) can be
defined as It I t J, ch(P) E T(P)} where t may mention any channel and t J ch(P)
is the projection onto the channels of P.

The parallel rule aims at proving the correctness of P1 I I P2 from the correctness
of P1 , the correctness of P2 and relations between the corresponding assumption-
commitment specifications. Intuitively, the premises of the subsequent semantic
rule (3) can be interpreted as follows:

(i) The assumptions on the environment of Pl (resp. P2) follow from the assump-
tions on the overall environment and the commitments of P2 (resp. P1 ). Indeed,
P2 (resp. Pl) is a part of the environment of Pi (resp. P2).
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(ii) The safety commitments of P1 lIP2 follow from the safety commitments of P1
and P2

(iii) Under the assumptions on the overall environment, the other commitments of
Pt lIP2 follow from the other commitments of Pl and P2.

Theorem 1 Let [Q,®pZ : P(vl, o2 i Q)] indicate that P is universally quantified over
all the computations al, a2, a such that p, ®,,, (at, a2, a) holds. Then, provided that
satisfies the requirements (1) and (2) above, the following rule is sound:

M(Pi) C (S&1®-4C1)
M(P2) C (SL&2®-4C2)

(2) [p,®/32 : a E SA A a1 E SC1 A a2 E SC2 = a1 E Sall A Q2 E S42]
(3 )	 (ii) [p,® /32 : al E SCI A a2 E SC2	 v E SC]

(iii) [8,®B, : Or E S4 A a 1 E OC 1 A v2 E OC2 = Or E OC]

M(P1) 1 ®,32 M(P2) C (S&@,C)

Although carried out in another framework, the proof of Theorem 1 (see appendix) is
similar to other proofs in [2, 3, 4, 12]. A comparison with the rule of [3], also based
on the interpretation SA@C, will be given in Sect. 6.

The syntactic parallel rules for state-based and message-based concurrency are of
the following form:

P, sat spec s
P2 sat spec2
syntactic_premises(spec , spec 2 , spec)
"l 2 sat spec

Therefore, to show that these are instances of the semantic rule (3), one has to:

1. Define computations, i.e. define what their configurations and labels are,
define models M(P) for P. and
define the operator ®.

2. Check the compositionality of the model w.r.t. the parallel composition operator,
i.e. .M(P1 IIP2) = M(Pl)R,(&02 M(P2), and
check the requirements (1) and (2) on ®.

3. Give definitions of S&, SC, OC from spec and
check P sat spec - M(P) C (S4@^C).

4. Prove that the semantic premises (i)-(iii) follow from the syntactic premises.

3 Syntax and semantics of processes

In this section, we give the syntax and the operational readiness semantics for both
state-based and message-based processes in order to be able to detect deadlocks and
their absence. This operational readiness semantics allows us to define computations,
the model M(P) of a process and the 0 operator. Clearly, the amount of information
recorded in a computation may vary from one definition to the other but there must
be enough information for specifications to be given a semantics in terms of allowed
computations. Since our concern is not to discuss the semantics of processes, we
choose to keep the construction of a computation as simple as possible and thus
record more information than strictly necessary.

A major characteristic of the proposed model is its compositionality. To achieve
this, we adopt Aczel's view of parallel composition [5, 23] and incorporate environ-
ment steps in computations.
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3.1 Syntax

Definition 5 (Basis) Let PV be the set of process variables and Chan be the set of
channel names. The basis of a process is a tuple (I, 0, V, X) that consists of the
sets of respectively input channels I C_ Chan, output channels 0 C Chan, shared
variables V C PV, and local variables X C PV of the process (V n X = 0).

The sets I and 0 are not necessarily disjoint; I n 0 is the set of internal channels
of a process. In state-based concurrency, the sets I and 0 are empty. In message-
based concurrency, the set V is empty. By convention, ,Q, 3 1 , and 02 denote the
bases (I, O, V, X), (11, O1, V , XI), and (I2, O2, V2 , X2). When parallel composition
is considered, we further assume:

II nh2 =	 0, I	 =	 I1u12 i

O, n 02 =	 0, 0	 =	 0 1 u02 ,
(V, u xi ) n X2 =	 0, V	 =	 V, U V2i

(1'Z uX2)nx, =	 0, X	 = X1 uX2 .

Definition 6 (Process) Let v, x, C, D denote a variable in V U X, a variable in X, a
channel in I, and a channel in 0 respectively. Let e be an expression and b a boolean
condition. Then, the syntax of a process (state-based and message-based) of basis Q
is given by:

Program S :.= v := e C?x D!e I Sl ; S2 wait b
I while b do St od I if b then Sl else S2 fi

Process P :.= S I Pl IIP2

where Pl and P2 are processes of bases ,Ql and 32 respectively.

In state-based concurrency, the statements C?x and D!e are ignored; then pro-
cesses synchronize via wait b statements; for the sake of simplicity, the traditional
await b do (S) construct has been replaced with the simple blocking statement wait b.
In message-based concurrency, wait b statements are ignored, i.e. the processes syn-
chronize through messages.

3.2 Operational readiness semantics

Definition 7 (State, configuration) A configuration is a tuple (P, s) where P is a pro-
cess and s is a state. The special symbol _ denotes the empty process. A state is a
mapping s from the set of process variables PV and freeze (logical) variables FV to
the set of values Val. A state s assigns to each variable y E PV U FV a value s(y).
By extension, s(b) and s(e) denote the boolean value of condition b at state s and
the value of expression e at state s respectively. The restriction of s to a set X of
variables is denoted by six.  A variant of a state s with respect to a variable y and
a value p, denoted by (s : y H it), is given by

(s y '—' /i)(z) = S A	 , if z m y
l s(z) ' if z	 y,

where denotes syntactic equality.
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Table 1. Operational semantics

F- (v := e, s)--(S, (s : v ,-i s(e)))

(C?x, s)c-p(^ ,(s :x H w)) for any w E Val

(C!e, s)c ^ - sp(.:, ') with s'FX = s[X

F- (wait b, s)-^-s (.E, s) if s(b)

