
Acta Informatica (2024) 61:101–113
https://doi.org/10.1007/s00236-023-00451-7

ORIG INAL ART ICLE

Approximating subset sum ratio via partition computations

Giannis Alonistiotis1 · Antonis Antonopoulos1 · Nikolaos Melissinos2 ·
Aris Pagourtzis1,3 · Stavros Petsalakis1 ·Manolis Vasilakis4

Received: 6 December 2023 / Accepted: 8 December 2023 / Published online: 12 January 2024
© The Author(s) 2024

Abstract
Wepresent a newFPTAS for the Subset Sum Ratio problem,which, given a set of integers,
asks for two disjoint subsets such that the ratio of their sums is as close to 1 as possible. Our
schememakes use of exact and approximate algorithms for Partition, and clearly showcases
the close relationship between the two algorithmic problems. Depending on the relationship
between the size of the input set n and the error margin ε, we improve upon the best currently
known algorithm of Melissinos and Pagourtzis [COCOON 2018] of complexityO(n4/ε). In
particular, the exponent of n in our proposed scheme may decrease down to 2, depending on
the Partition algorithm used.

1 Introduction

One of Karp’s 21 NP-complete problems [20], Subset Sum has seen astounding progress
over the last few years. Koiliaris and Xu [23], Bringmann [10] and Jin and Wu [19] have

B Aris Pagourtzis
pagour@cs.ntua.gr

Giannis Alonistiotis
ialonistiotis@corelab.ntua.gr

Antonis Antonopoulos
aanton@corelab.ntua.gr

Nikolaos Melissinos
nikolaos.melissinos@fit.cvut.cz

Stavros Petsalakis
spetsalakis@corelab.ntua.gr

Manolis Vasilakis
emmanouil.vasilakis@dauphine.eu

1 School of Electrical and Computer Engineering, National Technical University of Athens, 15780
Zografou, Greece

2 Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical
University in Prague, Prague, Czech Republic

3 Archimedes Unit, Athena Research Center, 15125 Marousi, Greece

4 Université Paris-Dauphine, CNRS UMR7243, LAMSADE, PSL University, 75016 Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-023-00451-7&domain=pdf
https://orcid.org/0000-0003-1277-5017
https://orcid.org/0000-0002-1368-6334
https://orcid.org/0000-0002-0864-9803
https://orcid.org/0000-0002-6220-3722
https://orcid.org/0000-0001-7825-2839
https://orcid.org/0000-0001-6505-2977

102 G. Alonistiotis et al.

presented pseudopolynomial algorithms resulting in substantial improvements over the long-
standing standard approach of Bellman [7] and the improvement by Pisinger [31]. Moreover,
the latter two algorithms [10, 19] match the SETH-based lower bounds proved in [1]. Addi-
tionally, recently there has been progress in the approximation scheme of Subset Sum, the
first such improvement in over 20 years, with a new algorithm introduced by Bringmann and
Nakos [8], as well as corresponding lower bounds obtained through the lens of fine-grained
complexity.

A thoroughly studied special case of Subset Sum is the Partition problem, which asks
for a partition of the input set to two subsets such that the difference of their sums isminimum.
Any algorithm solving the first applies to the latter, though recent progress [8, 16, 28] has
shown that Partition may be solved more efficiently in the approximation setting. On the
other hand, regarding exact solutions, no better algorithm has been developed, therefore
Subset Sum algorithms remain the state of the art.

The Equal Subset Sum problem, which, given an input set, asks for two disjoint
subsets of equal sum, is closely related to Subset Sum and Partition. It finds applications
in multiple different fields, ranging from computational biology [12, 13] and computational
social choice [24], to cryptography [32], to name a few. In addition, it is related to important
theoretical concepts such as the complexity of search problems in the class TFNP [30].

The centerpiece of this paper is the Subset Sum Ratio problem, the optimization
version of Equal Subset Sum, which asks, given an input set S ⊆ N, for two disjoint
subsets S1, S2 ⊆ S, such that the following ratio is minimized

max
{∑

si∈S1 si ,
∑

s j∈S2 s j
}

min
{∑

si∈S1 si ,
∑

s j∈S2 s j
} .

This problem is known to be NP-hard, and many FPTASes have been proposed over
the years [6, 25, 29], all of which rely on some kind of scaling of the input elements. The
current state of the art [25] achieves a running time of O(n4/ε), leaving a significant gap
in comparison with known approximation algorithms for the closely related Subset Sum
and Partition problems, especially with respect to n. This leads to the natural question
of whether we can improve this performance and achieve an FPTAS with a running time
O(nc1/εc2), where either c1 < 4 or c1 + c2 < 5. We manage to answer both questions in the
affirmative, by presenting a novel approximation schemewhich utilizes exact or approximate
Partition algorithms and achieves running time1 Õ(n2.3/ε2.6) or Õ(n2/ε3) respectively.
Our proposed algorithm significantly differs from previous approaches while it is the first to
associate these closely related problems.

