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Abstract
Algorithms and protocols with time dependent behavior are often specified formally using
timed automata. For practical real-time systems, besides real-valued clock variables, these
specifications typically contain discrete data variables with nontrivial data flow. In this paper,
we propose a configurable lazy abstraction framework for the location reachability problem
of timed automata that potentially contain discrete variables.Moreover, based on our previous
work, we uniformly formalize in our framework several abstraction refinement strategies for
both clock and discrete variables that can be freely combined, resulting in many distinct
algorithm configurations. Besides the proposed refinement strategies, the configurability of
the framework allows the integration of existing efficient lazy abstraction algorithms for clock
variables based on LU-bounds. We demonstrate the applicability of the framework and the
proposed refinement strategies by an empirical evaluation on a wide range of timed automata
models, including ones that contain discrete variables or diagonal constraints.

1 Introduction

Timed automata [1] is a widely used formalism for the modeling and verification of algo-
rithms and protocols with time-dependent behavior. In timed automata models, erroneous or
unsafe behavior (that is to be avoided during operation) is often modeled by error locations.
The location reachability problem deals with the question whether a given error location is
reachable from an initial state along the transitions of the automaton, or network of automata.

As timed automata contain real-valued clock variables, to ensure better performance and
termination, model checkers for timed automata apply abstraction over clock variables. The
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standard solution involves performing a forward exploration in the zone abstract domain [15],
combined with extrapolation [4] parametrized by bounds appearing in guards in the model,
extracted by static analysis [3]. Other zone-based methods propagate bounds lazily for all
transitions [20] or along an infeasible path [22], and perform efficient inclusion checking
with respect to a non-convex abstraction induced by the bounds [21]. Alternatively, some
methods perform lazy abstraction directly over the zone abstract domain [30,33]. However,
in the context of timed automata, methods rarely address the problem of abstraction for
discrete data variables that often appear in specifications for practical real-time systems, or
do so by applying a fully SMT (satisfiability modulo theories) [2] based approach, relying
on the efficiency of underlying decision procedures for the abstraction of both continuous
and discrete variables.

In our work, we address the location reachability problem of timed automata with discrete
variables. Overall, we propose a formal algorithmic framework that enables the uniform
formalization of several abstract domains and refinement strategies for both clock and discrete
variables. The main elements are a generic algorithm for lazy reachability checking and an
abstract reachability tree as its central data structure. Second, we present the formalization
and integration of several novel strategies in this framework, especially based on our work
on lazy interpolation over zones [30], and on the application of interpolation to lazily control
the visibility of discrete variables in timed automata models [31]. The main advantage of
the framework is that, based on the notion of the direct product abstract domain, it allows
the seamless combination of various lazy abstraction methods, resulting in many distinct
algorithm configurations that together admit efficient verification of a wide range of timed
automata models. This algorithmic framework allowed a straightforward implementation of
these strategies in our open source model checking framework Theta [29], this way enabling
the practical evaluation of the proposed algorithm configurations. The configurability of this
framework also allowed the integration of existing efficient lazy abstraction algorithms for
clock variables based on LU-bounds [22], thus admitting the combination and comparison
of our methods with the state-of-the-art.

We evaluated the algorithmconfigurations that our framework currently supports on awide
range of timed automata models, including ones that contain discrete variables or diagonal
constraints. Our results show that our framework offers algorithm configurations that are
competitive in terms of performance with the state-of-the-art.

1.1 Comparison to related work

Lazy abstraction [19], a form of counterexample-guided abstraction refinement [14], is an
approach widely used for reachability checking, and in particular for model checking soft-
ware. It consists of building an abstract reachability tree on-the fly, representing an abstraction
of the system, and refining a part of the tree in case a spurious counterexample is found. For
timed automata, a lazy abstraction approach based on non-convex LU-abstraction [4] and
on-the-fly propagation of bounds has been proposed [22]. A significant difference of this
algorithm compared to usual lazy abstraction algorithms is that it builds an abstract reach-
ability tree that preserves exact reachability information (a so-called adaptive simulation
graph or ASG). As a consequence it is able to apply refinement as soon as the abstraction
admits a transition that is disabled in the concrete system. Similar abstraction techniques
based on building an ASG include difference bound constraint abstraction [33], the zone
interpolation-based technique of [30], and the lazy abstraction method for timed automata
with discrete variables proposed in [31]. In our work, we build on the same approach, but with
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abstracting over the specifics of any given abstract domain, thus admitting configurability
of the abstraction refinement strategy.

Symbolic handling of integer variables for timed automata is often supported by
unbounded fully symbolic SMT-based approaches. Symbolic backward search techniques
like [12,27] are based on the computation and satisfiability checking of pre-images. In [23],
reachability checking for timed automata is addressed by solving Horn clauses. In the ic3-
based [11] technique of [25], the problem of discrete variables is not addressed directly,
but the possibility of generalization over discrete variables is (to some extent) inherent in
the technique. In [24], also based on ic3, generalization of counterexamples to induction is
addressed for both discrete and clock variables by zone-based pre-image computation. The
abstraction methods proposed in our work are completely theory agnostic, and do not rely
on an SMT-solver.

In [16], an abstraction refinement algorithm is proposed for timed automata that handles
clock and discrete variables in a uniform way. There, given a set of visible variables, an
abstracted timed automaton is derived from the original by removing all assignments to
abstracted variables, and by replacing all constraints by the strongest constraint that is implied
and that does not contain abstracted variables. In case the model checker finds an abstract
counterexample, a linear test automaton is constructed for the path, which is then composed
with the original system to check whether the counterexample is spurious. If the final location
of the test automaton is unreachable, a set of relevant variables is extracted from the disabled
transition that will be included in the next iteration of the abstraction refinement loop. In our
work, we use a similar approach, but instead of building abstractions globally on the system
level and then calling to a model checker for both model checking and counterexample
analysis, we use a more integrated, lazy abstraction method, where the abstraction is built
on-the-fly, and refinement is performed locally in the state space where more precision is
necessary.

Interpolation for variable assignments was first described in [7]. There, the interpolant
is computed for a prefix and a suffix of a constraint sequence, and an inductive sequence
of interpolants is computed by propagating interpolants forward using the abstract post-
image operator. In our work, we define interpolation for a variable assignment and a formula,
and compute inductive sequences of interpolants by propagating interpolants both forward
and backward, using post-image and weakest precondition computation, respectively. In our
context, this enables us to consider a suffix of an infeasible path, instead of the whole path,
for computing inductive sequences of interpolants.

Timed automata with diagonal constraints are exponentially more concise than diagonal-
free timed automata [9]. In [6], a method has been proposed that eliminates diagonal
constraints occurring in timed automata specifications, resulting in an (in general) exponential
blowup in the size of the automaton. An extrapolation method has been proposed in [5] that
handles diagonal constraints on-the-fly. A refinement-based approach has been described
in [10] that does not remove all diagonal constraints systematically. Instead, it performs
forward model checking using the standard extrapolation operator used for diagonal-free
timed automata, which might admit false negatives. In case a counterexample is found, it is
analyzed for feasibility. If the counterexample is spurious, a set of diagonal constraints is
selected and eliminated from the model, resulting in a new model, which is then fed back to
the model checker. An implementation of the algorithm is described in [28]. In [18], the LU-
abstraction based simulation relation of [4] is extended to models with diagonal constraints.
The corresponding simulation test, which generalizes the inclusion test defined in [21] for
the diagonal-free setting, is shown to be NP-complete, and is implemented in terms of SMT
solving. In our work, we examine two methods for analyzing timed automata with diagonal
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constraints. The first is based on the eager elimination of diagonal constraints, however, as our
algorithms support discrete variables, instead of introducing new locations, we introduce a
new discrete variable per constraint. In case abstraction refinement is used for these variables
[31], a method is obtained that considers constraints as needed, similarly to [10]. However,
instead of building a new model and running the model checker from scratch, this method
is lazy, and performs abstraction refinement locally in the state space where more precision
is necessary. The second approach is based on zone interpolation, which supports diagonal
constraints, as well as other extensions [30], automatically. Thus in this case, elimination of
diagonal constraints is not necessary. Unfortunately, this method is not complete, as it does
not guarantee termination on all models.

This paper is based on our previouswork presented in [30,31]. In addition to the results pre-
sented there, we provide an algorithmic framework in which we uniformly formalize, prove
correct and evaluate our abstraction refinement strategies and their combinations. Moreover,
besides the refinement strategy presented in [31] that propagates interpolants backward, we
introduce a novel strategy that performs abstraction refinement by forward propagation of
interpolants. Furthermore, we present an empirical evaluation of the algorithm configurations
that the framework offers on a benchmark containing 51 timed automata models. In partic-
ular, we examine how the different configurations perform on models containing diagonal
constraints.

1.2 Organization of the paper

The rest of the paper is organized as follows. In Sect. 2, we define the notations used through-
out the paper, and present the theoretical background of our work. In Sect. 3 we propose
our formal framework, a uniform lazy reachability checking algorithm that admits various
abstract domains and refinement strategies. In Sect. 4, four abstraction refinement strategies
are formalized in our framework, two for clock variables, and two for the efficient handling
of discrete variables. Section 5 describes experiments performed on the proposed algorithm
configurations. Finally, conclusions are given in Sect. 6.

2 Background and notations

In this section, we summarize the theoretical background of our work. Moreover, we define
the notation used throughout the paper.

2.1 Valuations

Let C be a set of clock variables over R≥0, and D a set of data variables over Z. Let
V = C ∪ D denote the set of all variables.

A clock constraint is a formula ϕ ∈ ConstrC that is a conjunction of atoms of the form
c �� m and ci − c j �� m where c, ci , c j ∈ C and m ∈ Z and �� ∈ {

<,≤,>,≥,
.=}

. In the
latter case, if i �= j , then a constraint is called a diagonal constraint. A data constraint is
a well-formed formula ϕ ∈ ConstrD built from variables in D and arbitrary function and
predicate symbols interpreted over Z. Let Constr = ConstrC ∪ConstrD denote the set of all
constraints.

