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Abstract
Given a regular expression R and a string Q, the regular expression parsing problem is to
determine if Q matches R and if so, determine how it matches, i.e., by a mapping of the
characters of Q to the characters in R. Regular expression parsing makes finding matches of
a regular expression even more useful by allowing us to directly extract subpatterns of the
match, e.g., for extracting IP-addresses from internet traffic analysis or extracting subparts
of genomes from genetic data bases. We present a new general techniques for efficiently
converting a large class of algorithms that determine if a string Q matches regular expression
R into algorithms that can construct a corresponding mapping. As a consequence, we obtain
the first efficient linear space solutions for regular expression parsing.

1 Introduction

A regular expression specifies a set of strings formed by characters combined with concate-
nation, union (|), and Kleene star (*) operators. For instance, (a|(ba))* describes the set
of strings of as and bs, where every b is followed by an a. Regular expressions are a funda-
mental concept in formal language theory and a basic tool in computer science for specifying
search patterns. Regular expression search appears in diverse areas such as internet traffic
analysis [14, 18, 28], data mining [11], data bases [20, 22], computational biology [24], and
human computer interaction [17].

Given a regular expression R and a string Q, the regular expression parsing problem [8,
10, 16, 19, 25, 26] is to determine if Q matches a string in the set of strings described by R
and if so, determine how it matches by computing a corresponding sequence of positions of
characters in R, i.e., the mapping of each character in Q to a character in R corresponding
to the match. For instance, if R = (a|(ba))* and Q = aaba, then Q matches R and
1, 1, 2, 3 is a corresponding parse specifying that Q[1] and Q[2]match the first a in R, Q[3]
match the b in R, and Q[4] match the last a in R. Another typical definition of parsing is
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to compute a parse tree (or a variant thereof) of the derivation of Q on R. Our definition
simplifies our presentation and it is straightforward to derive a parse tree from our parses.
Regular expression parsing makes finding matches of a regular expression even more useful
by allowing us to directly extract subpatterns of the match, e.g., for extracting IP addresses
from internet traffic analysis or extracting subparts of genomes from genetic data bases.

To state the existing bounds, let n and m be the length of the string and the regular
expression, respectively. As a starting point consider the simpler regular expression matching
problem, that is, to determine if Qmatches a string in the set of strings described by R (without
necessarily providing a mapping from characters in Q to characters in R). A classic textbook
algorithm to matching, due to Thompson [27], constructs and simulates a non-deterministic
finite automaton (NFA) in O(nm) time and O(m) space. An immediate approach to solve the
parsing problem is to combine Thompson’s algorithm with backtracking. To do so, we store
all state-sets produced during the NFA simulation and then process these in reverse order
to recover an accepting path in the NFA matching Q. From the path, we then immediately
obtain the corresponding parse of Q since each transition labeled by a character uniquely
corresponds to a character in R. This algorithm uses O(nm) time and space. Hence, we
achieve the same time bound as matching but increase the space by an �(n) factor. We can
improve the time by polylogarithmic factors using faster algorithms for matching [3, 4, 6,
7, 23], but by a recent conditional lower bound [2] we cannot hope to achieve �((nm)1−ε)

time assuming the strong exponential time hypothesis. Other direct approaches to regular
expression parsing [8, 10, 16, 19, 25, 26] similarly achieve �(nm) time and space (ignoring
polylogarithmic factors), leaving a substantial gap between linear space for matching and
�(nm) space for parsing. The goal of this paper is to address this gap.

1.1 Results

We present a new technique to efficiently extend the classic state-set transition algorithms
for matching to also solve parsing in the same time complexity while only using linear space.
Specifically, we obtain the following main result based on Thompson’s algorithm:

Theorem 1 Given a regular expression of length m and a string of length n, we can solve the
regular expression parsing problem in O(nm) time and O(n + m) space.

This is the first bound to significantly improve upon the combination of �(nm) time and
space. Our techniques are sufficiently general to also handle the more recent faster state-set
transition algorithms [3, 4, 23] and we also obtain a similar space improvement for these.

1.2 Techniques

Our overall approach is similar in spirit to the classic divide and conquer algorithm by
Hirschberg [13] for computing a longest common subsequence of two strings in linear space.
Let A be the Thompson NFA (TNFA) for R built according to Thompson’s rules [27] (see
also Fig. 1) with m states, and let Q be the string of length n.

We first decompose A using standard techniques into a pair of nested subTNFAs called the
inner subTNFA and the outer subTNFA. Each have roughly at most 2/3 of the states of A and
overlap in at most 2 boundary states.We then show how to carefully simulate A to decompose
Q into substrings corresponding to subparts of an accepting path in each of the subTNFAs.
The key challenge here is to efficiently handle cyclic dependencies between the subTNFAs.
From this we construct a sequence of subproblems for each of the substrings corresponding
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From regular expression matching to parsing 711

to the inner subTNFAs and a single subproblem for the outer subTNFA.We recursively solve
these to construct a complete accepting path in A. This strategy leads to an O(nm) time and
O(n logm + m) space solution. We show how to tune and organize the recursion to avoid
storing intermediate substrings leading to the linear space solution in Theorem 1. Finally, we
show how to extend our solution to obtain linear space parsing solutions for other state-set
transition algorithms.