1.1 Related work

Equal Subset Sum as well as its optimization version called Subset Sum Ratio[6] are
closely related to problems appearing in many scientific areas. Some examples include the
Partial Digest problem, which comes from computational biology [12, 13], the allocation
of individual goods [24], tournament construction [22], and a variation of Subset Sum,
called Multiple Integrated Sets SSP, which finds applications in the field of cryptography
[32]. Furthermore, it is related to important concepts in theoretical computer science; for
example, a restricted version of Equal Subset Sum lies in a subclass of the complexity

1 Standard O� and Õ notation is used to hide polynomial and polylogarithmic factors respectively.

123

Approximating subset sum ratio via... 103

class TFNP, namely in PPP [30], a class consisting of search problems that always have a
solution due to some pigeonhole argument, and no polynomial time algorithm is known for
this restricted version.

Equal Subset Sum has been proven NP-hard by Woeginger and Yu [33] (see also the
full version of [27] for an alternative proof) and several variations have been proven NP-
hard by Cieliebak et al. [11, 14]. A 1.324-approximation algorithm has been proposed for
Subset Sum Ratio in [33] and several FPTASes appeared in [6, 25, 29], the fastest so far
being the one in [25] of complexityO(n4/ε), the complexity of which also applies to various
meaningful special cases, as shown in [26].

As far as exact algorithms are concerned, recent progress has shown that Equal Subset
Sum can be solved probabilistically in O�(1.7088n) time [27], faster than a standard “meet-
in-the-middle” approach yielding an O�(3n/2) ≤ O�(1.7321n) time algorithm.

These problems are tightly connected to Subset Sum, which has seen impressive
advances recently, due to Koiliaris and Xu [23] who gave a deterministic Õ(

√
nt) algo-

rithm, where n is the number of input elements and t is the target, and Bringmann [10] who
gave a Õ(n+t) randomized algorithm, which is essentially optimal under SETH [1]. See also
[3] for an extension of these algorithms to a more general setting. Jin and Wu subsequently
proposed a simpler randomized algorithm [19] achieving the same bounds as [10], which
however seems to only solve the decision version of the problem. Recently, Bringmann and
Nakos [9] have presented an O (|St (Z)|4/3poly(log t)) algorithm, where St (Z) is the set of
all subset sums of the input set Z that are smaller than t , based on top-k convolution.

Partition shares the complexity of Subset Sum regarding exact solutions, where the
meet-in-the-middle approach [18] from the 70’s remains the state of the art as far as algorithms
dependent on n are concerned. On the other hand, one can approximate Partition more
efficiently than Subset Sum unless the min-plus convolution conjecture [15] is false. In
particular, Bringmann and Nakos [8] have presented the first improvement for the latter in
over 20 years, since the scheme of [21] had remained the state of the art. Moreover, in
their paper they have shown that developing a significantly better algorithm would contradict
said conjecture. Furthermore, they develop an approximation scheme for Partition utilizing
min-plus convolution computations, improving upon the recent work ofMucha et al. [28] and
circumventing the lower bounds established for Subset Sum in their work. Very recently,
Deng, Jin and Mao [16] presented an even faster approximation algorithm for Partition,
further widening the gap between the complexities of both problems in the approximation
setting.

1.2 Our contribution

We present a novel approximation scheme for the Subset Sum Ratio problem, which,
dependingon the relationship betweenn and ε, improves upon the best existing approximation
scheme of [25]. Our algorithm significantly differs from previous approaches, which in most
cases rely on some kind of scaling of the input elements, and insteadmakes use of either exact
or approximation algorithms for Partition. In particular, we first partition the input elements
into small and large, and then prove that we can either easily find an approximate solution
involving only large elements or there are atmost log(n/ε2) of them. In the latter case, in order
to approximate Subset Sum Ratio it suffices to solve instances of Partition on all the
subsets of large elements, i.e., polynomially many instances, each of size at most log(n/ε2).
By leveraging known Partition algorithms in the second case, we manage to improve
upon previous FPTASes. In the case of exact computations, we show that by employing

123

104 G. Alonistiotis et al.

such a Partition algorithm of complexity O�(2αn), our proposed scheme runs in time
Õ(n · (n/ε2)log(1+2α)), for some constant α > 0. It is already known that such an algorithm
exists for α = 1/2 [18], and any further improvements will positively affect our FPTAS.
On the other hand, using the approximation algorithm of Kellerer et al. [21] we achieve a
running time of Õ(n2/ε3), while any improvement over it (e.g., [8, 16]) will only affect
polylogarithmic factors of our scheme, as is further discussed in Sect. 5.

We start by presenting some necessary background in Sect. 2. Afterward, in Sect. 3 we
introduce an FPTAS for a restricted version of the problem. Then, in Sect. 4, we explain how
to make use of the algorithm presented in Sect. 3, in order to obtain an approximation scheme
for the Subset Sum Ratio problem. The complexity of the final scheme is thoroughly
analyzed in Sect. 5, followed by some possible directions for future research in Sect. 6.
Priorwork In the current paperwe improve upon the results of the preliminary version [2], by
using approximate and exact Partition algorithms instead of Subset Sum computations.

2 Preliminaries

Let, for x ∈ N, [x] = {z ∈ N | 1 ≤ z ≤ x} denote the set of integers in the interval [1, x].
Given a set S ⊆ N, denote its largest element by max(S) and the sum of its elements by
�(S) = ∑

s∈S s. If we are additionally given a value ε ∈ (0, 1), define the following partition
of its elements:

• The set of its large elements as L(S, ε) = {s ∈ S | s ≥ ε · max(S)}. Note that max(S) ∈
L(S, ε), for any ε ∈ (0, 1).