A clock update (clock reset) is an assignment u ∈ UpdateC of the form c := m where
c ∈ C and m ∈ Z. A data update is an assignment u ∈ UpdateD of the form d := t where
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d ∈ D and t is a term built from variables in D and function symbols interpreted over Z. Let
Update = UpdateC ∪ UpdateD denote the set of all updates.

The set of variables appearing in a term t (resp. in a formula ϕ) is denoted by vars(t) (resp.
by vars(ϕ)). Similarly, the set of variables occurring in an update is denoted by vars(u), that
is, vars(x := t) = vars(t) ∪ {x}.

A valuation over a finite set of variables is a function that maps variables to their respective
domains. We will denote by V(X) the set of valuations over a set of variables X . Throughout
the paper we will allow partial functions as valuations. We will denote by def(σ ) the domain
of definition of a valuation σ , that is, def(σ ) = {x | σ(x) �= ⊥}. We extend valuations to
range over terms and formulas the usual way, with the possibility that the value of a term is
undefined over a valuation.

We will denote by σ |
 ϕ iff formula ϕ is satisfied under valuation σ . Let �ϕ� stand for
the set of models of a formula ϕ, formally defined as �ϕ� = {σ ∈ (V ◦ vars)(ϕ) | σ |
 ϕ},
where ◦ denotes function composition as usual. Given a valuation σ , we denote by form(σ )

the formula characterizing the valuation, that is, form(σ ) = ∧
x∈def(σ ) x

.= σ(x).

Remark 1 Note that in the context of partial valuations, σ |
 ¬ϕ is a strictly stronger
statement than σ �|
 ϕ. For example, {x ← � 1} �|
 y

.= 1 but it is not the case that
{x ← � 1} |
 y � .= 1.

Let σ  σ ′ iff σ(x) = σ ′(x) for all x ∈ def(σ ′). Moreover, let A  B iff for all σ ∈ A there
exists σ ′ ∈ B such that σ  σ ′. Clearly,  is a partial order over sets of valuations. We will
denote the restriction of valuation σ to a set of variables X by σ �X , that is, (σ �X )(x) = σ(x)
if x ∈ X and (σ �X )(x) = ⊥ if x /∈ X . We lift the notion to sets of valuations with the obvious
meaning. Let moreover �σ � = {

σ ′ ∈ V(V ) | σ ′  σ
}
, also defined for sets of valuations in

the obvious way.
We state the following lemmas (without proof).

Lemma 1 σ  σ ′ ⇒ σ ′ |
 ϕ ⇒ σ |
 ϕ

Lemma 2 σ  σ ′ ⇔ σ |
 form(σ ′)

Lemma 3 A  B ⇒ A�X  B�X

We will denote by ⊗ the partial function over valuations that is defined as

(σ ⊗ σ ′)(x) =

⎧
⎪⎨

⎪⎩

σ(x) if x ∈ def(σ )

σ ′(x) if x ∈ def(σ ′)
⊥ otherwise

if σ(x) = σ ′(x) for all x ∈ def(σ ) ∩ def(σ ′), and is undefined otherwise. We extend this
function to sets of valuations in both parameters in the obvious way.

Finally, given a valuation σ and an update x := t , we denote by σ {x := t} the valuation
σ ′ such that σ ′(x) = σ(t) and σ ′(x ′) = σ(x ′) for all x ′ �= x . For a sequence of updates, let
σ {ε} = σ and σ {u · μ} = σ {u}{μ}, where u is an update and μ is a sequence of updates.

2.2 Timed automata

In the area of modeling and verifying time-dependent behavior, timed automata [1] is the
most prominent formalism. To make the specification of practical systems more convenient,

123



6 T. Tóth, I. Majzik

the traditional formalism is often extended with various syntactic and semantic constructs,
in particular with the handling of discrete variables. In the following, we describe such an
extension.

Definition 1 (Syntax) Syntactically, a timed automaton with discrete variables is a tuple
A = (L,C, D, T , �0) where

– L is a finite set of locations,
– C is a finite set of continuous clock variables over R≥0,
– D is a finite set of discrete data variables over Z,
– T ⊆ L × P(Constr) × Update∗ × L is a finite set of transitions, where for a transition

(�,G, μ, �′), the set G ⊆ Constr is a set of guards, and μ ∈ Update∗ is a sequence of
updates, and

– �0 ∈ L is the initial location.

We are going to refer to a sequence of transitions π ∈ T ∗ as a path.

Remark 2 According to the above definition, clearly C ∩ D = ∅. Note that given a guard
g ∈ G, either vars(g) ⊆ C , or vars(g) ⊆ D. Similarly, given an update u, either vars(u) ⊆ C ,
or vars(u) ⊆ D.

Definition 2 (Semantics) Let σ0 be the unique total function σ0 : V → {0}. The operational
semantics of a timed automaton is given by a labeled transition system with initial state
(�0, σ0) and two kinds of transitions:

– Delay: (�, σ )
δ−→ (�′, σ ′) for some real number δ ≥ 0 where �′ = � and σ ′ = delayδ(σ )

with

delayδ(σ )(x) =
{

σ(x) + δ if x ∈ C

σ(x) otherwise

– Action: (�, σ )
t−→ (�′, σ ′) for some transition t = (�,G, μ, �′) where σ ′ = actiont (σ )

with

actiont (σ ) =
{

⊥ if σ |
 ¬g for some g ∈ G

σ {μ} otherwise

We will use the notation C = V(V ), and refer to a valuation σ ∈ C as a concrete state. A
state of a timed automaton is a state of its semantics, that is, a pair (�, σ ) where � ∈ L and
σ ∈ C.

In case D = ∅, the above definition for semantics coincides with the semantics of timed
automata in the usual sense. Throughout the paper, we will refer to a timed automaton with
discrete variables simply as a timed automaton.

Definition 3 (Run) A run of a timed automaton is a sequence of states from the initial state
(�0, σ0) along the transition relation

(�0, σ0)
α1−→ (�1, σ1)

α2−→ · · · αk−→ (�k, σk)

where αi ∈ T ∪ R≥0 for all 0 ≤ i ≤ k.

123



Configurable verification of timed automata… 7

Definition 4 (Reachable location) A location � ∈ L is reachable iff there exists a run such
that �k = �.

Clearly, if a location is reachable then it is reachable along a run of the form

· δ0−→ (�0, σ
′
0)

t1−→ · δ1−→ (�1, σ1)
t2−→ · δ2−→ · · · tk−→ · δk−→ (�k, σk). This observation enables the

definition of a symbolic semantics for timed automata as follows.

Definition 5 (Symbolic semantics) Let Σ0 = {
delayδ(σ0) | δ ≥ 0

}
, that is, the set of con-

crete states reachable from σ0 by a delay transition. The symbolic semantics of a timed
automaton is a labeled transition system with initial state (�0,Σ0) and transitions of the form

(�,Σ)
t−→ (�′,Σ ′) where t = (�, ·, ·, �′) and Σ ′ = postt (Σ) with the concrete post-image

operator

postt (σ ) = {
(delayδ ◦ actiont )(σ ) | δ ≥ 0

}
,

defined for paths as postε = id and postt ·π = postπ ◦ postt .

We will refer to a pair (�,Σ) with � ∈ L and Σ ⊆ C as a symbolic state.
Let pret = post−1

t and postXt (Σ) = postt (Σ)�X for X ∈ {C, D}. Let moreover
preCt = (postCt )−1. Furthermore, let ν0 = Σ0�D and Z0 = Σ0�C .

Remark 3 As a consequence of Remark 2, it can be shown that in general, a symbolic state
(�,Σ) occurring in a symbolic run of timed automaton is such that Σ = ν ⊗ Z , where
ν = Σ�D is a data valuation, and Z = Σ�C is a special set of clock valuations, called a zone
(see Sect. 2.3). Moreover, postt (ν ⊗ Z) = postDt (ν) ⊗ postCt (Z).

Definition 6 (Enabled transition)Given a set of concrete statesΣ , wewill say that a transition
t is enabled from Σ iff postt (Σ) �= ∅, otherwise it is disabled.
Definition 7 (Feasible path) We will say that a path π is feasible (resp. data-feasible) (resp.
clock-feasible) iff postπ (Σ0) �= ∅ (resp. postDπ (ν0) �= ∅) (resp. postCπ (Z0) �= ∅), otherwise
it is infeasible (resp. data-infeasible) (resp. clock-infeasible).

Remark 4 By Remark 3 and induction, a path π is feasible iff it is data-feasible and clock-
feasible.

Definition 8 (Symbolic run) A symbolic run of a timed automaton is a sequence of
symbolic states from the symbolic initial state (�0,Σ0) along the transition relation

(�0,Σ0)
t1−→ (�1,Σ1)

t2−→ · · · tk−→ (�k,Σk) where Σk �= ∅.

Remark 5 Clearly, a timed automaton has a symbolic run · t1−→ · t2−→ · · · tk−→ · iff the path
t1t2 · · · tk is feasible.
Proposition 1 For a timed automaton, a location � ∈ L is reachable iff there exists a symbolic
run with �k = � [15].

2.3 Zones and DBMs

A zone Z ∈ Z is the set of solutions of a clock constraint ϕ ∈ ConstrC , that is
Z = {η ∈ V(C) | η |
 ϕ}. If Z and Z ′ are zones and t ∈ T , then ∅, V(C), Z0, Z ∩ Z ′,
postCt (Z) and preCt (Z ′) are also zones. In the context of zones, we will denote ∅ by ⊥ and
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V(C) by �. Zones are not closed under complementation, but the complement of any zone
is the union of finitely many zones. For a zone Z , we are going to denote a minimal set of
such zones by ¬Z .

Zones can be efficiently represented by difference bound matrices [17]. A bound is either
∞, or a finite bound of the form (m,≺) where m ∈ Z and ≺ ∈ {<,≤}. Difference bounds
can be totally ordered by “strength”, that is, (m,≺) < ∞ and (m1,≺1) < (m2,≺2) iff
m1 < m2 and (m,<) < (m,≤). Moreover the sum of two bounds is defined as b+ ∞ = ∞
and (m1,≤) + (m2,≤) = (m1 + m2,≤) and (m1,<) + (m2,≺) = (m1 + m2,<).