1.3 Outline

In Sect. 2, we introduce our the basic definitions and notations for regular expression and
finite automata. In Sect. 3, we show how to efficiently compute a balanced decomposition
of a TNFA. In Sect. 4, we then show how to efficiently decompose a string according to
a TNFA decomposition. We then use our TNFA and string decomposition algorithms in a
our first recursive algorithm for computing accepting paths in Sect. 5 using O(nm) time and
O(n logm + m) space. In Sect. 6, we improve the space to O(n + m) leading to our main
result in Theorem 1. Finally, in Sect. 7, we show how to extend the fast state-set transition
algorithm to regular parsing.

2 Preliminaries

2.1 Strings

A string Q of length n = |Q| is a sequence Q[1] . . . Q[n] of n characters drawn from
an alphabet �. The string Q[i] . . . Q[ j] denoted Q[i, j] is called a substring of Q. The
substrings Q[1, i] and Q[ j, n] are the i th prefix and the j th suffix of Q, respectively. The
string ε is the unique empty string of length zero.

2.2 Regular expressions

First, we briefly review the classical concepts used in the paper. For more details see, e.g.,
Aho et al. [1]. We consider the set of non-empty regular expressions over an alphabet �,
defined recursively as follows. If α ∈ � ∪ {ε}, then α is a regular expression, and if S and
T are regular expressions, then so is the concatenation, (S) · (T ), the union, (S)|(T ), and
the star, (S)∗. The language L(R) generated by R is defined as follows. If α ∈ � ∪ {ε},
then L(α) is the set containing the single string α. If S and T are regular expressions, then
L(S ·T ) = L(S)·L(T ), that is, any string formed by the concatenation of a string in L(S)with
a string in L(T ), L(S)|L(T ) = L(S)∪ L(T ), and L(S∗) = ⋃

i≥0 L(S)i , where L(S)0 = {ε}
and L(S)i = L(S)i−1 · L(S), for i > 0. The parse tree T P (R) of R (not to be confused with
the parse of Q wrt. to R) is the rooted, binary tree representing the hierarchical structure of
R. The leaves of T P (R) are labeled by a character from� or ε and internal nodes are labeled
by either ·, |, or ∗.

2.3 Finite automata

A finite automaton is a tuple A = (V , E, �, θ, φ), where V is a set of nodes called states, E is
a set of directed edges between states called transitions either labeled ε (called ε-transitions)
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712 P. Bille, I. L. Gørtz

(a) (b)

(c)
(d)

Fig. 1 Thompson’s recursive NFA construction. The regular expression α ∈ � ∪ {ε} corresponds to NFA (a).
If S and T are regular expressions, then N (ST ), N (S|T ), and N (S∗) correspond to NFAs (b), (c), and (d),
respectively. In each of these figures, the leftmost node θ and rightmost node φ are the start and the accept
nodes, respectively. For the top recursive calls, these are the start and accept nodes of the overall automaton. In
the recursions indicated, e.g., for N (ST ) in (b), we take the start node of the subautomaton N (S) and identify
with the state immediately to the left of N (S) in (b). Similarly, the accept node of N (S) is identified with the
state immediately to the right of N (S) in (b)

or labeled by a character from � (called character-transitions), θ ∈ V is a start state, and
φ ∈ V is an accepting state1. In short, A is an edge-labeled directed graph with a special
start and accepting node. A is a deterministic finite automaton (DFA) if A does not contain
any ε-transitions, and all outgoing transitions of any state have different labels. Otherwise,
A is a non-deterministic automaton (NFA). When we deal with multiple automatons, we use
a subscript A to indicate information associated with automaton A, e.g., θA is the start state
of automaton A.

Given a string Q and a path P in A we say that Q and P match if the concatenation
of the labels on the transitions in P is Q. Given a state s in A, we define the state-set
transition δA(s, Q) to be the set of states reachable from s through paths matching Q. For a
set of states S we define δA(S, Q) = ⋃

s∈S δA(s, Q). We say that A accepts the string Q if
φA ∈ δA(θA, Q). Otherwise, A rejects q . For an accepting path P in A, we define the parse
of P for A to be the sequence of character transitions in A on P . Given a string Q accepted
by A, a parse of Q is a parse for A of any accepting path matching Q.

We can use a sequence of state-set transitions to test acceptance of a string Q of length
n by computing a sequence of state-sets S0, . . . , Sn , given by S0 = δA(θA, ε) and Si =
δA(Si−1, Q[i]), i = 1, . . . , n. We have that φA ∈ Sn iff A accepts Q. We can extend the
algorithm to also compute the parse of Q for A by processing the state-sets in reverse order
to recover an accepting path and output the character transitions. Note that for matching,
we only need to store the latest two state-sets at any point to compute the final state-set Sn ,
whereas for parsing, we store the full sequence of state-sets.

