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Abstract
Dot pattern points are the samples taken from all regions of a 2D object, either inside or the
boundary. Given a set of dot pattern points in the plane, the shape reconstruction problem
seeks to find the boundaries of the points. These boundaries are not mathematically well-
defined. Hence, a superior algorithm is the onewhich produces the result closest to the human
visual perception. There are different challenges in designing these algorithms, such as the
independence from human supervision, and the ability to detect multiple components, holes
and sharp corners. In this paper, we present a thorough review on the rich body of research
in shape reconstruction, classify the ideas behind the algorithms, and highlight their pros
and cons. Moreover, to overcome the barriers of implementing these algorithms, we provide
an integrated application to visualize the outputs of the prominent algorithms for further
comparison.

1 Introduction

Back to childhoodmemories, do you remember the initial illustrationswemade by connecting
the dots in the given order and creating a familiar shape? Interpreting the connect-the-dots
puzzles might be the first solution for the so-called shape reconstruction problem. Different
algorithms have been proposed so far for the shape reconstruction problem. However, which
algorithm will be the last one to overcome all challenges of this problem? No one knows. In
a general shape reconstruction problem, points are not ordered, not all of them may define
the shape, and density of them can vary in different regions. Hence, despite being simple at
first sight for a human, this problem is inherently highly sophisticated for a computer.

When a specific application is under investigation, an earlier knowledge about the global
shape of points is available. For example, in urban scene reconstruction from LiDAR data,
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it is known that the points are sampled from the buildings which are mostly constructed
orthogonal [59]. Hence, a global orthogonal shape such as a rectangle [32, 48, 54, 57–59]
or an L-shape [8, 9, 49, 50] should quite fit the points. Then, the question is how to fit (in
which orientation) this pre-specified shape to the point set so that an optimization criterion
(such as minimizing the area of the shape) is fulfilled. This problem can be seen as a shape
fitting problem which has attracted a wide range of computational geometry algorithms [8,
9, 11, 54]. Quality of samples is also considered in this problem. For example, sample points
from the buildings can be different from the vegetation nearby. This discrimination in the
input point set is modeled by assigning different colors to the points. Then, the question is
how to fit the pre-scribed shape to the buildings avoiding covering the vegetation. This is
a separation problem using the pre-specified geometric shapes known as separators [46].
The shape fitting problem in all kinds includes considerable challenges to overcome and has
receivedmerit attention [1, 2, 46, 51]. However, this challenging problem is still a small subset
of a general shape perception problem in which this pre-knowledge about the global shape
is not available. There, shape reconstruction algorithms should perceive and reconstruct the
shape of points by their own reasoning, and this reconstructed shape should be the closest
possible to the human perception of the shape.

The shape of points can be defined by the boundaries these points delimit. Boundary of
a subset S of a topological space X is defined as the set of points in the closure of S not
belonging to the interior of S. Then, an element belonging to the boundary of S is called a
boundary point. Geometrically, this leads to defining two types of boundaries for a planar
point set P: outer boundary and inner boundary (hole). The outer boundary refers to a simple
polygon enclosing all points of P . On the other side, an inner boundary (hole) refers to an
empty simple polygon enclosed by some points of P . Surely, this empty polygon should be
large enough to resemble a hole in human mind.

The input point set can also be classified into two types: the boundary sample (curve
sample) and dot pattern (object sample). In the boundary sample, the input point set is
sampled only from the boundary of the object. Hence, all given points are the boundary points.
However, in the dot pattern, the input point set is sampled from all regions of the object, no
matter inside or on the boundary. Thus, the problem becomes more challenging in this case
since the algorithm should also discover the boundary points itself. Reconstruction refers to
the process of identifying the boundaries that provide a good approximation of the shape
of points. The concept of goodness here is not mathematically well-defined and is mostly
visually compared with human perception on different data sets. This makes reconstruction
an inherently “ill-posed problem” [19]. Using boundary samples, the reconstruction process
is called curve reconstruction while dealing with dot patterns, this process is referred as
shape reconstruction. When an algorithm can handle both types of input, it is referred as a
unified algorithm. An input in the form of a boundary sample and a dot pattern is illustrated
in Fig. 1a and b, respectively.

Besides the theoretical beauty of shape reconstruction, this problem has a wide range of
industrial applications. Retrieving the shape of the urban settlements has a vital role in their
sustainable planning [5, 41, 59]. Moreover, aggregating the sample points representing the
buildings to form a single polygon is an important operation in map generalization [23].
Detecting the outer boundary (the external shape) and inner boundaries (local features) of
sample points enhance the accuracy and efficiency of Computer-AidedDesign (CAD)models
[24, 29]. Further, hole detection is a prominent task in biometric authentication such as
detecting the facial landmarks in face recognition [4]. Detection of holes is also crucial in
the security analysis of power systems and wireless sensor networks [26, 27].
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Fig. 1 Illustration of the outer and inner boundaries of a a boundary sample b a dot pattern input

1.1 Challenges in shape reconstruction

The most important challenges in shape reconstruction are as follows:

• Parameter tuning: Many algorithms require tuning a parameter, either to improve visual
quality or to decide the stopping criteria. In most cases, tuning this parameter to get the
desired shape turns out to be tricky.

• Multi-components: In handling the samples taken from an object with multiple com-
ponents, it is anticipated that a shape reconstruction algorithm can detect different
components of the shape.

• Hole detection: The proposed algorithm should be able to detect the holes that exist in
the point set.

• Sharp corners: In capturing the details, it is important that an algorithm can reconstruct
the corners with sharp obtuse angles.

• Time complexity: Similar to any other algorithm, time complexity of a shape reconstruc-
tion algorithm is a major factor for the performance evaluation.

• Theoretical guarantee: Proving the topological correctness of the reconstructed bound-
aries provides a theoretical guarantee on the quality of the solution.

• Non-uniformity: Since the density of points vary in different regions of the samples
with non-uniform distributions, the algorithms face challenges in detecting the boundary
points. Figure 2a illustrates a sample of this kind. There is also a new line of research,
focusing on this challenge for extending the shape reconstruction to a point set with
varying densities [42].

• Noise/outliers: Imprecision in themeasuring devicesmay produce some unwanted points
relatively far from the rest of samples, referred as outliers, illustrated in Fig. 2b. There
can also be displaced points, referred as noise, depicted in Fig. 2c. Being able to handle
noise and outliers is an enrichment for the shape reconstruction algorithms.

Various algorithms have been proposed so far, each to overcome specific challenges of
the shape reconstruction problem. Evaluating all these algorithms together provides a clearer
understanding of the nature of this problem, the ideas that have been examined so far, and the
issues that are still remained for further research. Curve reconstruction algorithms that deal
with the boundary samples have been recently thoroughly reviewed [40]. A collection of the
most famous shape reconstruction algorithms has also been prepared [44]. In this paper, we
provide a comprehensive review of the shape reconstruction algorithms, from the earliest to
the latest, and discuss their strengths and weaknesses. Moreover, we have implemented an
integrated application to visualize the outputs of these algorithms for an accurate comparison.
We believe that this application is quite helpful for researching in this field since it eliminates
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Fig. 2 a An input with a non-uniform distribution. b Presence of outliers in the sample. c Presence of noise
in the sample

researchers from implementing the algorithms from scratch (for those whose source codes
are not available) and making the rest of the algorithms to be executed compatibly.

