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Abstract
The Kemeny method is one of the popular tools for rank aggregation. However, computing
an optimal Kemeny ranking is NP-hard. Consequently, the computational task of finding a
Kemeny ranking has been studied under the lens of parameterized complexity with respect
to many parameters. We study the parameterized complexity of the problem of computing
all distinct Kemeny rankings. We consider the target Kemeny score, number of candidates,
average distance of input rankings, maximum range of any candidate, and unanimity width
as our parameters. For all these parameters, we already have FPT algorithms. We find that
any desirable number of Kemeny rankings can also be found without substantial increase in
running time. We also present FPT approximation algorithms for Kemeny rank aggregation
with respect to these parameters.

1 Introduction

Aggregating individual ranking over a set of alternatives into one societal ranking is a fun-
damental problem in social choice theory in particular and artificial intelligence in general.
Immediate examples of such applications include aggregating the output of various search
engines [1], recommender systems [2], etc. The Kemeny rank aggregation method is often
the method of choice in such applications due to its many desirable properties like Condorcet
consistency that is electing the Condorcet winner (if it exists), etc. A Condorcet winner is a
candidate who defeats every other candidate in pairwise election. The Kemeny method out-
puts a ranking R with minimum sum of dissatisfaction of individual voters known asKemeny
score of R; the dissatisfaction of a voter with ranking Q with respect to R is quantified as
the number of pairs of candidates that Q and R order differently [3]. This quantity is also
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called the Kendall-Tau distance between Q and R. A ranking with minimum Kemeny score
is called the Kemeny ranking.

The computational question of finding optimal Kemeny rankings is intractable in very
restricted settings (for instance, even with a constant number of voters). Therefore, it has
been well-studied from both approximation and parameterized perspectives. A problem is
said to be fixed-parameter tractable or FPT with respect to a parameter k if it admits an
algorithm whose running time can be described as f (k) · nO(1) where the input size is n,
implying that the algorithm is efficient for instances where the parameter is “small” [4].
For the Kemeny rank aggregation problem, the following parameters (among others) have
enjoyed attention in the literature:

• Range. The range of a candidate in a profile is the difference between its positions in the
votes which rank him/her the lowest and the highest [5]. Themaximum and average range
of a profile is defined as, respectively, the maximum and average ranges of individual
candidates. Profiles which are “homogeneous”, i.e. where most candidates are viewed
somewhat similarly by the voters, are likely to have low values for range, while a single
polarizing candidate can skew the max range parameter considerably.

• KT-distance. The average (respectively, maximum) KT distance is the average (respec-
tively, maximum) of the Kendall-Tau distances between all pairs of votes [5]. Recall
that the KT distance between a pair of rankings is the number of pairs that are ordered
differently by the two rankings under consideration.

A pair of candidates are said to be unanimous with respect to a voting profile if all votes
rank them in the same relative order. Consider the following “unanimity graph” associated
with a profile P and defined as follows: every candidate is represented by a vertex, and there
is an edge between a pair of candidates if and only if they are unanimous with respect to
the profile. We use GP to denote this graph. Note that the structure of the complement of
this graph, denoted GP , carries information about candidates about whom the voters are not
unanimous in their opinion. In particular, for every pair of candidates a and b that have an
edge between them in the complement of the unanimity graph, there is at least one voter
who prefers a over b and at least one who prefers b over a. Thus every edge signals a lack
of consensus, and one could think of the number of edges in this graph as a measure of the
distance of the profile from an “automatic consensus”, which is one that can be derived from
the information about unanimous pairs alone. Motivated by this view, we consider also the
following structural parameter:

Unanimity width. For an input voting profile P , we define a graph GP , called “unanimity
graph” or the comparability graph, on the set of candidates where we have an edge from i
to j if and only if every ranking in P puts i before j ; we denote its complement by GP and
call it co-comparability graph of P . We call the pathwidth of GP the unanimity width of P
[6] (refer to Sect. 2 for the formal definition of pathwidth).

Our contribution concerns enumerating optimal Kemeny rankings. In recent times, there is
considerable research interest in finding a set of diverse optimal or near-optimal solutions of
an optimization problem. The two natural parameters, e.g. the number r of distinct solutions
in the set and the minimum required distance s (scatteredness parameter) between any two
solutions in the set quantifies what the term “diverse" means for a set of solutions. Indeed, it
is often difficult to encode all aspects of a complex system into a neat computational problem.
In such scenarios, having a diverse set of optimal solutions for a problem � allows the user
to pick a solution which meets other aspects which are not captured in �. In the context of
rank aggregation, such other external constraints may include gender fairness, demographic
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balance, etc. For the Kemeny rank aggregation method, Arrighi et al. [7] present a parame-
terized algorithm to output a set of diverse Kemeny rankings with respect to unanimity width
as the parameter.

However, note that external requirements are often independent of the constraints in the
optimization problem, and consequently they may not be correlated with diversity based on
distance parameters. In particular, for useful externalities like gender fairness or geographic
balance—these features of the candidates may not have any relation with their position in the
voters’ rankings, and therefore, diversity between solutions may not imply diversity within
any of the solutions. This becomes particularly stark whenmost near-optimal rankings do not
meet the external requirements. Indeed, there is a substantial literature [8, 9] that considers
the problem of accounting for these requirements explicitly, and studies trade-offs between
optimality of solutions and the degree to which demands of diversity can be met.