I- (while b do S od, s)-p(S; while b do S od, s) if s(b)

F (while b do S od, s)---+p(E, s) if not s(b)

!- (if b then S, else S2 fi, s)_!_p(Si, s) if s(b)

P (if b then Si else S2 fi, s)-L1(S2, s) if not s(b)

(Si, ^) •p(S",s')
	

(P1,S)! ,,(Pi,s')
	

(P2, s) i 'Q2 (Pz+ s')

(Si; S2, s)- -+(S; S2, s')
	

(Pi IIP2, s)—`-+p(P; IIP2, s')
	

(Pi IIP2, s)--p(Pi (IPP, s')

(PI, s)C.W (P(, s')
	

(P2 , s) - 2(P , s ' )

(P1 IIP2, s)	 R(Pi IIP2, s')	 (1'1 IIP2, s)-13(P1 IIP21 s')

(PI, ^ )	 R 1 (Pt,s')	 (PI, ^)C^p,(Pi,s')

(P2, ^) - p2 (Pz,s'), CE(I1 n02)	 (P2, ^)C 01 (P',a'), CE(01 fl I)

(Pi IIP2, s) - p(P( IIPZ, s')	 (P1 IIP2,	 s')

(Pi , ^)C-^R1(P, , s') , C E (Ot \I2), s'[X2=s[X2
,

(P1IIP2, s) —wp(Pj IIP2, s')

(P2, s)?_ 1±
3, (Pz , s' ) , CE(02 \ Ii), s'[Xi = s[Xi

,
(P1IIP2, ^) 	 v(PiIIPZ,s')

(o-,9PI, ^) 1 (P1',s'), CE(1i \02)

(Pi IIP2, s) °—'wp(P1 IP2, s')

(P2 i s) -	 P s CPz( Z, '), E(12 \ 0)

(PI IIP2, s)-(Pi IIPP , s')

The operational semantics of processes (based on [15, 26]) is given in Table 1, by
structural induction on the syntax of processes. For the sake of brevity, the distinction
between E; S, .ES,  S ^ S, and S is omitted.

The label I in the transition (P, s)-L (P', s') is either i to denote a computation
step or is of the form C?w , C!w, C.w for respectively input, output, and internal
communication of value w. In state-based concurrency, this label is always i. Notice
that, following [18, 21], we distinguish parallel composition from network abstrac-
tion (hiding of internal communications); introducing network abstraction requires an
additional rule that transforms internal communications (labels of the form C.w) into
computation steps (label i). In this paper, we focus on parallel composition only and
refer to [21] for a treatment of network abstraction.

The ready set Ready(P, s) (based on [8]) is defined in Table 2. It records which
actions are to be taken by process P at state s:

— C? E Ready(P, s): P is ready for an input communication over channel C,
— C! E Ready(P, s): P is ready for an output communication over channel C,
— * E Ready(P, s): P is ready for a computation (non-communicating) step.
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Table 2. Ready set

	Ready(", s) = {}	 Ready(Si; S2, s) = Ready(Si , s)
	Ready(v := e, s) = {*}	 Ready(wait b, s) = {s	 I s(b)}

Ready(C?x, s) = {C?}	 Ready(if b then S1 else S2 6, s) = {s}
Ready(C!e, s) = {C!}	 Ready(while b od S od, s) = {*}

Ready(Pi lIP2, s) = Ready(P1, s) U Ready(P2, s)

For example, Ready(C?xJ I(y := y + 1; D!y), s) = {C?, *}. Observe that a process P
whose sole channel is an internal channel C is deadlock-free at state s if and only if
* E Ready(P, s) or {C!, C?} C_ Ready(P, s), or P is terminated.

In message-based concurrency, compositional trace models of P can be obtained
by linking successive transitions. In state-based concurrency, compositionality is
achieved only if the model copes with interferences [17], i.e. modifications of the
shared variables by the environment of P. As proposed by Aczel [5], it suffices to
extend the set of transitions by allowing arbitrary environment transitions. These new
transitions, that we label with e, are defined in Table 3; a similar construction can be
found in [6, 23, 26, 27, 30].

Table 3. State-based concurrency: extended semantics

F (P, s)- - (P, s') where s' [X = six

In order to meet the requirements (1) and (2), we follow [7] and extend this
construction to message-based concurrency: successive transitions of P can be inter-
leaved with arbitrary communications over channels not connected to P and compu-
tation steps of the environment not involving P. These new transitions are defined in
Table 4.

Table 4. Message-based concurrency: extended semantics

F (P, s)—` +p(P, s') where s' [X = six

F(P, ^)-p(P,s') where C (IUO)ands'[X=six

I- (P, s)C ,9(P, s') where C (I U 0) and s' [X = six
1 (P, s)$p(P, s') where C (I U 0) and s' [X = six

Definition 8 (Computation and model) Let P be a process with basis ,3. Then M(P)
is the set of (potential) computations of P. These are sequences

o = A, so) ^ (PI, SO 12 .

of consecutive transitions (defined in Tables 1, 3, and 4) such that P is the process
appearing in the initial configuration, i.e. P = Po, and for all freeze variables v E FV
the value so(v) is not changed, i.e. sk(v) = so(v) for all k. We also adopt the following
notation:

— Pk.a, sk.o: denoting the kth process and k th state of o.

Example 2 In message-based concurrency, let

Pl def 
A?x; x := x + 1; B!x	 and	 P2 t- B?y
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A potential computation or of the process Pt (JP2 is

((A?x; x := x + 1; B!x)IIB?y, s)

((x := x+ 1; B!x)II B?y, (s : x '--* 0))

> (B!xII B?y, (s : x H 1))

(E,(s:xE--> 1:y--} 1 ))

This potential computation of P1 P2 can be decomposed into potential computations

(A?x; x :=x+ 1; B!x, s)	 (B?y, s)

A?O (x := x + 1; B!x, (s : x ^--^ 0)) -+ (B?y, (s : x	 0))

(B!x, (s : x '—f 1))	 -f (B?y, (s : x H 1))
a!t^	 B?t

(S,(s:xHl:y^-->1))	 --> (S,(s:xHl:yHl))

a 1 of and P1 and a2 of P2 respectively. Observe that the second one includes a
computation step of the environment (labeled with e) and a communication over
channel A, although A is not a channel of P2. These additional steps do not alter
the evaluation of P2 sat SpeC2 if the specification speC2 is over the channels and
variables of P2 only.