The paper is organized as follows. In Sect. 2, we review the preliminaries. We classify
the shape reconstruction algorithms according to their basic structures into the hull-based,
region-based, andDelaunay-based algorithms. These algorithms are described in details with
pros and cons respectively in Sects. 3, 4, and 5. The qualitative and quantitative comparisons
of the results of the algorithms as well as their execution time in practice are further discussed
in Sect. 6. We provide details of the implementation of our application in Sect. 7. Finally, we
conclude the paper in Sect. 8.

2 Preliminaries

The initial algorithms for the shape reconstruction problem can date back to the classic
computational geometry problem, the convex hull. Given a set P of n points in the plane,
the convex hull of P , denoted by CH(P), is the smallest convex polygon enclosing P . It is
worth mentioning that all the concepts, properties, and algorithms discussed in this paper,
are considered in R2.

Different optimal O(n log n)-time algorithms have been proposed to compute CH(P)

[14]. The gift-wrapping algorithm is also an output-sensitive algorithm to compute CH(P)

in O(nh) time, where h is the size of CH(P) [28]. Since this algorithm is the base of
several shape reconstruction algorithms, next we provide a brief description of its main idea.
To compute CH(P), the gift-wrapping algorithm considers the point with the minimum y-
coordinate as a basis. Clearly, this point is a vertex of CH(P). Then, the corresponding edge
of CH(P) is the one that makes the minimum angle with the positive direction of x-axis.
The other endpoint of this edge becomes the new vertex of CH(P). Now, the next edge of
CH(P) will be the one that makes the minimum angle with the newly discovered edge of
CH(P). The gift-wrapping algorithm continues this way until getting back to the basis, as
shown in Fig. 3.

For a point (site) pi ∈ P , the Voronoi region of pi , is the locus of points in R2 which are
closer to pi than any other sites in P . The points which are equidistant from two sites define
the Voronoi edges, and the Voronoi edges meet in the Voronoi vertices. Then, the Voronoi
diagram of P , denoted by V D(P), is defined as the union of the Voronoi regions for all sites
in P , as depicted in Fig. 4a. It is usually assumed that sites are in general position, which
means no three sites are collinear and no four sites are cocircular. This way, each Voronoi
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Fig. 3 The progress of the
gift-wrapping algorithm, with p0
as the basis, to compute the
shaded CH(P)

Fig. 4 a V D(P) is shown by the solid lines while DT (P) is shown by the dashes. The Voronoi region of
pi ∈ P is shaded. b The order-k Voronoi diagram of P , for k = 2

vertex has degree three. Herein, the dual graph of V D(P) is a unique planar graph, known
as the Delaunay triangulation of P , denoted by DT (P). Each Voronoi vertex in V D(P)

is mapped to a Delaunay triangle in DT (P), as shown in Fig. 4a. The circumscribed circle
of a Delaunay triangle is called a Delaunay circle. Although these concepts are defined for
the sites in general position, they can be generalized to the degenerate cases where sites are
cocircular. In this case, a Voronoi vertex of degree k is mapped to a convex polygon with
k cocircular vertices in DT (P). Unlike general position, the Delaunay triangulation is not
unique in the degenerate cases. There are linear number of vertices, edges, and regions in
V D(P) and DT (P), and these structures can be computed optimally in O(n log n) time
[14]. Generalizing the Voronoi diagram, the order-k Voronoi diagram of P is considered as
the union of the order-k Voronoi regions, where an order-k Voronoi region is the locus of
points in R

2 that have the same set of k nearest sites. This diagram is illustrated in Fig. 4b.
Agarwal et al. [3] have proposed a randomized algorithm for computing the order-k Voronoi
diagram of P in O(k(n − k) log n + n log3 n) expected time. Further, Lee [31] has shown
that the complexity of this structure is O(k(n − k)).

A k-simplex in a Euclidean space is the convex hull of k + 1 affinely independent points
in this space [16]. Hence, 0-simplex is a point, 1-simplex is a segment, and 2-simplex is a
triangle. A k-simplex has dimension k. A simplicial complex S is a collection of a finite
number of simplices that satisfies the following conditions: (1) Every face of a simplex from
S is also in S, and (2) If two simplices in S intersect, then their intersection is a face of each
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Fig. 5 a Specifying the bridges, dangling edges, disconnected edges, and junctions in a simplicial 2-complex.
In this picture, p′q ′ is a bridge, pq is a dangling edge, and p′′q ′′ is a disconnected edge. The vertices p′, q, q ′
and r are junctions. This simplicial 2-complex is non-regular. b A regular simplicial 2-complex

of them. A simplicial k-complex is then a simplicial complex in which the dimension of each
simplex is at most k. Thus, DT (P) is a simplicial 2-complex in the plane. An edge e in a
graph G is called a bridge if and only if the removal of e results in increasing the number of
connected components in G. Edges whose one of their endpoints has degree 1 are called the
dangling edges, and edges whose both endpoints have degree 1 are called the disconnected
edges. When one or more triangles are attached to any other k-simplex (for k = 1 or 2) only
through one vertex of that k-simplex, this vertex is called a junction, as illustrated in Fig. 5a.
A simplicial k-complex Sk is called regular if it satisfies the following conditions: (1) For
every two points in Sk , there exists a path in Sk connecting them, and (2) there does not
exist any junctions, bridges, or dangling edges in Sk . Figure 5b illustrates a regular simplicial
2-complex.

A specific type of sampling, namely r -sampling, has been introduced by Peethambaran
andMuthuganapathy [43] for studying the topological correctness of the shape reconstruction
algorithms. We explain it in the following. For a dot-pattern point set P sampled from an
object O in the plane, let the boundary points refer to the points on the boundary of O, and
inner points refer to the rest of the points. Then, P is an r -sampling of O if the following
conditions hold: (1) The distance between each pair of adjacent boundary points p, q ∈ P is
at most 2r . And (2) the distance between any pair of points p′, q ′ ∈ P where p′ is an inner
point and q ′ is a boundary point is at least 2r . The notion of r -sampling makes sure that the
boundary points are dense enough to be detected by the algorithms.

3 Hull-based algorithms

Although CH(P) can be considered as an initial good approximation of the shape of P , the
convexity of this structure and its inability to detect multiple components and holes of P , as
illustrated in Fig. 6, has motivated designing more intricate algorithms. The α-shape [20] of
P is the closest structure to CH(P) with complementary properties. Two points p, q ∈ P
contain an edge in the α-shape of P if and only if there exists an empty disk with radius 1/α,
(where α > 0) passing through p and q . When α = 0, the empty disks degenerate to the
half-planes and the structure is the same as CH(P). As α gets larger, the level of details in
the structure (such as the ability to detect holes, multi-components, and concavities of the
boundaries) increases, as shown in Fig. 7. The α-shape structure can be computed optimally
in O(n log n) time in the plane [20]. In the α-shape algorithm, the decision criteria for the
boundary reconstruction are only based on the distance between the points. Thus, there are
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Fig. 6 CH(P) is not able to
detect the concavities, holes, and
multiple components

Fig. 7 The α-shapes of P for different values of α. When α = 0, the α-shape of P is the same as CH(P).
While α increases from 0, the level of details increases in the resultant shape as illustrated in (a)–(d). The
values of α in subfigures a, b, c, and d are respectively 0.03, 0.1, 0.2 and 0.9

Fig. 8 Illustration of a point set with no satisfying value of α. As illustrated in (a)–(d), increasing the value
of α cannot help the algorithm to capture the expected shape

point sets, namely non-uniformly distributed point sets, in which there exists no satisfying
value for α, as illustrated in Fig. 8. Assigning weights to the points in the weighted α-shape,
increases the flexibility of influence of different points along their mutual distance. However,
finding a suitable weighting assignment takes O(n2 log n) time, and the weighted α-shape
still suffers from the limitations in detecting sharp corners [18].