A difference bound matrix (DBM) over X = {x0, x1, . . . , xn} is a square matrix M of
bounds of order n + 1 where an element Mi j = (m,≺) represents the clock constraint
xi − x j ≺ m. We denote by �M� the zone induced by the conjunction of constraints stored
in M . We say that M is consistent iff �M� �= ⊥. The following is a simple sufficient and
necessary condition for a DBM to be inconsistent.

Proposition 2 A DBM M is inconsistent iff there exists a negative cycle in M, that
is, a set of pairs of indexes {(i1, i2), . . . , (ik−1, ik), (ik, i1)} such that
Mi1,i2 + · · · + Mik−1,ik + Mik ,i1 < (0,≤) [17].

For a consistent DBM M , we say it is canonical iff constraints in it cannot be strengthened
without losing solutions, formally, iffMi,i = (0,≤) for all 0 ≤ i ≤ n andMi, j ≤ Mi,k+Mk, j

for all 0 ≤ i, j, k ≤ n. For convenience, we will also consider the inconsistent DBM M with
the single finite bound M0,0 = (0,<) canonical. Up to the ordering of clocks, the canonical
form is unique.

The zone operations described above, as well as set inclusion ⊆ over zones, can be effi-
ciently implemented in terms of canonical DBMs [5]. Therefore, we will refer to a canonical
DBM M (syntax) and the zone �M� it represents (semantics) interchangeably throughout the
paper.

Moreover, for two DBMs M1 and M2, we will denote by min(M1, M2) the (not neces-
sarily canonical) DBM M where Mi, j = min(M1,i j , M2,i j ). It can be easily shown that
�min(M1, M2)� = �M1� ∩ �M2�.

3 Algorithm for lazy reachability checking

In this section we present our uniform approach, a lazy reachability checking algorithm that
allows the combination of various abstract domains and refinement strategies. It is based on
the notion of Abstract Reachability Tree, which is defined in the sequel. Then the algorithm
itself is described.

3.1 Abstract reachability tree

The central data structure of the algorithm is an abstract reachability tree.

Definition 9 (Abstract domain) For our purposes, an abstract domain for a timed automaton
is a tuple D = (S,�, init,post, �·�) such that
– S is set of abstract states,
– � ⊆ S × S is a preorder,
– init ∈ S is the abstract initial state,
– post : T × S → S is the abstract post-image operator, and

123



Configurable verification of timed automata… 9

– �·� : S → P(C) is the concretization function.

For soundness, we assume the following properties to hold.

Definition 10 (Sound abstraction) An abstract domain (S,�, init,post, �·�) is sound iff
– s1 � s2 ⇒ �s1� ⊆ �s2�,
– Σ0 ⊆ �init�, and
– postt �s� ⊆ �postt (s)�.

Definition 11 (Unwinding) An unwinding of a timed automaton A is a tuple
U = (N , E, n0, MN , ME , �) where

– (N , E) is a directed tree rooted at node n0 ∈ N ,
– MN : N → L is the node labeling,
– ME : E → T is the edge labeling and
– � ⊆ N × N is the covering relation.

For an unwinding we require that the following properties hold:

– MN (n0) = �0,
– for each edge e ∈ E with e = (n, n′) the transition ME (e) = (�, ·, ·, �′) is such that

MN (n) = � and MN (n′) = �′,
– for all nodes n and n′ such that n � n′ it holds that MN (n) = MN (n′).

The term n � n′ marks that search from node n of the unwinding is to be pruned, as another
node n′ admits all runs that are feasible from n. We define the following shorthand notations
for convenience: �n = MN (n) and te = ME (e).

Definition 12 (Abstract reachability tree) An abstract reachability tree (ART) for a timed
automatonAover a sound abstract domainD is a labeled unwinding, that is, a pairG = (U , ψ)

where

– U is an unwinding of A, and
– ψ : N → S is a labeling of nodes by abstract states.

We will use the following shorthand notation: sn = ψ(n).

Definition 13 (Properties of nodes) A node n is expanded iff for all transitions t ∈ T such
that t = (�, ·, ·, ·) and �n = �, either t is disabled from �sn�, or n has a successor for t . A node
n is covered iff n � n′ for some node n′. It is excluded iff it is covered or it has an excluded
parent. A node is complete iff it is either expanded or excluded. A node n is �-safe iff �n �= �.

For anART to be useful for reachability checking,we have to ensure that the tree represents
an over-approximation of the set of reachable states. Therefore we introduce restrictions on
the labeling, as formalized in the next definition.

Definition 14 (Well-labeled node) A node n of an ART G for a timed automaton A is well-
labeled iff the following conditions hold:

– (initiation) if n = n0, then Σ0 ⊆ �sn�,
– (consecution) if n �= n0, then for its parent m and the transition t = t(m,n) it holds that

postt �sm� ⊆ �sn�
– (coverage) if n � n′ for some node n′, then �sn� ⊆ �sn′� and n′ is not excluded.
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10 T. Tóth, I. Majzik

Besides preserving reachable states, we will also ensure that nodes represent runs of the
automaton. We formalize this in the following definitions.

Definition 15 (Feasible node and transition) Let n be a node of an ART G, and π the path
from n0 to n in G. Then n is feasible iff π is feasible. Moreover, a transition t is feasible from
n iff the path π · t is feasible.

The above definitions for nodes can be extended to trees.

Definition 16 (Properties of ARTs) An ART is complete, �-safe, well-labeled or feasible iff
all its nodes are complete, �-safe, well-labeled, or feasible, respectively.

Awell-labeledARTpreserves reachable states, which is expressed by the following propo-
sition.

Proposition 3 Let G be a complete, well-labeled ART for a timed automaton A. If A has a

symbolic run (�0,Σ0)
t1−→ (�1,Σ1)

t2−→ · · · tk−→ (�k,Σk) then G has a non-excluded node n
such that �k = �n and Σk ⊆ �sn�.

Proof We prove the statement by induction on the length k of the symbolic run. If k = 0,
then �0 = �n0 and Σ0 ⊆ �sn0� by condition initiation, thus n0 is a suitable witness. Suppose
the statement holds for runs of length at most k − 1. Hence there exists a non-excluded node
m such that �k−1 = �m and Σk−1 ⊆ �sm�.

Clearly transition tk is not disabled from �sm�, as then by the induction hypothesis it
would also be disabled from Σk−1, which contradicts our assumption. As m is complete and
not excluded, it is expanded, and thus has a successor n for transition tk with �n = �k . By
condition consecution, we have posttk �sm� ⊆ �sn�. As Σk−1 ⊆ �sm�, by the monotonicity of
images in ⊆, we obtain Σk ⊆ �sn�.

Thus if n is not covered, then it is a suitable witness for the statement. Otherwise there
exists a node n′ such that n � n′. By condition coverage, we know that �sn� ⊆ �sn′� and n′ is
not excluded, thus n′ is a suitable witness. ��

3.2 Reachability algorithm

The pseudocode of the algorithm is shown inAlgorithm 1. The algorithm gets as input a timed
automatonA and a distinguished error location �e ∈ L . The goal of the algorithm is to decide
whether �e is reachable for A. To this end the algorithm gradually constructs an ART for
A and continually maintains its well-labeledness and feasibility. Upon termination, it either
witnesses reachability of �e by a feasible node n such that �n = �e, which by Definition 15
corresponds to a symbolic run ofA to �e, or produces a complete, well-labeled, �e-safe ART
that proves unreachability of �e by Proposition 3.

The main data structures of the algorithm are the ART G and sets passed and waiting. Set
passed is used to store nodes that are expanded, andwaiting stores nodes that are incomplete.
The algorithm consists of two subprocedures, close and expand. Procedure close attempts
to cover a node n by some other node. It calls a procedure cover that tries to force cover
the node by adjusting its label so that it is subsumed by the label of some candidate node n′.
Procedure expand expands a node n by creating its successors. To avoid creating infeasible
nodes, it calls a procedure disable that checks feasibility of a given transition t , and adjusts
the labeling of n so that if t is infeasible from n, then it also becomes disabled from �sn�. Both
close and expand potentiallymodify the labeling of some nodes as a side effect, but in away
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Configurable verification of timed automata… 11

Algorithm 1 Reachability algorithm
1: ensure ρ = safe iff �e is unreachable forA
2: function explore(A, �e) returns ρ ∈ {

safe,unsafe
}

3: let n0 be a node with �n0 = �0 and sn0 = init
4: N ← {n0}, E ← ∅, � ← ∅
5: let G be an ART for A over N , E and �
6:
7: passed ← ∅, waiting ← {n0}
8: invariant G is well-labeled and feasible
9: while n ∈ waiting for some n do
10: waiting ← waiting \ {n}
11: if �n = �e then
12: return unsafe
13: else
14: close(n)

15: if n is not covered then
16: expand(n)

17: return safe

18: invariant G is well-labeled and feasible
19: procedure close(n)
20: for all n′ ∈ passed such that �n = �n′ do
21: cover(n, n′)
22: if sn � sn′ then
23: � ← � ∪ {

(n, n′)
}

24: return

25: invariant G is well-labeled and feasible
26: ensure n is expanded
27: procedure expand(n)
28: for all t ∈ T such that t = (�, ·, ·, �′) with � = �n do
29: if not disable(n, t) then
30: let s′ = postt (sn)

31: let n′ be a new node with �n′ = �′ and sn′ = s′
32: let e = (n, n′) be a new edge with te = t
33: N ← N ∪ {

n′}
34: E ← E ∪ {e}
35: waiting ← waiting ∪ {

n′}

36: passed ← passed ∪ {n}

37: invariant G is well-labeled and feasible
38: procedure cover(n, n′)

39: invariant G is well-labeled and feasible
40: ensure β iff t is disabled from �sn�
41: ensure ¬β iff t is feasible from n
42: function disable(n, t) returns β

that maintains well-labeledness and feasibility of the ART. Naturally, the implementation of
procedures cover and disable depends on the abstract domain, and are described in Sect. 4
in detail.

