
Acta Informatica
https://doi.org/10.1007/s00236-024-00464-w

ORIG INAL ART ICLE

Serial and parallel algorithms for order-preserving pattern
matching based on the duel-and-sweep paradigm

Davaajav Jargalsaikhan1 · Diptarama Hendrian1 · Yohei Ueki1 · Ryo Yoshinaka1 ·
Ayumi Shinohara1

Received: 1 April 2024 / Accepted: 9 August 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Given a text and a pattern over an alphabet, the classic exact matching problem searches for
all occurrences of the pattern in the text. Unlike exact matching, order-preserving pattern
matching (OPPM) considers the relative order of elements, rather than their exact values.
In this paper, we propose efficient algorithms for the OPPM problem using the “duel-and-
sweep” paradigm. For a pattern of lengthm and a text of length n, our serial algorithm runs in
O(n+m logm) time, andour parallel algorithm runs inO(log2 m) time andO(n log2 m)work
with O(logm) time and O(m logm) work pattern preprocessing on the Priority Concurrent
Read Concurrent Write Parallel Random-Access Machines (P-CRCW PRAM).

1 Introduction

The exact string matching problem is a widely studied problem in the field of computer
science. Given a text and a pattern, the exact matching problem searches for all occurrence
positions of the pattern in the text. Many pattern matching algorithms have been proposed
such as the well-known Knuth-Morris-Pratt algorithm [22], Boyer-Moore algorithm [4],
Horspool algorithm [15]. Faro andLecroq [13] summarizes recent results on patternmatching
algorithms. Previously proposed pattern matching algorithms preprocess the pattern first and
then match the pattern from its prefix or suffix when comparing it with the text. Vishkin

Davaajav Jargalsaikhan, Diptarama Hendrian, Yohei Ueki, Ryo Yoshinaka and Ayumi Shinohara have
contributed equally to this work.

B Diptarama Hendrian
diptarama.hendrian@tmd.ac.jp

B Ryo Yoshinaka
ryoshinaka@tohoku.ac.jp

B Ayumi Shinohara
ayumis@tohoku.ac.jp

Davaajav Jargalsaikhan
davaajav_jargalsaikhan@shino.ecei.tohoku.ac.jp

Yohei Ueki
yohei_ueki@shino.ecei.tohoku.ac.jp

1 Graduate School of information Sciences, Tohoku University, Aobaku-aza-Aoba, Sendai 980-8579,
Miyagi, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-024-00464-w&domain=pdf

D. Jargalsaikhan et al.

proposed two algorithms for pattern matching, pattern matching by duel-and-sweep [26] and
pattern matching by sampling [27]. Both algorithms match the pattern to a substring of the
text from some positions which are determined by the property of the pattern, instead of its
prefix or suffix. These algorithms are developed also for parallel processing.

Furthermore, variants of Vishkin’s duel-and-sweep algorithm have been developed for
other types of pattern matching. Amir et al. [2] proposed a duel-and-sweep algorithm for
the two-dimensional pattern matching problem. Cole et al. [10] generalized it for two-
dimensional parameterized pattern matching. Note that those algorithms are serial ones,
whereas Vishkin’s original algorithms are parallel. Recently, Jargalsaikhan et al. [19] pro-
posed a general parallel algorithm for a family of pattern matching problems based on
Vishkin’s duel-and-sweep paradigm (see also [20] for an improvement). Namely, their
proposed algorithm solves pattern matching problems under arbitrary substring consistent
equivalent relations (SCERs). A matching equivalent relation is said to be SCER if when-
ever two strings match, they have the same length and every pair of their substrings at the
same position also matches. Representative SCERs include exact matching, parameterized
matching, Cartesian tree matching, and order-preserving matching (OPM). The efficiency of
the parallel SCER matching algorithm depends on encodings of strings under SCERs that in
some sense reduce SCERs in concern to exact matching. Indeed, Amir and Kondratovsky [1]
showed that every SCER admits such an encoding. While the encoding given in the proof of
their general theorem is computationally expensive, the standard and cheap encodings used
in parameterized matching and Cartesian tree matching satisfy the requirement to be used
in the algorithm. However, the standard encoding for OPM does not meet the requirement
(see Appendix A). Therefore, “efficient” duel-and-sweep parallel algorithms for solving the
order-preserving pattern matching problem (OPPMP) are not yet known.1

Unlike the exact matching problem, the OPPMP considers the relative order of elements,
rather than their exact values. For instance, (12, 35, 5) and (25, 30, 21) do not match in the
exact matching sense. However, for OPM, (12, 35, 5) is considered to match (25, 30, 21),
since their relative orders of the elements coincide. Namely, the first element is the median,
the second element is the largest, and the third element is the smallest among (12, 35, 5)
and (25, 30, 21), respectively. The OPPMP has gained much interest in recent years, due to
its applicability in problems where the relative order matters, such as share prices in stock
markets, weather data, or musical notes. The difficulty of the OPPMP mainly comes from
the fact that we cannot determine the isomorphism by comparing the symbols in the text
and the pattern on each position independently; instead, we have to consider their respective
relative orders in the pattern and in the text. For instance, consider strings X1, X2, Y1, Y2
of equal length. Suppose that X1 matches Y1 and X2 matches Y2. In exact matching, the
concatenation of X1 and X2 will match that of Y1 and Y2. In OPM, the two concatenations
will not necessarily match each other. For instance, (12, 35, 5) and (25, 30, 21) match, but
their two concatenations (12, 35, 5, 25, 30, 21) and (25, 30, 21, 12, 35, 5) do not.

Kubica et al. [23] and Kim et al. [21] independently proposed the same solution for the
OPPMP based on the KMP algorithm. Their KMP-based algorithm runs in O(n +m logm)

time. Cho et al. [8] brought forward another algorithm based on the Horspool algorithm
that uses q-grams, which was proven to be experimentally fast. Crochemore et al. [11]
proposed useful data structures for the OPPMP. On the other hand, Chhabra and Tarhio
[6], Faro and Külekci [12] proposed filtration methods which are practically fast. Moreover,
faster filtration algorithms using SIMD (Single Instruction Multiple Data) instructions were

1 Our preliminary paper [18] on this topic presented in SOFSEM 2020 is in error.

123

Serial and parallel algorithms for order-preserving…

proposed by Cantone et al. [5], Chhabra et al. [7] and Ueki et al. [25]. They showed that
SIMD instructions are effective in speeding up their algorithms.

In this paper, we propose new serial and parallel algorithms for the OPPMP based on the
duel-and-sweep technique. Given the text of length n and the pattern of length m, our serial
algorithm runs in O(n + m logm) time which is as fast as the KMP based algorithm. Our
parallel algorithm runs in O(log2 m) time using O(n log2 m)work on the Priority Concurrent
Read Concurrent Write Parallel Random-Access Machines (P-CRCW PRAM) [16]. The
PRAM model assumes that (1) the memory is uniformly shared among all processors; (2)
there is no limit on the amount of shared memory; (3) issues such as synchronization and
communication between processors are neglected. In case of multiple writes to the same
memory cell, the P-CRCW PRAM grants access to the memory cell to the processor with
the smallest index. To the best of our knowledge, our parallel algorithm is the first efficient
one to solve the OPPMP. Our parallel algorithm is based on the one for general SCERs by
Jargalsaikhan [19, 20]. Our proposal does not only evade the costs of encoding used in the
general algorithm, but is tuned using a special property of OPM that general SCERs do not
necessarily satisfy.

The rest of this work is organized as follows. In Sect. 2, we describe the notation and give
definitions that we will use for our algorithms. In Sect. 3, we describe the idea of duel-and-
sweep algorithm and discuss our serial algorithm. In Sect. 4, we give a parallel algorithm for
computing the encoding for order-preserving matching and describe our parallel algorithm.
Lastly,we conclude ourwork inSect. 5. InAppendix,we compare our parallelOPMalgorithm
and the one for general SCERs proposed in [19].

Preliminary versions of this paper appeared in [17, 18]. However, the pattern preprocessing
algorithm in the latter is in error and fixed in this paper.

2 Preliminaries

We use � to denote an alphabet of integer symbols such that the comparison of any two
symbols can be done in constant time. �∗ denotes the set of strings over the alphabet �. For
a string X ∈ �∗, the length of X is denoted by |X |. The empty string, denoted by ε, is the
string of length 0. Throughout this paper, strings are 1-indexed, unless otherwise stated. For
a string X ∈ �∗, we will denote the i-th element of X by X [i] and the substring of X that
starts at the position i and ends at j as X [i : j] = X [i]X [i +1] . . . X [j]. For convenience, we
abbreviate X [1 : i] to X [: i] and X [i : |X |] to X [i :], which are called a prefix and a suffix of
X , respectively. Moreover, let X [i : j] = ε if i > j . In addition, we denote the subsequence
X [i]X [j] of X constituted by X [i] and X [j] as X [〈i, j〉] or as X [i, j].

We say that two strings X and Y of equal length n are order-isomorphic, written X ≈ Y ,
if

X [i] ≤ X [j] ⇐⇒ Y [i] ≤ Y [j] for all 1 ≤ i, j ≤ n.

For instance, (12, 35, 5) ≈ (25, 30, 21)
≈ (11, 13, 20). If X
≈ Y , then, there must exist a
pair 〈i, j〉 of positions such that the condition above does not hold. We will call such 〈i, j〉
with i < j a mismatch position pair for X and Y . In other words, 〈i, j〉 is a mismatch
position pair iff X [〈i, j〉]
≈ Y [〈i, j〉]. We say that a mismatch position pair 〈i, j〉 is prefix-
tight if X [1 : j − 1] ≈ Y [1 : j − 1] and X [1 : j]
≈ Y [1 : j]. Symmetrically, 〈i, j〉 is called
suffix-tight if X [i + 1 : n] ≈ Y [i + 1 : n] and X [i : n]
≈ Y [i : n]. For instance, concerning
(25, 30, 21, 18)
≈ (11, 13, 20, 15), we have several mismatch position pairs. Among those,

123

D. Jargalsaikhan et al.

〈1, 3〉 is prefix-tight, 〈2, 3〉 is prefix-tight and suffix-tight, and 〈1, 4〉 is neither prefix-tight nor
suffix-tight, for example. Because this paper uses prefix-tight mismatch position pairs much
more often than suffix-tight ones, we simply call the former tight. For the rest of the paper,
we define binary operations ⊕ and � for shifting a position pair by an offset. Specifically,
〈i, j〉 ⊕ k = 〈i + k, j + k〉 and 〈i, j〉 � k = 〈i − k, j − k〉. Also, for an integer pair 〈i, j〉,
we denote max〈i, j〉 = max{i, j} and min〈i, j〉 = min{i, j}.

Suppose that we are given a text T of length n and a pattern P of length m. We call every
integer x with 1 ≤ x ≤ n−m+1 a candidate position, and the substring Tx = T [x :x+m−1]
of T starting from x of length m a candidate. If no confusion arises, by “candidate” we also
mean “candidate position”. When a candidate Tx is order-isomorphic to the pattern P , we
call its position x an occurrence of the pattern P inside the text T . The order-preserving
pattern matching problem (OPPM problem) is defined as follows.

Definition 1 (Order-preserving pattern matching)

Input: A text T ∈ �∗ of length n and a pattern P ∈ �∗ of length m ≤ n.
Output: All occurrences of P inside T .