Several extensions of this useful structure have been proposed so far. When P includes at
most k outliers for an integer k ≥ 1, the k-hull of P , shown in Fig. 9, is the complement of the
union of all half-planes that contain less than k points. Based on the order-k Voronoi diagram,
Krasnoshchekov and Polishchuk [30] proposed the order-k α-hull and the order-k α-shape
of P for α > 0 as the robust shape reconstruction algorithms in the presence of outliers.
There, an α-ball is as an open disk with the radius α. A k-empty α-ball is then an α-ball that
includes less than k points in its interior. Let Bk-empty denote the union of all k-empty α-balls
of P . Now, the order-k α-hull of P is defined as the complement of Bk-empty, as illustrated
in Fig. 10a. The output of the order-k α-hull of P is sensitive to the choice of α and k. In
case of existence, this output is a circular arc polygon whose vertices are not necessarily on
the points of P . Moreover, it may dismiss detecting the components of P . These limitations
are illustrated in Fig. 10b. Let k-maximal-α-ball be an α-ball including exactly k − 1 points.
Points p, q ∈ P are called k − α-neighbors if there exists a k-maximal-α-ball having p and
q on the boundary. This algorithm distinguishes between the points inside and outside the
shape as follows. Let O be a k-maximal-α-ball with the k − α-neighbors p and q on the
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Fig. 9 Illustration of the k-hull of
P , for k = 2

Fig. 10 Illustration of the order-k α-hull and the order-k α-shape of a point set P , for k = 2. a The k-empty
α-balls are shown dashed. The shaded region represents the order-k α-hull of P . b Limitations of the order-k
α-hull in detecting different components of the shape. c The k-maximal-α-balls are shown with the dotted
boundaries. The points p and q are k − α-neighbors. (k, α)-outside points are shown light while (k, α)-inside
points are shown dark. The shaded polygon accompanying the dark points outside this polygon illustrate the
order-k α-shape of P . d Limitations of the order-k α-shape in detecting the corners

boundary. The points of P that fall inside O are called (k, α, p, q)-outside. Then, points of
P that are (k, α, p, q)-outside for at least one pair of k − α-neighbors p and q are denoted
(k, α)-outside. The points that are not (k, α)-outside, are called (k, α)-inside. Finally, the
order-k α-shape is defined as the α-shape of (k, α)-inside points, as depicted in Fig. 10c. Let
Ck−V D and Tk−V D respectively denote the size and the time complexity of computing the
order-k Voronoi diagram of P . Then, the order-k α-shape and the order-k α-hull of P can be
built in O(Tk−V D+Ck−V D logCk−V D) time [30], leading to an O(k(n−k) log n+n log3 n)-
time algorithm [3, 31]. The number of outliers should be specified at the beginning of the
algorithm. The order-k α-shape delimits the shape based on the following two criteria: (1)
putting aside (k, α)-outsides as the outliers, and (2) compressing the shape by considering the
α-shape of (k, α)-insides as the final output. The two-step compression puts the emphasis on
the local patterns; this may result in losing the general pattern such as dismissing the corners
of the shape, as shown in Fig. 10d.

Another approach to overcome simplicity of the convex hull structure is to define non-
convex hulls or footprints of a set of points. Galton and Duckham [23] presented a rotational
plane sweep algorithm to construct such structures. The idea of this algorithm is close to the
gift-wrapping algorithm, described in Sect. 2. To find a non-convex hull of P , the algorithm
takes an extreme point, defined as the point selected to be on the hull. Let p0 be the point with
the minimum y-coordinate, taken as an extreme point. The algorithm locates a swing arm,
with the length �, with an endpoint on p0, and rotates the swing arm until hitting another
point, which will be the next extreme point. Continuing this way, the algorithm terminates
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Fig. 11 Dependency of a non-convex hull structure to the length of arm and the direction of rotation. a A
non-convex hull with the arm length �1. b A non-convex hull with the arm length �2, where �2 > �1. c A
non-convex hull with the arm length � and the counterclockwise rotation. d A non-convex hull with the same
arm length but the clockwise rotation

when it comes back to the starting point p0. According to the value of �, the first round
of the algorithm may result in a polygon which does not include all points of P . In this
case, the swing arm algorithm is repeated on the excluded points until there are no points
outside. There, the resultant structure includes multiple connected components, as depicted
in Fig. 11a. Despite uniqueness of the convex hull of P , a non-convex hull of P is not unique.
A non-convex hull structure varies with the length of the swing arm and the direction of
rotation (clockwise or counterclockwise), as shown in Fig. 11. Moreover, the swing arm
algorithm has a high time complexity of O(n3) [23].

Moreira and Santos [39] designed the concave-hull algorithm based on the k nearest
neighbors. In the preprocessing, they use the Shared Nearest Neighbor (SNN)-clustering
algorithm of Ertoz et al. [21]. The SNN-clustering algorithm receives a parameter k to deter-
mine the granularity of each cluster. This algorithm first finds the k nearest neighbors of each
point. Then, it redefines the similarity of two points as the number of nearest neighbors they
share. This way, the SNN-clustering algorithm considers some core points, and constructs the
clusters corresponding to the cores. This algorithm generally runs in O(n2) time. However,
there are situations where the time complexity can be improved [21]. Having performed the
SNN-clustering algorithm, the concave-hull algorithm [39] focuses on finding the shape of
each cluster. To this aim, it also follows a similar algorithm to the gift-wrapping with this
modification that only the k nearest neighbors of an extreme point are the candidates to be the
next extreme. Among these k candidates, the next extreme will be the point with the largest
counterclockwise angle. The process is repeated until getting back to the first extreme point.
The algorithm goes through a refining step to handle the special cases, and automatically
changes the value of k for a better performance. Implementations show a good performance
of the algorithm. However, the computational complexity of the algorithm is not explicitly
analyzed, and depends on the time complexity of the SNN-clustering and the refinements
that the algorithm performs on the value of k.

Concave structures were later generalized to the α-concave hull byAsaeedi et al. [6]. They
defined the α-polygon as a simple polygon in which all interior angles are less than 180+ α

degrees. Then, the α-concave hull of P is defined as the α-polygon with the minimum area
that encloses all points in P . For α = 0, the α-concave hull of P is the same as CH(P). For
α = 180, the α-concave hull of P is the same as the minimum area simple polygon enclosing
P , which is NP-complete to be determined [22]. For the values of α in between and a real
number r > 0, Asaeedi et al. [6] proved that computing the α-polygon with the area equal
to r on a point set P is NP-complete. Moreover, they proved that finding the α-concave hull
of P is NP-hard. Similar to the non-convex hulls of P , an α-concave hull of P is not unique,
even for a fixed value of α [6].