In the case of message-based concurrency, the traces of a process can be retrieved
by appending the successive communications appearing in its potential computations.

Definition 9 (Trace) The trace of a computation a, denoted by tr(a), is defined in-
ductively:

tr(ajo) = E
tr(alk) = tr(vlk — l )^Comm(lk.v)	 (0 < k <  al)

where Cornm(lk) denotes the communication of label lk:

Comm(d) = e	 for d e {i, e}
Comm(d) = (C, w) for d e {C?w, C!w, C.w}

3.3 Conjoining

In an interleaving approach to state-based concurrency, a step of Pill P2 is either a
step of Pt or a step of P2. This motivates the definition of the merge operator ®,
similar to previous definitions in [23, 26, 27, 30].

Definition 10 (State-based conjoining) Let v, a,, v2 be potential computations:

Q1®/2 (ai,a2,a)
if
—loi= lad =1x21
—Vk: Pk.a = Pk.all^Pk•a2
—Vk : sk.a = sk.ai = sk.Q2
—Vk:

lk.a1 =iAlk.a2=enik.a=i
V lk.a l = e n lk.a2 = i A lk.v = i
V lk.vl = e A lk.v2 = e n lk.v = e
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In the case of message-based concurrency, the definition is similar, except that joint
communications are allowed. See Example 2 above for an illustration. Note that
tr(o) = tr(o1) = tr(v2) follows from the definition of p, ®p, (al, °2 i a).

Definition 11 (Message-based conjoining) Let a, o, a2 be computations:

Q, ®Q2 (a1,a2,a)
if
—IOl_IOlI =Ia21
—`dk : Pk.a = Pk.al IIPk•a2
—Vk : Sk.a = Sk.U1 = Sk.a2
—`dk :

1k.at =iAlk.v2= eAlk.0=i
V lk.Q1 =eAlk.a2 =iAlk.a=i
V lk.vl = e A lk.o2 = e A lk.o = e
V 3C,w:CE((IlnCl)U(I2n 02))Alk.a=lk.c1=lk•o2 =C.w
V 3C,w : C E ((Ol UO2) \(11 UI2))Alk.a=lk.al =lk.02 =C!W
V 3C, w : C E ((h U12)\(01  U C2)) A lk.a = lk.at = lk.v2 = C?w
V 3C, w : C E (Il X102) A lk.v = C.w A lk.al = C?w A lk.o2 = C!w
V 3C, w : C E (I2 n Ol) A lk.v = C.w A lk.a l = C!W A lk.v2 = C?w
V 3C, w : C (Il U I2 U O l U 02) A lk.a E {C!w, C?w, C.w}

A lk.Q = lk.al = lk.v2

Clearly, the previous definitions of ® satisfy the requirements (1) and (2) imposed
in Sect. 2. The compositionality of the modeling function can be proved by case
analysis on the labels.

Theorem 2 (Compositionality) M(P1 lIP2) = M(P1)13,®pZ M(P2)

This completes points 1. and 2. of the check list at the end of Sect. 2.

4 State-based rule

We first recall the format of assumption-commitment specifications for state-based
processes [17, 27, 30] and interpret correctness formulas in terms of sets of computa-
tions. We then derive the corresponding syntactic parallel rule from the semantic rule
by considering the points 3. and 4. of our check-list.

4.1 State-based process specifications

First, the syntax and semantics of binary assertions is given. Binary assertions include
primed variables and are thus evaluated on pairs of states. For instance, (s, s') y' >_ y
if and only if s'(y) is greater than s(y).

Definition 12 (Syntax and semantics of assertions) A binary assertion over B is a
first-order formula whose free variables range over V U X U V' U X' where V'
(resp. X') is the set of all the variables y' such that y E V (resp. y E X). The
notation (s, s') = q indicates that the binary assertion q evaluates to true if s and s'
interpret, respectively, the variables in V U X and V' U X'. We will use s = q if no
primed variable occurs free in q.
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Definition 13 (State-based specification) An assumption-commitment specification of
a state-based process P is a tuple (pre, rely, wait, guar, post) where rely, wait,
guar, post are binary assertions over the basis of process P and no primed variable
occurs in pre (i.e. pre is an unary assertion).

The informal interpretation is as follows: if the precondition pre holds initially and
any state transition performed by the environment of P satisfies rely, then any state
transition performed by P satisfies guar, and P gets blocked in a state that satisfies
the condition wait or terminates in a state that satisfies the postcondition post; thus,
wait = false means that the program must terminate. For stuttering transitions to be
allowed, the predicates rely and guar are usually required to be reflexive.

Example 3 We develop a process P that computes the sum of { 1, ... , N} and adds
this result to the variable z. A possible assumption-commitment specification of P is
given by:

pre: i=OAj=O
rely: z=z'Ai=i'Aj=j'
wait: false
guar: z'>z
post: z' = z + sum{ 1 ... N}

The variables i and j have been introduced to ease the decomposition of P into Pt 1P2 .
Using a counter i (resp. j) the program P1 (resp. P2) will compute the sum of the
odd (resp. even) numbers of { 1, ... , N}. The assumption-commitment specifications
of P1 and P2 are:

pre,:	 i=0
rely,: z'>zni' =i
wait, : false
guars; j'=jA((z'=zni'= i)V(z'=z+2*i +lni'=i+ 1))Ai>_0
post, : i' = (N + 1) div 2

pre2 : j = 0
rely2: z'>zAj'=j
wait2 : false
guar2; i'= iA((z'=zAj'=j)V(z'=z+ 2 *j+2Aj'=j+1))Aj>0
poste: j' =Ndiv2

The correctness of a state-based process w.r.t. an assumption-commitment spec-
ification is now formally defined. The assertion pre refers to the initial state; the
assertion rely refers to state transitions labeled with e; the assertion guar refers to
state transitions labeled with i; the assertion wait refers to the blocked states (w.r.t
the initial state); the assertion post refers to the terminated states (w.r.t. the initial
state). Recall that the computations of a state-based process include transitions labeled
in {i, e} only; there are no communications.