In order to check the order-isomorphism of a string X with another string, Kubica et
al. [23] defined useful arrays LmaxX and LminX so that LmaxX [i] and LminX [i] are the
positions j and k left to i such that X [j] and X [k] are next largest and smallest to X [i],
respectively. If there is a tie, we pick the rightmost position. If X [i] is strictly smaller than
any of X [1], . . . , X [i − 1], then LmaxX [i] = 0. Similarly if X [i] is strictly larger than any
of X [1], . . . , X [i − 1], then LminX [i] = 0. More formally,

LmaxX [i] =
{
max{ j < i | X [j] = max Si } if Si
= ∅,

0 otherwise,

where Si = { X [j] | 1 ≤ j < i and X [j] ≤ X [i] },

LminX [i] =
{
max{ k < i | X [k] = min Li } if Li
= ∅,

0 otherwise.

where Li = { X [k] | 1 ≤ k < i and X [k] ≥ X [i] }.
Anexample is shown inTable 1.Clearly, for a position i ∈ {1, . . . ,m} such thatLmaxX [i]
= 0
and LminX [i]
= 0,

X [LmaxX [i]] = X [i] ⇐⇒ X [i] = X [LminX [i]],
X [LmaxX [i]] < X [i] ⇐⇒ X [i] < X [LminX [i]].

We can easily observe that X ≈ Y iff LmaxX = LmaxY and LminX = LminY . However,
we can decide order-isomorphism between X and Y referring to LmaxX , LminX , and Y ,
without computing LmaxY and LminY , based on Lemma 2 below. We first define FX (Y , i)
for Y ∈ �m and 1 ≤ i ≤ m by

FX (Y , i) =

⎧⎪⎨
⎪⎩
imax if imax
= 0 and Y [imax] > Y [i] for imax = LmaxX [i],
imin if imin
= 0 and Y [imin] < Y [i] for imin = LminX [i],
0 otherwise.

(1)

If both conditions in Eq. (1) hold, either imax or imin can be taken. Provided that LmaxX and
LminX are prepared, one can compute FX (Y , i) in constant time.

123

Serial and parallel algorithms for order-preserving…

Table 1 The LmaxX and
LminX -arrays for
X = (12, 50, 10, 17, 58, 11)

1 2 3 4 5 6

X 12 50 10 17 58 11

LmaxX 0 1 0 1 2 3

LminX 0 0 1 2 0 1

Fig. 1 Suppose P = (12, 50, 10, 17, 58, 11) is superimposed on itself with offset 2. Then, we see P[3 : 4] ≈
P[1 :2] but P[3 :5]
≈ P[1 :3], by P[3] ≤ P[5] and P[1] > P[3]. This gives LIPP (2) = 2. The position pair
〈1, 3〉 is called a witness for offset 2. The length of the longest isomorphic prefixes and witnesses for other
offsets are summarized in the right table, where W [i] = 〈0, 0〉 means that offset i has no witness, i.e., i is a
period

Lemma 2 [8] For two strings X and Y of length m, assume that X [1 : i − 1] ≈ Y [1 : i − 1]
for some 0 < i ≤ m. Then X [1 : i] ≈ Y [1 : i] iff FX (Y , i) = 0.

Therefore, X ≈ Y if and only if FX (Y , i) = 0 for all i ≤ m. In the case where X
≈ Y ,
the function FX gives an evidence.

Lemma 3 For two strings X and Y of length m, if j = FX (Y , i)
= 0 for some 1 ≤ i ≤ m,
then 〈 j, i〉 is a mismatch position pair for X
≈ Y .

Proof Since j
= 0, either j = LminX [i] and Y [j] < Y [i], or j = LmaxX [i] and Y [j] >

Y [i]. In the former case, since X [j] ≥ X [i] by the definition of LminX [i], 〈 j, i〉 is amismatch
position pair. For the latter case, since X [j] ≤ X [i] by the definition of LmaxX [i], 〈 j, i〉 is
a mismatch position pair. ��

The function FX canwork for comparing Y shorter than X against the prefix of X of length
|Y | < |X |, since LmaxX [: j] = LmaxX [: j] and LminX [: j] = LminX [: j] for j = |Y | < |X |.

By LIP(X , Y), we denote the length of the longest isomorphic prefixes of two strings
X and Y of the same length m. That is, LIP(X , Y) is the largest integer � ≤ m such that
X [: �] ≈ Y [: �]. Furthermore, for a single string X , we define the LIP-function LIPX ,
which is essentially identical to the Z-array [14]. For an integer 0 ≤ a < m, we define
LIPX (a) = LIP(X [1 : m − a], X [a + 1 : m]). In other words, LIPX (a) is the length of
the longest isomorphic prefixes, when X is superimposed on itself with offset a. Obviously,
LIPX (a) = � < m−a iff there exists i ≤ � such that 〈i, �+1〉 is a (prefix-)tight mismatching
position pair for X [1 : m − a] and X [a + 1 : m]. Fig. 1 shows an example.

Symmetrically, LISX (a) denotes the length of the longest isomorphic suffixes, when X is
superimposed on itself with offset a. That is, given an integer 0 ≤ a < m = |X |,LISX (a) = �

is the greatest integer such that X [m − � + 1 : m] ≈ X [m − a − � + 1 : m − a]. We have
LISX (a) = � < m−a iff there exists j > m−a−� such that 〈m−a−�, j〉 is a suffix-tight
mismatching position pair for X [1 : m − a] and X [a + 1 : m].

Let rev(X) be the reverse of X , which can be inductively defined by rev(ε) = ε and
rev(AX) = rev(X)A for any A ∈ � and X ∈ �∗. Since, X ≈ Y ⇔ rev(X) ≈ rev(Y) for
any two strings X and Y , LISX (a) = LIPrev(X)(a) for any offset a. Throughout this paper,
an offset is always a non-negative integer.

123

D. Jargalsaikhan et al.

Fig. 2 Illustration to Lemma 5. The vertically aligned shaded regions are mutually order-isomorphic

Vishkin’s dueling technique essentially depends on the preferable properties of periods of
strings. Matsuoka et al. [24] have discussed in detail how the classical notion of periods and
their properties can be generalized when considering SCER matching. Unfortunately, none
of the generalizations yield a straightforward adaptation of Vishkin’s algorithm for order-
preserving matching. Among those, the kind of periods involved in the duel-and-sweep
algorithm discussed in this paper is border-based period.

Definition 4 (Border-based period) Given a string X of length m, positive integer p < m is
called a border-based period of X if X [1 : m − p] ≈ X [p + 1 : m].

Throughout the rest of the paper, wewill refer to a border-based period as a period. By def-
inition, p < m is a period of X iff LIPX (p) = m− p. The string P = (12, 50, 10, 17, 58, 11)
in Fig. 1 has periods 3 and 5.

Lemma 5 If a and b are periods of X and a + b < |X |, then (a + b) is a period of X.

Proof See Fig. 2. Let m = |X |. Since a is a period of X , by definition X [1 : m − a] ≈
X [1 + a : m]. Since suffixes of order-isomorphic strings of the same length are also order-
isomorphic, X [1 + b : m − a] ≈ X [1 + a + b : m]. Similarly, since b is a period of X ,
X [1 : m − b] ≈ X [1 + b : m], and thus X [1 : m − b − a] ≈ X [1 + b : m − a]. Hence,
X [a + b + 1 : m] ≈ X [1 : m − b − a], which means that (b + a) is a period of X . ��

3 Serial duel-and-sweep algorithm for OPPM

In this section we describe our serial algorithm for OPPM. Before discussing our algorithm
in detail, we give an overview of the “duel-and-sweep” paradigm [2, 26], which is applicable
to both our serial and parallel algorithms. In the remainder of this paper, we fix text T to be
of length n and pattern P to be of length m.

3.1 Overview of the duel-and-sweep algorithm

In the duel-and-sweep paradigm, candidates are pruned in two stages, called the dueling and
the sweeping stages. Suppose P is superimposed on itself with an offset a < m. If a is not a
period of P , the two overlapped regions of P , i.e., P[1 : m − a] and P[1 + a : m], are not
order-isomorphic. Then, it is impossible for two candidates with offset a to be both order-
isomorphic to P . The dueling stage lets each pair of candidates with such offset a “duel”
and eliminates one based on this observation, so that if candidate Tx gets eliminated during
the dueling stage, then Tx
≈ P . However, the opposite does not necessarily hold true: Tx
surviving the dueling stage does not mean that Tx ≈ P . On the other hand, if candidates Tx

123

Serial and parallel algorithms for order-preserving…

Fig. 3 Duel between Tx and Tx+a . Assume that a is not a period of P and that P[1 :m − a] and P[1+ a :m]
have a mismatch position pair w = 〈i, j〉, i.e., P[w]
≈ P[w ⊕ a]. Then, by comparing T [w ⊕ (x + a)] =
Tx [w ⊕ a] = Tx+a [w] with P[w], one can eliminate one of Tx and Tx+a . If T [w ⊕ (x + a)] ≈ P[w], then
Tx
≈ P . If T [w ⊕ (x + a)]
≈ P[w], then Tx+a
≈ P .A concrete example can be found in Fig. 4

and Tx+a are overlapping, i.e. a < m, and its offset a is a period of P , then they do not duel
and both of them may survive the dueling stage. Then, the suffixes of Tx and P of length
m−a match if and only if so do the prefixes of Tx+a and P of the same length. The sweeping
stage takes the advantage of this property when checking the order-isomorphism between
surviving candidates and the pattern so that this stage can be done also quickly.

For a non-period offset a < m, where the overlapped regions obtained by superimposing
P on itself with offset a do not match, the original duel-and-sweep algorithm [26] for exact
matching saves a single position i such that P[i]
= P[i + a]. Such position i is called
a witness for the offset a. However, in OPM, order-isomorphism of two strings cannot be
refuted by comparing a symbol in one position. One way to overcome this difficulty is to
transform the pattern and candidates by appropriate encoding so that comparing the symbols
at a single position is sufficient. This is what Jargalsaikhan et al. [19] did in their parallel
algorithm for general SCER matching. This technique is applicable to OPM in principle,
but actually, no such computationally cheap encoding is known for OPM (See Appendix A).
Instead, we use two positions as a witness to say that the two strings are not order-isomorphic.
When the overlapped regions obtained by superimposing P on itself with offset a are not
order-isomorphic, i.e., P[: m − a]
≈ P[1 + a :], there is a position pair 〈i, j〉 such that
P[: m − a][i, j] = P[i, j]
≈ P[i + a, j + a] = P[1 + a :][i, j], which we call a witness
(pair) for offset a (Fig. 1); That is, either

• P[i] = P[j] and P[i + a]
= P[j + a],
• P[i] > P[j] and P[i + a] ≤ P[j + a], or
• P[i] < P[j] and P[i + a] ≥ P[j + a].

For the rest of this paper, we assume i < j for any witness pair 〈i, j〉. We denote byWP (a)

the set of all witnesses for offset a:

WP (a) = { 〈i, j〉 | P[i, j]
≈ P[i + a, j + a] and 1 ≤ i < j ≤ m − a }
Obviously, WP (a) = ∅ iff a is a period of P or a = 0.

Prior to the dueling stage, the pattern is preprocessed to construct a witness table based on
which the dueling stage decides which pair of overlapping candidates should duel and how
they should duel. A witness table W [1 : m − 1] is an array such that W [a] ∈ WP (a) unless
WP (a) = ∅. WhenWP (a) = ∅, which means a is a period, we express it as W [a] = 〈0, 0〉.
Hereinafter, we will refer to 〈0, 0〉 as a zero. Figure 1 shows an example of a witness table.