• The set of its small elements as M(S, ε) = {s ∈ S | s < ε · max(S)}.
In the following, since the values of the associated parameters will be clear from the context,
they will be omitted and we will refer to these sets simply as L and M .

Definition 1 (Partition) Given a set X , compute a subset X∗
p ⊆ X , such that �(X∗

p) =
max {�(Z) | Z ⊆ X , �(Z) ≤ �(X)/2}. Moreover, let X∗

p = X\X∗
p .

Definition 2 (Approximate Partition, from [28]) Given a set X and errormargin ε, compute
a subset X p ⊆ X such that (1−ε) ·�(X∗

p) ≤ �(X p) ≤ �(X∗
p). Moreover, let X p = X \X p .

3 Scheme for a restricted version

In this section, we present an FPTAS for the constrained version of the Subset Sum Ratio
problem where we are only interested in approximating solutions that involve the largest
element of the input set. In other words, one of the subsets of the optimal solution contains
max(A) = an (assuming that A = {a1, . . . , an} is the sorted input set); let ropt denote the
subset sum ratio of such an optimal solution. Our FPTAS will return a solution of ratio r ,
such that 1 ≤ r ≤ (1 + ε) · ropt, for a given error margin ε ∈ (0, 1); however, we allow that
the sets of the returned solution do not necessarily satisfy the aforementioned constraint (i.e.,
an may not be involved in the approximate solution).

3.1 Outline of the algorithm

We now present a rough outline of Algorithm 1:

123

Approximating subset sum ratio via... 105

• At first, we search for approximate solutions involving exclusively large elements from
L(A, ε).

• To this end, we produce the subset sums formed by these large elements. If their number
exceeds n/ε2, then we can find an approximate solution.

• Otherwise, there are at most n/ε2 subsets of large elements. In this case, we can find a
solution by running an exact or an approximate Partition algorithm for each subset.

• In the case that the optimal solution involves small elements, we show that it suffices to
add elements of M(A, ε) in a greedy way.

Algorithm 1 ConstrainedSSR(A, ε, T)
Input : Set A = {a1, . . . , an}, error margin ε and table of partial sums T .
Output : (1 + ε)-apx of the optimal solution respecting the constraint.
1: Partition A to M = {ai ∈ A | ai < ε · an} and L = {ai ∈ A | ai ≥ ε · an}.
2: Split interval [0, n · an] to n/ε2 bins of size ε2 · an .
3: while filling the bins with the subset sums of L do
4: if two subset sums correspond to the same bin then
5: return an apx solution based on these. � O(n/ε2) complexity.
6: end if
7: end while
8: 2|L| ≤ n/ε2 ⇐⇒ |L| ≤ log(n/ε2).
9: for each subset of large elements containing an do � O(n/ε2) subsets.
10: Solve corresponding Partition instance. � Complexity in Section 5.
11: Add small elements. � O(log n) complexity, see Section 3.3.
12: end for

3.2 Solution involving exclusively large elements

We firstly search for a (1+ε)-approximate solution with ε ∈ (0, 1), without involving any of
the elements that are smaller than ε · an . Let M = {ai ∈ A | ai < ε · an} be the set of small
elements and L = A\M = {ai ∈ A | ai ≥ ε · an} be the set of large elements.

After partitioning the input set, we split the interval [0, n ·an] into smaller intervals, called
bins, of size l = ε2 · an each, as depicted in Fig. 1.

Thus, there are a total of B = n/ε2 bins. Notice that each possible subset of the input set
will belong to a respective bin constructed this way, depending on its sum. Additionally, if
two sets correspond to the same bin, then the difference of their subset sums will be at most
l.

The next step of our algorithm is to generate all the possible subset sums, occurring from
the set of large elements L . The complexity of this procedure is O (

2|L|), where |L| is the
cardinality of set L . Notice however, that it is possible to bound the number of the produced
subset sums by the number of bins B, since if two sums belong to the same bin they constitute
a solution, as shown in Lemma 1, in which case the algorithm terminates in time O(n/ε2).

Fig. 1 Split of the interval [0, n · an] to bins of size l

123

106 G. Alonistiotis et al.

Lemma 1 If two subsets correspond to the same bin, we can find a (1 + ε)-approximation
solution.

Proof Suppose there exist two sets L1, L2 ⊆ L whose sums correspond to the same bin, with
�(L1) ≤ �(L2). Notice that there is no guarantee regarding the disjointness of said subsets,
thus consider L ′

1 = L1 \ L2 and L ′
2 = L2\L1, for which it is obvious that �(L ′

1) ≤ �(L ′
2).

Additionally, assume that L ′
1 �= ∅. Then it holds that

�(L ′
2) − �(L ′

1) = �(L2) − �(L1) ≤ l.

Therefore, the sets L ′
1 and L ′

2 constitute a (1 + ε)-approximation solution, since

�(L ′
2)

�(L ′
1)

≤ �(L ′
1) + l

�(L ′
1)

= 1 + l

�(L ′
1)

≤ 1 + ε2 · an
ε · an = 1 + ε

where the last inequality is due to the fact that L ′
1 ⊆ L is composed of elements ≥ ε · an ,

thus �(L ′
1) ≥ ε · an .