Definition 14 (Correctness of state-based processes) Let P be a state-based process:

= P sat (pre, rely, wait, guar, post) if M(P) C (SA —  C)

where
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vESA ` f O- EPREAaERELY
o ESC def

 aEGUAR

QEOC t-f aECONVA0EWAITAaEPOST

and
o E PRE 

aef
 so o k pre

v ERELY 
aef

 Vk: lk.Q = e = (sk_ 1 .v, sk.Q) rely

o E GUAR f Vk: lk.o = i (sk_ I .o, sk.Q) =guar

o E CONY ` f #{k lk.a = i} < o0

o E WAIT f Vk: (* g Ready(Pk.o, Sk.a) A Pk.o, ¢ )
(so.o,Sk.Q) wait

o EPOST 
Ief

 Vk: Pk.o, = = (SO.Q, sk.v) post

Due to the commitment CONY (converge), the process is required to get blocked in a
state that satisfies wait or to terminate in a state that satisfies post. Consequently, if
wait - false, the process is required to terminate. Obviously, because no progress
property is included in the definition of M(P), termination means divergence-freedom
and deadlock-freedom. Indeed, the process might be continuously overtaken by its en-
vironment (other processes) and thus never reach its terminating state. Nevertheless,
if all processes can be proved to be divergence-free and deadlock-free, then termina-
tion is ensured. Notice that including a progress property in the definition of M(P)
would not alter the validity of the discussion (see [13, 27]): although proofs must be
adapted, Theorems 2 and 3 still hold.

Theorem 3 asserts that the interpretations SA —> C and Sai@^C are equivalent for
the assumption-commitment specifications of state-based processes. This establishes
point 3. of our check-list at the end of Sect. 2.

Theorem 3 Let S ,SC and OC be as in Definition 14. Then,

P sat (pre, rely, wait, guar, post)iff M(P) C (SA@_,C)

Proof Since (S4@C) = (SA --> C) n (S& @ SC), it suffices to prove

M(P) C(SA-->C)= M(P)C (SA®SC)

Clearly, oIo E GUAR and thus vJ o E SC. Then, assume M(P) C (Sk --+ C), and let
k>0:

QEM(P)Aolk_, ES&
% M(P) is prefix-closed

01kEM(P)A01k-1EM(P)A01k_,ESA
% M(P) c(SA—C)

01kE(S&`C)AQIk_lE(S&-4C)AQlk_1ESA
% Definition of SA —> C

01kE(Sk—C)A01k_IESAA01k_IESC
=	 % State-based processes : lk.a = i V lk.v = e

St constrains the e-labeled transitions only
SC constrains the i-labeled transitions only

QikE(SA —>C)A(aIkESkV0IkESC)
% Definition of Sk —> C

vIkESC
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4.2 The state-based parallel composition rule

The syntactic parallel composition rule presented below could be further simplified by
e.g. replacing post with post, Apost2. A proof system [27, 30] indeed includes adap-
tation rules such as weakening rules. Nevertheless, our formulation better highlights
the relation with the semantic rule.

P1 sat (prei, rely,, waits, guars, post,)
P2 sat (pre2, rely2, wait2, guar2, poste)
pre = pre, A pre2	 wait, Apost2 = wait

(4)	 rely V guars	 rely2	 wait2 A postI	 wait
rely V guar2	 rely,	 wait, A wait2 = wait
guar1 V guar2 = guar	 post, A poste = post

Pi IIP2 sat (pre, rely, wait, guar, post)

The disjunction in for instance premise guar1 V guar2 = guar can be explained as
follows: a state transition from Pt II P2 is either a state transition from Pl or a state
transition from P2. This will be made more apparent when proving that the semantic
premises of Rule (3) follow from the above ones.

Example 4 By combining Rule (4) with other adaptation rules, we may weaken the
premise posts Apost2 = post into dinvApostt Apost2 = post. The additional binary
assertion dinv (dynamic invariant [17]) expresses a relation between the initial state
and any further state in a computation; this must be checked against the assertions
pre (initially), rely (environment transition), guar, (transition of P1), and guar2
(transition of P2). In case of Example 3, the decomposition can be proved correct by
choosing:

7,
dinv: z' = z + >(2 * l — 1) + E(2 * l)

1=1	 1=1

Let for i E {1, 2} the properties PRE, RELY, ... be defined from pre1 , rely,
... as in Definition 14, and let

oES& def
oEPREAQERELY

aESC V aEGUAR

aEoc
def

oEWAITAorEPOSTAacCONV
a2 E SkZ _

Qi E PREi A vz E RELY
aZ E SC def ai E G UAR2

cT E OCz qEf a E WAIT A ai E POSTT Ac E CONY

The rest of this section is devoted to point 4. of the check list, hence to the soundness
of Rule (4). In all cases, the proof of [p®p : P(o i , a2 i a)] proceeds as follows: we
assume p, ®p2 (o, o,2 i v) and prove P(al, a2, a). Throughout that proof, we may thus
assume al = jai = l•21 and p, ®!t, (al lk, ozlk, ask) for all k.