2.4 Thompson NFA

Given a regular expression R, we can construct an NFA accepting precisely the strings in
L(R) by several classic methods [12, 21, 27]. In particular, Thompson [27] gave the simple
well-known construction shown in Fig. 1. We will call an NFA constructed with these rules a
Thompson NFA (TNFA). A TNFA N (R) for R has at most 2m states, at most 4m transitions,

1 Sometimes NFAs are allowed a set of accepting states, but this is not necessary for our purposes.
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From regular expression matching to parsing 713

Fig. 2 Decomposition of TNFA A into subTNFAs AO and AI . The dotted ε-transition in AO exists since AI
accepts the empty string, and the dotted ε-transition in AI exists since there is a path of ε-transitions from
φAI to θAI

and can be computed in O(m) time. Note that each character in R corresponds to a unique
character transition in N (R) and hence a parse of a string Q for N (R) directly corresponds to
a parse of Q for R. The parse tree of a TNFA N (R) is the parse tree of R. With a breadth-first
search of N (R), we can compute a state-set transition for a single character in O(m) time.
By our above discussion, it follows that we can solve regular expression matching in O(nm)

time and O(m) space, and regular expression parsing in O(nm) time and O(nm) space.

3 Computing TNFA decompositions

In this section, we show how construct a balanced decomposition of TNFAs. Our decomposi-
tion is used for our string decomposition presented in the next section, which in turn is a key
component in our recursive algorithm for regular expression parsing in Sects. 5 and 6. Our
decomposition is based on well-known techniques for TNFAs and similar decompositions
are used in [3, 23].

Given a TNFA A with m > 2 states, we decompose A into an inner subTNFA AI and an
outer subTNFA AO . The inner subTNFA consists of a pair of boundary states θAI and φAI

and all states and transitions that are reachable from θAI without going through φAI . See
Fig. 2 for an illustration. Furthermore, if there is a path of ε-transitions from φAI to θAI in
AO , we add an ε-transition from φAI to θAI in AI (following the rules from Thompson’s
construction). The outer subTNFA is obtained by removing all states and transitions of AI

except θAI and φAI . Between θAI and φAI we add a special transition labeled βAI /∈ �

and if AI accepts the empty string we also add an ε-transition (corresponding to the regular
expression (βAI | ε)). The decomposition has the following properties. Similar results are
proved in [3, 23].

Lemma 1 Let A be any TNFA with m > 2 states. In O(m) time, we can decompose A into
inner and outer subTNFAs AO and AI such that

(i) AO and AI have at most
2
3m + 8 states each, and
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714 P. Bille, I. L. Gørtz

(ii) any path from AO to AI crosses θAI and any path from AI to AO crosses φAI .

Proof Consider the parse tree T P of A with v nodes. Since T P is a binary tree with more
than one node we can find a separator edge e in linear time whose removal splits T P into
subtrees T P

I and T P
O that each have at most 2

3v + 1 nodes [15]. Here, T P
O is the subtree

containing the root of T P . The subTNFA AI is the TNFA induced by T P
I , possibly with a

new union node as root with one child being the root of T P
I and the other a leaf labeled ε.

The subTNFA T P
O is the TNFA induced by the tree T P

O , where the separator edge is replaced
by an edge to either a leaf labeled βAI or to a union-node with children labeled βAI and ε in
the case where AI accepts the empty string. Thus, each subTNFA are induced by a tree with
at most 2

3v + 4 nodes. Since each node correspond to two states, each subTNFA has at most
2
3m + 8 states. ��

4 Computing string decompositions

Let Q be a string of lengthn accepted by aTNFA Awithm states.Consider a decomposition of
A into subTNFA AO and AI according toLemma1. In this section,we showhow to efficiently
decompose Q into substrings corresponding to subpaths matched in each subTNFA using
O(nm) time and O(n + m) space. The algorithm will be a key component in our recursive
algorithms for computing accepting paths in the next sections.

4.1 Path and string decompositions

We first define string decompositions and discuss the main challenges for computing them.
Given an accepting path P in A, we define the path decomposition of P wrt. AI to be the
partition of P into a sequence of subpaths P = p1, p1, p2, p2, . . . , p�, p�, p�+1, where the
outer subpaths, p1, . . . , p�+1, are subpaths in AO and the inner subpaths, p1, . . . , p� are the
subpaths in AI . We require that none of the subpaths matches the empty string. Note that it is
always possible to partition P into a sequence of alternating subpaths not matching the empty
string, since when we construct AI and AO , we add an ε-transition in AO if AI accepts the
empty string, and an ε-transition from φAI to θAI in AI if there is a path of ε-transitions from
φAI to θAI in AO . The string decomposition induced by P is the sequence of (non-empty)
substrings Q = q1, q1, q2, q2, . . . , q�, q�, q�+1 formed by concatenating the labels of the
corresponding subpath in A. A sequence of substrings is a substring decomposition wrt. to
AI if there exists an accepting path that induces it. Note that there may be many accepting
paths, but each accepting path induces exactly one string decomposition.

As mentioned above, our goal is to compute a string decomposition wrt. AI in O(nm)

time and O(n + m) space, where n is the length of Q and m is the number of states in A.
An immediate idea would be to process Q from left to right using state-set transitions and
“collapse” the state set to a boundary state b of AI whenever the state set contains b and
there is a path from b to φA matching the rest of Q. Since AO and AI only interact at the
boundary states, this effectively corresponds to alternating the simulation of A between AO

and AI . However, because of potential cyclic dependencies from paths of ε-transitions from
φAI to θAI in AO and θAI to φAI in AI , we cannot immediately determine which subTNFA
we should proceed in and hence we cannot correctly compute the string decomposition. For
instance, consider the string Q = aaacdaabaacdacdaabab from Fig. 3. After processing
the first two characters (aa) both θAI and φAI are in the state set, and there is a path from
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From regular expression matching to parsing 715

both these states to φA matching the rest of Q. The same is true after processing the first six
characters (aaacda). In the first case, the substring consisting of the next three characters
(acd) only matches a path in AI , whereas in the second case the substring consisting of the
next two characters (ab) only matches a path in AO .