The dueling stage “duels” pairs of candidates Tx and Tx+a for non-periods a, i.e.,W [a]
=
〈0, 0〉, and we eliminate one of them. Witnesses are used in the following manner. Suppose

123

D. Jargalsaikhan et al.

Fig. 4 When P = (12, 50, 10, 17, 58, 11) is superimposed on itself with offset 2, the overlapped regions
P[3:6] and P[1:4] are not order-isomorphic, by P[3] ≤ P[5] and P[1] > P[3]. Then, for any pair of
candidates with offset 2, at least one of them is not order-isomorphic to P . For example, at least one of T2 and
T4 is not order-isomorphic to P . Since T [4, 6] = (66, 88)
≈ (12, 10) = P[1, 3], we conclude T4
≈ P . The
position pair 〈1, 3〉 is called a witness for offset 2. On the other hand, when P is superimposed on itself with
offset 3, the overlapped regions are order-isomorphic. Candidate positions 12 and 15 are said to be consistent
and we do not perform duel between them

that W [a] = 〈i, j〉, where P[i] > P[j] and P[i + a] ≤ P[j + a], for example. Then, it
holds that

• if T [x + a + i − 1] ≤ T [x + a + j − 1], then Tx+a
≈ P ,
• if T [x + a + i − 1] > T [x + a + j − 1], then Tx
≈ P

(Figs. 3 and 4). Based on this observation, we can safely eliminate either candidate Tx or
Tx+a without looking into other positions. We can perform this process similarly for other
equality/inequality cases. This process is called dueling. On the other hand, if the offset a
has no witness pair, i.e. if a is a period of P , no dueling is performed on them. We say that a
position x is consistent with x + a if a is a period of P or a ≥ m. The consistency property
is transitive.

Lemma 6 For any x, y, z such that 0 < x < y < z < n, if x is consistent with y and y is
consistent with z, then x is consistent with z.

Proof If z − x ≥ m, we have nothing to prove. Suppose z − x < m. By Lemma 5, if (y − x)
and (z − y) are periods, then so is (y − x) + (z − y) = (z − x). ��

After the dueling stage, all surviving candidates are pairwise consistent. Taking advantage
of this property, the sweeping stage prunes the surviving candidates until all remaining
candidates are order-isomorphic to the pattern. In other words, the sweeping stage finds all
occurrences of the pattern inside the text.

3.2 Pattern preprocessing

The goal of the preprocessing stage, described in Algorithm 1, is to compute a witness table
W [1 :m − 1]. First, we construct the arrays LmaxP and LminP . In addition, we construct the
Z-array ZP , which is defined by ZP [a] = LIPP (a − 1) for 1 ≤ a ≤ m.

Lemma 7 [23] For a string X of lengthm, LmaxX and LminX can be computed in O(m logm)

time.

Lemma 8 [14] Given that LmaxX and LminX are already computed for a string X of length
m, ZX can be computed in O(m) time.

Using the value of LIPP (a) = �, we can verify whether WP (a) is empty or not. If
� = m − a, a is a period of P and thus WP (a) = ∅. If � < m − a, then WP (a)
= ∅ and
there must exist a position pair 〈i, � + 1〉 ∈ WP (a) for some i ≤ �.

123

Serial and parallel algorithms for order-preserving…

Algorithm 1: Serial algorithm for the pattern preprocessing

1 Function PreprocessingSerial(P)
2 create array of integer pairs W [0 : m − 1];
3 compute arrays LminP , LmaxP , and ZP ;
4 for a = 0 to m − 1 do
5 if ZP [a + 1] = m − a then
6 W [a] ← 〈0, 0〉;
7 else
8 j ← ZP [a + 1] + 1;
9 i ← FP (P[a + 1 :], j); /* LminP and LmaxP are used here */

10 W [a] ← 〈i, j〉;
11 return W ;

Algorithm 2: Serial algorithm for the dueling stage

1 Function DuelingStageSerial(P, T ,W)
2 create stack;
3 for y = 1 to n − m + 1 do
4 while stack is not empty do
5 pop x from stack;
6 if y − x ≥ m or W [y − x] = 〈0, 0〉 then
7 push x and y to stack;
8 break;

9 else
10 〈i, j〉 ← W [y − x];
11 if P[i, j]
≈ T [y + i − 1, y + j − 1] then
12 push x to stack;
13 break;

14 if stack is empty then
15 push y to stack;

16 return stack;

Lemma 9 For a pattern P of length m, Algorithm 1 constructs a witness table W in
O(m logm) time.

Proof Clearly the algorithm runs in O(m logm) time.
We show that for each 0 ≤ a < m, Algorithm 1 computes W [a] correctly. Suppose that

LIPP (a) = ZP [a+1] = m−a. Thismeans that P[1:i−1] ≈ P[1+a:i−1+a] = P[1+a:m]
for i = LIPP (a) + 1, i.e., there is no witness pair for offset a. Indeed, Algorithm 1 gets
W [a] = 〈0, 0〉 for this case.

Suppose that we have LIPP (a) = ZP [a + 1] < m − a, i.e. P[1 : LIPP (a)] ≈ P[1 + a :
LIPP (a) + a] and P[1 : LIPP (a) + 1]
≈ P[1+ a : LIPP (a) + a + 1]. Therefore, there must
exist a witness for offset a. Let j = LIPP (a) + 1 and i = FP (P[1+ a :], j). By Lemmas 2
and 3, i
= 0 and 〈i, j〉 ∈ WP (a). Indeed Algorithm 1 gets W [a] = 〈i, j〉. ��

123

D. Jargalsaikhan et al.

Fig. 5 Anexample runof the dueling stage for T = (8, 13, 5, 21, 14, 18, 20, 25, 15, 22), P = (12, 50, 10, 17),
andW = (〈1, 2〉, 〈0, 0〉, 〈0, 0〉). First, the position 1 is pushed to the stack. Next, T2 duels with T1 and then T2
loses because P[1] < P[2] and T2[1] > T2[2]. The next position 3 is pushed to the stack byW [3−1] = 〈0, 0〉.
Similarly, T4 loses against T3, and 5 is accepted to the stack. For y = 6, T5 is removed and T6 is added to the
stack because P[1] < P[2], T6[1] < T6[2], and 3 is consistent with 6. Finally T7 defeats T6 and the contents
of the stack become 1, 3, and 7

3.3 Pattern searching

As we have mentioned earlier in this section, the pattern searching consists of the dueling
and the sweeping stages. The process of the dueling stage is shown in Algorithm 2. This
stage eliminates candidates until all surviving candidates are pairwise consistent. The serial
algorithm uses a stack to maintain candidates which are consistent with each other. A new
candidate y will be pushed to the stack if the stack is empty. Otherwise y is checked by
comparing it to the topmost element x of the stack. By Lemma 6, if x is consistent with y,
all the other elements in the stack are consistent with y, too. Thus we can push y to the stack.
On the other hand, if x is not consistent with y, we should exclude one of the candidates
by dueling them. If x wins the duel, we put x back to the stack, discard y, and get a new
candidate. If y wins the duel, we exclude x and continue comparison of y with the top element
of the stack unless the stack is empty. Figure 5 gives an example run of the dueling stage.

Lemma 10 The dueling stage can be done in O(n) time by using W.

In order to check whether some surviving candidate Tx is order-isomorphic to P , it is
enough to confirm FP (Tx , i) = 0 for all 1 ≤ i ≤ m (Eq. 1, Lemma 3). A naive implemen-
tation of sweeping requires O(mn) time. Algorithm 3 takes advantage of the fact that all the
remaining candidates are pairwise consistent, so that we can reduce the time complexity to
O(n). See Figures 6 and 7. Let j = LIP(Tx , P) + 1; i.e., Tx [1 : j − 1] ≈ P[1 : j − 1] and
Tx [1 : j]
≈ P[1 : j]. This is the smallest integer j such that FP (Tx , j)
= 0. For the next
candidate Tx+a with a < j , since P[1 : j − a − 1] ≈ P[a + 1 : j − 1] ≈ Tx [a + 1 : j − 1] =
Tx+a[1 : j − a − 1], we can start comparison of P and Tx+a from the position where the
mismatch with Tx occurred. That is, it is ensured that FP (Tx+a, i) = 0 for all i < j − a and
thus it suffices to check the values FP (Tx+a, i) = 0 for i ≥ j − a. If P ≈ Tx , the above
discussion holds for j = m + 1. Therefore, the total number of comparison is bounded by

123

Serial and parallel algorithms for order-preserving…

Algorithm 3: Serial algorithm for the sweeping stage

1 Function SweepingStageSerial(P, T , candidate_list)
2 i ← 1;
3 while there are unchecked candidates in candidate_list do
4 let Tx be the leftmost unchecked candidate;
5 start ← max{1, i − x + 1};
6 for j = start to m do
7 if FP (Tx , j)
= 0 then
8 eliminate Tx ;
9 break;

10 i ← x + j ;

Fig. 6 After the dueling stage, the surviving candidates are pairwise consistent. In this example, T23 and T26
have survived the dueling stage and are consistent. If we have known that T23 ≈ P , when comparing T26 ≈ P ,
we can use the fact for free that T26[1:3] = T23[4 : 6] ≈ P[4:6] ≈ P[1:3]. We start comparison of T26 and P
from position 4

T

Tx

Tx+a

P

P a

j − 1

j − a− 1

Fig. 7 In the sweeping stage, if Tx [1 : j − 1] ≈ P[1 : j − 1], it is guaranteed that Tx+a [1 : j − a − 1] ≈
P[1 : j − a− 1] for any period a < j − 1 of P . So, we can check the isomorphism between Tx+a and P from
the (j − a)th position. A concrete example is found in Figure 6

O(n), by applying the same argument on the complexity of the KMP algorithm for exact
matching.

Lemma 11 The sweeping stage can be completed in O(n) time.

We conclude this section with the following theorem.

Theorem 12 Given a text T of length n and a pattern P of length m, the duel-and-sweep
algorithm solves the OPPMP in O(n) time with O(m logm) time preprocessing.

Proof By Lemmas 9, 10, and 11. ��

123

D. Jargalsaikhan et al.

Algorithm 4: Computes a tight mismatch position pair in parallel

1 Function GetMismatchPos(LmaxX , LminX , Y , r)
2 〈w1, w2〉 ← 〈0, 0〉;
3 for each i ∈ {r + 1, . . . , |X |} do in parallel
4 j ← FX (Y , i); /* LmaxX and LminX are used here */
5 if j
= 0 then
6 〈w1, w2〉 ⇐ 〈 j, i〉;
7 return 〈w1, w2〉;

4 Parallel duel-and-sweep algorithm for OPPM

This section discusses a parallel version of the duel-and-sweep algorithm for OPPM. One
easy parallelization is to cut the text into small overlapping pieces and then to run the serial
algorithm presented in the previous section for them independently. This idea takes at least
�(m logm) time. Another simple and extreme idea is to use one processor for each position
pair (i, j) on the text and then let them compare the values T [i] and T [j] as well as P[i]
and P[j] to find mismatches. This idea realizes an algorithm that runs in sublinear time, but
requires as much as �(n2) work. Instead, we in this section will present a more reasonable
parallel algorithm, which runs in O(log2 m) time and with (n log2 m) work. The general
framework of the duel-and-sweep algorithm, as we have described in the beginning of Sect.
3, remains the same. To efficiently solve the OPPM problem in parallel, we enrich ideas used
in the serial algorithm with new ones. Hereinafter, in our pseudo-codes we will use “←”
to note assignment operation into a local variable of a processor. We will use “⇐” to note
assignment operation into a global variable which is accessible from multiple processors
simultaneously. In case of a write conflict, the processor with the smallest index succeeds in
writing into the memory.

First, we discuss how to compute LmaxX and LminX in parallel.

Lemma 13 Given a string X of length m, LmaxX and LminX can be computed in O(logm)

time and O(m logm) work on the P-CRCW PRAM.

Proof Following the construction of LmaxX and LminX by [23], suppose that positions of X
are sorted with respect to their contents. In case of equal contents, the smaller positions come
first (stable sort). Let X ′ be the resulting sequence of positions. For i ∈ {1, . . . ,m}, let j be
the position of i in X ′, i.e., X ′[j] = X [i]. Then LmaxX [i] is the nearest smaller value in X ′
to the left of X ′[j]. If there is no such value, LmaxX [i] = 0. LminX is computed similarly.
Using the merge sort algorithm by Cole [9] and the all-smaller-nearest-values algorithm by
Berkman et al. [3], LmaxX and LminX are computed in O(logm) time and O(m logm)work
on the P-CRCW PRAM. ��

Given LmaxX and LminX , Algorithm 4 computes order-isomorphism between X and
another string.2

Lemma 14 For strings X and Y of equal length m such that X [1 : r] ≈ Y [1 : r] for
some r ≤ m, Algorithm 4 computes a (prefix-)tight mismatch position pair in O(1) time and
O(m−r)work on the P-CRCWPRAM, given that LmaxX and LminX are already computed.
If X ≈ Y , it returns zero, i.e., 〈0, 0〉.
2 The value of the last argument r in the function GetMismatchPos(LmaxX , LminX , Y , r) is usually 0
except the call from Algorithm 12.