123



344 F. Sheikhi et al.

Fig. 12 The simple shape of P with different normalized edge lengths. As illustrated in (a)–(h), decreasing
the edge length threshold increases the level of details in the resultant shape. The boundaries that the algorithm
misses in each case, are highlighted with arrows and shades

Fig. 13 Illustration of the r -shape
of P

The simple-shape proposed by Gheibi et al. [25], is a unified shape reconstruction algo-
rithm working by incrementally adding concavity to CH(P). Having computed CH(P),
in each step of the algorithm, a boundary edge is replaced by the two edges connecting the
endpoints of this edge to an inner point. This inner point is found by solving a multi-objective
optimization problem considering the three factors of the closeness of a point to the bound-
ary edge, the length of the boundary edge to be removed, and the difference of the angles
of the inner point to the endpoints of the boundary edge. The termination criteria of the
algorithm depend on the input type. For the boundary samples, the algorithm continues until
there are no inner points left. However, for dot patterns, the termination criterion can be set
by a user-defined parameter, such as reaching a specific number of edges in the resultant
shape or an edge length threshold. The simple-shape algorithm has the time complexity of
O(n log n), and as its name implies, this algorithm generates a single simple polygon as the
output. Figure 12 illustrates the simple-shape of P .
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Fig. 14 The extended footprint of P modeled by disks, with the radius of each disk equal to the distance of
the center to its nearest neighbor. a The extended footprint by considering the union of disks. b A smoother
extended footprint by adding the region between the common tangents of the overlapping disks

Chaudhuri and Parui [12] defined the r -shape of P , as a planar graph defined by the
r -edges and r -vertices, explained next. Let U be the union of disks centered at the points of
P , each with the radius r . Then, a point p ∈ P is called an interior point if and only if its
corresponding disk does not appear on the boundaries ofU . Otherwise, it is called a boundary
point. Now, two boundary points pi , p j ∈ P share an r -edge in the r -shape graph if and only
if their disks are adjacent on the boundaries of U . The endpoints of the r -edges are called the
r -vertices. Figure 13 depicts this structure. A refinement can be applied to the r -shape graph
to change it into a non-self-intersecting polygon. Computations are performed on a grid in
this algorithm, resulting the time complexity of computing the r -shape to be O(n). Chosen a
suitable value of r , the r -shape structure can detect the holes and disconnected components.

4 Region-based algorithms

So far, the reconstruction algorithms assumed that the boundary of the reconstructed shape
should be a polygon with vertices on the specific points of P (via a selection criterion). There
are also algorithms that relax this assumption. In this case, the input points do not appear on the
boundary themselves. Instead, it is assumed that each point has an area of influencemodeled
by a geometric shape, mostly a disk. The region occupied by a set of points is then defined as
the union of the areas of influence. This reconstructed region is called the extended footprint
[23] or the space filling hull of P [45], inspired by modeling of the molecular structures. This
structure can reconstruct multi-components, holes and concavities, as shown in Fig. 14a. The
radii of disks vary according to the application as the van der Waals radius of elements [10]
was considered in [45], and the radius of each disk equal to half the distance of the center and
the center’s nearest neighbor was considered in [55]. The union of n disks can be computed
in O(n log n) time [7]. A smoother outline for the extended footprint can consider the area
between the common tangents of the overlapping disks as well as the union of them [23], as
illustrated in Fig. 14b. This method is very close to the dilation and erosion operations used
in computer graphics and mathematical morphology [47].

Motivated by digital imaging, Chaudhuri and Parui [12] proposed the s-shape of P as the
union of the grid cells that contain at least one point of P . The side length of these square grid
cells, denoted by s, can be specified according to the point set at hand. However, as depicted
in Fig. 15, the stair-case structure of the s-shape and the values of s may result in producing
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Fig. 15 Illustration of the s-shape of points. a A sample point set P . b The s-shape of P as the union of
the shaded grid cells. The outer boundary is cracked, and the chosen value of s has resulted in producing the
unwanted holes in the reconstructed region

a cracked boundary or unwanted holes in the shape. Considering the ε-measure of dispersion
for the grid length can provide a smoother boundary [12].

5 Delaunay-based algorithms

The famous class of the Delaunay-based shape reconstruction algorithms starts with com-
puting the Delaunay triangulation of points, and then goes through an edge removal stage in
which the algorithms repeatedly remove some edges from the initial Delaunay triangulation
to obtain the final shape. Hence, the distinction between the Delaunay-based algorithms is
based on the criteria they used to remove edges. In the following, we provide a description
of the various related ideas.

Melkemi andDjebali [34] have presented theA-shape structure that considers an auxiliary
point set A along with the main point set P , to control the level of details in the resultant
shape. The distribution of A depends on a user-defined threshold. In a uniformly distributed
point set,A is considered as the set of centers of theDelaunay circles on P , with the radiimore
than a threshold t ≥ 0. Having computed DT (A ∪ P), the A-shape algorithm refines this
triangulation by considering only the Delaunay edges that connect two points of P . The A-
shape structure unifies the concepts of the α-shape and the extended footprints. The weighted
A-shape algorithmgeneralizes this concept to theweighted points to handle different densities
in different regions [35]. These weights decide the size of the disk around each point, and
enable the algorithm to handle non-uniformly distributed points and shapes with multiple
components. The performance of these algorithms relies on a proper determination ofA [34].

Duckham et al. [17] have presented the characteristic-shape or χ-shape with a focus on
the edge length. In DT (P), a boundary edge is referred to a Delaunay edge which is incident
to a single triangle, and a boundary triangle is a triangle which is incident to at least one
boundary edge. Having DT (P), the χ-shape algorithm follows a sculpting procedure which
repeatedly removes the longest boundary edge of the triangulation and adds its two adjacent
edges instead, if removing the edge stratifies the following two conditions: (1) the length
of the edge to be removed is larger than a length parameter l, and (2) the resultant shape
after this edge removal is a simple polygon (not-self intersecting). The sculpting procedure
is repeated until there are no edges left satisfying these two conditions. Then, it returns the
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polygon formed by the boundary edges of the triangulation as the output. The algorithm runs
in O(n log n) time, and receives a non-negative parameter l as the input along with the point
set P . The χ-shape algorithm cannot detect holes and multiple components.

Peethambaran and Muthuganapathy [43] have proposed the non-parametric RGG-
algorithm to generate a Relaxed Gabriel Graph (RGG) induced by DT (P). Assuming
p, q ∈ P to be Delaunay neighbors, the Delaunay edge pq is a Gabriel edge if and only
if there exists an empty circle with p and q on the diameter. The RGG-algorithm classifies
the triangles in DT (P) into two types: thin triangles and fat triangles. An obtuse triangle
� in DT (P) is called a thin triangle, and the longest edge of a thin triangle is called its
characteristic edge. Delaunay triangles that are not thin, are referred as fat triangles.