In this paper, we shift our focus from finding diverse solutions to finding as many distinct
solutions as possible. Enumerating solutions is a fundamental goal for any optimization prob-
lem. The literature on counting optimal Kemeny rankings is arguably limited considering
that even finding one is hard in very restricted settings, and that instances could have expo-
nentially many rankings — which would be too expensive to enumerate. Indeed, consider
a profile that consists of two votes over m candidates, where one vote ranks the candidates
in lexicographic order and the other ranks the candidates in reverse lexicographic order. For
this instance, every ranking is an optimal ranking. However, note that real world preferences
often have additional structure: for example, profiles with an odd number of votes that are
single-peaked [10] or single-crossing [10] have unique optimal solutions. To address scenar-
ios where the number of optimal solutions is large, we allow the user to specify the number r
of optimal solutions that she wants the algorithm to output. In our problem called Distinct
OPT Kemeny Ranking Aggregation, the input is a set of rankings over a set of candi-
dates and an integer r , and we need to output max{r , number of optimal solutions} Kemeny
rankings.

1.1 Our contributions

Algorithms for Distinct Kemeny Rank Aggregation The first parameter that we consider is
the optimal Kemeny score k, also called the standard parameter. Many applications of rank
aggregation, for example, faculty hiring, etc. exhibit correlation among the individual rank-
ings — everyone in the committee may tend to prefer some candidate with strong academic
background than some other candidate with weak track record. In such applications, the opti-
mal Kemeny score k, average Kendall-Tau distance d (a.k.a. Bubble sort distance) among
input rankings, maximum range of the positions of any candidate rmax , and unanimity width
w will be small, and an FPT algorithm becomes useful. We show that there is an algorithm for
Distinct OPT Kemeny Ranking Aggregation running in time O∗ (

2k
)
[Theorem 1].

We next consider the number of candidates, m as the parameter and present an algorithm
running in time O∗ (

2mrO(1)
)
[Theorem 2] where r is the required number of solutions. For

d and rmax , we present algorithms with running timeO∗(16d · r) andO∗ (32rmax · r) [Theo-
rem 3 and 4] respectively. Our last parameter is the unanimity widthw which is the pathwidth
of the co-comparability graph of the unanimity order and we present an algorithm running
in time O∗ (

2O(w) · r) [Theorem 5].
Some instances may have a few optimal solutions, but have many close-to-optimal

solutions. To address such cases, we study the Distinct approximate Kemeny Rank-
ing Aggregation problem where the user gives a real number λ ≥ 1 as input and
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looks for max{r , number of optimal solutions} rankings with Kemeny score at most λ times
the optimal Kemeny score. For this problem, we design algorithms with running time
O∗ (

2λk
)
[Corollary 1], O∗ (

2mrO(1)
)
[Corollary 2] and O∗ (

16λd · r) [Corollary 6].
We observe that the running time of all our algorithms are comparable with the respective

parameterized algorithms for the problem of finding one Kemeny ranking. We note that this
phenomenon is in sharp contrast with the diverse version of Kemeny rank aggregation where
we have an FPT algorithm only for unanimity width as the parameter. To begin with, the
algorithm, as presented in [6], cannot be used to find only optimal solutions; it can find only
approximately optimal solutions. However, one can set the parameters of the algorithm in
[6] to find all λ approximate rankings in time O∗((w!(λ − 1)OPT)O(m!)) where OPT is the
optimal Kemeny score of the input rankings.

1.2 Related work

Kemeny rule [3] showsus itsmost significant andpopularmechanism for ranking aggregation.
However, Bartholdi et al. [11] have established that Kemeny Score, Kemeny ranking and
Kemeny winner are NP-hard. The Kemeny ranking aggregation approach is NP-hard, even if
we have only four input rankings to aggregate [1]. Fixed-parameter algorithms for Kemeny
voting rule have been proved to be an effective and important area for research by Betzler
et al. [5] considering structural parameterizations such as “number of candidates”, “solution
size i.e. Kemeny Score”, “average pairwise distance”, “maximum range”, “average range”
of candidates in an election. A multi-parametric algorithm for Diverse Kemeny Rank
Aggregation over partially ordered votes has been studied in [6].Arrighi et al. [7] developed
a FPT algorithm parameterized by unanimity width for the Kemeny rank aggregation method
to output a set of diverse Kemeny rankings. A small error in the construction proof from [1]
has been rectified by Biedl et al. [12] and they have established the approximation factor of
2 − 2/k, improving from the previous approximation factor of 2.

Further classification in more exact manner of the classical computational complexity
of Kemeny elections has been provided by Hemaspaandra et al. [13]. With respect to the
practical relevance of the computational hardness of the Kemeny Score, polynomial-time
approximation algorithms have been developed where a factor of 8/5 is seen in [14] and a
factor of 11/7 is proved in [15]. Kenyon-Mathieu and Schudy [16] proposed a polynomial-
time approximation scheme (PTAS) for finding a Kemeny ranking. However, their algorithm
is not very useful in practice. There are quite a few works which develop practical heuristics
for this problem [17–19].