123

Serial and parallel algorithms for order-preserving…

Algorithm 5: Returns a prefix/suffix-tight witness for offset a
1 Function PrefixTightWitness(a)
2 〈w1, w2〉 ← GetMismatchPos(LmaxP ,LminP , P[a + 1 : m], 0);
3 return 〈w1, w2〉;
4 Function SuffixTightWitness(a)
5 〈w1, w2〉 ← GetMismatchPos(Lmaxrev(P), Lminrev(P), rev(P)[a + 1 : m], 0);
6 if 〈w1, w2〉
= 〈0, 0〉 then 〈w1, w2〉 ← 〈m − w2 − a + 1, m − w1 − a + 1〉;
7 return 〈w1, w2〉;

Proof In Algorithm 4, for each position i of X , we “attach” a processor to compute FX (Y , i)
defined in Eq. 1. It can be done in O(1) time because LmaxX and LminX are given. If
FX (Y , i)
= 0 for some i > r , the corresponding processor tries to update the shared variable
〈w1, w2〉 to 〈imin, i〉 or 〈imax, i〉. In P-CRCWPRAM, the processor with the lowest index will
succeed in writing 〈w1, w2〉 properly. Thus, at the end of the algorithm 〈w1, w2〉 contains a
tight mismatch position pair. If FX (Y , i) = 0 for every i > r , it means X ≈ Y , in which
case the initial value 〈0, 0〉 of 〈w1, w2〉 is returned. ��

Let us call a witness pair 〈i, j〉 ∈ WP (a) prefix/suffix-tight if it is a prefix/suffix-tight
mismatch position pair for P[: m − a] and P[1 + a :]. In other words, it is prefix-tight if
and only if j = LIPP (a) + 1, and it is suffix-tight if and only if i = m − LISP (a).

Using Algorithm 4, one can compute a prefix-tight witness 〈w1, w2〉 for an arbitrary offset
a in O(1) time and O(m) work if WP (a)
= ∅. The value of LIPP (a) is then obtained as
w2 − 1. This is valid in the case of WP (a) = ∅ as well.

Symmetrically, one can compute suffix-tight witnesses based on the fact that 〈i, j〉 is
a prefix-tight mismatching position pair for X and Y iff 〈|X | − j + 1, |X | − i + 1〉 is a
suffix-tight mismatching position pair for rev(X) and rev(Y). The procedures for computing
prefix/suffix-tight witnesses are described in Algorithm 5. Note that rev(P) can easily be
computed from P by O(1) time and O(m)work, and thus the cost for computing Lmaxrev(P)

and Lminrev(P) is the same for computing LmaxP and LminP .
In the sequel, by a tight witness, we refer to a prefix-tight witness.

4.1 Parallel pattern preprocessing

The goal of the preprocessing stage is to compute a witness table W [0 :m − 1] for P . Here,
for technical convenience, we prepend zero to the definition of a witness table introduced in
Sect. 3 so that W [0] = 〈0, 0〉. Still, we have W [a] = 〈0, 0〉 if WP (a) = ∅, and W [a] ∈
WP (a) otherwise. One can compute a witness table naively calling either of the functions of
Algorithm 5 for all the offsets a < m. However, this naive method costs as much as �(m2)

work. We will present a more efficient algorithm in this subsection.
Our pattern preprocessing algorithm is described in Algorithm 7 and its outline is illus-

trated in Fig. 8. Initially, all entries of the witness table are set to zero. At any point of the
execution of the preprocessing algorithm, ifW [i] is not zero, then itmust holdW [i] ∈ WP (i).
We say that position i is finalized if W [i] = 〈0, 0〉 implies WP (i) = ∅ and W [i]
= 〈0, 0〉
implies W [i] ∈ WP (i). We call i a zero position if W [i] is zero. During the execution of
Algorithm 7, the table is divided into two parts. The head is a prefix of a certain length and
the tail is the rest suffix. Let us write the head and the tail at round k of the while-loop by
Headk and Tailk , respectively. Throughout the algorithm execution, the tail part is always
finalized. On the other hand, though the zero entries of the head are not necessarily reliable,

123

D. Jargalsaikhan et al.

Fig. 8 Illustration of the preprocessing invariant. W is partitioned into head and tail. The head is 2k -sparse
and the tail is finalized. Here, 0 indicates zero entries 〈0, 0〉. The 2k -sparsity is achieved by duels. The tail
grows by at least 2k at each round

such zero positions become fewer and fewer. Consider partitioning the head into blocks of
size 2k . We will call each block a 2k-block, with the last 2k-block possibly being shorter than
2k . That is, the 2k-blocks are W [i · 2k : (i + 1) · 2k − 1] for i = 0, . . . , �hk/2k� − 1 and
W [�h/2k� · 2k : hk − 1] where hk = |Headk | is the size of the head. We say that W [0 : x] is
2k-sparse if every 2k-block of W [0 : x] contains exactly one zero position possibly except
that the last 2k-block has none. We will guarantee that Headk is 2k-sparse. Note that when
the head is 2k-sparse, the unique zero position of the first 2k-block W [0 : 2k − 1] is always
0 (W [0] = 〈0, 0〉) and W [1 : 2k − 1] contains no zeros.

Initially, the entire table is the head and the size of the tail is zero: Head0 = W and
Tail0 = ε. The head is shrunk and the tail is extended by the following rule. Let the suspected
period pk at round k be the first zero position after the index 0, i.e., pk is the unique position
in the second 2k-block such thatW [pk] = 〈0, 0〉. Then, we letHeadk+1 = W [0 : m − t − 1]
and Tailk+1 = W [m − t : m − 1] for t = |Tailk+1| = max(|Tailk | + 2k, LIPP (pk)). That
is, the tail is expanded at least by 2k . When |Headk | < 2k , the 2k-sparsity means that all the
positions in the witness table are finalized. So, Algorithm 7 exits the while loop and halts.

The goal of this subsection is to show Algorithm 7 computes a witness table in O(logm)

time and O(m logm) work on the P-CRCW PRAM (Theorem 24). In the remainder of this
subsection, we explain how tomaintain the 2k-sparsity of the head and finalize the tail. Before
going into the detail, we prepare a technical function GetZeros(l, r , k) in Algorithm 6,
which returns the zero positions i ∈ {l, . . . , r} in the witness table, assuming that W [0 : r]
satisfies the 2k-sparsity. Due to the 2k-sparsity, each 2k-block has just one zero position.
Thus, it returns an array of length �r/2k� − �l/2k� + 1 each of whose entries has the unique
zero position of the corresponding 2k-block. The first and the last 2k-blocks in W [l : r]
may be incomplete and their zero positions would be outside W [l : r], in which case the
corresponding entry will be −1. Algorithm 6 runs in O(1) time and O(r − l) work on the
P-CRCW PRAM.We note that at Line 4, the assignment operation is denoted by “⇐”, since
the array A is global and accessible for every processor, but there will be just one processor
that accesses A[j] for each j under the assumption of the 2k-sparsity.

4.1.1 Headmaintenance

First we discuss how the algorithm makes Headk 2k-sparse. We maintain the head so that at
the beginning of round k of Algorithm 7, it satisfies the following invariant properties.

• Headk is 2k-sparse.

123

Serial and parallel algorithms for order-preserving…

Algorithm 6: Assuming thatW [0 : r] is 2k-sparse, returns positions of zeros inW [l : r]
1 Function GetZeros(l, r , k)
2 create array A[0 : �r/2k� − �l/2k�] and initialize elements to −1;
3 for each i ∈ {l, . . . , r} do in parallel
4 if W [i] = 〈0, 0〉 then A[�i/2k� − �l/2k�] ⇐ i ;

5 return A;

Algorithm 7: Parallel algorithm for the pattern preprocessing

1 Function PreprocessingParallel()
2 compute LmaxP and LminP ; /* Those are used in PrefixTightWitness */
3 compute Lmaxrev(P) and Lminrev(P); /* Those are used in SuffixTightWitness

*/
4 head ← m, k ← 0; /* head is the size of Headk */

5 while 2k ≤ head do
6 p ← GetZeros(2k , 2k+1 − 1, k)[0];
7 W [p] ← PrefixTightWitness(p);
8 if W [p] = 〈0, 0〉 then
9 lcp ← m − p

10 else
11 lcp ← maxW [p] − 1;

12 old_head ← head;

13 head ← min(old_head − 2k ,m − lcp);
14 SatisfyHeadSparsity(head − 1, k);
15 FinalizeTail(head, old_head, p, k);
16 k ← k + 1;

Algorithm 8: Satisfy 2k+1-sparsity of Headk+1, whose ending position is given as the
first argument h

1 Function SatisfyHeadSparsity(h, k)
2 A ← GetZeros(2k+1, h, k);
3 for each i ∈ {0, 1, . . . , �|A|/2 − 1�} do in parallel
4 j1 ← A[2i], j2 ← A[2i + 1];
5 if j1
= −1 and j2
= −1 then
6 w ← W [j2 − j1]; /* W [j2 − j1] is not zero */
7 if P[w]
≈ P[w ⊕ j2] then
8 W [j2] ⇐ w;
9 else

10 W [j1] ⇐ w ⊕ (j2 − j1);

• For all non-zero positions i of Headk ,

– W [i] ∈ WP (i),
– maxW [i] ≤ |Tailk | + 2k .

The head maintenance procedure SatisfyHeadSparsity is described in Algo-
rithm 8. Before calling the function SatisfyHeadSparsity, Algorithm 7 finalizes the
suspected period pk , the first position after 0 such thatW [pk] = 〈0, 0〉. Due to the 2k-sparsity,

123

D. Jargalsaikhan et al.

Fig. 9 Dueling with respect to the pattern between offsets i and j = i + a. Under the assumption that
w = 〈w1, w2〉 ∈ WP (a), i.e., P[w]
≈ P[w ⊕ a], by comparing P[w] and P[w ⊕ j], one can find a witness
for either i or j , as long as j + w2 ≤ m

2k ≤ pk < 2k+1. Algorithm 7 finds the suspected period pk at Line 6 and then finalizes the
position pk at Line 7.

Let us explain how Algorithm 8 works. The task of SatisfyHeadSparsity(h, k)
is to make W [0 : h] satisfy the 2k+1-sparsity. In the case where the suspected period pk
is the smallest period of P , i.e., WP (pk) = ∅, we have head ≤ m − LIPP (pk) = pk <

2k+1 when Algorithm 7 calls SatisfyHeadSparsity(head − 1, k). Then the array A
obtained at Line 2 is empty and SatisfyHeadSparsity(head − 1, k) does nothing.
After FinalizeTail(head, old_head, p, k) finalizes Tailk+1, which will be explained
in the next subsubsection, the algorithm will halt without going into the next loop, since
|Headk+1| ≤ m − LIPP (pk) = pk < 2k+1. At that moment all positions of W are finalized.

Hereafter we consider the case where pk is not a period of P , i.e., WP (pk)
= ∅. When
SatisfyHeadSparsity(head, k) is called, the value of W [pk] is a tight witness and
the first 2k+1-block contains no zeros exceptW [0]. At that moment, the other part of the head
is 2k-sparse. To make it 2k+1-sparse, we perform duels between two zero positions i and j
(i < j) within each of the 2k+1-blocks of the head except for the first block. The duel w.r.t.
the pattern is same as the one described in the dueling stage of the serial algorithm, except
that instead of superimposing two copies of the pattern on the text, we superimpose them on
the pattern itself. In a duel between two text positions, the loser candidate is eliminated. In
a duel between two pattern positions, the loser offset gets a witness. The following lemma
shows when and how a duel w.r.t. the pattern can be performed.