It remains to show that L ′
1 �= ∅. Assume that L ′

1 = ∅. This implies that L1 ⊆ L2 and
since we consider each subset of L only once and the input is a set and not a multiset, it holds
that L1 ⊂ L2 �⇒ L ′

2 �= ∅. Since L1 and L2 correspond to the same bin, it holds that

�(L2) − �(L1) ≤ l �⇒ �(L ′
2) − �(L ′

1) ≤ l �⇒ �(L ′
2) ≤ l

which is a contradiction, since L ′
2 is a non empty subset of L , which is comprised of elements

greater than or equal to ε · an , hence �(L ′
2) ≥ ε · an > ε2 · an = l, since ε < 1. ��

Consider an ε′ such that (1+ ε′)/(1− ε′) ≤ 1+ ε for all ε ∈ (0, 1) (the exact value of ε′
will be computed in Sect. 5).

If every produced subset sum of the previous step belongs to a distinct bin, then, we can
infer that the number of subsets of large elements is bounded by n/ε2. Moreover, we can
prove the following lemma.

Lemma 2 If the optimal ratio ropt involves sets S∗
1 , S

∗
2 consisting of only large elements,

with S∗
1 ∪ S∗

2 = S∗ ⊆ L and an ∈ S∗, then �(Sp)/�(Sp) ≤ (1 + ε) · ropt, where Sp is a
(1 − ε′)-apx solution to the Partition problem on input S∗.

Proof Assume that �(S∗
1) ≤ �(S∗

2). Note that sets S
∗
1 , S

∗
2 are also the optimal solution of

the Partition problem on input S∗. By running a (1−ε′) approximate Partition algorithm
on input set S∗, we obtain the sets S1, S2 with �(S1) ≤ �(S2), where S1 = Sp and S2 = Sp .
Then,

�(S2)

�(S1)
≤ �(S∗

2) + ε′ · �(S∗
1)

(1 − ε′)�(S∗
1)

≤ �(S∗
2) + ε′ · �(S∗

2)

(1 − ε′)�(S∗
1)

= 1 + ε′

1 − ε′ · �(S∗
2)

�(S∗
1)

≤ (1 + ε) · ropt
where we used the fact that (1−ε′) ·�(S∗

1) ≤ �(S1) as well as�(S2) ≤ �(S∗
2)+ε′ ·�(S∗

1).��

123

Approximating subset sum ratio via... 107

Therefore, we have proved that when the optimal solution consists of sets comprised of
only large elements, it is possible to find a (1+ε)-approximation solution for the constrained
Subset Sum Ratio problem by running a (1−ε′)-approximation algorithm for Partition
with input the union of said large elements. In order to do so, it suffices to consider as input all
the 2|L|−1 subsets of L containing an and each time run a (1− ε′)-approximation Partition
algorithm. The total cost of this procedure will be thoroughly analyzed in Sect. 5 and depends
on the algorithm used.

It is important to note that by utilizing an (exact or approximation) algorithm for Parti-
tion, we establish a connection between the complexities of Partition and approximating
Subset Sum Ratio in a way that any future improvement in the first carries over to the
second.

3.3 General (1+ ")-approximate solutions

Whereas we previously considered optimal solutions involving exclusively large elements,
here we will search for approximations for those optimal solutions that use all the elements of
the input set, hence include small elements, and satisfy our constraint (i.e. an belongs to the
optimal solution sets). We will prove that in order to approximate those optimal solutions, it
suffices to consider only the (1− ε′)-apx solutions of the Partition problem corresponding
to each subset of large elements and add small elements to them. In other words, instead of
considering any two random disjoint subsets consisting of large elements2 and subsequently
adding to these the small elements, we can consider only the (1−ε′)-approximate solutions to
the Partition problem computed in the previous step, ergo, atmost B = n/ε2 configurations
regarding the large elements.Moreover, wewill prove that it suffices to add the small elements
to our solution in a greedy way.

Since the algorithm has not detected a solution so far, due to Lemma 1 every computed
subset sum of set L belongs to a different bin. Thus, their total number is bounded by the
number of bins B, i.e.

2|L| ≤
(n

ε2

)
⇐⇒ |L| ≤ log

(n

ε2

)

We proceed by additionally involving small elements into our solutions in order to reduce
the difference between the sums of the sets, thus reducing their ratio.

Lemma 3 Assume that we are given the (1 − ε′)-apx solutions for the Partition problem
on every subset of large elements containing an. Then, a (1+ ε)-approximation solution for
the constrained version of Subset Sum Ratio can be found, when the optimal solution
involves small elements.

Proof Let S∗
1 , S

∗
2 be disjoint subsets that form an optimal solution for the constrained version

of Subset Sum Ratio, where:

• �(S∗
1) ≤ �(S∗

2) and an ∈ S∗ = S∗
1 ∪ S∗

2 .• S∗
1 = L∗

1 ∪ M∗
1 and S∗

2 = L∗
2 ∪ M∗

2 , where L∗
1, L

∗
2 ⊆ L and M∗

1 , M∗
2 ⊆ M .

• M∗
1 ∪ M∗

2 �= ∅.
Moreover, let L∗

p and L∗
p be the optimal solution of the Partition problem on input L∗ =

L∗
1 ∪ L∗

2, while L p and L p be the sets returned by a (1 − ε′)-apx algorithm. Then, it holds
that:

2 Note that the number of these random pairs is 2 · 3|L|−1, since an is necessarily part of the solution.

123

108 G. Alonistiotis et al.

• �(L∗
p) ≤ �(L∗

p) and �(L∗
p) − �(L∗

p) ≤ |�(L∗\X) − �(X)|,∀X ⊆ L∗.
• (1 − ε′) · �(L∗

p) ≤ �(L p) ≤ �(L∗
p).