Polynomial time algorithms producing good solutions for rank aggregation rule is a con-
sequence of thorough computational studies [16, 21]. Cornaz et al. [10] have established
polynomial time computability of the single-peaked and single-crossing widths and have
proposed new fixed-parameter tractability results for the computation of an optimal ranking
according to the Kemeny rule by following the results of Guo te al. [21]. In social choice
theory [11, 22], the ideas related to diverse sets of solutions have found tremendous appli-
cability. The study in [23] introduced the ( j, k)-Kemeny rule which is a generalization of
Kemeny’s voting rule that aggregates ballots containing weak orders with j indifference
classes into a weak order with k indifference classes. In social choice theory, different values
of j and k yield various rules of the interest of the community turning up as special cases.
The minimum Kendall-Tau distance between pairs of solutions has a nice analogy with min
Hamming distance over all pairs of solutions as shown in [24, 25].
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2 Preliminaries

For an integer �, we denote the set {1, . . . , �} by [�] and [�]0 = [�] ∪ {0}. For two inte-
gers a, b, we denote the set {i ∈ N : a ≤ i ≤ b} by [a, b]. Given two integer tuples
(x1, . . . , x�) , (y1, . . . , y�) ∈ N

�, we say (x1, . . . , x�) >lex (y1, . . . , y�) if there exists an
integer i ∈ [�] such that we have (i) x j = y j for every j ∈ [i − 1], and (ii) xi > yi .

Let C be a set of candidates and � = {π1, . . . , πn} a multi-set of n rankings (com-
plete orders) on C. For a ranking π and a candidate c let us define posπ (c) to be
| {c′ ∈ C : c′ �π c

} |. We precisely define the range r(c) in a set of rankings � to be

maxπi ,π j∈�

{
|posπi

(c) − posπ j
(c) |

}
+ 1. We denote the set of all complete orders over

C by L(C). The Kemeny score of a ranking Q ∈ L(C) with respect to � is

Kemeny�(Q) =
n∑

i=1

dKT(Q, πi )

where dKT(·, ·) is the Kendall-Tau distance – the number of pairs of candidates whom the
linear orders order differently – between two linear orders, and N�(x � y) is the number of
linear orders in � where x is preferred over y. A Kemeny ranking of � is a ranking Q which
has the minimumKemeny�(Q); the score Kemeny�(Q) is called the optimal Kemeny score
of �.

We now define our problems formally. For a set of rankings �, we denote the set of
(optimal) Kemeny rankings and rankings with Kemeny score at most some integer k for �

respectively by K (�) and K (�, k), and the minimum Kemeny score by kOPT(�).

Definition 1 (Distinct OPT Kemeny Ranking Aggregation). Given a set of rankings
(complete orders) � over a set of candidates C and integer r , compute � = min{r , |K (�)|}
distinct Kemeny rankings π1, . . . , π�. We denote an arbitrary instance of it by (C,�, r).

For a set of rankings � over a set of candidates C, we say that a complete order π respects
unanimity order if we have x �π y whenever x � y for all �∈ �.

Definition 2 (Distinct approximate Kemeny Ranking Aggregation). Given a set of
ranking (complete order) � over a set of candidates C, an approximation factor λ ≥ 1, and
integer r , compute � = min{r , |K (�, λ · kOPT(�))|} distinct rankings π1, . . . , π� such that
each ranking πi , i ∈ [�] respects unanimity order with respect to � and the Kemeny score
of each ranking πi , i ∈ [�] is at most λ · kOPT(�). We denote an arbitrary instance of it by
(C,�, λ, r).

Definition 3 (Distinct Kemeny Ranking Aggregation). Given a list of partial votes
� over a set of candidates C, and integers k and r , compute � = min{r , |K (�, k)|} distinct
rankings π1, . . . , π� such that the Kemeny score for each ranking πi is at most k and each
πi , i ∈ [�] respects unanimity order. We denote an arbitrary instance of it by (C,�, k, r).

We useO∗(·) to hide polynomial factors. That is, we denoteO( f (k)poly(n)) asO∗( f (k))
where n is the input size.

We define a path decomposition of a graph G = (V , E) by a tuple P = (Bi )i∈[t] where
each bag Bi ⊆ V , t is the number of bags in P and P satisfies the following additional
constraints: (1)

⋃
i∈[t] Bi = V , (2) ∃i ∈ [t] such that u, v ∈ Bi for each (u, v) ∈ E and (3)

Bi ∩ Bk ⊆ B j for each i, j, k ∈ [t] satisfying i < j < k. The width of P denoted by w (P)

is defined as maxi∈[t] |Bi | − 1. The pathwidth of G is denoted by pw (G) which is defined
as the minimum width of a path decomposition of G.
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3 Algorithms for DISTINCT KEMENY RANKING AGGREGATION

We start with an easy Turing reduction from Distinct OPT Kemeny Ranking
Aggregation to Distinct Kemeny Ranking Aggregation.

Observation 1 Suppose there exists an algorithm for Distinct Kemeny Ranking
Aggregation running in time O( f (m, n)) where m is the number of candidates and n
is the number of input votes. Then there exists an algorithm for Distinct OPT Kemeny
Ranking Aggregation running in time O( f (m, n) log(mn)).