Lemma 15 Figure 9 For two offsets i and j with i < j , suppose w ∈ WP (j − i) and
j + maxw ≤ m. Then,

• if the offset i survives the duel, i.e., P[w]
≈ P[w ⊕ j], then w ∈ WP (j);
• if the offset j survives the duel, i.e., P[w] ≈ P[w ⊕ j], then w ⊕ (j − i) ∈ WP (i).

Proof If P[w]
≈ P[w ⊕ j], then w ∈ WP (j) by definition. Suppose P[w] ≈ P[w ⊕ j]
and let a = j − i . The fact w ∈ WP (a) means P[w]
≈ P[w ⊕ a] and thus P[w ⊕ a]
≈
P[w ⊕ j] = P[(w ⊕ a) ⊕ i], which means w ⊕ a ∈ WP (i). ��

In our algorithm, the witness used for the duel between i and j in the same 2k+1-block is
W [a] for a = j − i , which is in the first 2k+1-block. Lemma 17 below ensures that indeed
our dueling pairs satisfy the condition of Lemma 15.

Lemma 16 Suppose the preprocessing invariants hold true at the beginning of round k and
WP (pk)
= ∅. Then, after Line 7 is executed, maxW [a] ≤ |Tailk+1| + 1 holds for any
position a in the first 2k+1-block.

123

Serial and parallel algorithms for order-preserving…

Proof Recall that |Tailk+1| = max(|Tailk | + 2k,LIPP (pk)). If a
= pk , by the invariant
property of the previous round, W [a]
= 〈0, 0〉 and maxW [a] ≤ |Tailk | + 2k ≤ |Tailk+1|.
If a = pk , W [a] holds a tight witness for offset pk (Algorithm 7, Line 7), i.e., maxW [a] =
LIPP (pk) + 1 ≤ |Tailk+1| + 1. ��
Lemma 17 For any positions i, j of Headk+1 such that 0 < j − i < 2k+1, it holds that
j + maxW [j − i] ≤ m when SatisfyHeadSparsity(head, k) is called at Line 14 in
Algorithm 7.

Proof Since j is inHeadk+1, we have j ≤ |Headk+1|−1. ByLemma 16, j+maxW [j−i] ≤
|Headk+1| − 1 + |Tailk+1| + 1 = m. ��

Therefore, every pair of offsets in the same block can perform a duel in the execution of
SatisfyHeadSparsity(head, k) using the first 2k+1-block of the witness table and the
loser will get a witness by Lemma 15. It remains to show the invariant property is certainly
maintained. We note that FinalizeTail(head, old_head, p, k) does not modify the head
at all.

Lemma 18 At the beginning of round k, the invariant property holds for Headk.

Proof We show the lemma by induction on k. For k = 0, every position is zero, so the
lemma vacuously holds. We show the lemma holds for k + 1 assuming that it is the case for
k. The 2k-sparsity and the witness value correctness are followed from Lemmas 15 to 17.
It remains to show maxW [i] ≤ |Tailk+1| + 2k+1 for all non-zero positions of Headk+1.
Concerning positions a in the first 2k+1-block, Lemma 16 shows a stronger property:W [a] ≤
|Tailk+1|+1. So, it suffices to show the claim for positions belonging to other blocks. IfW [i]
is not updated from the previous round, then maxW [i] ≤ |Tailk | + 2k ≤ |Tailk+1| by the
induction hypothesis. SupposeW [i] was zero in the previous round and has been updated by
losing the duel against another offset j in the same 2k+1-block. For a = |i− j |, the algorithm
lets W [i] = W [a] or W [i] = W [a] ⊕ a. In either case, maxW [i] ≤ maxW [a] + a ≤
|Tailk+1| + 1 + a ≤ |Tailk+1| + 2k+1. ��
Lemma 19 Algorithm 8 runs in O(1) time and O(m/2k) work on P-CRCW-PRAM.

Proof GetZeros(2k+1, h, k) requires O(1) time and O(m/2k) work. We then use �(h −
2k+1)/2k+1� ∈ O(m/2k) processors in parallel, each of which runs in constant time. ��

4.1.2 Tail finalization

Next, we discuss how we finalize Tailk+1 for the round k using Algorithm 9. Since Tailk is
finalized at the beginning of round k, we only need to finalize positions of Tailk+1 which are
not in Tailk . Let T = { |Headk+1|, . . . , |Headk | − 1 } be the positions to finalize. We call T
small if |T | ≤ pk . Since pk < 2k+1, when T is small, due to the 2k-sparsity, there are at most
three zero positions to finalize. In this case, we can naively callPrefixTightWitness(i)
to finalize W [i] for those zero positions i by finding them using GetZeros. This case is
handled in Lines 2 to 6.

On the other hand, when T is not small, we need a more elaborated technique for
efficient finalization. Note that, |T | = |Tailk+1| − |Tailk | > pk implies |Tailk+1| =
max(|Tailk | + 2k, LIPP (pk)) = LIPP (pk). In this case, we partition T into non-empty
subsets T0, . . . , Tpk−1 so that Ts consists of positions i ≡ s (mod pk). The tail finalization

123

D. Jargalsaikhan et al.

Fig. 10 Illustration to Lemma 22 when m − b > LISP (a). The dotted regions are isomorphic P[1 :m − b] ≈
P[b − a + 1 : m − a] by Lemma 20. The shaded positions show the mismatch between P[w1, w2] and
P[w1 + a, w2 + a]

is performed on each Ts independently. We will pick a referential position xs for each Ts and
update every position i in Ts using a witness of the referential position xs with the appropriate
shift (⊕(xs − i), which may be negative). Let qs = max Ts and rs = min Ts . Thanks to the
2k-sparsity, W [qs] is not zero for most bags Ts . We use this non-zero witness W [qs] as the
reference for finalizing all the other positions in Ts , based on Lemma 21 shown below. There
are at most three exceptional bags Ts whereW [qs] is zero due to pk < 2k+1. For those bags,
we compute a suffix-tight witness for rs and use it as the reference, based on Lemma 22.

Lemma 20 Given positions a, b ∈ Ts such that a < b, P[1 :m − b] ≈ P[b− a + 1 :m − a].
Proof Let � = LIPP (pk) = |Tailk+1|.

Since a and b are positions inside the tail, we have m − � ≤ a < b < m. Since pk is a
period of P[1:�] and (b−a) is amultiple of pk , by Lemma5, (b−a) is also a period of P[1:�],
i.e., P[1 :�− (b−a)] ≈ P[1+ (b−a) :�]. Taking the prefixes of lengthm−b ≤ �− (b−a)

of those isomorphic strings, we obtain P[1 : m − b] ≈ P[1 + b − a : m − a]. ��
Lemma 21 SupposeWP (qs)
= ∅ for qs = max Ts . For any position i ∈ Ts and any witness
w ∈ WP (qs), we have w ⊕ (qs − i) ∈ WP (i).

Proof For w ∈ WP (qs), P[w ⊕ qs]
≈ P[w]. By Lemma 20, P[qs − i + 1 : m − i] ≈
P[1 : m − qs], which implies P[w ⊕ (qs − i)] ≈ P[w]. Therefore, P[(w ⊕ (qs − i))⊕ i]
≈
P[w ⊕ (qs − i)]. ��

Based on Lemma 21, the algorithm finalizes W [i] for i ∈ Ts with W [qs]
= 〈0, 0〉 in the
for each parallel computation of Line 9.

Now, let us consider the case where W [qs] = 〈0, 0〉. This case is more involved than
the previous case. The algorithm uses the following lemma to finalize W [i] for i ∈ Ts with
W [qs] = 〈0, 0〉 efficiently.
Lemma 22 Given offsets a, b ∈ Ts such that a < b, WP (b) = ∅ iff m − b ≤ LISP (a)

Figure 10. If WP (b)
= ∅, then WP (a)
= ∅ and w � (b − a) ∈ WP (b) for any suffix-tight
witness w for offset a.

Proof Lemma 20 implies P[1 :m − b] ≈ P[b − a + 1 :m − a]. The first half of the lemma
follows from

WP (b) = ∅ ⇐⇒ P[1 : m − b] ≈ P[b + 1 : m]
⇐⇒ P[b − a + 1 : m − a] ≈ P[b + 1 : m] ⇐⇒ LISP (a) ≥ m − b ,

123

Serial and parallel algorithms for order-preserving…

Algorithm 9: Finalize Tailk+1

1 Function FinalizeTail(head, old_head, p, k)
2 if old_head − head ≤ p then
3 A ← GetZeros(head, old_head − 1, k); /* |A| ≤ 3 */
4 for z = 0 to |A| − 1 do
5 i ← A[z];
6 if i
= −1 then W [i] ← PrefixTightWitness(i);

7 else
8 T ← {head, . . . , old_head − 1};
9 for each i ∈ T do in parallel

10 q ← max{ x ∈ T | x ≡ i (mod p) };
11 if W [q]
= 〈0, 0〉 then W [i] ⇐ W [q] ⊕ (q − i);
12 A ← GetZeros(old_head − p, old_head − 1, k); /* |A| ≤ 3 */
13 for z = 0 to |A| − 1 do
14 q ← A[z];
15 if q
= −1 then
16 r ← min{ x ∈ T | x ≡ q (mod p) };
17 W [r] ← SuffixTightWitness(r);
18 lcs ← m − r − minW [r];
19 for each i ∈ T do in parallel
20 if i ≡ r (mod p) and m − i > lcs then
21 W [i] ← W [r] � (i − r);

where the last equivalence holds by the definition of LISP (a).
Now, we prove the second half of the lemma. When WP (b)
= ∅, by the first half of the

lemma, we have LISP (a) < m − b < m − a. Thus, the offset a has a suffix-tight witness
w = 〈w1, w2〉 such that w1 = m − a − LISP (a) > b− a. By definition, P[w]
≈ P[w ⊕ a].
On the other hand, P[1 : m − b] ≈ P[b − a + 1 : m − a] implies P[w] ≈ P[w � (b − a)],
where w � (b − a) is a pair of positive integers by w1 > b − a.

Hence, P[w � (b−a)]
≈ P[w ⊕a] = P[(w � (b−a))⊕b], i.e., w� (b−a) ∈ WP (b).
��

For bags Ts such that W [qs] = 〈0, 0〉, Algorithm 9 finalizes positions i ∈ Ts at Lines 12–
21 based on Lemma 22. It first computes LISP (rs) for rs = min Ts and a suffix-tight witness
w for offset rs unlessWP (rs) = ∅. Then, for i ∈ Ts such thatm−i > LISP (rs), the algorithm
updates W [i] to w � (i − rs). Note that if WP (rs) is empty, so is WP (i) by Lemma 22.

Lemma 23 For the round k, Algorithm 9 finalizes Tailk+1 in O(1) time and O(m) work on
P-CRCW PRAM.

Proof Let t be the size difference of Tailk and Tailk+1. First we consider the case when
t ≤ pk . Since Headk satisfies the 2k-sparsity, there are at most three zero positions in
W [|Headk+1| : |Headk |]. Each such position can be finalized in O(1) time and O(m) work.

Let us consider the case when t > pk .
Obviously, the parallel computation of Line 9 costs O(1) time and O(t) work.
The function call GetZeros(old_head − p, old_head − 1, k) at Line 12 costs O(1)

time and O(t) work. The for-loop at Line 13 is repeated at most three times, since Headk is
2k-sparse and 2k ≤ pk < 2k+1. The algorithm computes LISP (rs) at Line 17 in O(1) time
and O(m) work. Then, the parallel computation at Line 19 costs O(1) time and O(t) work.
Thus, overall Algorithm 9 runs in O(1) time and O(m) work. ��

123

D. Jargalsaikhan et al.

4.1.3 Summary of pattern preprocessing

Theorem 24 Algorithm 7 computes a witness table in O(logm) time and O(m logm) work
on the P-CRCW PRAM.