• �(L∗
p) ≤ �(L p) ≤ �(L∗

p) + ε′ · �(L∗
p) ≤ (1 + ε′) · �(L∗

p).

• an ≤ �(L∗
p), since an ∈ L∗.

Case 1. Suppose that �(L p) + �(M) ≥ �(L p). In this case, there exists k such that
Mk = {ai ∈ M | i ∈ [k]} ⊆ M and 0 ≤ �(L p ∪ Mk) − �(L p) ≤ ε · an , since all elements
of M have value less than ε · an . Hence,

1 ≤ �(L p ∪ Mk)

�(L p)
≤ 1 + ε · an

�(L p)
≤ 1 + ε · an

an
= 1 + ε.

Case 2. Alternatively, it holds that �(L p) + �(M) < �(L p). Then,

�(L p)

�(L p ∪ M)
= �(L p)

�(L p) + �(M)

≤ (1 + ε′) · �(L∗
p)

(1 − ε′) · �(L∗
p) + �(M)

≤ 1 + ε′

1 − ε′ · �(L∗
p)

�(L∗
p) + �(M)

≤ (1 + ε) · �(L∗
p)

�(L∗
p) + �(M)

.

If �(L∗
p) + �(M) ≥ �(L∗

p), then it follows that �(L p)

�(L p∪M)
≤ 1 + ε. On the other hand, if

�(L∗
p) + �(M) < �(L∗

p), then it follows that �(S∗
1) = �(L∗

p ∪ M) and �(S∗
2) = �(L∗

p),

therefore �(L p)

�(L p∪M)
≤ (1 + ε) · �(S∗

2)

�(S∗
1)
. ��

3.4 Adding small elements efficiently

Here, we will describe a method to efficiently add small elements to our sets. In par-
ticular, we search for some k such that 0 ≤ �(L p ∪ Mk) − �(L p) ≤ ε · an , where
Mk = {ai ∈ M | i ∈ [k]}. Notice that if �(M) ≥ �(L p) − �(L p), there always exists
such a set Mk , since by definition, each element of set M is smaller than ε · an . In order to
determine Mk , we make use of an array of partial sums T [k] = �(Mk), where k ≤ |M |.
Since T is sorted, we can find k in O(log|L|) = O(log n) using binary search.

4 Final algorithm

The algorithm presented in the previous section constitutes an approximation scheme for
Subset Sum Ratio when one of the solution subsets contains the maximum element of
the input set. Thus, in order to solve the Subset Sum Ratio problem, it suffices to run the
previous algorithm n times, where n depicts the cardinality of the input set A, while each
time removing the max element of A.

In particular, suppose that the optimal solution involves disjoint sets S∗
1 and S∗

2 , where
ak = max(S∗

1 ∪ S∗
2). There exists an iteration for which the algorithm considers as input

123

Approximating subset sum ratio via... 109

the set Ak = {a1, . . . , ak}. In this iteration, the element ak is the largest element and the
algorithm searches for an approximation of the optimal solution for which ak is contained
in one of the solution subsets. The optimal solution of the unconstrained version of Subset
Sum Ratio has this property so the ratio of the approximate solution that the algorithm of
the previous section returns is at most (1 + ε) times the optimal.

Consequently, n repetitions of the algorithm suffice to construct an FPTAS for Subset
Sum Ratio. Notice that if at some repetition, the sets returned due to the algorithm of Sect. 3
have ratio at most 1+ ε, then this ratio successfully approximates the optimal ratio ropt ≥ 1,
since 1 + ε ≤ (1 + ε) · ropt, therefore they constitute an approximate solution.

Algorithm 2 SSR(A, ε)
Input : Sorted set A = {a1, . . . , an} and error margin ε.
Output : (1 + ε)-apx of the optimal solution for Subset Sum Ratio.
1: Create array T such that T [k] = ∑k

i=1 ai . � O(n) time.
2: for i = n, . . . , 1 do
3: ConstrainedSSR({a1, . . . , ai } , ε, T)
4: end for

5 Complexity

The total complexity of the final algorithm is determined by three distinct operations, over
the n iterations of the algorithm:

1. The cost to compute all the possible subset sums occurring from large elements. It suffices
to consider the casewhere this is bounded by the number of bins B = n/ε2, due to Lemma
1.

2. The cost to compute an exact or (1− ε′)-apx Partition solution on each subset of large
elements. The cost of this operation will be analyzed in the following subsection.

3. The cost to include small elements to thePartition solutions. There are B such solutions,

and each requires O(log n) time, and thus the total time required is O
(

n
ε2

· log n
)
.

5.1 Complexity of partition computations

Using exact partition computations

First, we will consider the case where we compute the optimal solution of the Partition
problem. In order to do so, we will use the standard meet-in-the-middle algorithm [18] for
Subset Sum, and in the following we analyze its complexity.