4.2 Computing string decompositions

Wenowshowhow to compute a string decomposition inO(nm) time andO(n+m) space. The
key challenge is to efficiently overcome the above mentioned issue of cyclic dependencies.
We show how to achieve this by a two-step approach that first decomposes the string into
substrings and then labels the substrings greedily to find a correct string decomposition.

We need the following new definitions. Let i be a position in Q and let s be a state in A.
We say that (i, s) is a valid pair if there is a path from θA to s matching Q[1, i] and from s
to φA matching Q[i + 1, n]. For any set of states X in A, we say that (i, X) is a valid pair if
each pair (i, x), x ∈ X , is a valid pair. An accepting path P in A intersects a valid pair (i, X)

if some state x ∈ X is on the path, the subpath of P from θA to x matches Q[1, i], and the
subpath of P from x to φA matches Q[i + 1, n].

Our algorithm consist of the following steps. In step 1, we process Q from left to right and
right to left to compute and store thematch sets, consisting of all valid pairs for the boundary
states θAI and φAI . We then use the match sets in step 2 to process Q from left to right to
build a sequence of valid pairs for the boundary states that all intersect a single accepting
path P in A matching Q, and that has the property that all positions where the accepting
path P contains θAI or φAI correspond to a valid pair in the sequence. Finally, in step 3, we
construct the string decomposition using a greedy labeling of the sequence of valid pairs.
See Fig. 3 for an example of the computation in each step.

Step 1: Computing Match Sets
First, compute the match sets given by

Match(θAI ) = {i | (i, θAI ) is a valid pair}
Match(φAI ) = {i | (i, φAI ) is a valid pair}

Thus, Match(θAI ) and Match(φAI ) are the positions in Q that correspond to a valid pair
for the boundary states θAI and φAI , respectively. To compute these, we first compute the
prefix match sets, Prefix(s), and suffix match sets, Suffix(s), for s ∈ {θAI , φAI }. A position i
is in Prefix(s) if there is a path from θA to s accepting the prefix Q[1, i], and in Suffix(s) if
there is a path from s to φA accepting the suffix Q[i + 1, n]. To compute the prefix match
sets, we perform state-set transitions on Q and A and whenever the current state-set contains
either θAI or φAI , we add the corresponding position to Prefix(s). We compute the suffix
match sets in the same way, but now we perform the state-set transitions on Q from right to
left and A with the direction of all transitions reversed. Each step of the state-set transition
takes O(m) time and hence we use O(nm) time in total.

Finally,we compute thematch setsMatch(s), for s ∈ {θAI , φAI }, by taking the intersection
of Prefix(s) and Suffix(s). In total, we use O(mn) time and O(n +m) space to compute and
store the match sets.

Step 2: Computing Valid Pairs
We now compute a sequence of valid pairs

V = (i1, X1), (i2, X2), . . . , (ik, Xk)
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716 P. Bille, I. L. Gørtz

Fig. 3 A string decomposition of the string Q = aaacdaabaacdacdaabab wrt. AI in Fig. 2 and the corre-
sponding suffix/prefix match sets. The dark gray blocks in the prefix, suffix and match sets are the positions
contained in the sets. The blocks in the partition of the string are labeledO and I for outer and inner, respec-
tively. The gray blocks in the partition are the substrings that can be parsed by both the inner and outer
automaton. According to our procedure these blocks are labeled inner.

such that 0 ≤ i1 < · · · < ik ≤ n and X j ⊆ {θAI , φAI } and with the property that the states of
all pairs intersect a single accepting path P in A and at all places where P is equal to either
θAI or φAI correspond to a valid pair in V .

To compute the sequence, we run a slightly modified state-set transition algorithm: For
i = 0, 1, . . . , n, we set Si = δA(Si−1, Q[i]) (for i = 0 set S0 := δA(θA, ε)) and compute
the set

X := {x | x ∈ {θAI , φAI } and i ∈ Match(x)} ∩ Si .

Thus, X is the set of boundary nodes in Si that corresponds to a valid pair computed in Step 1.
If X �= ∅, we add (i, X) to the sequence V and set Si := X .

We argue that this produces a sequence V of valid pairs with the required properties. First
note that by definition of X , we inductively produce state-set S0, . . . , Sn such that Si contains
the set of states reachable from θA that match Q[1, i] and the paths used to reach Si intersect
the states of the valid pairs produced up to this point. Furthermore, we include all positions
in V where Si contains θAI or φAI . It follows that V satisfies the properties.

Each of modified state-set transition uses O(m) time and hence we use O(nm) time in
total. The sequence V uses O(n) space. In addition to this, we store the match sets and a
constant number of active state-sets using O(n + m) space.