The RGG-algorithm generates a regular simplicial 2-complex which contains all Gabriel
edges and a few non-Gabriel edges of DT (P) as follows. Note that if a simplicial 2-complex
stays regular after removing a triangle T from it, then T is called a deletable triangle. Let
ab ∈ DT (P) be a non-Gabriel edge, and assume that �abc is a Delaunay triangle with ab
as the characteristic edge. The non-Gabriel edge ab exists in RGG(P) if at least one of the
following conditions holds: (1) The removal of ab violates the regularity of RGG(P), and
(2) The circumcenter of ab lies inside the boundary of RGG(P). To this aim, after computing
DT (P), this triangulation goes through a filtration stage to detect the outer boundary, and
then through a hole-detection stage to detect the inner boundaries. The filtration stage is
sensitive to the starting point. Hence, the RGG-algorithm analyzes the deletable boundary
triangles in decreasing order of their circumradii. Let � be the triangle to be processed; if
the circumcenter of � lies outside the boundary and the characteristic edge of � belongs to
the boundary, then � is filtered from DT (P), and the deletable neighboring triangles of �
are added in order. The filtration stage outputs a filtered regular simplicial 2-complex as the
outer boundary of P . The structure of a hole is composed of a body surrounded by a set of
arms, where the body is defined as a set of connected fat triangles and the arms are a set of
connected thin triangles adjacent to a fat triangle in the body. The RGG-algorithm defines
a special type of holes, namely fat holes, and only focuses on detecting this specific hole
structure. For an integer m ≥ 1, the body of a fat hole in the RGG-algorithm is a set of
m connected fat triangles surrounded by m + 2 arms. In a fat hole, each fat triangle in the
body should be connected to at least one arm, and the arms should be connected to the body
through the characteristic edge of a thin triangle. Further, each inner edge of an arm should
be a characteristic edge of a thin triangle. This way, the RGG-algorithm captures the outer
boundary and the fat holes, as depicted in Fig. 16, in O(n log n) time. Topological correctness
of the reconstructed boundaries under r -sampling is also studied. The comparisons show the
reasonable accuracy of the boundaries in RGG(P) with respect to the α-shape and χ-shape
algorithms. Like most shape reconstruction algorithms, the RGG-algorithm is dependent
to the homogeneity of distribution of points; it cannot detect multiple components, and as
shown in Fig. 17, the constraints on the hole structure prevent detecting general holes.

The algorithm of ec-shape [38] is a unified algorithm which generates a simple polygon
as the shape of points. In this algorithm, the boundary edges of DT (P) are processed in
decreasing order of length. For processing a boundary edge ebd , two conditions—namely,
the circle constraint and the regularity constraint—are checked. Let �bd be the boundary
triangle with the boundary edge ebd ; the circle constraint analyzes three types of circles:
a chord circle, diameter circle and a midpoint circle. A chord circle of ebd is any circle
with ebd as a chord. Then, the diameter circle of ebd is defined as the circle with ebd as its
diameter. A midpoint circle of ebd is any circle whose center is the midpoint of ebd . These
circles are shown in Fig. 18. A boundary edge ebd satisfies the circle constraint if any of the
following conditions holds. (1) The diameter circle of ebd is non-empty. (2) Assuming r to
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Fig. 16 aA sample point set P . b The outer and inner boundaries detected by the RGG-algorithm. The golden
triangles are filtered in the filtration stage, and the gray triangles are filtered in the hole-detection stage. In
the detected fat hole, the body is shaded with light gray and the arms are shaded with dark gray (color figure
online)

Fig. 17 Limitations of the
RGG-algorithm in the hole
detection. a The shaded region is
not taken as a hole since the
middle fat triangle is not
surrounded by any arms. b The
shaded region is not considered
as a hole since the m fat triangles
(shaded light) are not not
surrounded by m + 2 arms
(shaded dark)

be the radius of the diameter circle of ebd , then any chord circle (or midpoint circle) with the
radius r , for any of the inner sides of �bd , is non-empty. The regularity constraint checks
whether the resultant graph after the removal of ebd does not have any bridges, junctions,
or dangling edges. Assume that G refers to the output of the ec-shape algorithm; at the
beginning of the algorithm, G equals DT (P), and throughout the algorithm this graph is
updated as follows: In processing the boundary edge ebd , if ebd satisfies the circle constraint,
and G − ebd satisfies the regularity constraint, then ebd is removed from G. In the case of
removal of ebd from G, the two inner sides of�bd will be added to be processed in order as the
new boundary edges. The algorithm continues until no more boundary edges can be removed
from G, and returns the boundary edges of G as the ec-shape of P . The algorithm works in
O(n log n) time. Comparison of the ec-shape algorithm with the α-shape, simple-shape, and
χ-shape algorithms shows the superior performance of the ec-shape algorithm in detecting
concavities, as exemplified in Fig. 19. It is theoretically proved that under r -sampling, the
ec-shape is homeomorphic to a simple closed curve. This algorithm is non-parametric for
general point sets. However, parameter tuning is needed for handling sparse point sets and
inputs with a random distribution.
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Fig. 18 Illustration of the three types of circles considered in the circle constraint. a A chord circle Cc of the
boundary edge ebd . b The midpoint of ebd is shown by a cross. The diameter circle Cd of ebd is shaded, and
the midpoint circles Cmid are depicted by the dashed boundaries

Fig. 19 The strength of the ec-shape (with the output shown in (d)) in comparison with a α-shape b simple-
shape, and c χ -shape algorithms. Faults in detections are pointed by arrows and shaded

Since the ec-shape algorithm is not able to detect holes, Methirumangalath et al. [37] have
proposed a unified algorithm, referred as the empty-disk approach, which is specialized in
hole detection. The empty-disk approach assumes that the outer boundary of P is detected
by an earlier algorithm in the literature, and focuses purely on the hole detection. Having
computed DT (P), the algorithm selects a triangle to initiate a hole. This initiating triangle
is considered as the Delaunay triangle �valid that satisfies the following two conditions: (1)
�valid has the largest area in DT (P), and (2) none of the vertices of �valid lies on the outer
and the inner boundaries constructed so far. If�valid satisfies these two conditions, it is called
a valid triangle. To detect a single hole, the empty-disk approach takes a valid triangle and
tries to expand it via the neighboring triangles. Two triangles that share an edge are called
the neighboring triangles. For the hole expansion, the algorithm analyzes the neighboring
triangles in decreasing order of area. If the triangle satisfies the circle and the regularity
constraint, it is catenated to the hole, and the new neighboring triangles are added in order for
further analysis. This way, a single hole (in case of existence) can be detected in O(n log n)

time. To detect multiple holes, the single hole algorithm is repeated until the algorithm
cannot find a valid triangle or the circle/regularity constraint fails. This way, the empty-disk
approach can detect h number of holes in O(h · n log n) time. The results of implementation
show that the empty-disk approach is better or as good as the literature algorithms in hole
detection. Under r -sampling, the correctness of the detected holes is theoretically proved.
Despite its strengths, the area criterion used by the empty-disk approach to initiate holes
fails if the largest triangle does not reside within it. Moreover, the empty-disk approach
faces challenges in detecting holes with sharp corners, and the performance of the algorithm
deteriorates with randomly distributed inputs, as depicted in Fig. 20.
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Fig. 20 The challenges that the empty-disk approach faces in the hole detection, and the ec-shape algorithm
faces in the outer boundary detection. a The non-uniform distribution of points makes the empty-disk approach
mistakenly extend the hole. The shaded area highlights this situation. Herein, the ec-shape algorithm detects
the outer boundary properly. b The empty-disk approach faces challenges in extending the sharp corners of
the middle hole. The shaded areas show this drawback. Extra holes are further detected by the algorithm. The
ec-shape algorithm also faces challenges in detecting the sharp corners of the outer boundary. The arrows
emphasize this issue