Proof We note that the optimal Kemeny score belongs to the set {0, 1, . . . , n(m
2

)}. To solve
Distinct OPT Kemeny Ranking Aggregation, we perform a binary search in the
range from 0 to n

(m
2

)
to find the smallest k such that the algorithm for Distinct Kemeny

Ranking Aggregation returns at least one ranking. �
We now present a bounded search based FPT algorithm for Distinct Kemeny Ranking

Aggregation parameterized by the optimal Kemeny score. Hence, we also have an FPT
algorithm for Distinct OPT Kemeny Ranking Aggregation parameterized by the
optimal Kemeny score.

Theorem 1 Let k be the Kemeny score of a Kemeny ranking. There is an FPT algo-
rithm for Distinct Kemeny Ranking Aggregation parameterized by k which runs
in time O∗ (

2k
)
. Hence, we have an FPT algorithm for Distinct OPT Kemeny Ranking

Aggregation parameterized by kOPT which runs in time O∗ (
2kOPT

)
.

Proof Due to observation 1, it is enough to present an algorithm for Distinct Kemeny
Ranking Aggregation. We design an algorithm for a more general problem Distinct
Kemeny Ranking Aggregation′ where every output ranking needs to respect the relative
order of some set of pair of candidates given as input. If the set of pairs of candidates is empty,
then the new problem is the same as Distinct Kemeny Ranking Aggregation.

Let (C,�, k, r) be an arbitrary instance of Distinct Kemeny Ranking Aggregation.
We define X = {a � b : a, b ∈ C, every ranking in � prefers a over b} to be the unanimity
order of �. We find a solution of Distinct Kemeny Ranking Aggregation′ instance
(C,�, k, r ,X ). We now design a bounded search based algorithm. We maintain a set S of
solutions, which is initialized to the empty set. If every pair of candidates belong to X and
k ≥ 0, then we put the ranking induced by X in S. If k < 0, then we discard this branch.
Otherwise, we pick a pair (a, b) of candidates not present in X , solve (C,�, k − |{π ∈
� : b � a in π}|, r , transitive closure of X ∪ {a � b}) and (C,�, k − |{π ∈ � : a �
b in π}|, r , transitive closure of X ∪ {b � a}) recursively, and put solutions found in S. We
note that, since (a, b) is not a unanimous order of �, the target Kemeny score k decreases by
at least one on both the branches of the search tree. Hence, the height of the search tree is at
most k. Thus, the number of leaves and nodes in the search tree are at most respectively 2k

and 2 · 2k . After the search terminates, we output min{r , |S|} rankings from S. If S remains
empty set, report that there is no ranking whose Kemeny score is at most k. The computation
at each node of the search tree (except the recursive calls) clearly takes a polynomial amount
of time. Hence, the runtime of our algorithm is O∗ (

2k
)
. The correctness of our algorithm

follows from the observation that every ranking R whose Kemeny score is at most k, appears
in a leaf node of the search tree of our algorithm. �

Running the algorithm in Theorem 1 with target Kemeny score λk where k is the optimal
Kemeny score gives us the following result.
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Corollary 1 There is an algorithm for Distinct approximate Kemeny Ranking
Aggregation running in time O∗ (

2λk
)
parameterized by both λ and k.

We now consider the number of candidates as parameter and present a dynamic
programming based FPT algorithm for Distinct Kemeny Ranking Aggregation.

Theorem 2 There is an algorithm for Distinct Kemeny Ranking Aggregation which
runs in timeO∗ (

2mrO(1)
)
. In particular,Distinct Kemeny Ranking Aggregation and

Distinct OPT Kemeny Ranking Aggregation are FPT parameterized by the number
of candidates since the number r of output rankings can be at most m!.
Proof Let (C,�, k, r) be an arbitrary instance of Distinct Kemeny Ranking Aggre-
gation. We maintain a dynamic programming table T indexed by the set of all possible
non-empty subsets of C. For a subset S ⊆ C,S �= ∅, the table entry T [S] stores at most
min{r , |S|!} distinct rankings on S which have the least Kemeny score when the votes
are restricted to S. We initialize table T for the trivial cases like T [S] = () when |S| =
0, T [S] = (the element from S) when |S| = 1 and T [S] = (x � y) when S = {x, y}
and x � y has the least Kemeny score when � is restricted to {x, y} or T [S] =
(x � y, y � x) when S = {x, y} and both x � y and y � x have the least Kemeny score
when � is restricted to {x, y}. To update the table entry T [S] for |S| ≥ 3, we include to that
entry min{r , |S|!} rankings that have the least Kemeny score (when the votes are restricted
to S) among all rankings of the form c > π , where c is a candidate in S and π is a ranking
stored in T [S \ {c}]. Updating each table entry takes at most O�(rO(1)) time. As there are
2m − 1 table entries, the running time of our algorithm is at most O�

(
2mrO(1)

)
.

We now present the proof of correctness of our algorithm. Suppose we have S =
{c1, ..., c�} and c1 � ... � c� be a ranking in T [S]. Then c1 � ... � c� is a Kemeny
ranking if the votes in � are restricted to S. But then c2 � ... � c� is a Kemeny ranking if
votes are restricted to S \ {c1}. If not, then suppose c′

2 � ... � c′
� be a ranking with Kemeny

score less than c2 � ... � c�. Then the Kemeny score of c1 � c′
2 � ... � c′

� is less than the
Kemeny score of c1 � c2 � ... � c� contradicting our assumption that c1 � ... � c� is a
Kemeny ranking when votes are restricted to S. Hence, the update procedure of our dynamic
programming algorithm is correct. �

Corollary 2 follows from the algorithm presented in the proof of Theorem 2.