Step 3: Computing the String Decomposition
We now convert the sequence V = (i1, X1), (i2, X2), . . . , (ik, Xk) into a string decom-
position. First, we construct the partition q0, . . . , qk+1 of Q such that q0 = Q[1, i1],
q j = Q[i j + 1, i j+1], and qk+1 = Q[ik + 1, n]. Note that q0 and qk+1 may be the empty
string. Next, we convert this partition into a string decomposition by first labeling each sub-
string as inner or outer and then greedily merging these substrings to obtain an alternating
sequence forming a string decomposition. We discuss these steps in detail below.
LabelingWe label the substrings as follows. First label q0 and qk+1 with outer. For the rest of
the substrings, if Xi = {θAI } and Xi+1 = {φAI } then label qi with inner, and if Xi = {φAI }
and Xi+1 = {θAI } then label qi with outer. If either Xi or Xi+1 contain more than one
boundary node, then we use standard state-set transitions in AI and AO to determine if AI

accepts qi or if there is a path in AO from φAI to θAI that matches qi . If a substring is accepted
by AI , then it can be an inner substring and if there is a path in AO from φAI to θAI that
matches qi then it can be an outer substring. If a substring can only be either an inner or an
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Algorithm 1: Labeling
Input: A sequence V of valid pairs (i1, X1), . . . (ik , Vk ) and the corresponding partition q0, . . . , qk+1

of Q.
Output: A labeling of the partition

1 The (possible empty) substrings q0 and qk+1 are labeled outer.
2 for i = 1 to k do
3 if Xi = {θAI } and Xi+1 = {φAI } then /* Case 1 */
4 label qi inner.
5 else if Xi = {φAI } and Xi+1 = {θAI } then /* Case 2 */
6 label qi outer.
7 else if Xi or Xi+1 contains more than one boundary node then /* Case 3 */
8 Use standard state-set transitions in AI and AO to determine if AI accepts qi or if there is a

path in AO from φAI to θAI that matches qi .
9 if qi is only accepted by AI then /* Subcase 3a */

10 label qi inner
11 else if qi is only accepted by AO then /* Subcase 3b */
12 label qi with outer
13 else /* qi is accepted by both AI and AO */
14 There are two cases.
15 if there is an ε-path from φAI to θAI then /* Subcase 3c */
16 label qi inner.
17 else label qi outer. /* Subcase 3d */
18 end
19 end
20 end

outer substring then it is labeled with inner or outer, respectively. Let qi be a substring that
can be both an inner or an outer substring. We divide this into two cases. If there is an ε-path
from φAI to θAI then label all such qi with inner. Otherwise label all such qi with outer. See
also Algorithm 1.

For correctness first note that q0 and qk+1 are always (possibly empty) outer substrings.
The cases where both |Xi | = |Xi+1| (case 1 and 2) are correct by the correctness of the
sequence of valid pairs V . Due to cyclic dependencies, we may have that Xi and Xi+1

contain more than one boundary node. This can happen if there is an ε-path from θAI to φAI

and/or there is an ε-path from φAI to θAI . If a substring only is accepted by one of AI (case
3a) or AO (case 3b), then it follows from the correctness of V that the labeling is correct.
It remains to argue that the labeling in the case where qi is accepted by both AI and AO is
correct. To see why the labeling in this case is consistent with a string decomposition of the
accepting path consider case 3c. Here, it is safe to label qi with inner, since if we are in φAI

after having read qi−1, we can just follow the ε-path from φAI to θAI and then start reading
qi from here. The argument for case 3d is similar.

Except for the state-set transitions in case 3, all cases takes constant time. The total time
of all the state-set transitions is O(nm). The space of V and the partition together with the
labeling uses O(n) space.
String decomposition Now, every substring has a label that is either inner or outer. We then
merge adjacent substrings that have the same label. This produces an alternating sequence
of inner and outer substrings, which is the final string decomposition. Such an alternating
subsequence must always exist since each pair in V intersects an accepting path.

In summary, we have the following result.

Lemma 2 Given string Q of length n, and TNFA A with m states decomposed into AO and
AI , we can compute a string decomposition wrt. AI in O(nm) time and O(n + m) space.
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718 P. Bille, I. L. Gørtz

5 Computing accepting paths

Let Q be a string of length n accepted by a TNFA A with m states. In this section, we first
show how to compute an accepting path for Q in A in O(nm) time and O(n logm+m) space.
In the next section, we then improve the space to O(n+m). As discussed earlier, an accepting
path corresponds to a parsing and hence this results immediately implies Theorem 1.

Since an accepting path may have length �(nm) (there may be �(m)-many ε-transitions
between each character transition), we cannot afford to explicitly compute the path in our
later o(nm) time algorithms. Instead, our algorithm will compute compressed paths of size
O(n) obtained by deleting all ε-transitions from a path. Note that the compressed path stores
precisely the information needed to solve the parsing problem.

To compute the compressed path we define a recursive algorithm Path(A, Q) that takes
a TNFA A and a string Q and returns a compressed accepting path in A matching Q as
follows. If n < γn or m < γm , for constants γn, γm > 0 that we will fix later (in the analysis
in Sect. 5.1), we simply run the naive algorithm that stores all state-sets during state-set
simulation from left-to-right in Q. Since one of n or m is constant this uses O(nm) =
O(n + m) time and space. Otherwise, we proceed according to the following steps.