Fig. 21 a The neighboring triangles �p1p2p4 and �p2p3p4 sharing the edge e are the coordinated triangles.
b The non-obtuse triangle �p1 p2 p3 is skinny since d (the distance between its circumcenter and incenter) is
larger than the base p1 p2

TheCT -shape algorithm, proposed byThayyil et al. [53], is a single pass unified algorithm
that can detect the outer and inner boundaries of P , using the same strategy. This algorithm
considers specific triangles for the removal stage, defined next. Two neighboring triangles
are called coordinated if and only if their circumcenters are located on the same side of the
shared edge, as shown in Fig. 21a. Then, a non-obtuse triangle � is called a skinny triangle
if and only if the length of its base is less than the distance between the circumcenter and
the incenter of �, as depicted in Fig. 21b. Having computed DT (P), for each Delaunay
triangle �, the CT -shape algorithm considers all three neighboring triangles and checks
whether they are coordinated. The algorithm removes the shared edges of all the coordinated
triangles from DT (P). It also identifies the skinny triangles in DT (P) and removes the two
longest edges of each. The resultant graph after this removal goes through a degree-refining
stage to make sure that the reconstructed shape is simple. The CT -shape algorithm runs
in O(n log n) time, and under r -sampling, it guarantees the topological correctness of the
reconstructed boundaries. The algorithm works well in dense samples in comparison with
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Fig. 22 Sparse and non-uniformly distributed point sets deteriorate the performance of the CT -shape algo-
rithm. a The boundary of the character “F” detected by the CT -shape algorithm. b The challenges that the
CT -shape algorithm faces in the non-uniformly distributed points

the earlier algorithms. However, when samples become sparse or noisy specifically on the
boundary, the performance of the algorithm deteriorates, as illustrated in Fig. 22.

Newly, the sphere-of-influence diagram has been proposed by Figueiredo and Paiva [15],
as a planar graph which is the intersection of DT (P) and the sphere-of-influence graph
[56]. The vertices in this graph are the points in P . Then, two points p, q ∈ P share an
edge in the sphere-of-influence graph if their scaled nearest-neighbor disks intersect, namely
if dist(p, q) ≤ μR(p) + μR(q), where dist(p, q) is the distance between p, q , R(p)
is the distance between p and its nearest neighbor, and μ ≥ 1 is the scaling parameter.
The sphere-of-influence diagram can be extracted from DT (P) in O(n) time [15]. This
diagram is sensitive to the distribution of points. When samples are uniformly distributed,
μ = 1 provides a good approximation of the shape of P . However, in other cases, it may
create false holes, and tuning this parameter is needed. Experiments show that the boundaries
reconstructed by the sphere-of-influence diagram are close to the results of the CT -shape
algorithm, with the difference that the boundary edges are shorter and the regions are slightly
larger in this diagram.

The aforementioned shape reconstruction algorithms and their properties are summarized
in Table 1.

6 Performance evaluation

Having reviewed the algorithms, in this section we provide a more detailed comparison of
the outputs of the algorithms, and how fast these algorithms can be executed in practice.

6.1 Qualitative and quantitative comparison

Herein, we present a qualitative and quantitative comparison of the results of the α-shape, χ-
shape, simple-shape, RGG, ec-shape, empty-disk approach, and theCT -shape algorithms—
which are themost widely used algorithms in this field—on samples with different properties.
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Fig. 23 Qualitative comparison of the results of the α-shape, χ -shape, simple-shape, RGG, EC-shape, and
the CT -shape algorithms. Faults in detecting the tiny details are shaded

Since the ec-shape algorithm can only detect the outer boundary, and on the other hand,
the empty-disk approach can only detect the inner boundaries, we have merged these two
algorithms together, into an algorithm referring as the EC-shape algorithm, to represent both
the outer and inner boundaries. We have considered the characters ‘A’, ‘F’, ‘3’, and ‘8’ for
the comparison of the results since the expected shapes of these characters are apparent and
tangible. Further, these characters include tiny details, holes and sharp corners to challenge
the algorithms. Figure 23 illustrates the outputs of the aforementioned algorithms on the dot-
pattern samples of these characters. These outputs are further quantitatively compared using
the Hausdorff distance, measuring the similarity between two shapes [60]. The lower this
value is, the more similar the output of the algorithm is to the ground truth. As summarized
in Table 2, the CT -shape algorithm is superior to the other algorithms in detecting the outer
and inner boundaries. The algorithms of EC-shape and α-shape take the second place.

6.2 Execution time in practice

Leaving behind the ability of hole detection, the time complexity of all widely used shape
reconstruction algorithms—namely, the α-shape, χ-shape, simple-shape, RGG, EC-shape,
and CT -shape algorithms—is theoretically O(n log n). However, in the asymptotic analysis
of the time complexity, constants (despite being very large) are ignored, which affect the
running time of the algorithms remarkably in practice. Herein, we examine the practical
running time of the aforementioned algorithms on two different samples: one small sample
including only 460 points shaping the character ’F’, and one challenging sample including
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Table 2 Quantitative comparisonof the outputs of the algorithmsusing theHausdorff distance in reconstructing
the shapes of ‘A’, ‘F’, ‘3’, and ‘8’. For the characters ‘A’ and ‘8’ which include holes, the inner boundaries are
respectively denoted by Ah , 8h1 (for the upper hole of 8), and 8h2 (for the lower hole of 8)

α-shape χ -shape Simple-shape RGG EC-shape CT -shape

A 15.81 0 0 0 10 0

Ah 11.18 – – 10 0 10

F 10 0 10 40 0 10

3 24.69 21.18 21.18 62.03 21.18 21.18

8 9.43 14.21 14.21 0 0 0

8h1 0 – – 0 12.36 0

8h2 0 – – 0 37.80 0

Fig. 24 Different samples to
compare the execution time of the
algorithms

Fig. 25 Comparing the execution time of the algorithms on the samples of ‘F’ and the gear

5720 points shaping a gear with plenty of teeth, as illustrated in Fig. 24. The execution
time of the algorithms on these samples are measured on a laptop with an Intel Core i7-
6500U 2.50 GHz Processor, 8GB RAM, 512GB SSD, with Ubuntu 18 operating system. The
results are illustrated in Fig. 25. The α-shape is shown to be the fastest algorithm in practice,
without respecting the size of samples. On the other side, the simple-shape and χ-shape
algorithms are generally the two slowest algorithms in the competition. The execution time
of the EC-shape, RGG, and CT -shape algorithms are usually between these bounds, where
the CT -shape algorithm shows its superiority in speed, mostly in large samples.

123



Dot to dot, simple or sophisticated: a survey on shape… 355

Fig. 26 The ability of the application in generating dot patterns from the a grayscale and b colored images

7 Shape reconstruction app

Despite the rich algorithmic details in the papers corresponding to the shape reconstruction,
there are several implementation barriers against the comparison of their results: Finding
the source code for the implementation, finding the compatible operating system, and also
homogenization of the input coordinate format to these algorithms. Therefore, we have pro-
vided an integrated application containing the implementations of the reviewed algorithms
to facilitate comparison of the results. A number of algorithms—namely, the α-shape [20],
χ-shape [17], ec-shape [38], and CT -shape [53]—had available source codes as cited in
[13, 33, 36, 52]. It is worth mentioning that the implementation of the simple-shape algo-
rithm [25] has been shared with us by request to the corresponding author of the article. As
the implementation of the RGG algorithm [43] was not available, we have added our own
implementation of this algorithm in the app. Moreover, among the available source codes,
most algorithms were implemented in C++ using the Computational Geometry Algorithms
Library (CGAL), some were implemented in Java, and some in Python. Our application is
implemented completely in Python (Version: 3.6) with Tkinter library and tested in Ubuntu
(Version: 18). Tkinter is a built-in Python library used to create a simple GUI app.