Corollary 2 Distinct approximate Kemeny Ranking Aggregation is FPT parame-
terized by the number of candidates m.

Proof Consider an instance (C,�, λ, r) of Distinct approximate Kemeny Rank-
ing Aggregation. We run the algorithm proposed at Theorem 2 on the instances
(C,�, 0, 1), (C,�, 1, 1), . . . of Distinct Kemeny Ranking Aggregation.We stop once
we encounter an instance, say (C,�, k∗, 1), for which the algorithm in Theorem 2 returns a
Kemeny ranking with Kemeny score at most k∗. Note that k∗ is the optimum Kemeny score
for the election profile (C,�). Next, we run the algorithm of Theorem 2 on the instance
(C,�, λ · k∗, r) of Distinct Kemeny Ranking Aggregation to get the desired output.
As k∗ ≤ (m

2

) · |�|, the overall running time of the algorithm is at most O∗(2mrO(1)
)
. So, as

r ≤ m!, it follows that Distinct approximate Kemeny Ranking Aggregation is FPT
parameterized by the number of candidates m. �

Our next parameter is the “average pairwise distance (Kendall-Tau distance)” d of the
input rankings. We present a dynamic programming based FPT algorithm parameterized by
d .
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Theorem 3 Let d be the average KT-distance of an election (�, C). There is an FPT for
Distinct OPT Kemeny Ranking Aggregation parameterized by d which runs in time
O�

(
16d · r).

Proof Let |C| = m, |�| = n and average position of a candidate c ∈ C in � is defined as
pavg (c) := 1

n · ∑v∈� v(c) where v(c):=| {c′ ∈ C : c′ � c in v ∈ �
} |. Formally for an elec-

tion (�, C), d:=
∑

v∈�

∑
w∈� dKT(v,w)

n·(n−1) . Betzler et al. [5] proved that Kemeny ranking can be

found in time O ∗ (16�d�) and their proof holds for just d as well. Following the proof
of both Lemma 6 and Lemma 7 from Betzler et al. [5], we have a set of candidates say
Pi :=

{
c ∈ C | pavg(c) − d < i < pavg(c) + d

}
for each position i ∈ [m − 1]0 in an opti-

mal Kemeny Consensus and we know that |Pi | � 4d ∀i ∈ [m − 1]0. Our FPT dynamic
programming algorithm is an extension of the algorithm presented in Fig. 4. of section 6.4
of [5].

Let the subset of candidates that are forgotten at latest at position i , be denoted by
F(i):=Pi−1\Pi and the subset of candidates that are introduced for the first time at position i
be denoted by I (i):=Pi \Pi−1.Wemaintain a three dimensional dynamic programming table
T indexed by ∀i ∈ [m − 1]0 ,∀ c ∈ Pi and ∀P ′

i ⊆ Pi \ {c} of size at most O
(
16d · d · m)

.
We define the partial Kemeny Score pK-score(c,R):= ∑

c′∈R
∑

v∈� dRv (c, c′) where
dRv (c, c′):=0 if c �v c′ and dRv (c, c′):=1 otherwise and R ⊆ C. At each table entry
T (i, c, P ′

i ), we store a sequence of at most r number of partial Kemeny Scores sorted in non-
decreasing order by considering and iterating over the entries in T (i−1, c′, (P ′

i ∪F(i))\{
c′})

∀c′ ∈ P ′
i ∪ F(i) and we store the tuple

(
T (i − 1, c′, (P ′

i ∪ F(i)) \ {
c′}) + pK-score(c, (Pi ∪

⋃

i< j<m

I ( j)) \ (P ′
i ∪ {c}))

)

c′∈P ′
i ∪F(i)

in that table entry unlike storing only the minimum partial Kemeny Score at each table entry.
K-score of an election is the Kemeny Score of an optimal Kemeny ranking. K-score(�, C) =∑m−2

i=0 pK-score(ci ,Ri ), where Ri is the set of candidates that follow ci in the Kemeny
ranking.

At each entry of the table candidate c takes position i and all of P ′
i take position smaller

than i . The initialization step is same as the algorithm presented in Fig. 4. of section 6.4
of [5] but the difference lies in the update step of that algorithm. Though we are storing
Kemeny score in each table entry, we can enumerate Kemeny ranking(s) from them within
asymptotic bound of our current run time by iteratively ordering the candidate(s) for which
we get minimum partial Kemeny Score in a particular table entry. We output first r number
of optimal Kemeny rankings whose K-scores are stored in the entry T (m−1, c, Pm−1 \ {c}).
Correctness of Lemma 8 of [5] ensures the correctness of our algorithm for generating at
most r number of optimal Kemeny Rankings.

Updating each table entry takes time at most r · (4d + nm logm) time. Hence, the overall
runtime is bounded above by O�

(
16d · r). �

We next consider the “maximum range" rmax of candidate positions in the input rank-
ings, as our parameter. We again present a dynamic programming based FPT algorithm
parameterized by rmax .