Step 1: Decompose
We compute a decomposition of A into inner and outer subTNFAs AI and AO according to
Lemma1 and compute a corresponding string decompositionQ = q1, q1, q2, q2, . . . , q�, q�,

q�+1 for Q.

Step 2: Recurse
We build a single substring corresponding to all the subpaths in AO and � substrings for
AI (one for each subpath in AI ) and recursively compute the compressed paths. To do so,
construct q = q1 · βAI · q2 · βAI · · · βAI · q�+1. Recall that βAI is the label of the special
transition we added between θAI and φAI in AO . Then, compute the compressed paths

p = Path(AO , q)

pi = Path(AI , qi ) 1 ≤ i ≤ �

Step 3: Combine
Finally, extract the subpaths p1, p2, . . . , p�+1 from p corresponding to the substrings
q1, q2, . . . , q�+1 and return the combined compressed path

P = p1 · p1 · p2 · p2 · p3 · · · p� · p�+1

Inductively, it directly follows that the returned compressed path is a compressed accepting
path for Q in A.

5.1 Time analysis

Wenow show that the total time T (n,m) of the algorithm is O(nm). If n < γn orm < γm , we
run the backtracking algorithm using O(nm) = O(n+m) time and space. If n ≥ γn andm ≥
γm , we implement the recursive step of the algorithm using O(nm) time. Let ni be the length
of the inner string qi in the string decomposition and let n0 = ∑�+1

i=1 |q̄i |. Thus, n = ∑�+1
i=1 ni

and |q̄| = n0 +�. In step 2, the recursive call to compute p takes O(T (n0 +�, 2
3m+8)) time

and the recursive calls to compute p1, . . . , p� take
∑�

i=1 T (ni ,
2
3m+8) time. The remaining
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steps of the algorithm all take O(nm) time. Hence, we have the following recurrence for
T (n,m).

T (n,m) =

⎧
⎪⎨

⎪⎩

∑�
i=1 T (ni ,

2
3m + 8)

+ T (n0 + �, 2
3m + 8) + O(mn) m ≥ γm and n ≥ γn

O(m + n) m < γm or n < γn

We show that there exists constants γn = 2 and γm = 25 such that T (n,m) = O(nm).
For simplicity, we have not attempted to minimize the constants. We show that T (n,m) ≤
acmn−(a−1)cm+c for constants a ≥ 1, c ≥ 1 using induction. First, consider the base case
(m < γm or n < γn). Since mn + 1 ≥ m + n and T (n,m) = c(m + n), we have T (n,m) ≤
c(mn + 1) = cmn − cm + c(m + 1) and it follows that T (n,m) ≤ acmn − (a − 1)cm + c.
For the induction step (m ≥ γm and n ≥ γn), we have

T (n,m) =
�∑

i=1

T

(

ni ,
2

3
m + 8

)

+ T

(

n0 + �,
2

3
m + 8

)

+ O(mn)

≤
�∑

i=1

(

acni (
2

3
m + 8) − (a − 1)c(

2

3
m + 8) + c

)

+
(

ac(n0 + �)(
2

3
m + 8) − (a − 1)c

(
2

3
m + 8

)

+ c

)

+ cmn

= ac

(
2

3
m + 8

) �∑

i=1

ni + ac(n0 + �)

(
2

3
m + 8

)

−(� + 1)(a − 1)c

(
2

3
m + 8

)

+ (� + 1)c + cmn

≤ ac

(
2

3
m + 8

25
m

) �∑

i=0

ni + ac�

(
2

3
m + 8

25
m

)

−(� + 1)(a − 1)c

(
2

3
m + 8

25
m

)

+ (� + 1)c + cmn (1)

≤ ac
74

75
mn + ac�

74

75
m − ac(� + 1)

74

75
m

+(� + 1)c
74

75
m + (� + 1)c + cmn (2)

≤ ac
74

75
mn − ac

74

75
m + (n/2 + 2)c

77

75
m + cmn (3)

≤ acmn − acm + c(m + 1) (4)

Here, (1) and (2) follows since m ≥ 25. Inequality (3) follows from � ≤ (n + 1)/2, which
is true since the string decomposition produced by the algorithm consists of alternating
sequence of at least 2� − 1 inner and outer non-empty substrings. Inequality (4) holds for
sufficiently large a. The size of the constant a depends on the choice of γn . Choosing the
constant a boils down to choosing a such that the following inequality holds:

(a − 227/2)n ≥ 144 + a,

e.g., for γn = 2 inequality (4) holds for a ≥ 371 and for γn = 10 the inequality holds for
a ≥ 140 .
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720 P. Bille, I. L. Gørtz

Hence, the total running time is O(nm).

5.2 Space analysis

Next, we consider the space complexity. First, note that the total space for storing R and Q
is O(n + m). To analyze the space during the recursive calls of the algorithm, consider the
recursion tree Trec for Path(A, Q). For a node v in Trec, we define Qv of length nv to be the
string and Av with mv states to be the TNFA at v.