The algorithm consists of a single loop in line 9 that employs the following strategy.
The loop consumes nodes from waiting one by one. If waiting becomes empty, then A is
deemed safe. Otherwise, a node n is removed from waiting. If the node represents the error
location, then A is deemed unsafe. Otherwise, in order to avoid unnecessary expansion of
the node, the algorithm tries to cover it by a call to close. If there are no suitable candidates
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for coverage, then the algorithm establishes completeness of the node by expanding it using
expand, which puts it in passed, and puts all its successors in waiting.

We show that explore is correct with respect to the procedure contracts listed in Algo-
rithm 1. We focus on partial correctness, as termination depends on the particular abstract
domain and refinement method used. We note that in general, termination can be easily
ensured using the right extrapolation operator for clock variables [22,30,33].

Proposition 4 Procedure explore is partially correct: if explore(A, �e) terminates, then
the result is safe iff �e is unreachable for A.

Proof (sketch) Let covered = {n ∈ N | n is covered}. It is easy to verify that the algorithm
maintains the following invariants:

– N = passed ∪ waiting ∪ covered,
– passed is a set of non-excluded, expanded, �e-safe nodes,
– waiting is a set of non-excluded, non-expanded nodes,
– covered is a set of covered, non-expanded, �e-safe nodes.

It is easy to see that under the above assumptions sets passed, waiting and covered form
a partition of N . Assuming that G is well-labeled and feasible, partial correctness of the
algorithm is then a direct consequence: At line 12 a node is encountered that is not �e-safe,
thus by Definition 15 there is a symbolic run ofA to �e; conversely, at line 17 the set waiting
is empty, so G is complete and �e-safe, and as a consequence of Proposition 3 the location
�e is indeed unreachable for A.

What remains to show is that the algorithm maintains well-labeledness and feasibility of
G. We assume that procedures cover and disablemaintain well-labeledness and feasibility,
which we prove to hold in Sect. 4.

Initially, node n0 is well-labeled, asΣ0 ⊆ �init� = �sn0�, thus n0 satisfies initiation. It also
trivially satisfies feasibility, as postε(Σ0) = Σ0 �= ∅. Procedure close trivially maintains
well-labeledness and feasibility, as it just possibly adds a covering edge for two nodes such
that condition coverage is not violated. In procedure expand, if disable(n, t) for a transition
t , then t is not feasible from n, and the labeling is adjusted so that t is disabled from �sn�.
Otherwise, t is feasible from n, and a successor node n′ is created. Clearly, n′ is feasible as
t is feasible. Moreover, postt �sn� ⊆ �postt (sn)� = �sn′�, thus n′ satisfies consecution. Thus
according to the contract, n becomes expanded, and all its successors are well-labeled and
feasible, so well-labeledness and feasibility of G is preserved. ��

4 Abstraction refinement

Algorithm 1 is abstracted over the particular abstract domain used to well-label the con-
structedART.Moreover, it declares two procedures, cover and disable, that perform forced
covering and abstraction refinement over the abstract domain, respectively. In this section,
we describe several possible abstract domains, and corresponding abstraction refinement
strategies, that can be used for model checking timed automata with discrete variables.

In the listings of the given refinement strategies, we are going to refer to a simple procedure
update that enables safely updating the labeling for a given node in the ART.

Proposition 5 update is totally correct: If either n is the root andΣ0 ⊆ �s�, or there exists an
edge e = (m, n) with te = t for some m and postt �sm� ⊆ �s�, then update(n, s) terminates
and ensures sn = s. Moreover, it preserves well-labeledness and feasibility of G.
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Algorithm 2 Safely updating the abstraction
1: invariant G is well-labeled and feasible
2: require n root ⇒ Σ0 ⊆ �s�
3: require (m, n) ∈ E with t = t(m,n) for some m ⇒ postt �sm� ⊆ �s�
4: ensure sn = s
5: procedure update(n, s)
6: for all m such that m � n and sm �� s do
7: � ← � \ (m, n)

8: waiting ← waiting ∪ {m}
9: sn ← s

Proof Termination of the procedure is trivial. Moreover, the procedure trivially maintains
feasibility of G, as it does not create new nodes. At the end of the procedure, sn = s is
ensured. Clearly, n is well-labeled: initiation and consecution is ensured by contract, and
coverage is ensured by the loop due to soundness of the abstract domain. ��

4.1 Combination of abstractions

Our approach is based on the direct product of abstract domains, as described below.

Definition 17 (Direct product domain) Let Di = (Si ,�i , initi ,posti , �·�i ) for i ∈ {1, 2}.
Then their direct product is the abstract domain D1 × D2 = (S,�, init,post, �·�) where
– S = S1 × S2,
– (s1, s2) � (s′

1, s
′
2) iff s1 �1 s′

1 and s2 �2 s′
2 (thus � is a preorder),

– init = (init1, init2),
– postt (s1, s2) = (post1t (s1),post

2
t (s2)), and

– �(s1, s2)� = �s1�1 ∩ �s2�2.

In later descriptions, when it is clear from the context, we are going to omit indexes when
referring to components of a direct product (and write e.g. (postt (s1),postt (s2)) instead of
(post1t (s1),post

2
t (s2))).

Proposition 6 If D1 and D2 are sound, then D1 × D2 is sound.

In case of timed automata with discrete variables, as according to Definition 1, abstraction
and refinement can be conveniently defined compositionally, where clock variables and dis-
crete variables are handled by separate abstractions. Algorithm 3 describes a straightforward
method for achieving this separation.

In the above description, in line 10 and line 15, we refer to the preservation of well
labeledness for the two projections of the ART. This weaker assumption will simplify proofs
of correctness for the component refiners. We show that this implies well-labeledness in the
original sense.

Total correctness of cover× follows from total correctness of coverD and coverC . We
show total correctness of disable× as follows.

Proposition 7 disable× is totally correct: disable×(n, t) terminates and preserves well-
labeledness and feasibility of G; Moreover, it returns false iff t is feasible from n, and ensures
that t is disabled from �sn� otherwise.
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14 T. Tóth, I. Majzik

Algorithm 3 Combination of Abstractions
1: procedure cover×(n, n′)
2: coverD(n, n′)
3: coverC (n, n′)

4: invariant G is well-labeled and feasible
5: procedure coverD(n, n′)

6: invariant G is well-labeled and feasible
7: procedure coverC (n, n′)

8: function disable×(n, t) returns β

9: return disableD(n, t) or
disableC (n, t)

10: invariant G is well-labeled and feasible
11: define (s1, s2) = sn
12: ensure β iff t is disabled from �s1�
13: ensure ¬β iff t is data-feasible from n
14: function disableD(n, t) returns β

15: invariant G is well-labeled and feasible
16: define (s1, s2) = sn
17: ensure β iff t is disabled from �s2�
18: ensure ¬β iff t is clock-feasible from n
19: function disableC (n, t) returns β

Proof Termination of the procedure is trivial. Moreover, the procedure trivially maintains
feasibility of G, as it does not create new nodes.

First we show that disable× maintains well-labeledness. By contract, disableC and
disableD preserve well-labeledness of G (in the weaker sense described above). Let
sn = (s1, s2) for root node n. As Σ0 ⊆ �s1� and Σ0 ⊆ �s2�, clearly Σ0 ⊆ �s1� ∩ �s2� =
�(s1, s2)�, thus initiation is preserved. Now let sm = (s1, s2) and sn = (s′

1, s
′
2) for nodes m

and n such that (m, n) ∈ E and t = t(m,n). As postt is an image and postt �s1� ⊆ �s′
1� and

postt �s2� ⊆ �s′
2�, we have postt �(s1, s2)� = postt (�s1� ∩ �s2�) ⊆ postt �s1� ∩ postt �s2� ⊆

�s′
1� ∩ �s′

2� = �(s′
1, s

′
2)�, thus consecution is preserved. Finally, let sm = (s1, s2) and

sn = (s′
1, s

′
2) for nodes m and n such that m � n. As �s1� ⊆ �s′

1� and �s2� ⊆ �s′
2�, clearly

�(s1, s2)� = �s1� ∩ �s2� ⊆ �s′
1� ∩ �s′

2� = �(s′
1, s

′
2)�, thus coverage is preserved.

Assume that t is feasible from n. Then t is both data- and clock-feasible from n by
Remark 4. ThusdisableD(n, t) = false anddisableC (n, t) = false by contract, fromwhich
disable×(n, t) = false follows directly. Assume that t is not feasible from n. Then t is either
not data- or not clock-feasible from n byRemark 4.Assume t is not data-feasible from n. Thus
disableD(n, t) = true and t becomes disabled from �s1� by contract. As a consequence,
disable×(n, t) = true, and t becomes disabled from �sn� = �(s1, s2)� = �s1� ∩ �s2�. The
other case follows symmetrically. ��

To simplify exposition, we are going to treatψ as a lens (in simple terms, a pair consisting
of a “getter” and a “setter”) that can be used to deeply manipulate the structure of a given
label. Thus later in the text, when we refer to sn , we are going to mean the corresponding
component of a direct product based on the context.

4.2 Abstraction for clock variables

First, we address abstraction refinement over clock variables.
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4.2.1 Zone abstraction

Most model checkers for timed automata rely on zones for abstracting clock valuations. We
define zone abstraction in our framework as follows.

Definition 18 (Zone abstraction) We define zone abstraction as the abstract domain
DZ = (Z,⊆, Z0, postC , �·�).

Note that in the absence of discrete variables, Definition 18 corresponds to the usual
definition of zone abstraction.

Proposition 8 DZ is sound.

We define coverZ as a no-op, thus its total correctness is trivial. Moreover, we define
disableZ as disableZ (n, t) iff postt (Z) � ⊥ for Z = sn .

Proposition 9 disableZ is totally correct: disableZ (n, t) terminates and preserves well-
labeledness and feasibility of G; moreover, it returns false iff t is clock-feasible from n, and
ensures that t is disabled from �sn� otherwise.

Proof Termination of the procedure is trivial. Well-labeledness and feasibility follow from
the fact that the procedure has no side effects. Let π be the path induced by n. Notice that
Z = postCπ (Z0). Assume postCt (Z) �= ⊥. Then by definition, t is clock-feasible from n,
and the procedure returns false. Now assume postCt (Z) = ⊥. Then by definition, t is not
clock-feasible from n. But t is also disabled from �Z�, and the procedure returns true. ��

4.2.2 Lazy zone abstraction

To obtain a coarser abstraction, we extend zone abstraction with interpolation as follows.