Let subset L ′ ⊆ L such that |L ′| = k, and suppose we are given an exact Partition
algorithm of complexity O(2αk · kβ), for some constants α, β. Notice that the number of
subsets of L of cardinality k is

(|L|
k

)
and that |L| ≤ log(n/ε2). Then, it holds that

|L|∑
k=0

(|L|
k

)
· 2αk · kβ ≤ |L|β ·

|L|∑
k=0

(|L|
k

)
· 2αk

= |L|β · (
1 + 2α

)|L|

123

110 G. Alonistiotis et al.

= |L|β · 2|L| log(1+2α)

≤ logβ(n/ε2) · (n/ε2)log(1+2α)

where we used the binomial theorem. By employing the meet in the middle algorithm [18],
where α = 1/2 and β = 1, it follows that log(1+ 2α) = 1.271 . . . < 1.3. Consequently, the
complexity to solve the Partition problem for all the subsets of large elements is

O
(
n1.3

ε2.6
· log(n/ε2)

)
= Õ

(
n1.3

ε2.6

)

Using approximate partition computations

Here we will analyze the complexity in the case we run an approximate Partition algorithm
in order to compute the (1 − ε′)-approximation solutions.

For subset L ′ ⊆ L , we run an approximate Partition algorithm with error margin ε′
such that

1 + ε′

1 − ε′ ≤ 1 + ε ⇐⇒ ε′ ≤ ε

2 + ε

and by choosing the maximum such ε′, it holds that

ε′ = ε

2 + ε
�⇒ 1

ε′ = 2 + ε

ε
= 2

ε
+ 1 �⇒ 1

ε′ = O
(
1

ε

)

Since there are at most n/ε2 subsets of large elements, we will need to run said algorithm at
most n/ε2 times on |L ′| ≤ |L| elements and with error margin ε′.

Note that any approximate Subset Sum algorithm could be used in order to approx-
imate Partition, such as the one presented by Kellerer et al. [21] of complexity

O
(
min

{
n
ε
, n + 1

ε2
· log(1/ε)

})
. In our case, with |L| = log(n/ε2) and error margin ε′,

the total complexity is

O
(
n

ε2
· min

{ |L|
ε′ , |L| + 1

(ε′)2
· log(1/ε′)

})
=

O
(
n

ε2
· min

{
log(n/ε2)

ε
, log(n/ε2) + 1

ε2
· log(1/ε)

})
=

Õ
(n

ε3

)
.

Using the state of the art Õ(n+ (1/ε)1.25) algorithm of Deng et al. [16] for approximating
Partition, one could, in some cases, further improve the last term of the previous mini-
mum. However, since the Partition instances that we are solving involve |L| = log(n/ε2)

elements, any improvement resulting from said approximation algorithm would only affect
polylogarithmic factors. Due to this, the algorithm of Kellerer et al. has a better performance
compared to other Partition approximation algorithms, in case we choose to ignore those
factors. On the other hand, if one takes them into account, it might be preferable to use the
aforementioned algorithm of Deng et al. (always depending on the relation between n and
ε).

123

Approximating subset sum ratio via... 111

5.2 Total complexity

The total complexity of the algorithm occurs from the n distinct iterations required and
depends on the algorithm chosen to find the (exact or approximate) solution to the Partition
problem, since all of the presented algorithms dominate the time of the rest of the operations.
Thus, by choosing the fastest one (depending on the relationship between n and ε), the final
complexity is

Õ
(
min

{
n2.3

ε2.6
,
n2

ε3

})

6 Conclusion and future work

The main contribution of this paper, apart from the introduction of a new FPTAS for the
Subset Sum Ratio problem, is the establishment of a connection between Partition
and approximating Subset Sum Ratio. In particular, our scheme employs Partition
computations, and any improvement in the latter will have an effect to its complexity.

Additionally, we establish that the complexity of approximating Subset Sum Ratio,
expressed in the form Õ(nc1/εc2), has c1 < 2.3 and c1 + c2 < 5, which is an improvement
over all the previously presented FPTASes for the problem. Moreover, the exponent of n
may go down to 2 if we employ approximation Partition algorithms, which is a significant
improvement over the O(n4/ε) algorithm of [25].

It is important to note however, that there is a distinct limit to the complexity that one may
achieve for the Subset Sum Ratio problem using the techniques discussed in this paper,
since although of polylogarithmic size, the number of Partition instances required to be
solved is O(n2/ε2) in total. Consequently, an interesting natural question arising from our
work, is whether one can further improve the complexity of the problem, possibly developing
a O(nc1/εc2) algorithm, where c1 < 2 or even c1 + c2 < 4.

As another direction for future research, we consider the use of exact Subset Sum or
Partition algorithms parameterized by a concentration parameter β, as described in [4,
5], where they solve the decision version of Subset Sum. See also [17] for a use of this
parameter under a pseudopolynomial setting. It would be interesting to investigate whether
analogous arguments could be used to solve the optimization version.

Acknowledgements Work primarily conducted while Nikolaos Melissinos was affiliated with Université
Paris-Dauphine, PSL University, and Manolis Vasilakis was affiliated with the School of Electrical and Com-
puter Engineering, National Technical University of Athens.

Author Contributions All authors had an equal contribution in all parts of the paper. The name order is
alphabetical.

Funding Open access funding provided by HEAL-Link Greece. Aris Pagourtzis has been partially supported
by project MIS 5154714 of the National Recovery and Resilience Plan Greece 2.0 funded by the European
Union under the NextGenerationEU Program. Aris Pagourtzis and Stavros Petsalakis were supported in part
by the PEVE 2020 basic research support program of the National Technical University of Athens. Nikolaos
Melissinos is supported by the CTU Global postdoc fellowship program.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
article.