Consider a path ρ = v1, . . . , v j of nodes in Trec from the root to leaf v j corresponding to
a sequence of nested recursive calls of the algorithm. If we explicitly store the subTNFAs,
the string decompositions, and the compressed paths on ρ, we use O(nvi + mvi ) space at
each node vi , 1 ≤ i ≤ j . By Lemma 1(i), the sum of the sizes of the subTNFAs on ρ

forms a geometrically decreasing sequence and hence the total space for the subTNFAs is
∑ j

i=1 mvi = O(m). Each string and compressed path at each node vi , 1 ≤ i ≤ j , have
length at most O(n). By Lemma 1(i), the depth of Trec is O(logm) and hence the total space
for storing the string and compressed path on ρ. In total, we use O(n logm + m) space. In
combination with the time analysis from the previous section, we have the following result.

Theorem 2 Given a TNFA with m states and a string of length n, we can compute a com-
pressed accepting path for Q in A in O(nm) time and O(n logm + m) space.

Unfortunately, each string (and hence compressed path) on a root-to-leaf path in Trec may
have length �(n) and hence we may need �(n logm) space to store these in our algorithm.
In the next section, we show how to improve this to O(n+m) space by refining the recursion.

6 Squeezing into linear space

We now show how to improve the space to O(n + m) in Theorem 2. To do so, we show
how to carefully implement the recursion to only store the strings for a selected subset of the
nodes along any root to leaf path in Trec that in total take no more than O(n) space.

First, consider a node v in Trec and the corresponding string Qv and TNFA Av . Define
χ
Q
v to be the function that maps each character position in Qv (ignoring βAI transitions) to

the unique corresponding character in Q and χ A
v to be the function that maps each character

transition (non-ε transition) in Av to the unique character transition in A. Note that these
are well-defined by the construction of subproblems in the algorithm. At a node v, we
represent χ

Q
v by storing for each character in Qv a pointer to the corresponding character

in Q. Similarly, we represent χ A
v by storing for each character transition in Av a pointer to

the corresponding character transition in A. This uses O(nv + mv) additional space. It is
straightforward to compute these mappings during the algorithm directly from the string and
TNFA decomposition in the same time. With the mappings we can now output transitions
on the compressed path as pairs of position in Q and transitions in A immediately as they
are computed in a leaf of Trec. Thus, when we have traversed a full subtree at a node we can
free the space for that node since we do not have to wait to return to the root to combine the
pieces of the subpath with other subpaths.

We combine the mappings with an ordering of the recursion according to a heavy-path
decomposition of Trec. Let v be an internal node in Trec. The string length of v is nv . We
define the heavy child of v to be a child of v of maximum string length among the children
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of v (ties are broken arbitrarily). The remaining children are light children of v. We have the
following key property of light children.

Lemma 3 For any node v with light child u in Trec, we have that nu ≤ 3
4nv + O(1).

Proof Let v be a node in Trec with � + 1 children. The total string length of the children
of v is nv + � and a light child of v can have string length at most (nv + �)/2. Since the �

inner strings are disjoint non-empty substrings of Q separated by at least one character (the
non-empty outer substrings), we have that � ≤ (nv + 1)/2. Hence, a light child u can have
string length at most nu ≤ nv+�

2 < 3
4nv + 1. ��

We order the recursive calls at each node v as follows. First, we recursively visit all the
light children of v and upon completing each recursive call, we free the space for that node.
Note that the mappings allow us to do this. We then construct the subproblem for the heavy
child of v, free the space for v, and continue the recursion at the heavy child.

To analyze the space of the modified algorithm, consider a path a path v1, . . . , v j of nodes
in Trec from the root to a leaf v j . We now have that only nodes vi , 1 ≤ i < j will explicitly
store a string if vi+1 is a light child of vi . By Lemma 3, the sum of these lengths form a
geometrically decreasing sequence and hence the total space is now O(n). Our modified
algorithm does not change the asymptotic time complexity. Hence, we improve the space of
Theorem 2 to linear. In summary, we have the following result.

Theorem 3 Given a TNFA with m states and a string of length n, we can compute a com-
pressed accepting path for Q in A in O(nm) time and O(n + m) space.

As discussed earlier, we can compute a parse directly from the compressed accepted path in
O(n) time. Hence, Theorem 3 directly implies our main result in Theorem 1.

7 Speeding up the algorithm

We now show how to adapt the algorithm to use the faster state-set simulation algorithms
such as Myers’ algorithm [23] and later variants [3, 4] that improve the O(m) bound for a
single state-set transition. These results and ours all work on a unit-cost word RAM model
of computation with w-bit words and a standard instruction set including addition, bitwise
Boolean operations, shifts, and multiplication. We can store a pointer to any position in the
input and hence w ≥ log(n + m). For simplicity, we will show how to adapt the tabulation-
based algorithm of Bille and Farach-Colton [4].

7.1 Fast matching

Let A be a TNFAwithm states and let Q be a string of length n. Assume first that the alphabet
is constant.We briefly describe the main features of the algorithm by Bille and Farach-Colton
[4] that solves the matching problem in O(nm/ log n + n + m) time and O(nε + m) space,
for any constant ε > 0. In the next section, we show how to adapt the algorithm to compute
an accepting path.