Definition 19 (Lazy zone abstraction) Let DZI = (S,�, init,post, �·�) be the abstract
domain over DZ with

– S = Z × Z,
– (Z ,W ) � (Z ′,W ′) iff W � W ′,
– init = (init,�),
– postt (Z ,W ) = (postt (Z),�), and
– �(Z ,W )� = �W �.

Proposition 10 DZI is sound.

Given an abstract state (Z ,W ), the purpose of Z is to encode an exact set of reachable
valuations, whereas the purpose of W is to represent a safe overapproximation of Z . This
potentially enables better coverage between nodes, thus faster convergence, compared to the
purely zone-based setting. In order to efficiently maintain this relationship however, we have
to define procedure coverZI and disableZI accordingly. To maintain well-labeledness,
these procedures rely on a procedure block that performs abstraction refinement by safely
adjusting labels of nodes.

In coverZI , as Z ⊆ W ′ and B ∩W ′ ⊆ ⊥, clearly Z ∩ B ⊆ ⊥, thus calling block(n, B)

is safe. Other than that, total correctness of coverZI follows trivially from total correctness
of block (see later). To show the correctness of disableZI , we state the following simple
lemma that establishes a connection between preC and postC .
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Algorithm 4 Lazy Zone Abstraction

1: procedure coverZI (n, n′)
2: let (Z , ·) = sn
3: let (·,W ′) = sn′
4: if Z ⊆ W ′ then
5: for all B ∈ ¬W ′ do
6: block(n, B)

7: function disableZI (n, t)

8: let (Z ,W ) = sn
9: let Z ′ = postCt (Z)

10: if Z ′ = ⊥ then
11: block(n, preCt (�))

12: return true
13: else
14: return false

15: invariant G is well-labeled and feasible
16: define (Z ,W ) = sn
17: require Z ∩ B ⊆ ⊥
18: ensure W ∩ B ⊆ ⊥
19: procedure block(n, B)

Lemma 4 Z ∩ preCt (Z ′) ⊆ ⊥ ⇔ postCt (Z) ∩ Z ′ ⊆ ⊥

Proposition 11 disableZI is totally correct: disableZI(n, t) terminates and preserves
well-labeledness and feasibility of G; moreover, it returns false iff t is clock-feasible from n,
and ensures that t is disabled from �sn� otherwise.

Proof Termination of the procedure is trivial. Well-labeledness and feasibility follow from
the total correctness of block. Let π be the path induced by n. Notice that Z = postCπ (Z0).
Assume postCt (Z) �= ⊥. Then by definition, t is clock-feasible from n, and the procedure
returns false. Now assume postCt (Z) = ⊥. Then by definition, t is not clock-feasible from
n. By Lemma 4, we get Z ∩ preCt (�) ⊆ ⊥. Thus block(n, preCt (�)) can be called, and as
a result, W ∩ preCt (�) ⊆ ⊥. By Lemma 4, we get postCt (W ) = ⊥. Thus t becomes disabled
from �W �, and the procedure returns true. ��

4.2.3 Interpolation for zones

The proposed refinement strategies for zone abstraction, and in particular, the different imple-
mentations of block are based on interpolation, defined over zones expressed in terms of
canonical DBMs.

Definition 20 (Zone interpolant) Given zones A and B such that A ∩ B ⊆ ⊥, a zone inter-
polant is a zone I such that A ⊆ I and I ∩ B ⊆ ⊥ and I is defined over the clocks that
appear in both A and B.

This definition of a zone interpolant is analogous to the definition of an interpolant in the
usual sense [26]. As zones correspond to formulas in DL(Q), a theory that admits interpo-
lation [13], an interpolant always exists for a pair of disjoint zones. Algorithm 5 is a direct
adaptation of the graph-based algorithm of [13] for DBMs. For simplicity, we assume that A
and B are defined over the same set of clocks with the same ordering, and are both canonical
(naturally, these restrictions can be lifted).

After checking the trivial cases, the algorithm searches for a negative cycle in min(A, B)

to witness its inconsistency. This can be done e.g. by running a variant of the Floyd-Warshall
algorithm.The interpolant I is then the DBM induced by the constraints in the negative cycle
that come from A. It is easy to verify that I is indeed an interpolant.
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Algorithm 5 Interpolation for Canonical DBMs
1: require A ∩ B ⊆ ⊥
2: ensure I is a zone interpolant for A and B
3: function interpolateZ (A, B) returns I
4: if A ⊆ ⊥ then
5: return ⊥
6: else if B ⊆ ⊥ then
7: return �
8: else
9: let M = min(A, B)

10: let C = {
(i1, i2), . . . , (ik−1, ik ), (ik , i1)

}
be a negative cycle in M

11: let CA = {
(i, j) ∈ C | Ai, j = Mi, j

}

12: let Ii, j =

⎧
⎪⎨

⎪⎩

(0, ≤) if i = j

Ai, j if (i, j) ∈ CA

∞ otherwise

13: let I = [
Ii, j

]

14: return I

Proposition 12 Function interpolateZ is totally correct: if A ∩ B ⊆ ⊥, then
interpolateZ (A, B) terminates and ensures A ⊆ I and I ∩ B ⊆ ⊥. Moreover, it pre-
serves well-labeledness and feasibility of G.

Proof Function interpolateZ has no side effect, it thus trivially maintains feasibility and
well-labeledness. In the trivial cases, I is clearly an interpolant. Assume A �= ⊥ and B �= ⊥.
As A ∩ B ⊆ ⊥ by contract, there exists a negative cycle C in min(A, B) by Proposition 2.
As A is canonical, we can assume that no two edges are subsequent in CA, thus the DBM I
induced by CA is clearly canonical. The properties of an interpolant directly follow from the
definitions of CA and I . ��

4.2.4 Abstraction refinement for lazy zone abstraction

Tomaintainwell-labeledness, procedurescover and disable rely on a procedure block that
performs abstraction refinement by safely adjusting labels of nodes. Algorithm 6 describes
two methods for abstraction refinement based on interpolation for zones. Both methods are
based on pre- and post-image computation, and can be considered as a generalization of zone
interpolation to sequences of transitions of a timed automaton. The main difference between
the two strategies is that blockfw (which we refer to as the “forward” zone interpolation
strategy) propagates the interpolant forward using postC ; whereas blockbw (which we refer
to as the “backward” zone interpolation strategy) propagates “bad” zones, obtained as the
complement of the interpolant, backward using preC .
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Algorithm 6 Refinement Strategies for Lazy Zone Abstraction

1: ensure W ⊆ I
2: ensure I ∩ B ⊆ ⊥
3: function blockfw(n, B) returns I
4: if W ∩ B ⊆ ⊥ then
5: return W
6: else
7: if (m, n) ∈ E for some m then
8: let t = t(m,n)

9: let B′ = preCt (B)

10: let A′ = blockfw(m, B′)
11: let A = postCt (A′)
12: else
13: let A = Z
14: let I = interpolateZ (A, B)

15: update(n, (Z ,W ∩ I ))

16: return I

17: procedure blockbw(n, B)
18: if W ∩ B ⊆ ⊥ then
19: return
20: else
21: let I = interpolateZ (Z , B)

22: if (m, n) ∈ E for some m then
23: let t = t(m,n)

24: for all B′ ∈ ¬I do
25: let B′′ = preCt (B′)
26: blockbw(m, B′′)
27: update(n, (Z ,W ∩ I ))

In order to make proofs of correctness for the two refinement strategies more concise, we
state the following simple lemmas.

Lemma 5 postCt (Z) ⊆ Z ′ ⇒ postt �Z� ⊆ �Z ′�

Lemma 6 �Z ∩ Z ′� = �Z� ∩ �Z ′�

Proposition 13 blockfw is totally correct: if Z ∩ B ⊆ ⊥, then blockfw(n, B) terminates
and ensures W ⊆ I and I ∩B ⊆ ⊥ and W ∩B ⊆ ⊥. Moreover, it preserves well-labeledness
and feasibility of G.
Proof Termination of the procedure is trivial. Moreover, the procedure trivially maintains
feasibility of G, as it does not create new nodes. Thus we focus on partial correctness and
the preservation of well-labeledness. By contract (Algorithm 4), Z ∩ B ⊆ ⊥ is ensured.
Moreover, notice that W ∩ B ⊆ ⊥ follows from W ⊆ I and I ∩ B ⊆ ⊥, thus it is sufficient
to establish the latter two claims.

IfW ∩ B ⊆ ⊥, then I = W , soW ⊆ I and I ∩ B ⊆ ⊥ are trivially established. Moreover,
well-labeledness is trivially maintained, as no refinement is performed.

Otherwise, if n is the root, then A = Z . Thus interpolateZ (A, B) can be called, and
the resulting interpolant I is such that Z ⊆ I and I ∩ B ⊆ ⊥. As in this case Z = Z0, clearly
Σ0 ⊆ �I �. ThusΣ0 ⊆ �W ∩ I �by initiation andLemma6.Therefore,update(n, (Z ,W ∩ I ))
can be called, which establishes W ⊆ I , while preserving the well-labeledness of G.

Otherwise, there exists a transition t = tm,n for some node m. Since Z = postCt (Z ′) and
B ′ = preCt (B), we have Z ′ ∩ B ′ ⊆ ⊥ for (Z ′,W ′) = sm by Lemma 4. Thus blockfw(m, B ′)
can be called, and as a result, A′ is such that W ′ ⊆ A′ and A′ ∩ B ′ ⊆ ⊥ by contract. As
A = postCt (A′),weobtain A∩B ⊆ ⊥byLemma4.Thus interpolateZ (A, B) canbe called,
and the resulting interpolant I is such that A ⊆ I and I ∩ B ⊆ ⊥. By the monotonicity of
images in ⊆, we have postCt (W ′) ⊆ A. Hence postCt (W ′) ⊆ I , from which postt �W

′� ⊆ �I �
follows by Lemma 5. Thus postt �W

′� ⊆ �W ∩ I � by consecution and Lemma 6. Therefore,
update(n, (Z ,W ∩ I )) can be called, which establishes W ⊆ I , while preserving the well-
labeledness of G. ��
Proposition 14 blockbw is totally correct: if Z ∩ B ⊆ ⊥, then blockbw(n, B) terminates
and ensures W ∩ B ⊆ ⊥. Moreover, it preserves well-labeledness and feasibility of G.
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Proof Termination of the procedure is trivial. Moreover, the procedure trivially maintains
feasibility of G, as it does not create new nodes. Thus we focus on partial correctness and the
preservation of well-labeledness. By contract, Z ∩ B ⊆ ⊥ is ensured.