Theorem 4 The semantic premises

(z) [13 1®/32 : a E S& A vt E SC1 A a2 E SC2 =. al E SA1 A a2 E S&2]
(ii) [,3,®P2 : a1 E SC1 A a2 E SC2	 a E SC]

(iii) [Q,®p2 : or E SAL A a1 E OC 1 A a2 E OC2 =. or E OC]

of Rule (3) follow from the syntactic premises of Rule (4).
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Proof We first consider semantic premise (i). Observe the introduction of disjunction
in the second proof step.

vESAAvIESC1 Aa2ESC2
% Definition of SA, SC 1 , 9C2, PRE, RELY, GUAR I , GUAR2

so.o =pre
Vk : lk.a = e = (sk_1.a, sk.v) k rely
b'k : lk.01 = i = (sk_I.a1, sk•crl) guar1
Vk : lk.Q2 = i = (Sk_1.v2, sk•o'2) guar2

% Definition of ®: sk_1.v = Sk_I.C1 = sk_1.a2
Sk.0 = Sj.UI = Sk.U2
lk•v1 =e=lk.U=eVlk.a2=i
lk.Q2 = e	 lk.Q = CV lk.v 1 = i

s0.01 pre A so.Q2 k pre
Vk : lk.Qj = e	 (sk_1.Q1, sk.vi) = (rely V guar2)
Vk : lk .a2 = e = (sk_1.a2, Sk•O2) (rely V guar s )

% Premises rely V guar2 = rely,, rely V guar s = rely,
and pre = pre, A pre2

so.a1 = prel A SO.a2 pre2
Vk : lk.vl = e	 (sk-l•ai, sk•al) rely,
Vk : lk.a2 = e = (sk_I.a2, sk•a2) rely2

% Definition of PRE,, PRE2 i RELYI , RELY2, S 1, S42
v1ES&1 AQ2ESA2

Next, we consider semantic premise (ii). Again, observe the introduction of disjunc-
tion in the second proof step.

cr ESC1 Aa2ESC2
% Definition of SC1, SC2, GUAR I , GUAR2

Vk: lk.Ql = i = (sk_l.al, sk•Ql) = guars
Vk: lk.a2 = i = (Sk_1.u2, sk•a2) = guar2

=	 % Definition of ®: sk_l.a = sk -1 -al = 8k —I• (72
8k.0 = Sk.Cl = Sk.U2
lk.a = i =' lk.al = i V lk.o2 = i

Premise guars V guar2 = guar
Vk : lk.a = i => (sk_i.Q, sk.a) guar

% Definition of GUAR, SC
aESC

We postpone the proof of semantic premise (iii) and consider intermediate results.
Firstly, by definition of ®, we have lk•v = i t-* lk.vl = i V lk.v2 = i for any k.
Therefore, we immediately deduce:

[p,®132 : aECONY a1 ECONYAa2ECONV]

Then, we observe that if the process PI P2 is waiting, either both processes are
waiting, or one is terminated and the other is waiting; if the process PI JJP2 has
terminated, both processes have terminated. More formally, from the definition of
and the definition of ready sets, we deduce:
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* Ready(Pk.a, sk.a) A Pk.a E =
(Pk.al E A Pk.a2' SA
* ¢ Ready(Pk.al, sk.a1) A * ¢ Ready(Pk•a2, sk•02))

V (Pk.al = S A Pk.v2 S A * §K Ready(Pk.a2, sk•C2))
V (Pk.al S A Pk.a2 = S A* O Ready(Pk•ol, sk•al))

and
Pk.Q = S Pk.a 1 = S A Pk.a2 = "

Using these preliminary results, semantic premise (iii) is now proved:

aEA A a t EOC 1 A a2 E OC2
% Definition of OC1, OC2 i WAIT,, WAIT2 , POST,, POST2

a1 E CONY A v2 E CONY
Vk : * V Ready(Pk.al, sk.al) A Pk.a l V E = (so.a1, sk.al) wait,
Vk: * V Ready(Pk.cr2 , sk.a2) A Pk.a2 V S = (s0 .Q2 , sk•a2) wait2

Vk : Pk.a l = S (so.al, sk•ai) poste
Vk : Pk.a2 = — = (so.a2, Sk•a2) post2

Preliminary results
Definition of ® : so.a = so.ai = s0•a2

sk.a = sk.al = Sk.U2
aECONY
Vk: * Ready(Pk.a, sk.a) A Pk.a' S =

(so.a, sk.a) ((wait, A wait2) V (wait2 A post,) V (wait[ A post2))
Vk : Pk.Q = S = (so.a, sk.a) post, A post2

	% Premises wait[ A wait2 = wait	 wait2 A post,	 wait

	

post[ A post2 = post	 wait, A post2 = wait
or E CONV
Vk: * ¢ Ready(Pk.a, sk.a) A Pk.a I 5 (so.a, sk.a) wait
Vk : Pk .a = S = (so.a, sk.a) = post

% Definition of WAIT, POST, CC
aECC

qn

5 Message-based rule

We first recall the format of assumption-commitment specifications for message-based
processes [21, 31, 32] and interpret correctness formulas in terms of sets of computa-
tions. We then derive the corresponding syntactic parallel rule from the semantic rule
by considering the points 3. and 4. of our check-list.

5.1 Message-based process specifications

First, the syntax and semantics of assertions is given. No primed variables are al-
lowed, but assertions may refer to freeze variables, to a trace variable, and to some
enabledness flags.
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Definition 15 (Syntax and semantics of assertions) A unary assertion over the basis
(I, 0, 0, X) is a first-order formula with free variables in the set FV U X U {h} U
Flags(P); h is the communication trace variable, and Flags(P) contains the termi-
nation flag u, the enabledness flag en(*), and the enabledness flags en(C?) , en(D!)
for each C E I and each D E 0. The trace variable h must appear under the scope
of a projection onto channels in I U 0.

The notation (P, s, tr) = q indicates that the unary assertion q evaluates to true if s
interprets the freeze and process variables, h takes the value tr, and the boolean flags
u, en(*), en(C?), en(D!) take the value true if and only if P = S, * E Ready(P, s),
C? E Ready(P, s), and D! E Ready(P, s) respectively. We will use (s, tr) = q if no
flag occurs free in q.

Definition 16 (Message-based specification) An assumption-commitment specification
of a message-based process is a tuple (pre, rely, guar, post) of assertions over the
basis of that process, with the restriction that no flag occurs free in pre, rely, post,
and no process variable occurs free in rely and guar.