Theorem 4 Let rmax be the maximum candidate position range of an election (�, C). There
exists an FPT dynamic programming algorithm for Distinct OPT Kemeny Ranking
Aggregation parameterized by rmax which runs in time O∗ (32rmax · r).
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Proof Following the proof of both Lemma 9 and Lemma 10 from [5], we have here certainly
the size of the set of candidates Pi for every position i , |Pi | � 6rmax . We maintain a
dynamic programming table T of sizeO (32rmax · rmax · m) indexed by ∀i ∈ [m − 1]0 ,∀ c ∈
Pi and ∀P ′

i ⊆ Pi \{c}. The proof of Theorem 4 follows immediately from a complete analogy
to the proof of Theorem 3. �

Our final parameter is the unanimity width of the input rankings. We present a dynamic
programming based FPT algorithm.

Theorem 5 Distinct OPT Kemeny Rank Aggregation admits an FPT algorithm in the
combined parameter unanimity width w and number of rankings r , which runs in time
O∗(2O(w) · r).
Proof The problem of finding a Kemeny consensus is known to admit an FPT algorithm in
the parameter w (Section 3, [7]). We adapt this algorithm to prove Theorem 5. Consider an
instance (C,�, r) of Distinct OPT Kemeny Ranking Aggregation. Let m denote the
number of candidates in C, and let n denote the number of voters in �. For any candidates
a, b ∈ C, let cost(a, b) denote the number of voters in�who prefer b over a. Note that for any
linear orderingπ of candidates, Kemeny�(π) = ∑

a,b∈C:a�b in π cost(a, b). Let ρ denote the
unanimity order of�. LetGρ denote the comparability graph ofρ. UsingLemma3of [6], let’s
construct a nice ρ-consistent path decomposition, say P = (B1, . . . , B2m), of Gρ of width
w′ ≤ 5w+4 in timeO

(
2O(w) ·m)

. A path decompositionP ′ = (B1, . . . , Bz), is nice if B1 =
Bz = ∅ and either Bi+1 = Bi ∪{v}; v /∈ Bi or Bi+1 = Bi \{w};w ∈ Bi for each i ∈ [z − 1].
P is ρ-consistent if ∀ (x, y) ∈ ρ,max ({i ∈ [2m]|y ∈ Bi }) ≮ min ({i ∈ [2m]|x ∈ Bi }). For
each 1 ≤ i ≤ 2m,

• Let f org(i) denote the set of candidates that have been forgotten up to i th bag. That is,
f org(i) = (

B1 ∪ . . . ∪ Bi−1
) \ Bi .

• For each candidate v ∈ Bi , let A(i, v) denote the cost incurred by the virtue of placing
all candidates of f org(i) before v. That is, A(i, v) = ∑

u∈ f org(i)cost(u, v).
• For each candidate v ∈ Bi and each T ⊆ Bi\{v}, letB(i, v, T )denote the cost incurred by

the virtue of placing all candidates of T before v. That is, B(i, v, T ) = ∑
u∈T cost(u, v).

• For each T ⊆ Bi , let C(i, T ) be a set that consists of first min
(
r , | f org(i) � T |!)

orderings, along with their Kemeny scores, if all linear extensions of ρ on f org(i) � T
were to be sorted in ascending order of their Kemeny scores. That is, C(i, T ) consists of
the tuples (π1, k1), (π2, k2), . . ., where π1, π2, . . . are the first min

(
r , | f org(i) � T |!)

orderings in the sorted order, and k1, k2, . . . are their respective Kemeny scores.

Recall that everyKemeny consensus extendsρ (Lemma1, [5]). So, if all linear extensions ofρ
onCwere to be sorted in ascendingorder of theirKemeny scores, then allKemenyconsensuses
would appear in the beginning. Thus,� has r distinct (optimal) Kemeny rankings if and only
ifC(2m, φ) contains r orderings of the same Kemeny score. Let’s use DP to find allA(·, ·)’s,
B(·, ·, ·)’s and C(·, ·)’s as follows:
• First, let’s compute and storeA(i, ·)’s in a table for i = 1, . . . , 2m (in that order) in time

O
(
w′ · m · log(m · n)

)
as follows: We set A(1, u) = 0, where u denotes the candidate

introduced by B1. Now, consider i ≥ 2 and a candidate v ∈ Bi . Let’s describe how to
find A(i, v).
Introduce node: Suppose that Bi introduces a candidate, say x . Note that f org(i) =
f org(i − 1). So, if v �= x , we set A(i, v) = A(i − 1, v). Now, suppose that v = x .
Let’s show that cost(u, x) = 0 for all u ∈ f org(i). Consider u ∈ f org(i). In P , u is
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forgotten before x is introduced. So, {u, x} /∈ E(Gρ). That is, u and x are comparable
in ρ. Also, due to ρ-consistency of P , we have (x, u) /∈ ρ. Therefore, (u, x) ∈ ρ. That
is, all voters in � prefer u over x . So, cost(u, x) = 0. Thus, we set A(i, x) = 0.
Forget node: Suppose that Bi forgets a candidate, say x . Note that f org(i) = f org(i −
1) � {x}. So, we set A(i, v) = A(i − 1, v) + cost(x, v).

• Next, let’s compute and store all B(·, ·, ·)’s in a table in time O
(
w′ · 2w′ ·m · log(m · n)

)

as follows: Consider 1 ≤ i ≤ 2m and v ∈ Bi . We have B(i, v, φ) = 0. Let’s set
B(i, v, T ) for non-empty subsets T ⊆ Bi \ {v} (in ascending order of their sizes) as
B(i, v, T \ {u}) + cost(u, v), where u is an arbitrary candidate in T .