IfW∩B ⊆ ⊥, then the contract is trivially satisfied.Moreover, well-labeledness is trivially
maintained, as no refinement is performed.

Otherwise, interpolateZ(Z , B) can be called, and the resulting interpolant I is such
that Z ⊆ I and I ∩ B ⊆ ⊥. We show that at the end of the procedure, the claim W ⊆ I , and
thus W ∩ B ⊆ ⊥ holds.

Assume n is the root node. In this case Z = Z0, thus clearly Σ0 ⊆ �I �. Thus
Σ0 ⊆ �W ∩ I � by initiation and Lemma 6. Therefore, update(n, (Z ,W ∩ I )) can be called,
which establishes W ⊆ I , while preserving the well-labeledness of G.

Now assume there exists a transition t = tm,n for some node m with (Z ′,W ′) = sm .
Let B ′ ∈ ¬I , and B ′′ = preCt (B ′). Clearly, Z ∩ B ′ ⊆ ⊥. As Z = postCt (Z ′), we obtain
Z ′∩B ′′ ⊆ ⊥ by Lemma 4. Thus blockbw(m, B ′′) can be called, which ensuresW ′∩B ′′ ⊆ ⊥
by contract. Thus postCt (W ′) ∩ B ′ ⊆ ⊥ by Lemma 4. Hence postCt (W ′) ⊆ I , from which
postt �W

′� ⊆ �I � follows by Lemma 5. Thus postt �W
′� ⊆ �W ∩ I � by consecution and

Lemma 6. Therefore, update(n, (Z ,W ∩ I )) can be called, which establishes W ⊆ I ,
while preserving the well-labeledness of G. ��

Wewould like to point out that for refinementwithblockfw, syntactically, it is sufficient to
store a single zone at each node, thus obtaining amajor optimization inmemory consumption.
In particular, it is sufficient to store Z at leaves, and store W at non-leaf nodes. This is due
to the fact that while running the algorithm, Z is only necessary when expand is called, and
when the interpolant is computed for the initial node, in this later situation Z being obvious.
On the other hand,W is only necessary when calling cover, where coverer nodes are always
non-leaf. Moreover, it is always safe to treat W as ⊥ for leafs.

4.3 Abstraction and refinement for discrete variables

In the following, we describe strategies for the handling of discrete variables that appear in
timed automata specifications.

4.3.1 Explicit tracking of variables

The most straightforward way for the handling discrete variables is to explicitly track their
value.

Definition 21 (Explicit domain) Let E = V(D). We define the abstraction that tracks discrete
variables explicitly as the abstract domain DE = (E,=, ν0, postD, �·�).

Proposition 15 DE is sound.

Similarly to zone abstraction, we define coverE to be a no-op, thus its total correctness
is trivial. Moreover, let disableE (n, t) � (postt (ν) � ⊥) where ν = sn .

Proposition 16 disableE is totally correct: disableE (n, t) terminates and preserves well-
labeledness and feasibility of G; moreover, it returns false iff t is data-feasible from n, and
ensures that t is disabled from �sn� otherwise.
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Proof Termination of the procedure is trivial. Well-labeledness and feasibility follow from
the fact that the procedure has no side effects. Let π be the path induced by n. Notice that
ν = postDπ (ν0). Assume postDt (ν) �= ⊥. Then by definition, t is data-feasible from n, and the
procedure returns false. Now assume postDt (ν) = ⊥. Then by definition, t is not data-feasible
from n. But t is also disabled from �ν�, and the procedure returns true. ��

4.3.2 Visible variables abstraction

Instead of explicitly tracking in all states the values for all variables, by tracking in each state
only those that play a role in unreachability of a given location along a path through the state,
and “hiding” all the others, the size of the explored state space can be significantly reduced.
In the following, we describe such an abstract domain, together with the corresponding
refinement strategies.

Definition 22 (Visible variables domain) Let DEI = (S,�, init,post, �·�) be the abstract
domain over DE with

– S = V(D) × P(D),
– (ν, Q) � (ν′, Q′) iff ν  ν′�Q′ and Q′ ⊆ Q (thus � is a preorder),
– init = (init,∅),
– postt (ν, Q) = (postt (ν),∅), and
– �(ν, Q)� = �ν�Q�.

Proposition 17 DEI is sound.

Algorithm 7 describes the corresponding refinement methods. Both coverEI and
disableEI rely on a procedure refine for abstraction refinement. Moreover, disableEI
depends on a weakest precondition operator, defined by the following property.

Definition 23 (Weakest discrete precondition) Let wpDt (ϕ) be the formula such that
ν |
 wpDt (ϕ) iff postDt (ν) |
 ϕ for all ν and ϕ, with respect to t .

In coverEI , as ν  ν′�Q′ , we have ν |
 form(ν′�Q′) by Lemma 2, thus calling
refine(n, form(ν′�Q′)) is safe. Other than that, total correctness ofcoverEI follows trivially
from total correctness of refine (see later).

Proposition 18 disableEI is totally correct:disableEI(n, t) terminates andpreserveswell-
labeledness and feasibility of G; moreover, it returns false iff t is data-feasible from n, and
ensures that t is disabled from �sn� otherwise.

Proof Termination of the procedure is trivial. Well-labeledness and feasibility follow from
the total correctness of refine. Let π be the path induced by n. Notice that ν = postDπ (ν0).
Assume postDt (ν) �= ⊥. Then by definition, t is data-feasible from n, and the procedure
returns false. Now assume postDt (ν) = ⊥. Then by definition, t is not data-feasible from n.
As postDt (ν) |
 ⊥, by Definition 23, we get ν |
 wpDt (⊥). Thus refine(n,wpDt (⊥)) can be
called, and as a result, ν�Q |
 wpDt (⊥). By Definition 23, we get postDt (ν�Q) |
 ⊥, thus
clearly postDt (ν�Q) = ⊥. Thus t becomes disabled from �ν�Q�, and the procedure returns
true. ��
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Algorithm 7 Visible Variables Abstraction

1: procedure coverEI (n, n′)
2: let (ν, ·) = sn
3: let (ν′, Q′) = sn′
4: if ν  ν′�Q′ then
5: refine(n, form(ν′�Q′ ))
6: function disableEI (n, t)

7: let (ν, ·) = sn
8: let ν′ = postDt (ν)

9: if ν′ = ⊥ then
10: refine(n,wpDt (⊥))

11: return true
12: else
13: return false

14: invariant G is well-labeled and feasible
15: define (ν, Q) = sn
16: require ν |
 ϕ

17: ensure ν�Q |
 ϕ

18: procedure refine(n, ϕ)

4.3.3 Interpolation for valuations

The proposed refinement strategies for discrete variables, and in particular, different imple-
mentations of refine are based on the notion of a valuation interpolant, defined over a
valuation and a formula.

Definition 24 (Valuation interpolant) Given a valuation σ and a formula ϕ such that
σ |
 ϕ, a valuation interpolant is a valuation σ ′ such that σ  σ ′ and σ ′ |
 ϕ and
def(σ ′) ⊆ def(σ ) ∩ vars(ϕ).

Algorithm 8 Interpolation for Valuations
1: invariant G is well-labeled and feasible
2: require σ |
 ϕ

3: ensure σ �I is an interpolant for σ and ϕ

4: function interpolateE (σ , ϕ) returns I
5: let X = def(σ ) ∩ vars(ϕ)

6: I ← X
7: for all x ∈ X do
8: let I ′ = I \ {x}
9: if σ �I ′ |
 ϕ then
10: I ← I ′
11: return I

Proposition 19 Function interpolateE is totally correct: if σ |
 ϕ, then
interpolateE (σ, ϕ) terminates and ensures σ �I |
 ϕ. Moreover, it preserves well-
labeledness and feasibility of G.

Proof Function interpolateE has no side effect, it thus trivially maintains feasibility and
well-labeledness. Moreover, it is easy to see that it satisfies its contract, as the postcondition
is an invariant for the loop. ��

Next, we show how valuation interpolants can be used for hiding variables that are irrel-
evant with respect to the reachability of a given location along a path.
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4.3.4 Abstraction refinement for visible variables abstraction

Algorithm 9 outlines two strategies for abstraction refinement over the visible variables
abstract domain. Symmetrically to the variants of block, procedure refinefw (which we
refer to as the “forward” valuation interpolation strategy) propagates interpolants forward
using postD ; whereas procedure refinebw (which we refer to as the “backward” valuation
interpolation strategy) propagates interpolants backward using wpD along the path to be
refined.

Algorithm 9 Refinement Strategies for Visible Variables Abstraction

1: ensure I ⊆ Q
2: ensure ν�I |
 ϕ

3: function refinefw(n, ϕ) returns ν�I
4: if ν�Q |
 ϕ then
5: return ν�Q
6: else
7: if (m, n) ∈ E for some m then
8: let t = t(m,n)

9: let ϕ′ = wpDt (ϕ)

10: let α′ = refinefw(m, ϕ′)
11: let α = postDt (α′)
12: else
13: let α = ν

14: let I = interpolateE (α, ϕ)

15: update(n, (ν, Q ∪ I ))
16: return ν�I

17: procedure refinebw(n, ϕ)
18: if ν�Q |
 ϕ then
19: return
20: else
21: let I = interpolateE (ν, ϕ)

22: if (m, n) ∈ E for some m then
23: let t = t(m,n)

24: let ϕ′ = wpDt (form(ν�I ))
25: refinebw(m, ϕ′)
26: update(n, (ν, Q ∪ I ))

To make our formal description more concise, we state the following simple lemmas.