The informal interpretation is as follows: guar holds initially and, if pre holds
initially and rely holds initially and after each communication, then guar holds after
each communication and post holds when the program terminates. As discussed in
[21], deadlock-freedom can be expressed within guar. For example, if the basis of
P is {{A, B}, {B, C}, 0, X}, the commitment for deadlock freedom is u V en(*) V
en(A?)Ven(C!)V(en(B!)Aen(B?)). Indeed, P is deadlock-free at state s if and only
if it is terminated, ready for a computation step, waiting for an input communication,
waiting for an output communication, or ready for an internal communication.

Example 5 Compositional verification [24]. Consider the process Pl I I P2 where P'
and P2 communicate via channels A and B. P2 communicates with the external
environment via channel C:

Pl :: A?x; x := x + 1; B!(x + 2)
P2:: C?y; A!y; B?y; y := y+ 2

Then, if P2 receives the value m on channel C, Pl IIP2 terminates with x = m + 1 and
y = m + 5. The specification of Pl I I P2 is:

pre: hA=EAhB=EAhC=E
rely: hC C (m)
guar: true
post: x=m+lAy=m+5

where hX is the sequence of values transmitted along channel X in the trace h and
r E s denotes that r is a prefix of s. This specification can be proved from the
following specifications of Pl and P2 (m, n, p and q are freeze variables):

pre,: hA=EAhB=E pre2: hA=EAhB=EAhC=E
rely, : hA E (n) rely2 : he C (p) A hB C (q)
guars : hB C_ (n+3) guar2 : hA C_ (p)
post,: x=n+1 poste: y=q+2

The correctness of a message-based process w.r.t. an assumption-commitment
specification is now formally defined. Note that the universal quantification over all
the possible assignments to the freeze variables is captured by the definition of M(P).
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Definition 17 (Correctness of message-based processes) Let P be a message-based
process:

P sat (pre, rely, guar, post) if M(P) C (S4C@^C)

where
or 

E
 Sk

 aef
 or E PRE A a E RELY

o•ESC `tf QEGUAR

aEOC 4f uECONVAoEPOST

and

aEPRE 
def

Q E RELY det

QEGUAR def

o E DIV f

c E CONV def

a E POST 
Lef

(so .o,, tr(oio)) pre

Vk : (sk.a, tr(cr k)) rely

Vk: (Pk.Q, Sk.v, tr(u 1 k)) k guar
#fk lk.a=i}=ooA(2k:Vj > k tr(oI7) = tr(ajk))
-(c E DIV)

Vk : Pk .a = S = (sk.a, tr(al k) j= post

In this case, point 3. of our check list is directly established by the definition.

5.2 The message-based parallel composition rule

If no flag occurs in guari, the syntactic rule for message-based processes is:

P1 sat (pre,,rely],guarl, post,)
P2 sat (pre2, rely2, guar2, poste)
pre = pre, A pre2

(5)	 rely A guar,	 rely2	 guar! A guar2 = guar
rely A guar2 = rely[	 post, A poste = post

P1 11 P2 sat (pre, rel y, guar, post)

The conjunction in for instance premise guar1 A guar2 =. guar can be explained
as follows: a joint communication from Pi lIP2 is both a communication of P1 and
a communication of P2. This will be made more apparent when proving that the
premises of Rule (3) follow from the ones above.

Example 6 See Example 5. Since m, n, p, q are freeze variables, the specifications of
PI and P2 can be rewritten by replacing n,p,q with m,m,m + 3 respectively. Then,
the premises of Rule (5) can be checked easily.

If guari includes flags, suitable renaming must be done [21]: the premise guar! A
guar2 = guar must be replaced by

Merge A guar1 [u1 /u, en(*i )/en(*)] A guar2[u2/u, en(*2)/en(*)] = guar

where Merge = (u . ul A u2) A (en(*)	 en(*,) V en(*2)). The first equivalence
asserts that a parallel process has terminated if and only if all its sub-processes have
terminated. The second one asserts that a computation step is enabled in a parallel
process if and only if it is enabled in one of its sub-processes.
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Let for i E {1,2} the properties PREi,RELYi,... be defined from prei,relyi,...
as in Definition 17, and let

aE^ de£
aEPREAaERELY

QESC 1£ QEGUAR

aEOC
de£ aEPOSTAaECONV

vi ESki £ aiEPRE, AQiERELYi

Qi ESCi £ QiEGUARi

vi E OC £ Qi E POSTi A vi E CONV

The rest of this section is devoted to point 4. of the check list, hence to the soundness
of Rule (5).

Theorem 5 The semantic premises

(i) [/ji®Q2 : a E A A a1 E SC1 A U2 E SC2 = Ul E S&1 A a2 E S2]

(ii) [p,® : a1 E SC1 A a2 E SC2 = Q E SC]
(iii) [p®p : a E S& A a1 E OC1 A a2 E OC2 = a E OC]

of Rule (3) follow from the syntactic premises of Rule (5).

Proof We first consider semantic premise (i). Observe the introduction of conjunction
in the third proof step: a trace of a is both a trace of al and a trace of a2.

aESkAa1ESC1 Aa2ESC2
% Definition of 34, SC 1 , SC2, PRE, RELY, GUARI, GUAR2

(so.a, tr(aIo)) pre
'c/k: (sk.a, tr(a10)) = rely
Vk : (Pk .aI , sk.a l , tr(o l Ik)) =guar s

Vk : Wk .a2i sk.a2 , tr(a2 I k)) = guar2

% Premise pre = prel A pre2 and
existential quantification on flags

(so .a, tr(alo)) = pre, A (so .a, tr(alo)) 1 pre2
Vk : (sk.a, tr(al k)) rely_
b'k : (sk.al, tr(al Ik)) = 311  : guars
Vk : (sk.a2i tr(az I k)) = 2f1 : guar2

% Definition of 0: sj.a = sk.al = sk.v2
tr(aIk) = tr(o l Ik) = tr(a2Ik)

(so•cri, tr(at Io)) = pre, A (so .a2i tr(az I o)) = p're2
`dk : (sk.al, tr(al I0)) = (rely A 2f l : guar2)
`dk : (sk.a2, tr(a2I0)) k (rely A 2f l : guar s )

% Premises rely A guar 1 = rely2, rely A guar2 = rely,.
and the restriction that no flag occurs in rely, rely,, rely2