Given a parameter t < w, we will construct a global table of size 2ct < 2w , for a constant
c, to speed up the state-set transition. We decompose A into a tree MS of O(
m/t�) micro
TNFAs, each with at most t states. For each M ∈ MS, each child C is represented by its
start and accepting state and a pseudo-transition connecting these. By similar arguments as
in Lemma 1, we can always construct such a decomposition.
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We represent each micro-TNFA M ∈ MS uniquely by its parse tree using O(t) bits. Since
M has at most t states, we can represent the state-set for M , called the local state-set and
denoted SM , using t bits. Hence, we can make a universal table of size 2O(t) that for every
possible micro-TNFA M of size≤ t , local state-set SM , and character α ∈ � ∪{ε} computes
the state-set transition δM (SM , α) in constant time.

We use the tabulation to efficiently implement a global state-set transition on A as follows.
We represent the state-set for A as the union of the local state-sets in MS. Note that parents
and children in MS share some local states, and these states will be copied in the local
state-sets.

To implement a state-set transition on A for a character α, we first traverse all transitions
labeled α in each micro-TNFA from the current state-set. We then follow paths of ε transition
in two depth-first left-to-right traversal ofMS. At eachmicro TNFAM , we compute all states
reachable via ε-transitions and propagate the shared states among parents and children in
MS. Since any cycle free path in a TNFA contains at most one back transition (see [23,
Lemma 1]) it follows that two such traversals suffices to to correctly compute all states in A
reachable via ε-transitions.

With the universal table, we process each micro TNFA in constant time, leading to an
algorithm using O(|MS|/t + n + m) = O(nm/t + n + m) time and O(2t + m) space.
Setting t = ε log n produces the stated result. Note that each state-set uses O(
m/t�) space.
To handle general alphabets, we store dictionaries for each micro TNFA with bit masks
corresponding to characters appearing in the TNFA and combine these with an additional
masking step in state-set transition. This leads to a general solution with the same time and
space bounds as above.2

7.2 Fast parsing

We now show how to modify our algorithm from Sec. 5 to take advantage of the fast state-set
transition algorithm. Let t < w be the desired speed up as above. We have the following two
cases.

If n ≥ t and m ≥ t , we implement the recursive step of the algorithm but replace all
state-set transitions, that is, when we compute the match sets and valid pairs, by the fast
state-set transition algorithm. To compute the suffix match sets, we need to compute fast
state-set transitions on A with the direction of all transitions reversed. To do so, we make
a new universal table of size 2O(t) for the micro-TNFAs with the direction of transitions
reversed. We traverse the tree of micro-TNFAs with two depth traversals as before except
that we now traverse children in right to left order to correctly compute all reachable states.
It follows that this uses O(nm/t) time.

Otherwise (n < t or m < t), we use backtracking to compute the accepting path as
follows. First, we process Q from left-to-right using fast state-set transitions to compute the
sets S0, . . . , Sn of states reachable via paths from θA for each prefix of Q. We store each
of these state-sets. This uses O(nm/t + n + m) = O(n + m) time and space. Then, we
process Q from right-to-left to recover a compressed accepting path in A. Starting from φA

we repeatedly do a fast state-set transition Awith the direction of transition reversed, compute
the intersection of the resulting state-set with the corresponding state-set from the first step,
and update the state-set to a state in the intersection.We can compute the intersection of state-

2 Note that the time bound in the original paper has an additional m logm term [4]. Using atomic heaps [9] to
represent dictionaries for micro-TNFAs, this term is straightforward to improve to O(m). See also Bille and
Thorup [6, Appendix A].
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sets and the update in O(m/t) time using standard bit wise operations. We do the state-set
transitions on the TNFA with directions of transitions reversed as above. In total, this uses
O(nm/t + n + m) = O(n + m) time.

In summary, we have the following recurrence for the time T (n,m).

T (n,m) =
{∑�

i=0 T (ni ,
2
3m + 8) + T (n0 + �, 2

3m + 8) + O
( nm

t

)
n ≥ t and m ≥ t

O (n + m) m < t or n < t

It follows as in Sect. 5.1 that T (n,m) = O(nm/t + n + m), for 25 ≤ t < w. The space
remains linear as before. Plugging in t = ε log n and including the preprocessing time and
space for the universal tables, we have the following logarithmic improvement of Theorem 1:

Theorem 4 Given a regular expression of length m, a string of length n, we can solve the
regular expression parsing problem in O(nm/ log n + n + m) time and O(n + m) space.

Other fast state-set transition algorithms [3, 23] are straightforward to adapt using the
above framework. The key requirement (satisfied by the existing solution) is that the algo-
rithms need to efficiently support state-set transitions on the TNFA with the directions of the
transitions reversed and intersection between two state-sets.

An algorithm that does not appear toworkwithin the above framework is theO(
nm log log n
log3/2 n

)

matching algorithm by Bille and Thorup [6]. This algorithm does not produce state-sets at
each character in the string, but instead maintains specialized information to derive state-sets
every

√
log n characters, which we do not see how to maintain in our parsing framework.

8 Open problems

Wehave presented a general technique to efficiently convert a large class of regular expression
matching algorithms into regular expression parsing algorithms. We conclude with two open
problems:

– To be applicable, our result requires that the regular expression matching algorithm is
a state-set transition algorithm. A challenging open problem is whether it is possible to
obtain a reduction that works for any regular expression matching algorithm.

– In some applications, a specific parsing is required, e.g., matching subexpression with
the longest or shortest matching strategy, or we want to enumerate all possible parsing.
We wonder if it is possible to adapt our reduction to find such parsings.
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