Our application provides two options for the users to feed their data to the algorithms.
Either they can directly upload their dot-pattern samples in the form of a text file including
the coordinates of points, or they can simply upload an image (colored or grayscale) asking
the algorithm to generate the sample points from that. In receiving a text file as the input, each
line corresponds to the x and y coordinates of a single point, separated by a space. In receiving
an image as the input, by the options provided in the application, the users can reduce the
noise and set the density of points in the resultant data, as shown in Fig. 26. Our program does
not set any limitations in the arrangement of the input points. Input points can be sampled
from simple objects, multi-component objects, and objects with holes. Having uploaded the
input file, by choosing the “Run Algorithms” button, the application executes the α-shape,
χ-shape, RGG, simple-shape, EC-shape, andCT -shape algorithms, and provides the output
of each of these algorithms in a single integrated window. For the parametric algorithms, our
application has considered tabs to quantify the corresponding parameters and visualize the
results. Figure 27 illustrates an outline of the application.
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Fig. 27 An example of the outputs in the application environment

8 Conclusion

The shape of points is defined by the boundaries enclosing the points or excluding them.
There does not exist anymathematical definition for the accurate boundaries of points. Hence,
algorithms try to reconstruct the boundaries which are closest to the human conception. Input
points are samples of the 2D objects. When there are no restrictions on the sampling, and the
samples are taken from the boundaries as well as inside the object, the resultant points are
called dot patterns. Determining the boundaries of dot patterns is called shape reconstruction,
which is an appealingfield of research, theoretically and practically. Powerful algorithmshave
been proposed so far to overcome different challenges of this problem. However, in spite of
their strength, each of these algorithms lacks handling specific situations. In this paper, we
have provided a comprehensive review on the shape reconstruction algorithms, classified
the algorithms based on their prime ideas, and explain their pros and cons. In addition, to
overcome the implementation barriers of these algorithms, we have provided an integrated
app which represents the outputs of these algorithms in a single integrated window for further
comparison.

Acknowledgements The authors would like to express their gratitude to the anonymous reviewers for pro-
viding insightful comments which have contributed to improving the quality of presenting the paper.

Funding The authors declare that they have received no funding.

Data availability The application of shape reconstruction which has been implemented by the authors is
available at https://github.com/KNTU-CG/dot-to-dot.

123

https://github.com/KNTU-CG/dot-to-dot


Dot to dot, simple or sophisticated: a survey on shape… 357

Declarations

Conflict of interests The authors declare that they have no conflict of interests.

References

1. Abidha, V., Ashok, P.: Geometric separability using orthogonal objects. Inf. Process. Lett. 176, 106245
(2022)

2. Acharyya, A., De, M., Nandy, S.C., Pandit, S.: Variations of largest rectangle recognition amidst a bichro-
matic point set. Discrete Appl. Math. 286, 35–50 (2020)

3. Agarwal, P.K., de Berg, M., Matousek, J., Schwarzkopf, O.: Constructing levels in arrangements and
higher order Voronoi diagrams. SIAM J. Comput. 27(3), 654–667 (1998)

4. Ahlvers, U., Rajagopalan, R., Zlzer, U.: Model-free face detection and head tracking with morphological
hole mapping. In: 2005 13th European Signal Processing Conference, pp. 1–4 (2005)

5. Arampatzis, A., Kreveld, M.V., Reinbacher, I., Jones, C.B., Vaid, S., Clough, P., Joho, H., Sanderson, M.:
Web-based delineation of imprecise regions. Comput. Environ. Urban Syst. 30(4), 436–459 (2006)

6. Asaeedi, S., Didehvar, F., Mohades, A.: α-concave hull, a generalization of convex hull. Theor. Comput.
Sci. 702, 48–59 (2017)

7. Aurenhammer, F.: Improved algorithms for discs and balls using power diagrams. J. Algorithms 9(2),
151–161 (1988)

8. Bae, S.W., Lee, C., Ahn, H.-K., Choi, S., Chwa, K.-Y.: Maintaining extremal points and its applications
to deciding optimal orientations. In: Tokuyama, T. (ed.) Algorithms and Computation, pp. 788–799.
Springer, Berlin (2007)

9. Bae, S.W., Lee, C., Ahn, H.-K., Choi, S., Chwa, K.-Y.: Computing minimum-area rectilinear convex hull
and L-shape. Comput. Geom. 42(9), 903–912 (2009)

10. Batsanov, S.S.: Van der Waals radii of elements. Inorg. Mater. 37, 871–885 (2001)
11. Boyce, J.E., Dobkin, D.P., Drysdale, R.L.S., III., Guibas, L.J.: Finding extremal polygons. SIAM J.

Comput. 14(1), 134–147 (1985)
12. Chaudhuri, A.R., Chaudhuri, B.B., Parui, S.K.: A novel approach to computation of the shape of a dot

pattern and extraction of its perceptual border. Comput. Vis. Image Underst. 68, 257–275 (1997)
13. Da, T.K.F.: 2D Alpha-shape implementation. https://doc.cgal.org/latest/Alpha_shapes_2/index.html
14. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms

and Applications, 2nd edn. Springer, Cham (2000)
15. de Figueiredo, L.H., Paiva, A.: Region reconstruction with the sphere-of-influence diagram. Comput.

Graph. 107, 252–263 (2022)
16. Dey, T.K.,Wang, Y.: Computational Topology forDataAnalysis. CambridgeUniversity Press, Cambridge

(2022)
17. Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient generation of simple polygons for charac-

terizing the shape of a set of points in the plane. Pattern Recogn. 41(10), 3224–3236 (2008)
18. Edelsbrunner, H.: Weighted alpha shapes. Technical report, USA (1992)
19. Edelsbrunner, H.: Shape reconstruction with Delaunay complex. In: Lucchesi, C.L., Moura, A.V. (eds.)

LATIN’98: Theoretical Informatics, pp. 119–132. Springer, Berlin (1998)
20. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans.