Proof By Lemmas 18, 19, and 23, together with the fact that Algorithm 7 repeats the while-
loop at most �logm� times. ��

4.2 Parallel pattern searching

Our pattern searching algorithm prunes candidates of the text T of length n in two stages:
dueling and sweeping stages. During the dueling stage, candidates duel with each other, until
the surviving candidates are pairwise consistent. During the sweeping stage, the surviving
candidates from the dueling stage are further pruned so that only pattern occurrences survive.
To keep track of the surviving candidates, we use a Boolean array C[1 : n − m + 1] and
initialize every entry of C to True at the beginning. If a candidate Ti gets eliminated, we set
C[i] = False. The pattern searching algorithm updates C in such a way that C[i] = True
iff i is a pattern occurrence. Entries of C are updated at most once during the dueling and
sweeping stages. Hereinafter, we denote the number of candidates by n′ = n − m + 1.

4.2.1 Dueling stage

The dueling stage is described in Algorithm 11. Recall that x is consistent with x + a if
WP (a) = ∅ or a ≥ m. We say that a set of positions is consistent if all elements in the set
are pairwise consistent. During the round k, the algorithm partitions the candidate positions
into blocks of size 2k . Let Ck, j ⊆ {(j −1)2k +1, . . . , j ·2k} be the set of candidate positions
in the j-th 2k-block which have survived after the round k. The invariant of Algorithm 11 is
as follows.

• At any point of execution of Algorithm 11, all pattern occurrences survive.
• For round k, each Ck, j is consistent.

The survivor set Ck, j is obtained by “merging” Ck−1,2 j−1 and Ck−1,2 j , where Ck, j shall be
a consistent subset of Ck−1,2 j−1 ∪ Ck−1,2 j which contains all the occurrence positions in
Ck−1,2 j−1 ∪ Ck−1,2 j . At the end of the dueling stage, C�log n′�,1 is a consistent set including
all the occurrence positions. We then letC[i] = True iff i ∈ C�log n′�,1. In our algorithm, each
set Ck, j is represented as an integer array, where elements are sorted in increasing order. We
will represent the i-th smallest element of an integer set C by C[i].

Let us consider merging two respectively consistent sets A(= Ck−1,2 j−1) and B(=
Ck−1,2 j), where A precedes B, i.e., maxA < minB. We must find a consistent set C such
that Â ∪ B̂ ⊆ C ⊆ A ∪ B where Â = { a ∈ A | Ta ≈ P } and B̂ = { b ∈ B | Tb ≈ P } are
the sets of occurrences of P in A and B, respectively.

Lemma 25 Suppose that we are given two respectively consistent position setsA and B such
that A precedes B. If a ∈ A and b ∈ B are consistent, then A≤a ∪ B≥b is also consistent,
where A≤a = { i ∈ A | i ≤ a } and B≥b = { j ∈ B | j ≥ b }.
Proof Let i ∈ A≤a and j ∈ B≥b. Since candidate pairs of i and a, a and b, b and j are
respectively consistent, i is consistent with j by Lemma 6. ��

123

Serial and parallel algorithms for order-preserving…

Fig. 11 Padded grid G given two consistent sets A and B. The grid is separated into the zero region and the
non-zero region by the dotted boundary line (Lemma 25). The coordinate (ı̂, ĵ) is indicated by the brown dot.
The red- and blue-shaded areas consist of −1 and 1 only, respectively (Lemma 26). Our algorithm outputs
(i, j) such that G[i][j] = 0, G[i][j − 1] = −1, G[i + 1][j ′] = 1, and G[i + 1][j ′ + 1] = 0 for some j ′. If
there are more than one such coordinate, the smallest i will be chosen by the priority. The output coordinate
is indicated by the green circle above. Then the obtained set consists of the elements represented by the two
green arrows

Therefore, it suffices to find (a, b) ∈ (A ∪ {−∞}) × (B ∪ {∞}) such that a ≥ max(Â ∪
{−∞}), b ≤ min(B̂ ∪ {∞}), and a and b are consistent, where we assume ∞ and −∞
are consistent with any other positions. Then, A≤a ∪ B≥b has the desired property. Indeed,
â = max(Â ∪ {−∞}) and b̂ = min(B̂ ∪ {∞}) satisfy the property, but our goal at this stage
is a little more relaxed.

To find such a pair (a, b), let us consider a grid G of size (|A| + 2)× (|B| + 2). Figure 11
illustrates the grid, where indices of A and B are presented along the directions of rows and
columns, respectively. For 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|, G[i][j] represents the result of the
duel between A[i] and B[j] using the witness table W , which are the i-th and j-th smallest
elements ofA and B, respectively. We define G[i][j] = 0 ifW [d] = 0 for d = B[j]−A[i].
If W [d]
= 0 and A[i] wins the duel, then G[i][j] = −1. Otherwise, B[j] wins the duel
and G[i][j] = 1. For the sake of explanatory convenience, we pad grid G with −1s along
the leftmost column, with 1s along the bottom row, and with 0s along the upper row and
rightmost column. Specifically, G[i][0] = −1 for i ∈ {0, . . . , |A|}, G[|A| + 1][j] = 1
for j ∈ {0, . . . , |B|}, G[i][|B| + 1] = 0 for i ∈ {1, . . . , |A| + 1}, and G[0][j] = 0 for
j ∈ {1, . . . , |B|+ 1}. We will not compute the whole G, but this concept helps to understand
the behavior of our algorithm.

In terms of the grid representation, our goal is to find a coordinate (i, j) such thatG[i][j] =
0 and it is to the lower left of (ı̂, ĵ) (brown dot in Fig. 11) where ı̂ = max({ i ′ | A[i ′] ∈
Â }∪{0}) and ĵ = min({ j ′ | B[j ′] ∈ B̂ }∪{|B|+1}). Then,A≤A[i] ∪B≥B[j] has the desired
property, where we assume A[0] = −∞ and B[|B| + 1] = ∞.

Lemma 25 implies that if G[i][j] = 0 then G[i ′][j ′] = 0 for any i ′ ≤ i and j ′ ≥ j .
Therefore, grid G can be divided into two regions: the upper-right region that consists of
only 0 and the rest that consists of a mixture of −1 and 1. The boundary line looks like a step
function. The distributions of 1 and −1 in the non-zero region are not totally random. Since

123

D. Jargalsaikhan et al.

Algorithm 10:Merge two consistent sets A and B
1 Function Merge(A,B)
2 for each i ∈ {0, . . . , |A| + 1} do in parallel
3 j ′ ← 0; j ′′ ← |B| + 1;
4 while j ′′ − j ′ > 1 do
5 j ← �(j ′ + j ′′)/2�;
6 if G[i][j] = 0 then j ′′ ← j ;
7 else j ′ ← j ;

8 D[i] ⇐ j ′;
9 for each i ∈ {0, . . . , |A|} do in parallel

10 if G[i][D[i]] = −1 and G[i + 1][D[i + 1]] = 1 then
11 i∗ ⇐ i ; j∗ ⇐ D[i] + 1;

12 return (i∗, j∗);

occurrences will never lose the duel, ifA[i] ∈ Â, then row i consists of non-positive elements
only, and if B[j] ∈ B̂, then column j consists of non-negative elements only. Particularly,
G[ı̂][ĵ] = 0. The following lemma strengthens this observation.

Lemma 26 If Â
= ∅ and A[i] ≤ max Â, then row i consists only of non-positive elements.
Similarly, if B̂
= ∅ and B[j] ≤ min B̂, then column j consists only of non-negative elements.

Proof We prove the first half of the lemma. The second claim can be proven in the same
way. We show that if i ≤ ı̂ and G[i][j]
= 0, then G[i][j] = −1 for any 1 ≤ j ≤ |B|. Let
a = A[i], â = max Â = A[ı̂], and b = B[j], and suppose the inconsistency between a
and b is witnessed by W [b − a] = 〈w1, w2〉
= 〈0, 0〉, i.e., P[w1, w2]
≈ Pb−a+1[w1, w2].
Since Tâ ≈ P , T [b : m + â − 1] ≈ P[b − â + 1 : m], which implies Tb[w1, w2] ≈
Pb−â+1[w1, w2]. On the other hand, since a and â are consistent, i.e., P[1 : m − (â − a)] ≈
P[â − a + 1 : m], we have P[b − â + 1 : m − (â − a)] ≈ P[b − a + 1 : m], which
implies Pb−â+1[w1, w2] ≈ Pb−a+1[w1, w2]. Therefore, Tb[w1, w2] ≈ Pb−â+1[w1, w2] ≈
Pb−a+1[w1, w2]
≈ P[w1, w2]. Hence, a wins the duel against b and thus G[i][j] = −1. ��

Algorithm 10 firstly finds the unique column ji for each row i such that G[i][ji]
= 0
and G[i][ji + 1] = 0. Among those boundary coordinates, the algorithm finds a neighbour
pair (i, ji) and (i + 1, ji+1) such that G[i][ji] = −1 and G[i + 1][ji+1] = 1. Then, it
outputs (i, ji + 1). Notice that we do not precompute all the values G[i][j] of the grid. Each
time the algorithm needs to know the value, it lets the candidatesA[i] and B[j] duel (unless
i ∈ {0, |A| + 1} or j ∈ {0, |B| + 1}), which can be performed in constant time.

Lemma 27 Algorithm 10 finds a coordinate (i∗, j∗) such that i∗ ≥ ı̂ , j∗ ≤ ĵ , and G[i∗][j∗] =
0 in O(log |B|) time with O(|A| log |B|) work.
Proof For each i , the first for each parallel computation finds ji such that G[i][ji]
= 0 and
G[i][ji + 1] = 0 by binary search and lets D[i] = ji . Then, the algorithm finds i such
that G[i][ji] = −1 and G[i + 1][ji+1] = 1. Since G[i][ji] = −1, by Lemma 26, ji < ĵ .
Similarly, G[i + 1][ji+1] = 1 implies i + 1 > ı̂ . Thus, i∗ = i ≥ ı̂ and j∗ = ji + 1 ≤ ĵ

satisfy the desired property by Lemma 25.
Since a duel takes O(1) time and O(1) work, we obtain the claimed complexity. ��

Lemma 28 Given awitness table for P, Algorithm11 performs the dueling stage in O(log2 n)

time and O(n log2 n) work on P-CRCW PRAM.

123

Serial and parallel algorithms for order-preserving…

Algorithm 11: Parallel algorithm for the dueling stage

1 Function DuelingStageParallel()
2 for each j ∈ {1, . . . , n′} do in parallel
3 create an array C0, j of size 1;
4 C0, j [1] ← j ;

5 k ← 1;
6 while k ≤ �log n′� do
7 for each j ∈ {1, . . . , �n′/2k�} do in parallel
8 A ← Ck−1,2 j−1, B ← Ck−1,2 j ;
9 〈a, b〉 ← Merge(A,B);

10 create an array Ck, j of size a + |B| − b + 1;
11 for each i ∈ {1, . . . , a} do in parallel
12 Ck, j [i] ← A[i];
13 for each i ∈ {b, . . . , |B|} do in parallel
14 Ck, j [a + i − b + 1] ← B[i];
15 k ← k + 1;

16 create an array C of size n′;
17 initialize all elements of C to False;
18 for each i ∈ {1, . . . , |Ck,1|} do in parallel
19 C[Ck,1[i]] ← True;

Proof Since the while-loop runs O(log n) times and each loop takes O(log n) time by
Lemma 27, the overall time complexity is O(log2 n). Now, let us look at the work com-
plexity. Concerning each round k of the while-loop of Algorithm 11, Merge(A,B) takes
O(2k log n) work by Lemma 27 and thus it takes O((n/2k) · 2k log n) = O(n log n) work.
Since k ranges from 0 to �log n′�, the overall work complexity is O(n log2 n). ��

4.2.2 Sweeping stage

The sweeping stage is described in Algorithm 12. The sweeping stage updatesC untilC[i] =
True iff i is a pattern occurrence. All entries in C are updated at most once. In addition to
C , we will create a new integer array R[1 : n′]. Throughout the sweeping stage, we have the
following invariant properties:

• if C[x] = False, then Tx
≈ P ,
• if C[x] = True, then LIP(Tx , P) ≥ R[x].