Lemma 7 α  β ⇒ postDt (α)  postDt (β)

Lemma 8 postDt (ν)  ν′ ⇒ postt �ν� ⊆ �ν′�

Lemma 9 �ν�A∪B� = �ν�A� ∩ �ν�B�

Proposition 20 refinefw is totally correct: if ν |
 ϕ, then refinefw(n, ϕ) terminates and
ensures I ⊆ Q and ν�I |
 ϕ and ν�Q |
 ϕ. Moreover, it preserves well-labeledness and
feasibility of G.

Proof Termination of the procedure is trivial. Moreover, the procedure trivially maintains
feasibility of G, as it does not create new nodes. Thus we focus on partial correctness and
the preservation of well-labeledness. By contract, ν |
 ϕ is ensured. Moreover, notice that
ν�Q |
 ϕ follows from I ⊆ Q and ν�I |
 ϕ by Lemma 1, thus it is sufficient to establish the
latter two claims.

If ν�Q |
 ϕ, then I = Q, so I ⊆ Q and ν�I |
 ϕ are trivially established. Moreover,
well-labeledness is trivially maintained, as no refinement is performed.

Otherwise, if n is the root, then α = ν. Thus interpolateE (α, ϕ) can be called, and the
resulting interpolant I is such that ν�I |
 ϕ. As in this case ν = ν0, clearly Σ0 ⊆ �ν�I �.
Thus Σ0 ⊆ �ν�Q∪I � by initiation and Lemma 9. Therefore, update(n, (ν, Q ∪ I )) can be
called, which establishes I ⊆ Q, while preserving the well-labeledness of G.

Otherwise, there exists a transition t = tm,n for some node m. Since ν = postDt (ν′) and
ϕ′ = wpDt (ϕ), we have ν′ |
 ϕ′ for (ν′, Q′) = sm byDefinition 23. Thusrefinefw(m, ϕ′) can
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Table 1 Summary of refinement strategies

Lazy zone interpolation Lazy valuation interpolation
Forward Backward Forward Backward

D DZI DEI
cover coverZI coverEI
disable disableZI disableEI
Propagation blockfw blockbw refinefw refinebw
Interpolation interpolateZ interpolateE

be called, and as a result, α′ is such that α′ = ν′�I ′ and I ′ ⊆ Q′ and α′ |
 ϕ′ by contract for
some I ′. As α = postDt (α′), we obtain α |
 ϕ by Definition 23. Thus interpolateE (α, ϕ)

can be called, and the resulting interpolant I is such that α�I |
 ϕ. Clearly ν′  α′,
thus ν  α by Lemma 7. Therefore, ν�I = α�I , as I ⊆ def(α). From this, ν�I |
 ϕ

follows directly. Moreover, as ν′�Q′  ν′�I ′ ′, by Lemma 7, we have postDt (ν′�Q′)  α.
Hence postDt (ν′�Q′)  ν�I , from which postt �ν

′�Q′� ⊆ �ν�I � follows by Lemma 8. Thus
postt �ν

′�Q′� ⊆ �ν�Q∪I � by consecution and Lemma 9. Therefore, update(n, (ν, Q ∪ I ))
can be called, which establishes I ⊆ Q, while preserving the well-labeledness of G. ��
Proposition 21 refinebw is totally correct: if ν |
 ϕ, then refinebw(n, ϕ) terminates and
ensures ν�Q |
 ϕ. Moreover, it preserves well-labeledness and feasibility of G.

Proof Termination of the procedure is trivial. Moreover, the procedure trivially maintains
feasibility of G, as it does not create new nodes. Thus we focus on partial correctness and the
preservation of well-labeledness. By contract, ν |
 ϕ is ensured.

If ν�Q |
 ϕ, then the contract is trivially satisfied. Moreover, well-labeledness is trivially
maintained, as no refinement is performed.

Otherwise interpolateE (ν, ϕ) can be called, and the resulting interpolant I is such that
ν�I |
 ϕ. We show that at the end of the procedure, the claim I ⊆ Q, and thus by Lemma 1
also ν�Q |
 ϕ holds.

Assume n is the root node. In this case ν = ν0, thus clearly Σ0 ⊆ �ν�I �. Thus
Σ0 ⊆ �ν�Q∪I � follows by initiation and Lemma 9.As a consequence,update(n, (ν, Q ∪ I ))
can be called, which establishes I ⊆ Q, while preserving the well-labeledness of G.

Nowassume there exists a transition t = tm,n for some nodemwith (ν′, Q′) = sm . Clearly,
ν  ν�I , thus ν |
 form(ν�I ) by Lemma 2. As ν = postDt (ν′) and ϕ′ = wpDt (form(ν�I ))
we obtain ν′ |
 ϕ′ by Definition 23. Thus refinebw(m, ϕ′) can be called, which ensures
ν′�Q′ |
 ϕ′ by contract. Thus postDt (ν′�Q′) |
 form(ν�I ) by Definition 23. Hence
postDt (ν′�Q′)  ν�I by Lemma 2, from which postt �ν

′�Q′� ⊆ �ν�I � follows by
Lemma 8. Thus postt �ν

′�Q′� ⊆ �ν�Q∪I � by consecution and Lemma 9. As a consequence,
update(n, (ν, Q ∪ I )) can be called, which establishes I ⊆ Q, while preserving the well-
labeledness of G. ��

Finally, to conclude this section, Table 1 summarizes the different abstraction refinement
strategies discussed.

5 Evaluation

In this section, we investigate how each algorithm configuration that our framework supports
behaves on a wide range of timed automata models in terms of performance (execution time)
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and size of the state space (number of nodes in the generated ART). The input models,
raw measurement data, and instructions to reproduce our experiments are available in a
supplementary material [32].

We implemented a prototype version of our algorithm and refinement strategies in the
open source model checking framework Theta [29]. Our tool performs location reachability
checking on models given in a reasonable language subset1 of the Uppaal 4.0 XTA format.

To enable comparison to the state-of-the-art, we implemented in our framework a variant
of the lazy abstraction method of [22] based on LU-bounds as an alternative refinement
strategy for clock variables (by defining the domain, cover and disable accordingly). The
main difference in our implementation compared to [22] is that when performing abstraction
refinement, bounds are propagated from all guards on an infeasible path, and not just from
ones that contribute to the infeasibility. Because of this, refinement in the resulting algorithm
is extremely cheap, but as the comparison of our data with that of [22] suggests, for the
models examined in both papers, the algorithm is similarly as space- and time-efficient as
the original one.

The algorithms are evaluated for both breadth-first and depth-first search orders of ART
expansion. By combining all the possible alternatives, this results in 16 distinct algorithm
configurations:

– as search order, breadth-first (BFS) or depth-first (DFS) search,
– for clock variables, forward (FWITP) or backward (BWITP) zone interpolation, or lazy

aLU abstraction (LU),
– for discrete variables, forward (FWITP) or backward (BWITP) valuation interpolation, or

no refinement (NONE).

Each algorithm configuration is encoded as a string containing three characters, specif-
ically the first character of the name of each selected parameter. So for example, the
configuration with BFS as search order, LU as refinement strategy for clock variables, and
NONE as refinement strategy for discrete variables, is going to be encoded as BLN.

For the configurations that handle discrete variables explicitly (·N·), we partitioned the set
of nodes of the ART based on the value of the data valuation, this way saving the O(n) cost
of checking inclusion for valuations. This optimization also significantly reduces the number
of nodes for which coverage is checked and attempted during close. Apart from this and the
difference in refinement strategies, the implementation of the configurations is shared.

As inputs we considered 51 timed automata models in total, which we divided to three dis-
tinct categories. For each model, the number of clock variables/number of discrete variables
is given in parentheses.

– Category PAT: classic timed automata models from the Pat benchmark set.2 These
models contain only a few discrete variables.

– critical n with n ∈ {3, 4} (n/1): Critical Region with n processes.
– csma n with n ∈ {9, 10, 11, 12} (n/1): CSMA/CD protocol with n processes.
– fddi n with n ∈ {50, 70, 90, 110} (3n + 1/1): FDDI token ring with n processes.
– fischer n with n ∈ {7, 8, 9, 10} (n/1): Fischer’s mutual exclusion protocol with n

processes.
– lynch n with n ∈ {7, 8, 9} (n/2): Lynch-Shavit protocol with n processes.

1 Not supporting procedures and composite types other than arrays of synchronization channels.
2 https://www.comp.nus.edu.sg/~pat/bddlib/timedexp.html.
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– CategoryMCTA: model containing a significant number of discrete variables (relative to
the number of clock variables). Most of the models come from the Mcta benchmark
set,3 while some of them come from the Uppaal benchmark set.4

– bocdp (3/26), bocdpf (3/26): models of the Bang & Olufsen Collision Detection
Protocol obtained from the Uppaal benchmark set.

– brp (7/7): a model of the Bounded Retransmission Protocol.
– c1 (3/12), c2 (3/14), c3 (3/15), c4 (3/17): models of a real-time mutual exclusion

protocol obtained from theMcta benchmark set.
– m1 (4/11), m2 (4/13), m3 (4/13), m4 (4/15), n1 (7/11), n2 (7/13), n3 (7/13),

n4 (7/15), e1 (3/41): industrial cases studies obtained from the Mcta benchmark
set.

– Fischer’s protocol with diagonal constraints, based on [28]

– diag n with n ∈ {3, 4, 5, 6, 7, 8} (2n/1): the original model, containing diagonal
constraints.

– split n with n ∈ {3, 4, 5, 6, 7, 8} (2n/n+1): diagonal-free model obtained from diag
n by eliminating diagonal constraints by introducing additional discrete variables
and transitions, following the idea described in [6].

– opt n with n ∈ {3, 4, 5, 6, 7, 8} (2n/n + 1): diagonal-free model obtained from split
n by (manually) removing some guards, updates and transitions about which it can
statically be established that they do not influence the set of reachable locations.

We performed our measurements on a machine running Windows 10 with a 2.6 GHz dual
core CPU and 8GB of RAM. We evaluated the algorithm configurations for both execution
time and the number of nodes in the resulting ART. The timeout (denoted by “–” in the tables)
was set to 300 s. The execution time shown in the following tables is the average of 10 runs,
obtained from 12 deterministic runs by removing the slowest and the fastest one. For each
model, the value belonging to the best configuration is typeset in bold.