Inf. Theory 51, 551–559 (1983)
21. Ertöz, L., Steinbach,M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high

dimensional data. In: Proceedings of the 2003 SIAM International Conference on Data Mining (SDM),
pp. 47–58 (2003)

22. Fekete, S.P., Pulleyblank, W.R.: Area optimization of simple polygons. In: SCG ’93 (1993)
23. Galton, A., Duckham, M.: What is the region occupied by a set of points? In: Raubal, M., Miller, H.J.,

Frank, A.U., Goodchild, M.F. (eds.) Geographic Information Science, pp. 81–98. Springer, Berlin (2006)
24. Ghadai, S., Balu, A., Sarkar, S., Krishnamurthy, A.: Learning localized features in 3D CAD models for

manufacturability analysis of drilled holes. Comput. Aided Geom. Des. 62, 263–275 (2018)
25. Gheibi, A., Davoodi, M., Javad, A., Panahi, S., Aghdam, M., Asgaripour, M., Mohades, A.: Polygonal

shape reconstruction in the plane. IET Comput. Vis. 5, 97–106 (2011)
26. Ghosh, P., Gao, J., Gasparri, A., Krishnamachari, B.: Distributed hole detection algorithms for wireless

sensor networks. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems,
pp. 257–261 (2014)

123

https://doc.cgal.org/latest/Alpha_shapes_2/index.html


358 F. Sheikhi et al.

27. Guler, T., Gross, G.: Detection of island formation and identification of causal factors under multiple line
outages. IEEE Trans. Power Syst. 22(2), 505–513 (2007)

28. Jarvis, R.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett.
2(1), 18–21 (1973)

29. Jayanti, S., Kalyanaraman, Y., Iyer, N., Ramani, K.: Developing an engineering shape benchmark for
CAD models. Comput. Aided Des. 38(9), 939–953 (2006)

30. Krasnoshchekov, D., Polishchuk, V.: Order-k α-hulls and α-shapes. Inf. Process. Lett. 114(1), 76–83
(2014)

31. Lee, D.-T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEETrans. Comput.C–31(6), 478–487
(1982)

32. Liu, Y., Nediak, M.: Planar case of the maximum box and related problems. In: Canadian Conference on
Computational Geometry (CCCG), pp. 14–18 (2003)

33. Marlier, D.: Chi-shape implementation. https://github.com/damienmarlier51/PolygonX
34. Melkemi, M., Djebali, M.: Computing the shape of a planar points set. Pattern Recogn. 33(9), 1423–1436

(2000)
35. Melkemi, M., Djebali, M.: Weighted A-shape: a descriptor of the shape of a point set. Pattern Recogn.

34(6), 1159–1170 (2001)
36. Methirumangalath, S., Kannan, S.S., Parakkat, A.D., Muthuganapathy, R.: EC-shape implementation.

https://github.com/ShyamsTree/HoleDetection
37. Methirumangalath, S., Kannan, S.S., Parakkat, A.D., Muthuganapathy, R.: Hole detection in a planar

point set: an empty disk approach. Comput. Graph. 66, 124–134 (2017)
38. Methirumangalath, S., Parakkat, A.D., Muthuganapathy, R.: A unified approach towards reconstruction

of a planar point set. Comput. Graph. 51, 90–97 (2015)
39. Moreira, A., Santos, M.Y.: Concave hull: a k-nearest neighbours approach for the computation of the

region occupied by a set of points. In: Proceedings of the Second International Conference on Computer
Graphics Theory and Applications (2007)

40. Ohrhallinger, S., Peethambaran, J., Parakkat, A.D., Dey, T.K., Muthuganapathy, R.: 2D points curve
reconstruction survey and benchmark. Comput. Graph. Forum 40(2), 611–632 (2021)

41. Oliveira, E., Furtado, V., Andrade, J., Makse, H.: A worldwide model for boundaries of urban settlements.
R. Soc. Open Sci. 5, 180468 (2018)

42. Parakkat, A.D., Memari, P., Cani, M.-P.: Layered reconstruction of stippling art. In: SIGGRAPH 2019
(Poster Proceedings), Los Angeles, United States (2019). hal-02193269f

43. Peethambaran, J., Muthuganapathy, R.: A non-parametric approach to shape reconstruction from planar
point sets through Delaunay filtering. Comput. Aided Des. 62, 164–175 (2015)

44. Peethambaran, J., Ohrhallinger, S., Parakkat, A.D.: Shape characterization of point sets in 2D. EURO-
GRAPHICS 2022/ S. Hahmann and G. Patow-Tutorial (2022)

45. Richards, F.M.: Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6(1), 151–
176 (1977)

46. Seara, C.: On geometric separability. Ph.D. thesis, Universidad Politécnica De Catalunya (2002)
47. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., USA (1983)
48. Sheikhi, F.,Mohades, A.: Planarmaximum-box problem revisited. Theor. Comput. Sci. 729, 57–67 (2018)
49. Sheikhi, F., Mohades, A.: Maximum separability by L-shapes. In: 2020 25th International Computer

Conference, Computer Society of Iran (CSICC), pp. 1–7 (2020)
50. Sheikhi, F., Mohades, A., de Berg, M., Davoodi, M.: Separating bichromatic point sets by L-shapes.

Comput. Geom. 48(9), 673–687 (2015)
51. Sheikhi, F., Mohades, A., de Berg, M., Mehrabi, A.D.: Separability of imprecise points. Comput. Geom.

61, 24–37 (2017)
52. Thayyil, S.B., Parakkat, A.D., Muthuganapathy, R.: CT-shape implementation. https://github.com/agcl-

mr/Reconstruction-CTShape
53. Thayyil, S.B., Parakkat, A.D., Muthuganapathy, R.: An input-independent single pass algorithm for

reconstruction from dot patterns and boundary samples. Comput. Aided Geom. Des. 80, 101879 (2020)
54. Toussaint, G.: Solving geometric problemswith the rotating calipers. In: Proceedings of IEEEMELECON

’83, pp. A10.02/1–4 (1983)
55. Toussaint, G.T.: A graph-theoretical primal sketch. In: Toussaint, G.T. (ed.) Computational Morphology,

Volume 6 of Machine Intelligence and Pattern Recognition, pp. 229–260. North-Holland, Amsterdam
(1988)

56. Toussaint, G.T.: The sphere of influence graph: theory and applications. Int. J. Inf. Technol. Comput. Sci.
14, 37–42 (2014)

123

https://github.com/damienmarlier51/PolygonX
https://github.com/ShyamsTree/HoleDetection
https://github.com/agcl-mr/Reconstruction-CTShape
https://github.com/agcl-mr/Reconstruction-CTShape


Dot to dot, simple or sophisticated: a survey on shape… 359

57. van Kreveld, M., van Lankveld, T., de Rie, M.: (α, δ)-sleeves for reconstruction of rectilinear building
facets. In: Proceedings of the 7th International 3D GeoInfo Conference, Lecture Notes in Geoinformation
and Cartography, pp. 231–248. Springer, Berlin (2013)

58. van Kreveld, M., van Lankveld, T., Veltkamp, R.: Identifying well-covered minimal bounding rectangles
in 2D point data. In: 25th European Workshop on Computational Geometry, pp. 277–280 (2009)

59. van Lankveld, T., van Kreveld, M., Veltkamp, R.: Identifying rectangles in laser range data for urban
scene reconstruction. Comput. Graph. 35(3), 719–725 (2011)

60. Veltkamp, R.C.: Shape matching: similarity measures and algorithms. In: Proceedings International Con-
ference on Shape Modeling and Applications, pp. 188–197 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Dot to dot, simple or sophisticated: a survey on shape reconstruction algorithms
	Abstract
	1 Introduction
	1.1 Challenges in shape reconstruction

	2 Preliminaries
	3 Hull-based algorithms
	4 Region-based algorithms
	5 Delaunay-based algorithms
	6 Performance evaluation
	6.1 Qualitative and quantitative comparison
	6.2 Execution time in practice

	7 Shape reconstruction app
	8 Conclusion
	Acknowledgements
	References