(so•al,tr(ailo)) 1 pr'e, A (s 0 .a2i tr(a2 1o)) pre2
'c/k: (sk.al , tr(a l Ik)) =rely,
`dk :(sk.a2,tr(a2Ik)) rely2

% Definition of PRE,, PRE2 i RELYI, RELY2, SAI, S^2
alES 1Aa2E3&2

Before considering the proof of semantic premise (ii) we must define the interpretation
for all flags: For each k, the interpretation rlk of flags is:
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ilk I" en(*) = (Pk.U, Sk.U) en(* )	 '1k u = (Pk.v, Sk.o) u

ilk en(*1) = (Pk•ui, sk•Ql) en(*) ilk u1 = (Pk•Ql, Sk•o1) =u
Ilk I= en(*2) = (Pk•o2, Sk•Q2) en(*) rlk u2 = (Pk•Q2, Sk•o2) u

rik en(C1?) = (Pk•Ql, sk•a1) en(Ci?)
'7k en(C2?) = (Pk•Q2, Sk•Q2) I= en(C2?)
ilk L en(DI !) = (Pk-U Sk•°i) I= en(D,!)
7Ik r en(D2!) = (Pk•Q2, Sk. 2) em(D2!)

where C, EIl,C2EI2,Dl EOl,D2E02.Then:

o, ESC, AQ2ESC2
% Definition of SC I , SC2, GUAR1, GUAR2

`dk : (Pk.al, sk.vl, tr(Ql I k)) guar1
'c/k: (Pk.o2i sk.o2, tr(o2I k)) = guar2

% Definition of ®, ilk, guar, is over 31, guar2 is over /32
Vk: (Tlk, sk.0, tr(QI k)) guar, [u,/u, en(*1)/en(*)]
Vk: (rlk, sk.Q, tr(QI k)) guar2[u2/u, en(*2)/en(*)]

% Definition of ®,'k and definition of ready sets
Vk : (tlk, 5k•Q, tr(Q)k)) k guar, [ul/u, en(*1)/en(*)]
Vk : ('1k, sk•v, tr(oI k)) guar2[u2/u, en(*2)/en(*)]
Vk: ('7k, Sk.Q, tr(o I k)) k Merge

% Conjunction and Premise
Merge A guar, [u, /u, en(*,)/en(*)] A guar2[u2/u, en(*2)/en(*)]
= guar

'c/k: (r1k, Sk.u, tr(uI k)) I- guar
% Definition of '1k, guar is over ,3

'c/k: (Pk.Q, Sk•0, tr(o Jk)) = guar
% Definition of GUAR, SC

o,ESC

We postpone the proof of semantic premise (iii) and consider intermediate results.
First, by definition of ®, we have:

all E CONY A Q2 E CONV a E CONV]

and
Pk. o, = S = Pk.aI = S A Pk.U2 =

The proof of the former proceeds by contradiction: if Q E DIV then 01 E DIV or
o,2 E DIV. Using these preliminary results, semantic premise (iii) is now proved:
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oESALAQ1EOC1Av2EOC2
% Definition of 0C 1 , OC2 i POST,, POST2

0•,ECONVAa2ECONV
'c/k: Pk.al = S = (sk.U1, tr(al Ik)) post,
'c/k: Pk.o2 = E = (sk.U2, tr(a2I k)) post2

% Definition of
Q, ECONVAo2ECONV
'c/k: Pk .a l = S = (sk.v, tr(al k)) j post,
Vk : Pk .Q2 = S = (sk.v, tr(alk)) k poste

=	 % Preliminary results
o, E CONV
'c/k: Pk.a = E = (Sk.Q, tr(o l k)) (post, A post2)

% Premise post, A poste = post
or E CONV
Vk : Pk.o, = S = (sk.a, tr(o I k)) post

% Definition of POST, OC
o,EOC

Ml

6 Discussion

The semantic rule is based on the interpretation Skc@^C of assumption-commitment
specifications: the commitments are required to hold when the assumptions hold
(SA —> C) and moreover, whenever the assumptions hold at step k of a compu-
tation, the safety commitments are required to hold at step k + 1 (SA @ SC). This
interpretation is classical in (synchronous) message-based concurrency [18, 21, 31]
but is less usual in state-based concurrency. In the latter case, only the part S& —p C
is retained [2, 14, 26, 27, 30]. However, in state-based concurrency, S4@C and
S& --^ C often admit the same set of implementations (Theorem 3).

This work has been influenced by Abadi and Lamport's previous work [2] on com-
posing assumption-commitment specifications at the semantic level. The composition
rule of [2] is based on the interpretation S& —^ C; it certainly covers the specifications
of state-based processes in Sect. 4 but its additional hypotheses do not hold for the
specifications of message-based processes in Sect. 5. In their subsequent work [3],
Abadi and Lamport have proposed a new rule, based on the interpretation St®C
where SC is the smallest safety set greater than OC n SC. In order to obtain the latter
from our semantic rule, we first observe that, in their TLA approach, composition is
conjunction. Semantically, it means that the merging operator Q, ®p, (Q,, a2 i Q) can
be defined as o, = a, = v2. Consequently, the premises of Rule (3) become:

S4 n SC, n SC2 c Sk, n Sk2
SC,nSC2CSC
S& n oc, n OC 2 c OC

Then, we observe (see last proof step of Theorem 1 in the appendix) that the second
premise above can be replaced with Sri + n SC, n SC2 C SC where SA+ [3] captures
the `one step delay': a I k E SA + - a I k_ 1 E SA.

The choice of a more abstract model (there are many instances of computations
and many corresponding instances for ® that match the loose definitions in Sect. 2)
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has allowed us to derive syntactic parallel composition rules for specifications of both
state-based and message-based processes. As highlighted by the the proofs carried out
in Sects. 4 and 5, the transformation of the semantic operator ® into disjunction or
conjunction is due to the nature of the rely and guar conditions and to the observation
that state transitions are interleaved (leading to disjunction) whereas communications
are conjoined (leading to conjunction).