• Next, let’s compute and store C(i, ·)’s in a table in timeO
(
w′ ·2w′ ·m2 · r · log(m ·n · r))

for i = 1, . . . , 2m (in that order) as follows: We set C(1, φ) = {(, 0)} and C(1, {u}) =
{(u, 0)}, where u denotes the candidate introduced by B1. Now, consider i ≥ 2. Let’s
describe how to find C(i, ·)’s.
Introduce node: Suppose that Bi introduces a candidate, say x . For each T ⊆ Bi that
does not contain x , we set C(i, T ) = C(i − 1, T ). Now, let’s find C(i, T ) for all subsets
T ⊆ Bi that contain x (in ascending order of their sizes) as follows: First, let’s consider
T = {x}. Recall that (u, x) ∈ ρ for all u ∈ f org(i). So, x is the last candidate in
all linear extensions of ρ on f org(i) � {x}. Also, in any such ordering, the pairs of
the form (u, x), where u ∈ f org(i), contribute 0 to Kemeny score. Thus, we put the
tuples

(
π1 > x, s1

)
,
(
π2 > x, s2

)
, . . . in C(i, {x}), where (π1, s1), (π2, s2), . . . denote

the tuples of C(i − 1, φ), and π1 > x, π2 > x, . . . denote the orderings obtained by
appending x to π1, π2, . . . respectively. Now, let’s consider a subset T ⊆ Bi of size ≥ 2
that contains x . Let’s describe how to find C(i, T ). Let 
(i, T ) denote the set of all
candidates c ∈ T such that c is not unanimously preferred over any other candidate of
f org(i) � T . That is, there is no other candidate u ∈ f org(i) � T such that (c, u) ∈ ρ.
Recall that x appears after all candidates of f org(i) in any linear extension of ρ on
f org(i) � T . So, it is clear that in any such ordering, the last candidate (say y) belongs
to 
(i, T ) ensuring 
(i, T ) to be non-empty always. Moreover,

– The pairs of the form (u, y), where u ∈ f org(i), together contribute A(i, y) to
Kemeny score.

– The pairs of the form (u, y), where u ∈ T \ {y}, together contribute B(i, y, T \ {y})
to Kemeny score.

So, to find C(i, T ), let’s proceed as follows: We compute 
(i, T ). For each possible
choice y ∈ 
(i, T ) of the last candidate, let’s form a set, say �(y), that consists of the
following tuples:

–
(
π
y
1 > y, sy1 + A(i, y) + B

(
i, y, T \ {y})

)

–
(
π
y
2 > y, sy2 + A(i, y) + B

(
i, y, T \ {y})

)
and so on

where (π
y
1 , sy1 ), (π

y
2 , sy2 ), . . . denote the tuples ofC(i, T \{y}), and π

y
1 > y, π y

2 > y, . . .
denote the orderings obtained by appending y to π

y
1 , π

y
2 , . . . respectively. Finally, let’s

sort all tuples of
⊎

y∈
(i,T )�(y) in ascending order of their Kemeny scores, and put the

first min
(
r , | f org(i) � T |!) of them in C(i, T ).

Forget node: Suppose that Bi forgets a candidate, say x . For each T ⊆ Bi , as f org(i)�
T = f org(i − 1) � (

T � {x}), we set C(i, T ) = C(i − 1, T � {x}).
This concludes the proof of Theorem 5. �
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Corollary 3 Distinct approximate Kemeny Ranking Aggregation is FPT in the
combined parameter unanimity width w and number of rankings r .

Proof Consider an instance Distinct approximate Kemeny Ranking Aggregation.
As in the algorithm described in the proof of Theorem 5, we find all A(·, ·)’s, B(·, ·, ·)’s and
C(·, ·)’s. Note that � has r distinct approximately optimal Kemeny rankings if and only if
C(2m, φ) contains r orderings, and the Kemeny score of the r th ordering is at most λ times
the Kemeny score of the first ordering. The overall running time of the algorithm is at most
O∗(2O(w) · r). This proves Corollary 3. �

Our last result is an FPT algorithm for Distinct approximate Kemeny Ranking
Aggregation parameterized by the average Kendall-Tau distance d and the approxima-
tion parameter λ. Here we aim to relate the position of a candidate c in a λ-approximate
ranking π , i.e. a ranking whose Kemeny Score denoted by K-score (π) has value at most
λ · kOPT where kOPT denotes the optimal Kemeny Score, to its average position in the set
of votes � denoted by pavg(c).

Lemma 1 pavg(c) − λ · d < π(c) < pavg(c) + λ · d where π(c) denotes position of c in π

and d is average KT-distance.

Proof There can be two cases for a vote v ∈ �.

Case 1 v(c) ≤ π(c)

In Case 1 there are π(c)−1 candidates that appear before c in π . Note that at most v(c)−1
of them can appear before c in v. Hence, at least π(c) − v(c) of them must appear after c in
v. Thus, dKT (v, π) ≥ π(c) − v(c).

Case 2 v(c) > π(c)

Here in Case 2, we come up with dKT (v, π) ≥ v(c) − π(c) arguing similarly to Case 1.