123

112 G. Alonistiotis et al.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abboud, A., Bringmann, K., Hermelin, D., Shabtay, D.: Seth-based lower bounds for subset sum and
bicriteria path. ACM Trans. Algorithms 18(1), 6–1622 (2022). https://doi.org/10.1145/3450524

2. Alonistiotis, G., Antonopoulos, A., Melissinos, N., Pagourtzis, A., Petsalakis, S., Vasilakis, M.: Approxi-
mating subset sum ratio via subset sum computations. In: Combinatorial Algorithms - 33rd International
Workshop, IWOCA 2022. Lecture Notes in Computer Science, vol. 13270, pp. 73–85. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-06678-8_6

3. Antonopoulos, A., Pagourtzis, A., Petsalakis, S., Vasilakis, M.: Faster algorithms for k-subset sum and
variations. J. Comb. Optim. 45(1), 24 (2023). https://doi.org/10.1007/s10878-022-00928-0

4. Austrin, P., Kaski, P., Koivisto,M.,Nederlof, J.: Dense subset summay be the hardest. In: 33rd Symposium
on Theoretical Aspects of Computer Science, STACS 2016. LIPIcs, vol. 47, pp. 13–11314. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.
STACS.2016.13

5. Austrin, P., Kaski, P., Koivisto, M., Nederlof, J.: Subset sum in the absence of concentration. In: 32nd
International Symposium on Theoretical Aspects of Computer Science, STACS 2015. LIPIcs, vol. 30,
pp. 48–61. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2015). https://doi.
org/10.4230/LIPIcs.STACS.2015.48

6. Bazgan,C., Santha,M., Tuza, Z.: Efficient approximation algorithms for the SUBSET-SUMSEQUALITY
problem. J. Comput. Syst. Sci. 64(2), 160–170 (2002). https://doi.org/10.1006/jcss.2001.1784

7. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)
8. Bringmann, K., Nakos, V.: A fine-grained perspective on approximating subset sum and partition. In:

Proceedings of the 2021 ACM-SIAM symposium on discrete algorithms, SODA 2021, pp. 1797–1815.
SIAM, USA (2021). https://doi.org/10.1137/1.9781611976465.108

9. Bringmann, K., Nakos, V.: Top-k-convolution and the quest for near-linear output-sensitive subset sum.
In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
pp. 982–995. ACM, New York, NY, USA (2020). https://doi.org/10.1145/3357713.3384308

10. Bringmann, K.: A near-linear pseudopolynomial time algorithm for subset sum. In: Proceedings of the
twenty-eighth annual ACM-SIAM symposium on discrete algorithms, SODA 2017, pp. 1073–1084.
SIAM, USA (2017). https://doi.org/10.1137/1.9781611974782.69

11. Cieliebak, M., Eidenbenz, S.J., Pagourtzis, A.: Composing equipotent teams. In: Fundamentals of com-
putation theory, 14th international symposium, FCT 2003. Lecture Notes in Computer Science, vol. 2751,
pp. 98–108. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45077-1_10

12. Cieliebak, M., Eidenbenz, S.J., Penna, P.: Noisy data make the partial digest problem NP-hard. In: Algo-
rithms in bioinformatics, third international workshop, WABI 2003. Lecture Notes in Computer Science,
vol. 2812, pp. 111–123. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39763-
2_9

13. Cieliebak, M., Eidenbenz, S.J.: Measurement errors make the partial digest problem np-hard. In: LATIN
2004: theoretical informatics, 6th Latin American symposium. Lecture Notes in Computer Science, vol.
2976, pp. 379–390. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5_42

14. Cieliebak, M., Eidenbenz, S.J., Pagourtzis, A., Schlude, K.: On the complexity of variations of equal sum
subsets. Nord. J. Comput. 14(3), 151–172 (2008)

15. Cygan,M.,Mucha,M.,Wegrzycki, K.,Wlodarczyk,M.: On problems equivalent to (min, +)-convolution.
ACM Trans. Algorithms 15(1), 14–11425 (2019). https://doi.org/10.1145/3293465

16. Deng,M., Jin, C., Mao, X.: Approximating knapsack and partition via dense subset sums. In: Proceedings
of the 2023 ACM-SIAM symposium on discrete algorithms, SODA 2023, pp. 2961–2979. SIAM, USA
(2023). https://doi.org/10.1137/1.9781611977554.ch113

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3450524
https://doi.org/10.1007/978-3-031-06678-8_6
https://doi.org/10.1007/s10878-022-00928-0
https://doi.org/10.4230/LIPIcs.STACS.2016.13
https://doi.org/10.4230/LIPIcs.STACS.2016.13
https://doi.org/10.4230/LIPIcs.STACS.2015.48
https://doi.org/10.4230/LIPIcs.STACS.2015.48
https://doi.org/10.1006/jcss.2001.1784
https://doi.org/10.1137/1.9781611976465.108
https://doi.org/10.1145/3357713.3384308
https://doi.org/10.1137/1.9781611974782.69
https://doi.org/10.1007/978-3-540-45077-1_10
https://doi.org/10.1007/978-3-540-39763-2_9
https://doi.org/10.1007/978-3-540-39763-2_9
https://doi.org/10.1007/978-3-540-24698-5_42
https://doi.org/10.1145/3293465
https://doi.org/10.1137/1.9781611977554.ch113