Recall that in the sweeping stage of our serial algorithm presented in Sect. 3.3, we use
LIP(Tx , P) to avoid looking into the same position of the text repeatedly. Once we have
obtained the value � = LIP(Tx , P), if the next candidate Tx+a is not too far in the sense
that a ≤ �, we can start the comparison between Tx+a and P from the position � − a + 1
(Figure 7). The sweeping stage of our parallel algorithm uses a similar trick, but we do not
compute LIP(Tx , P) for candidates from left to right sequentially. Instead, we compute lower
bounds of the values for many candidates in the array R in parallel. A lower bound is useful
enough to save computation according to the same argument as above.

For each stage k, the arrayC (and thereby R) is divided into 2k -blocks, where each position
i belongs to the �i/2k�-th block. Unlike the preprocessing and dueling algorithms, k starts
from �log n′� and decreases at each round until k = 0. In each 2k-block, we pick a position

123

D. Jargalsaikhan et al.

Algorithm 12: Parallel algorithm for the sweeping stage

1 Function SweepingStageParallel(P, T ,C)
2 create arrays of integers R[1 : m];
3 initialize elements of R to 0;
4 k ← �log n′�;
5 while k ≥ 0 do
6 create array Piv[1 : �n′/2k�];
7 initialize elements of Piv to −1;
8 for each i ∈ {1, . . . , n′} do in parallel

// get the position i with the smallest index in the second

half of the �i/2k�-th 2k-block such that C[i] = True

9 if C[i] = True and �i/2k−1� mod 2 = 0 then
10 Piv[�i/2k�] ⇐ i ;

11 for each b ∈ {1, . . . , �n′/2k�} do in parallel
12 x ← Piv[b];
13 if x
= −1 then
14 w ← max GetMismatchPos(LmaxP , LminP , Tx , R[x]);
15 if w = 0 then R[x] ⇐ m;
16 else R[x] ⇐ w − 1;

17 for each i ∈ {1, . . . , n′} do in parallel
18 x ← Piv[�i/2k�];
19 if x
= −1 then
20 a ← i − x ;
21 if i ≤ x and R[x] < a + m then C[i] ← False;
22 if i > x and C[i] = True then R[i] ← max(R[i], R[x] − a);

23 k ← k − 1;

24 return C ;

x as a “pivot” and computes LIP(Tx , P). Then, using the value LIP(Tx , P), we update the
arrays C and R on other surviving positions in the block.

Let us look at each round in more detail. The pivot xk,b in the b-th 2k-block of C is the
smallest index xk,b in the second half of the 2k-block such that C[xk,b] = True. The pivot
xk,b is stored in Piv[b] at the first for each parallel computation (Line 8) of Algorithm 12.
In case there are no survivors in the second half of the block, the block will not be updated
in this round. When k = 0, each block has a unique element, which is chosen as a pivot if it
is alive.

The second for each parallel computation puts LIP(Txk,b , P) into R[xk,b] for each 2k-
block. The invariantLIP(Txk,b , P) ≥ R[xk,b] ensures that to obtainLIP(Txk,b , P), it is enough
to perform the isomorphism check from the (R[xk,b] + 1)-th position using the F-function.
That is,

GetMismatchPos(LmaxP ,LminP , Tx , R[x]) (Algorithm 4)

gives a tight mismatch position pair for Txk,b and P when Txk,b
≈ P . Using the obtained tight
mismatching pair 〈w1, w2〉, we let R[xk,b] = LIP(Txk,b , P) = w2 − 1. If Txk,b ≈ P , we let
R[xk,b] = LIP(Txk,b , P) = m.

Using the value R[xk,b], we update the arrays on the other surviving positions in the same
2k-block. Figure 12 describes how the algorithm updates C and R in the third for each
parallel computation (Line 17). Suppose that Txk,b
≈ P and 〈w1, w2〉 is a tight mismatch

123

Serial and parallel algorithms for order-preserving…

Fig. 12 For each 2k -block, the algorithm picks a pivot position xk,b and computes � = LIP(Txk,b , P). The 2k -
block in this figure contains surviving positions c, d, and e, in addition to xk,b , where c+m ≤ xk,b+� < d+m.
Concerning the positions left to xk,b , since the mismatch position pair is covered by Td and Txk,b , we let
C[d] and C[xk,b] be False, while C[c] is not updated. Concerning the position e, right to xk,b , we set
R[e] = � − (e − xk,b)

position pair. Since all surviving candidates are pairwise consistent, any other surviving
candidates that “cover” the mismatch position pair cannot match the pattern (Lemma 29).
Based on this observation, Algorithm 12 updates C[i] for such candidates Ti in the first half
of the 2k-block at Line 21. On the other hand, at Line 22, the algorithm updates the values
of R[i] for indices i in the second half of the block if C[i] = True, based on the following
observation (Lemma 30). For � = LIP(Txk,b , P), the prefixes of Txk,b and P of length � are
order-isomorphic. Then, for close neighbor candidates i > xk,b, the corresponding prefixes
of Ti and P of length � − (i − xk,b) are also isomorphic, i.e., LIP(Ti , P) ≥ � − (i − xk,b)
since xk,b and i are consistent. When i is far from xk,b, i.e., i > xk,b + �, Line 22 does not
alter the value R[i]. In this way, the algorithm maintains the invariant properties. We note
that the algorithm does not update C[i] for i after xk,b or R[j] for j before xk,b within the
2k-block, but this laziness does not obstruct the maintenance of the invariants.

Lemma 29 Suppose that Tj
≈ P, for which w = 〈w1, w2〉 is a mismatch position pair. For
any candidate Ti consistent with Tj such that i < j , if w2 ≤ j − i + m, then Ti
≈ P.3

Proof By P[w]
≈ Tj [w] ≈ Ti [w ⊕ (j − i)], we conclude P
≈ Ti . ��
Lemma 30 Suppose that positions j and i are consistent, Tj [1 : �] ≈ P[1 : �], and � > a =
i − j > 0. Then, LIP(Ti , P) ≥ � − a.

Proof Since j and i are consistent, i.e., a = i − j is a period of P , we have

Ti [1 : � − a] = Tj [a + 1 : �] ≈ P[a + 1 : �] ≈ P[1 : � − a] .
��

When k = 0, all the 2k-blocks contain just one position x and R[x] is set to be exactly
LIP(Tx , P) by Line 22, unless C[x] = False at that time. Then, if R[x] < m, then C[x] will
be False at Line 21. That is, when the algorithm halts, C[x] = True iff Tx ≈ P .

It remains to show the efficiency of the algorithm. The only nontrivial issue is to esti-
mate the total work amount by the call GetMismatchPos(LmaxP ,LminP , Tx , R[x]) at
Line 14. This call scans the positions of the text from x + R[x] to x + m − 1 at maximum
for each pivot x . The following lemma implies that those positions are not overlapped.

3 Actually Lemma 29 holds when i > j and j − i + 1 ≤ w1, but we are concerned only with the case where
i < j .

123

D. Jargalsaikhan et al.

C

T

2k-block 2k-block 2k-block 2k-block

xk,1 xk,2 xk,3 xk,4

Txk,1

Txk,2

Txk,3

Txk,4

R[xk,1]

R[xk,2]

R[xk,3]

R[xk,4]

Fig. 13 Relation among pivots of different 2k -blocks and values of the R-array. The hatched regions of the
text are referenced during round k, which do not overlap

Lemma 31 At the beginning of round k, for two surviving candidate positions i and j with
i < j that do not belong to the same 2k-block, i + m ≤ j + R[j].
Proof At the beginning of round �log n′�, all candidate positions belong to the same 2�log n′�-
block. Thus, the statement trivially holds (base case). Assuming that the statement holds
before round k, we prove that it also holds after round k. Let i and j be surviving positions
belonging to different 2k−1-blocks.

First, we consider the case where i and j already belong to different 2k-blocks. Since ele-
ments of the array R are never decremented, the claim holds immediately from the induction
hypothesis.

Next, we consider the case where candidate positions i and j belong to the same 2k-
block and then get separated to different 2k−1-blocks. In this case, i and j belong to the first
and second halves of the 2k-block, respectively. Since j is alive, Algorithm 12 successfully
chooses a pivot x .

For i to be a surviving candidate after round k, itmust be the case thatm+i ≤ LIP(Tx , P)+
x (Line 21). For Tj , Algorithm 12 guarantees R[j] ≥ LIP(Tx , P) − (j − x) after round k.
Therefore, we obtain

m + i ≤ LIP(Tx , P) + x ≤ R[j] + (j − x) + x = R[j] + j .

��
Figure 13 shows a particular implication of Lemma 31 when i and j are neighbour pivot

positions.The scanned intervals of the parallel calls of GetMismatchPos(LmaxP ,LminP ,

Ti , R[i]) and GetMismatchPos(LmaxP ,LminP , Tj , R[j]) do not overlap. In other
words, during each round, for each i , the for each computation of Algorithm 4 is performed
at most once. Using the above discussions we have the following regarding the time and work
complexities of the sweeping stage.

Lemma 32 The sweeping stage algorithm runs in O(log n) time and O(n log n) work on the
P-CRCW PRAM.

Proof The outer loop of Algorithm 12 runs O(log n) times. Clearly, the first and the third for
each parallel computations cost O(1) time and O(n)work in each round. Concerning the sec-
ond for each parallel computations, recall that GetMismatchPos(LmaxP ,LminP , Tx , r)

123

Serial and parallel algorithms for order-preserving…

costs O(1) time and O(m − r) work (Lemma 14). Thus, for each b ∈ {1, . . . , �n′/2k�}, if
Piv[b]
= −1, the computation costs at most O(m − R[xk,b]) ⊆ O(xk,b − xk,b′) work by
Lemma 31 where b′ is the largest block number such that b′ < b and Piv[b′]
= −1. There-
fore, the second for each parallel computation also costs O(1) time and O(n) work. All in
all, the total time is O(log n) and the total work is O(n log n). ��

4.2.3 Pattern searching theorem

Ourpattern searching algorithm runs inO(log2 n) time andO(n log2 n)workon theP-CRCW
PRAM, since the dueling stage (Algorithm 11) takes O(log2 n) time and O(n log2 n)work by
Lemma28, and the sweeping stage (Algorithm12) runs in O(log n) time and O(n log n)work
by Lemma 32. One can improve the time complexity by the standard technique presented
at the beginning of this section. That is, we search for pattern occurrences in each substring
T [1 : 2m − 1], T [m + 1 : 3m − 1], . . . , T [km + 1 : n] in parallel, with k = � n+1

m �− 2. Then,
each of the k + 1 searches costs O(log2 m) time and O(m log2 m) work. Therefore, the total
amount of work will be O(n log2 m).

Theorem 33 The pattern searching runs in O(log2 m) time and O(n log2 m) work on the
P-CRCW PRAM.

5 Conclusions and discussion

We have proposed new algorithms for the OPPMP by extending Vishkin’s duel-and-sweep
algorithm [26] for the exact matching problem. One is serial and the other is parallel. The
former runs in linear time, which achieves the theoretical optimum. The latter is the first
parallel algorithm for the OPPMP. It runs in O(log2 m) time using O(n logm) work on
the P-CRCW PRAM given the text of length n and the pattern of length m. The pattern
preprocessing runs in O(logm) time using O(m logm) work on the P-CRCW PRAM.