K-score (π) =
∑

v∈�

dKT(v, π)

=
∑

v∈�:v(c)≤π(c)

dKT(v, π) +
∑

v∈�:v(c)>π(c)

dKT(v, π)

≥
∑

v∈�:
v(c)≤π(c)

(π(c) − v(c))+
∑

v∈�:
v(c)>π(c)

(v(c) − π(c))
[
using Case1and Case 2

]
(1)

Note that
∑

v∈�:v(c)≤π(c)

(π(c) − v(c)) +
∑

v∈�:v(c)>π(c)

(v(c) − π(c))

=
∑

v∈�

v(c) − 2
∑

v∈�:
v(c)≤π(c)

v(c) + π(c) · (2 · | {v ∈ � : v(c) ≤ π(c)} | − n)

= n · pavg(c) − nπ(c) − 2
∑

v∈�:
v(c)≤π(c)

v(c) + π(c) · (2 · | {v ∈ � : v(c) ≤ π(c)} |)

≥ n
(
pavg(c) − π(c)

)
(2)
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Similarly,
∑

v∈�:v(c)≤π(c)

(π(c) − v(c)) +
∑

v∈�:v(c)>π(c)

(v(c) − π(c))

= −
∑

v∈�

v(c) + 2
∑

v∈�:
v(c)>π(c)

v(c) + π(c) · (−2 · | {v ∈ � : v(c) > π(c)} | + n)

= −n · pavg(c) + nπ(c) + 2
∑

v∈�:
v(c)>π(c)

v(c) − π(c) · (2 · | {v ∈ � : v(c) > π(c)} |)

≥ −n
(
pavg(c) − π(c)

)
(3)

Now let’s show that

K-score (π) < λ · n · d (4)

We have

d =
∑

v∈�

∑

w∈�

dKT (v,w)

n · (n − 1)
≥

n · ∑

w∈�,w �=v�

dKT (v�, w)

n · (n − 1)
>

∑

w∈�,w �=v�

dKT (v�, w)

n
⎡

⎣∃v� ∈ � for which
∑

w∈�,w �=v�

dKT
(
v�,w

)
is minimum

⎤

⎦

�⇒ K-score
(
v�

)
< n · d

So, kOPT ≤ K-score
(
v�

)
< n · d (5)

K-score (π) ≤ λ · kOPT < λ · n · d [
Using Eq. (5)and proving Eq.(4)

]
(6)

Now λ · n · d > K-score (π) ≥ n · (
pavg(c) − π(c)

) [
Using Eq.(1), (2)&(4)

]

�⇒ pavg(c) − λ · d < π(c) (7)

Again λ · n · d > −n · (
pavg(c) − π(c)

) [
Using Eqs.(1), (3)&(4)

]

�⇒ π(c) < pavg(c) + λ · d (8)

Hence pavg (c) − λ · d < π (c) < pavg (c) + λ · d [
Using Eqs.(7)&(8)

]
(9)

Equation (9) concludes the proof of Lemma 1. �
The following Lemma 2 depends on the Lemma 7 from [5].

Lemma 2 |Pi | ≤ 4λd − 1 ∀i ∈ [m − 1]0
Proof We prove this lemma by contradiction. For this, we assume that for a position i , we
have |Pi | > 4λd . Every candidate c ∈ Pi has at most 2λd − 1 different positions around its
average position in a λ-approximately optimal Kemeny consensus π based on the proof of
Lemma 1. In Lemma 1 we have established that pavg (c) − λ · d < π(c) < pavg (c) + λ · d .
Hence, only those candidates in π have i as their common position for which

|i − π(c)| ≤ 2λd − 1 (10)

⇒ i − (2λd − 1) ≤ π(c) ≤ i + (2λd − 1) (11)

Since, our assumption is |Pi | ≥ 4λd , therefore, each of these 4λd candidates must hold
a position which differs at most by 2λd − 1 around position i . But from Eq. (11), we know
that only those candidates in λ-approximately optimal Kemeny consensus π qualify for Pi
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whose π(c) lies in the range 2λd − 1 left and 2λd − 1 right around position i . Therefore, we
have 4λd − 1 such positions. Hence, we approach towards contradiction. �

We now use the dynamic programming algorithm of Theorem 3 to claim the following
Theorem 6. Its proof of correctness follows from Lemma 2.

Theorem 6 There exists an FPT dynamic programming algorithm for Distinct approx-
imate Kemeny Ranking Aggregation parameterized by both λ and d which runs in
time O∗(16λd · r).

4 Concluding remarks and future work

We consider the problem of finding distinct rankings that have a good Kemeny score in
either exact or approximate terms, and propose algorithms that are tractable for various
natural parameterizations of the problem. We show that many optimal or close to optimal
solutions can be computed without significant increase in the running time compared with
the algorithms to output a single solution, which is in sharp contrast with the diverse version
of the problem.

We propose three main themes for future work. The first would be to extend these studies
to other voting rules, and possibly identifymeta theorems that apply to classes of voting rules.
The second would be to understand if the structural parameters that we studied are correlated
with some natural distance notion on the solution space: in other words, for a given distance
notion, do all similar-looking instances have similar parameter values? Finally, we would
also like to establish algorithmic lower bounds for the question of finding a set of diverse
solutions that match the best known algorithms in the current literature.
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