Our goal was to unify the syntactic rules presented in Sects. 4 and 5; the develop-
ment of more general semantic rules that cover other styles of assumption-commitment
still requires further work. Nevertheless, we believe that other instances of our seman-
tic rule can be derived. In particular, the commitment may include (liveness) temporal
formulas like D(P = (>Q); examples are given in [1, 11]. Previous work by Pandya
and Joseph in message-based concurrency [19, 21] indicates that asynchronous chan-
nels might be incorporated at a reasonable cost: configurations record the sequence of
buffered messages and specifications distinguish between traces of sent messages and
traces of received ones. Another possible extension of this work is the comparison of
this semantic rule with rules for assumption-commitment specifications [28] of stream
processing functions [9]. Indeed, stream processing functions define traces (that are
`sequences') and the composition of functions corresponds to operations on traces
(instances of 0).

Although it is sufficient for our purpose, a main restriction of the semantic rule
in Sect. 2 is that it applies to safety assumptions only. Other rules have been devised
to cope with liveness in the assumptions [10, 20, 22, 25]. In [20, 22], the mutual
dependency problem is solved by the explicit construction of an ordering between
assumption-commitment specifications; the premises then correspond to a proof by
induction on that ordering. In [10, 25] the mutual dependency problem is solved by
defining an acyclicity condition on the assumptions and commitments. However, the
exact relation between rules with and without liveness assumptions is still unclear.
Nevertheless, Pandya [20] has shown that Misra-Chandy's rule for safety assumptions
[ 18] can be derived from his rule.

7 Summary

This paper has highlighted the relation between the parallel rules for (pre, rely,
wait, guar, post) and (pre, rely, guar, post) specifications of state-based and message-
based processes respectively. It has been shown that both are instances of the same
semantic rule. The latter is based on an abstract definition of computations and on the
existence of a merging operator ® that relates the computations of parallel processes.
The transformation of semantic rules into syntactic rules proceeds by first providing
concrete definitions for computations and the operator ® and then showing that the
semantic premises follow from the syntactic ones.
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A Soundness proof of the semantic composition rule

We first prove the basic rule:

QES4 A ai ESC1 A Q2 ESC2 = at ESk1 A v2ES&2)

[p,®^ : v E S& A a1 E (S& 1 @ SDI) A Q2 E (S&2 @ SC2) a 1 E Sk 1 A v2 E SA2)

Assume a E S& A v 1 E (S& l @ SCI) A a2 E (St2 @5C2). Since SA 1 and S&2 are safety
sets, we may prove vl I k E S4 1 A o2I k E S&2 by induction on k. First, let k = 0:

QESAL A o E(Sk1 @ SC1) A v2E(SA2 @ SC2)
% S& is a safety set and definition of @

QI0 ES4Aa 1 I 0 ESC 1 AQ2IOESC2
% Premise and p, 0p2 (vi, Q2, Q) = p 1 ®3, (a1 lo, a2Io, QIo)

QI Io E Ski A 0-2Io E Sk2

Then, let k > 0:

aES^AQ1E(Ski@SC1)Aa2E(S&2 @SC2)
% SA is a safety set

QIk E SA A a1 E (Sk1 @ SCI) A U2 E (842 @ SC2)
r	 % Induction Hypothesis: QI Ik_1 ES& 1 A Q2Ik_1 ES&2

Definition of @
aIkESALAU1IkESC1 Av2lkESC2

% Premise and p, ®Q2 (a1, Q2, a) = p, ®, (a Ik, a2Ik, alk)
atIkES&1 Aa2IkES&2

In fact, proving Rule (3) amounts to proving:
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(i) [13,®132 : or E S& A Q1 E SC1 A 02 E SC2	 ai E S41 A a2 E Sk2]

(ii) [p,®pz : a1 E SC 1 A v2 E SC2 = Q E SC]

(iii) [@,®p2 : or E S& A Q1 E 0C1 A v2 E 0C2 = Q E OC]

a1 E (SA1 @^C1) A v2 E (SA2@—,C2) = Q E (SA@—>C)]

By definition, SS @—,C = (SA —> C) f1 (SA @ SC). We first consider the proof of
SA, —> C, i.e. the proof of o, E SC A Q E OC from a E SA:

QES&Aa1E(S&1@—>C1)A 0-2E(S&2@ ,C2)
% Definition of @_,

o, E S& A Q1 E (Ski @ SC1) A v2 E (S&2 @ SC2)
Q1 E (Sk1 —> C1) A v2 E (SA2 -# C2)

% Basic rule above
aESEAAolES i A02ESA2AU1E(SE11 —> C1)Av2E(Shc2 —> C2)

% Definition of —+
aESkAa1ESC1 AQ1EOC1 Aa2ES1C2Av2EOC2

% Premises (ii), (iii)
aESCAaECC

We now consider the proof of or E (51 @ SC). First, we prove QI o E SC:

a1 E (SAL, @ SC1) A U2 E (Sk2 @ SC2)
% definition of @

a1IoESC1 AQ2IoESC2
% Premise (ii) and /3 	(Q 1 , v2, a) = /3 i ®/3 (0'110,U210,610)

aI0ESC

Then, let k > 0. We assume aIk_1 ESk and prove aIkESC:

QIk_1 ES& A U1 E(S&1 @ SC1) A v2E(S&2 @ SC2)

% Sk i @ 9C i is a safety property
QIk_l E Sk A U1 Ik-1 E (Sk1 @ SC1) A Q2lk_1 E (S&2 @ 5C2)
a1E(SAi @9C1)Av2E(Shc2@SC2)

% Basic rule and p, ®/32 (ai, a2, Q) = p, ®p Z (al l k_1, a2l k-1, al k-1)
UIk_I ES& A al Ik-1 ES&1 A U2Ik-1 ES&2
ai E (S41 @ SC1) A U2 E (S42 @ S2)

% Definition of @
alk_1 ES& A Ql Ik ESC1 A U2Ik CSC2

% Premise (ii) and Q, ®,32 (U1, Q2, Q) = )3, ®(32 (ai 1k, Q2I k, al k)
QI k ESC
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