Approximating subset sum ratio via... 113

17. Dutta, P., Rajasree, M.S.: Algebraic algorithms for variants of subset sum. In: Algorithms and Discrete
Applied Mathematics - 8th International Conference, CALDAM 2022. Lecture Notes in Computer Sci-
ence, vol. 13179, pp. 237–251. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95018-7_19

18. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM 21(2),
277–292 (1974). https://doi.org/10.1145/321812.321823

19. Jin, C.,Wu,H.:A simple near-linear pseudopolynomial time randomized algorithm for subset sum. In: 2nd
symposium on simplicity in algorithms, SOSA 2019. OASIcs, vol. 69, pp. 17–1176. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/OASIcs.SOSA.
2019.17

20. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a symposium on the com-
plexity of computer computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston,
MA (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

21. Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.G.: An efficient fully polynomial approximation
scheme for the subset-sum problem. J. Comput. Syst. Sci. 66(2), 349–370 (2003). https://doi.org/10.
1016/S0022-0000(03)00006-0

22. Khan, M.A.: Some problems on graphs and arrangements of convex bodies. PRISM (2017). https://doi.
org/10.11575/PRISM/10182

23. Koiliaris, K., Xu, C.: Faster pseudopolynomial time algorithms for subset sum. ACM Trans. Algorithms
15(3), 40–14020 (2019). https://doi.org/10.1145/3329863

24. Lipton, R.J., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations of indivisible goods.
In: Proceedings of the 5th ACM conference on electronic commerce (EC-2004), pp. 125–131. ACM,
New York, NY, USA (2004). https://doi.org/10.1145/988772.988792

25. Melissinos, N., Pagourtzis, A.: A faster FPTAS for the subset-sums ratio problem. In: Computing and
Combinatorics—24th International Conference, COCOON 2018. Lecture Notes in Computer Science,
vol. 10976, pp. 602–614. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1_50

26. Melissinos, N., Pagourtzis, A., Triommatis, T.: Approximation schemes for subset-sums ratio problems.
Theor. Comput. Sci. 931, 17–30 (2022). https://doi.org/10.1016/j.tcs.2022.07.027

27. Mucha, M., Nederlof, J., Pawlewicz, J., Wegrzycki, K.: Equal-subset-sum faster than the meet-in-the-
middle. In: 27th annual european symposium on algorithms, ESA 2019. LIPIcs, vol. 144, pp. 73–17316
(2019). https://doi.org/10.4230/LIPIcs.ESA.2019.73

28. Mucha, M., Wegrzycki, K., Wlodarczyk, M.: A subquadratic approximation scheme for partition. In:
Proceedings of the thirtieth annual ACM-SIAM symposium on discrete algorithms, SODA 2019, pp.
70–88. SIAM, USA (2019). https://doi.org/10.1137/1.9781611975482.5

29. Nanongkai, D.: Simple FPTAS for the subset-sums ratio problem. Inf. Process. Lett. 113(19–21), 750–753
(2013). https://doi.org/10.1016/j.ipl.2013.07.009

30. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence.
J. Comput. Syst. Sci. 48(3), 498–532 (1994). https://doi.org/10.1016/S0022-0000(05)80063-7

31. Pisinger, D.: Linear time algorithms for knapsack problems with bounded weights. J. Algorithms 33(1),
1–14 (1999). https://doi.org/10.1006/jagm.1999.1034

32. Voloch, N.: Mssp for 2-d sets with unknown parameters and a cryptographic application. Contemp. Eng.
Sci. 10, 921–931 (2017). https://doi.org/10.12988/ces.2017.79101

33. Woeginger, G.J., Yu, Z.: On the equal-subset-sum problem. Inf. Process. Lett. 42(6), 299–302 (1992).
https://doi.org/10.1016/0020-0190(92)90226-L

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/978-3-030-95018-7_19
https://doi.org/10.1145/321812.321823
https://doi.org/10.4230/OASIcs.SOSA.2019.17
https://doi.org/10.4230/OASIcs.SOSA.2019.17
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/S0022-0000(03)00006-0
https://doi.org/10.1016/S0022-0000(03)00006-0
https://doi.org/10.11575/PRISM/10182
https://doi.org/10.11575/PRISM/10182
https://doi.org/10.1145/3329863
https://doi.org/10.1145/988772.988792
https://doi.org/10.1007/978-3-319-94776-1_50
https://doi.org/10.1016/j.tcs.2022.07.027
https://doi.org/10.4230/LIPIcs.ESA.2019.73
https://doi.org/10.1137/1.9781611975482.5
https://doi.org/10.1016/j.ipl.2013.07.009
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1006/jagm.1999.1034
https://doi.org/10.12988/ces.2017.79101
https://doi.org/10.1016/0020-0190(92)90226-L

	Approximating subset sum ratio via partition computations
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our contribution

	2 Preliminaries
	3 Scheme for a restricted version
	3.1 Outline of the algorithm
	3.2 Solution involving exclusively large elements
	3.3 General (1+ε)-approximate solutions
	3.4 Adding small elements efficiently

	4 Final algorithm
	5 Complexity
	5.1 Complexity of partition computations
	Using exact partition computations
	Using approximate partition computations

	5.2 Total complexity

	6 Conclusion and future work
	Acknowledgements
	References