Order-preserving matching is a special case of SCERs and indeed our parallel algorithm
is based on the one for the general SCER pattern matching problem by Jargalsaikhan et
al. [19, 20]. However, as we discuss in Appendix A in detail, the general algorithm is not
suitable for the OPPMP. Our key idea is to use pairs of positions on the input pattern as
witnesses for offsets rather than single positions on the encoded input pattern. In addition,
the pattern preprocessing of our algorithm takes advantage of the reversibility of OPM,which
SCERs do not necessarily satisfy in general, so that it runs faster than the one in [19, 20].
Here, we call a matching relation reversible just in the case where two strings match if
and only if so do the reverses of them. While, for example, Cartesian tree matching is not
reversible, parameterized matching is reversible. Therefore, the presented technique used in
the preprocess can be applied to the pattern matching problems for other reversible SCERs
like parameterized matching as well.

Acknowledgements We would like to express our sincere gratitude to the anonymous reviewers for their
constructive comments and valuable feedback. Their contributions have been helpful in refining the final ver-
sion of this paper.This work was supported by JSPS KAKENHI Grant Numbers JP15H05706, JP18K11150,
JP19K20208, JP20H05703, and JP21K11745. Thisworkwas also supported by ImPACTProgramof theCoun-
cil for Science, Technology and Innovation (Cabinet Office, Government of Japan). Davaajav Jargalsaikhan
was supported by a research grant from Tohoku University Division for International Advanced Research and
Education.

Author contributions All the co-authors contributed equally to this work.

123

D. Jargalsaikhan et al.

Data availability No datasets were generated or analysed during the current study.

Declarations

Conflict of interests The authors declare no competing interests.

Appendix A. Comparison with the parallel SCERmatching algorithms

Our proposed parallel algorithm is largely based on the general matching algorithm for
arbitrary SCERs proposed by Jargalsaikhan et al. [19, 20]. An equivalence relation ∼= over
�∗ is called an SCER just in the case where X ∼= Y implies |X | = |Y | and X [i : j] ∼= Y [i : j]
for any 1 ≤ i ≤ j ≤ |X |. Clearly, the OPM relation ≈ is an SCER. The algorithm in [19]
uses an encoding that satisfies the following conditions.

Definition 34 (∼=-encoding, [19, Definition 3]) Let � and � be (possibly infinite) alphabets.
We say a function f : �∗ → �∗ is an ∼=-encoding if

(1) f (X) = f (Y) iff X ∼= Y ,
(2) f (X [1 : i]) = f (X)[1 : i] for any i ≤ |X |, and
(3) f (X)[i] = f (Y)[i] implies f (X [j + 1 : k])[i − j] = f (Y [j + 1 : k])[i − j] for any

j < i ≤ k.

If X � Y , one can find a witness position i such that f (X)[i]
= f (Y)[i]. The conditions
(2) and (3) imply that when a position witnesses mismatch between substrings of X and Y ,
then that position witnesses the mismatch between the whole strings X and Y as well. This is
an important property to “transfer” witnesses on an offset for other offsets in their algorithm.
Accordingly, the efficiency of their algorithm depends on the efficiency of the calculation of
the encoding of a string as well as that of recalculating the encoding of a substring from the
encoding of the whole string.

Indeed, every SCER ∼= admits an encoding satisfying the above: let � be the power set of
�∗, and f (ε) = ε and f (Xc) = f (X) · [Xc]∼= for c ∈ � where [Y]∼= is the equivalence class
of Y ∈ �∗ under ∼= (or, � can be any set of symbols that can represent those equivalence
classes). This construction guarantees that their algorithm works for every SCER in theory,
but computing this encoding is apparently expensive. Actually, many SCERs, like exact
match, parameterizedmatch, and Cartesianmatch, admit computationally cheaper encodings
satisfying Definition 34. However, we do not yet know if there is such a reasonable encoding
for OPM.

Concerning the OPM relation ≈, recall that X ≈ Y if and only if LmaxX = LmaxY and
LminX = LminY . The encoding LmixX of X defined as LmixX [i] = 〈LminX [i],LmaxX [i]〉
fulfills (1)–(2) of Definition 34, but not (3). For example, consider the mismatch between
X = (4, 6, 1, 5) and Y = (4, 6, 9, 5). We have

LmixX = (〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈2, 1〉) ,

LmixY = (〈0, 0〉, 〈0, 1〉, 〈0, 1〉, 〈2, 1〉) .

The mismatch is witnessed at position 3, but not at the last position, with this encoding. On
the other hand, the mismatch of their suffixes X ′ = (1, 5)
≈ Y ′ = (9, 5) is witnessed at the
last position.

LmixX ′ = (〈0, 0〉, 〈0, 1〉) ,

123

Serial and parallel algorithms for order-preserving…

LmixY ′ = (〈0, 0〉, 〈1, 0〉) .

Therefore, the algorithm proposed in [19] does not work with this encoding Lmix. Instead,
we have designed an algorithm that uses two positions as a mismatch witness, where we do
not compare the encoded characters. This modification exempts us from the encoding costs.
Furthermore, the OPM relation ≈ is closed under reversal, i.e., X ≈ Y iff rev(X) ≈ rev(Y),
which is not guaranteed in general SCERs. Thanks to this property, our proposed pattern
preprocessing (Algorithm 9 more specifically) runs faster than the one for general SCERs in
[19].

References

1. Amir, A., Kondratovsky, E.: Sufficient conditions for efficient indexing under different matchings.
In: Proceedings of 30th annual symposium on combinatorial pattern matching (CPM 2019), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

2. Amir, A., Benson, G., Farach, M.: An alphabet independent approach to two-dimensional pattern match-
ing. SIAM J. Comput. 23(2), 313–323 (1994)

3. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algorithms based on finding
all nearest smaller values. J. Algorithms 14(3), 344–370 (1993)

4. Boyer, R.S.,Moore, J.S.: A fast string searching algorithm. Commun of theACM 20(10), 762–772 (1977).
https://doi.org/10.1145/359842.3598599

5. Cantone, D., Faro, S., Külekci, M.O.: An efficient skip-search approach to the order-preserving pattern
matching problem. In: PSC, pp 22–35 (2015)

6. Chhabra, T., Tarhio, J.: A filtration method for order-preserving matching. Inf. Process. Lett. 116(2),
71–74 (2016). https://doi.org/10.1016/j.ipl.2015.10.005

7. Chhabra, T., Külekci, M.O., Tarhio, J.: Alternative algorithms for order-preserving matching. In: PSC,
pp 36–46 (2015)

8. Cho, S., Na, J.C., Park, K., et al.: A fast algorithm for order-preserving pattern matching. Inf. Process.
Lett. 115(2), 397–402 (2015)

9. Cole, R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988)
10. Cole, R., Hazay, C., Lewenstein, M., et al.: Two-dimensional parameterized matching. ACM Trans.

Algorithms 11(2), 1–12 (2014). https://doi.org/10.1145/2650220
11. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., et al.: Order-preserving indexing. Theor. Comput. Sci.

638, 122–135 (2016). https://doi.org/10.1016/j.tcs.2015.06.050
12. Faro, S., Külekci, M. O.: Efficient algorithms for the order preserving pattern matching problem. In:

International Conference on Algorithmic Applications in Management, Springer, pp 185–196 (2016)
13. Faro, S., Lecroq, T.: The exact online string matching problem: a review of the most recent results. ACM

Comput. Surv. (CSUR) 45(2), 1–42 (2013)
14. Hasan, M.M., Islam, A.S., Rahman, M.S., et al.: Order preserving pattern matching revisited. Pattern

Recogn. Lett. 55, 15–21 (2015)
15. Horspool, R.N.: Practical fast searching in strings. Softw: Pract. Exp. 10(6), 501–506 (1980). https://doi.

org/10.1002/spe.4380100608
16. JáJá, J.: An Introduction to Parallel Algorithms, vol. 17. Addison-Wesley, Reading (1992)
17. Jargalsaikhan, D., Diptarama, Ueki, Y. et al: Duel and sweep algorithm for order-preserving pattern

matching. In: SOFSEM 2018: theory and practice of computer science 44th international conference
on current trends in theory and practice of computer science, Krems, Austria, January 29-February 2,
Proceedings pp 624-635, (2018)

18. Jargalsaikhan, D., Hendrian, D., Yoshinaka, R. et al: Parallel duel-and-sweep algorithm for the order-
preserving pattern matching. In: International conference on current trends in theory and practice of
informatics, pp 211–222 (2020)

19. Jargalsaikhan, D., Hendrian, D., Yoshinaka, R. et al: Parallel algorithm for pattern matching problems
under substring consistent equivalence relations. In: 33rd Annual symposium on combinatorial pattern
matching, CPM 2022, June 27-29, 2022, Prague, Czech Republic, LIPIcs, vol 223. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, pp 28:1–28:21, (2022a) https://doi.org/10.4230/LIPIcs.CPM.2022.28

20. Jargalsaikhan, D., Hendrian, D., Yoshinaka, R. et al: Parallel algorithm for pattern matching problems
under substring consistent equivalence relations. CoRR abs/2202.13284. (2022b) https://arxiv.org/abs/
2202.13284, 2202.13284

123

https://doi.org/10.1145/359842.3598599
https://doi.org/10.1016/j.ipl.2015.10.005
https://doi.org/10.1145/2650220
https://doi.org/10.1016/j.tcs.2015.06.050
https://doi.org/10.1002/spe.4380100608
https://doi.org/10.1002/spe.4380100608
https://doi.org/10.4230/LIPIcs.CPM.2022.28
https://arxiv.org/abs/2202.13284
https://arxiv.org/abs/2202.13284

D. Jargalsaikhan et al.

21. Kim, J., Eades, P., Fleischer, R., et al.: Order-preserving matching. Theoret. Comput. Sci. 525, 68–79
(2014)

22. Knuth, D.E.,Morris, J.H., Jr., Pratt, V.R.: Fast patternmatching in strings. SIAMJ. Comput. 6(2), 323–350
(1977). https://doi.org/10.1137/0206024

23. Kubica, M., Kulczyński, T., Radoszewski, J., et al.: A linear time algorithm for consecutive permutation
pattern matching. Inf. Process. Lett. 113(12), 430–433 (2013)

24. Matsuoka, Y., Aoki, T., Inenaga, S., et al.: Generalized pattern matching and periodicity under substring
consistent equivalence relations. Theoret. Comput. Sci. 656, 225–233 (2016)

25. Ueki, Y., Narisawa, K., Shinohara, A.: A fast order-preserving matching with q-neighborhood filtration
using SIMD instructions. In: SOFSEM (Student Research Forum Papers/Posters), pp 108–115 (2016)

26. Vishkin, U.: Optimal Parallel Pattern Matching in Strings. International Colloquium on Automata, Lan-
guages, and Programming, pp. 497–508. Springer, Berlin (1985)

27. Vishkin, U.: Deterministic sampling: a new technique for fast pattern matching. SIAM J. Comput. 20(1),
22–40 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1137/0206024

	Serial and parallel algorithms for order-preserving pattern matching based on the duel-and-sweep paradigm
	Abstract
	1 Introduction
	2 Preliminaries
	3 Serial duel-and-sweep algorithm for OPPM
	3.1 Overview of the duel-and-sweep algorithm
	3.2 Pattern preprocessing
	3.3 Pattern searching

	4 Parallel duel-and-sweep algorithm for OPPM
	4.1 Parallel pattern preprocessing
	4.1.1 Head maintenance
	4.1.2 Tail finalization
	4.1.3 Summary of pattern preprocessing

	4.2 Parallel pattern searching
	4.2.1 Dueling stage
	4.2.2 Sweeping stage
	4.2.3 Pattern searching theorem

	5 Conclusions and discussion
	Acknowledgements
	Appendix A. Comparison with the parallel SCER matching algorithms
	References