5.1 Diagonal-freemodels

Performing location reachability checking on the models, Figure 1a shows the frequency
with which different relative standard deviation (RSD) values of execution time occur. It
can be seen from the plot that higher RSD values (> 5%) are relatively rare among the
measurements. Moreover, Figure 1b shows how the RSD of execution time relates to the
average execution time for each model and configuration (in this type of figures, each point
represents the average result for a given model and configuration). Aside from a few outliers
among the PAT models, it can be stated that higher RSD values belong to small average
execution times, as expected. Thus it is justifiable to base the comparison of configurations
on the average value.

As can be seen on Figure 2, on the selected benchmark set, having all other configuration
parameters fixed, clock refinement strategies FWITP and BWITP do not significantly differ
in performance. On both benchmarks, FWITP slightly outperforms BWITP in the size of the
generated state space. Moreover, for the MCTA models, FWITP, while for the PAT models,
BWITP performs slightly better in terms of execution time (note the logarithmic scale on

3 http://gki.informatik.uni-freiburg.de/tools/mcta/benchmarks.html.
4 https://www.it.uu.se/research/group/darts/uppaal/benchmarks.
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Fig. 2 Clock Refinement: BWITP vs. FWITP

the axes). An explanation for this is that in general, FWITP tends to perform less refinement
steps (as refinement is performed in a single iteration), whereas BWITP performs refinement
steps more cheaply (as no post-image computation is involved). In our experiments, the
two algorithms performed roughly the same number of refinement steps for the PAT models
(probably due to discovering the same or similar simple invariants), in which case BWITP has
an advantage. In the case of MCTA models however, in general, the number of refinement
steps performed was in favor of FWITP.

Figure 3 shows similar results for comparing the two interpolation-based strategies for
discrete refinement. Here, BWITP tends to perform better in terms of execution time. There-
fore, we are going to omit detailed results for clock refinement BWITP and discrete refinement
FWITP for the rest of the section.

Figure 4 compares the impact of the two search orders on performance. With respect to
execution time, DFS generally outperforms BFS on the MCTA models, whereas on the PAT
models, the performance of the two search orders is balanced. When considering the size of
the state space, the tendency is similar.
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Clock refinements LU and FWITP are compared on Figure 5. With respect to execution
time, LU performs better in category PAT, whereas FWITP performs better in categoryMCTA.
However, with respect to the size of the state space, FWITP outperforms LU.

Figure 6 shows the pairwise comparison of interpolation-based and explicit handling of
discrete variables. On theMCTAmodels, BWITP is always able to generate an—in some cases,
significantly—smaller state space. Unsurprisingly, the same reduction effect is not present
on PAT models, where there are only one or two discrete variables. Despite the significant
reduction in state space, on the models considered, aside from a couple of cases, BWITP
is somewhat slower. Beside the obvious overhead of running abstraction refinement, this
can be explained with the optimization of coverage checking applied in the explicit case, as
described above.

The detailed results for the PAT models are shown in Table 2. On these models, configu-
rations BLN and DLN usually perform best in terms of execution time. When considering the
size of the state space however, there is a small variability between configurations. Moreover,
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we point our that our results for configurations BLN and DLN are consistent with the results
presented in [22].

Detailed results for the MCTA models are shown in Table 3. Here, configurations DFN
or DFB give the fastest execution on most models. Moreover, configuration DFB generates
the least number of nodes in almost all cases, which highlights the advantages of our new
interpolation based algorithm presented first in [31].

5.2 Models containing diagonal constraints

We also evaluated how the different configurations are able to handle models with diagonal
constraints. As our benchmark, we used the diagonal version of Fischer’s mutual exclusion
algorithm, as presented in [28]. We considered two approaches:
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Table 3 Detailed results for MCTA models

Model BFB BFN BLB BLN DFB DFN DLB DLN

(a) Execution time (s)

bocdp 13.2 10.2 11.5 6.1 10.2 8.5 10.1 6.0

bocdpf 15.9 20.9 14.5 12.1 9.3 16.2 9.3 10.3

brp 13.4 12.9 9.5 7.1 17.8 20.2 18.7 8.7

c1 4.4 2.3 5.4 3.0 3.1 1.7 3.6 2.0

c2 8.7 5.5 11.8 6.5 6.2 4.0 7.0 4.3

c3 9.8 6.4 13.6 8.1 7.1 4.7 8.2 4.8

c4 70.7 46.6 117.8 82.7 41.7 29.3 50.6 33.6

e1 5.5 3.9 6.5 4.4 4.1 2.5 4.6 2.6

m1 2.7 2.2 5.2 3.4 1.2 1.0 1.9 1.8

m2 7.1 5.2 14.7 9.4 2.4 2.6 4.8 4.4

m3 8.1 6.0 17.2 9.8 3.0 2.6 5.9 4.7

m4 28.9 17.9 84.8 43.9 6.3 6.1 16.3 10.8

n1 2.9 2.6 5.5 3.8 1.3 1.3 1.9 1.9

n2 7.4 7.0 17.7 11.9 2.8 3.1 5.4 4.3

n3 8.4 6.8 17.7 12.2 3.0 3.5 5.5 5.5

n4 30.9 28.9 87.7 57.5 6.6 8.7 22.3 21.3

(b) Number of nodes

bocdp 32,639 94,801 33,030 96,460 29,846 84,643 33,341 97,462

bocdpf 38,492 212,225 40,083 209,430 26,544 183,402 30,230 197,234

brp 36,761 72,117 58,825 115,675 56,786 111,705 119,826 169,672

c1 17,156 20,967 27,058 32,963 14,973 18,614 18,292 22,968

c2 44,906 67,433 71,657 103,476 39,644 57,170 48,069 69,760

c3 50,713 86,285 81,524 136,015 46,593 76,335 56,833 95,548

c4 339,560 876,266 502,423 1,365,289 318,480 737,964 389,018 932,334

e1 24,677 31,247 37,105 47,199 20,299 23,657 23,931 27,513

m1 4394 8541 13,171 27,216 1901 3625 4970 15,233

m2 16,246 31,932 44,095 112,634 5673 15,471 16,603 60,995

m3 18,369 38,128 49,032 118,485 7181 16,189 20,291 68,091

m4 66,255 145,378 157,864 464,477 20,335 61,915 61,606 215,984

n1 4222 7645 13,731 26,467 1921 3898 4579 13,869

n2 15,648 33,054 49,197 122,680 5933 15,514 18,315 53,212

n3 17,177 32,493 48,007 122,178 6536 16,677 18,031 74,393

n4 63,674 150,864 160,825 493,530 18,798 69,308 74,430 326,938

1. Eager elimination of difference constraints by introducing new discrete variables (models
split n and manually optimized versions opt n).

2. Applying abstraction refinement to the model with diagonal constraints directly (models
diag n).

Table 4 shows our detailed measurement data for all three types of models. Models split n,
where diagonal constraints are eliminated, enable the comparison of our approach with state-
of-the-art approaches presented in [18,28]. We point out that our results for configuration
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Table 4 Detailed results for the diagonal version of Fischer’s protocol

Model BFB BFN BLB BLN DFB DFN DLB DLN

(a) Execution time (s)

diag 3 0.3 0.2 – – 0.3 0.2 – –

diag 4 0.7 0.6 – – 0.8 0.7 – –

diag 5 1.7 1.5 – – 2.0 1.8 – –

diag 6 5.7 4.9 – – 6.9 6.0 – –

diag 7 21.4 19.9 – – 27.7 25.7 – –

diag 8 111.8 104.1 – – 153.6 144.2 – –

split 3 0.3 0.7 0.4 0.6 0.5 0.8 0.4 0.6

split 4 1.0 7.1 1.9 5.5 1.9 5.4 2.5 5.3

split 5 3.1 – 19.9 259.4 11.8 – 45.4 –

split 6 11.6 – – – – – – –

split 7 58.5 – – – – – – –

split 8 – – – – – – – –

opt 3 0.3 0.3 0.3 0.2 0.4 0.4 0.3 0.2

opt 4 0.9 1.6 0.9 0.9 1.2 1.8 1.0 0.8

opt 5 2.8 12.7 4.3 4.8 7.8 15.8 4.5 4.1

opt 6 10.0 244.4 36.4 49.9 – – 43.9 39.3

opt 7 47.1 – – – – – – –

opt 8 293.5 – – – – – – –

(b) Number of nodes

diag 3 193 193 – – 220 220 – –

diag 4 933 933 – – 1262 1262 – –

diag 5 4181 4181 – – 5515 5515 – –

diag 6 17,815 17,815 – – 24,772 24,772 – –

diag 7 73,137 73,137 – – 100,147 100,147 – –

diag 8 291,593 291,593 – – 406,392 406,392 – –

split 3 333 1929 664 3137 492 2096 811 3322

split 4 1833 34,579 7144 68,999 3847 31,827 12,527 82,939

split 5 9388 – 90,877 1,572,515 27,135 – 207,627 –

split 6 45,566 – – – – – – –

split 7 211,828 – – – – – – –

split 8 – – – – – – – –

opt 3 252 619 350 621 372 639 399 655

opt 4 1330 5591 2591 5666 2305 6092 3268 5837

opt 5 6550 51,465 20,987 51,431 23,529 63,504 29,124 54,586

opt 6 30,634 494,997 178,954 474,498 – – 272,734 541,533

opt 7 137,788 – – – – – – –

opt 8 601,970 – – – – – – –

123



Configurable verification of timed automata… 33

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05
FWITP

B
W

IT
P

Category diag opt split

(a) Execution Time (ms)

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05
FWITP

B
W

IT
P

Category diag opt split

(b) Number of Nodes

Fig. 7 Clock Refinement: BWITP vs. FWITP

BLN are consistent with the results presented in [18]. In these models, by using valuation
interpolation, both execution times and the size of the state space can be significantly reduced.
In particular, configuration BFB significantly outperforms all the other configurations.

In general, all configurations benefited greatly from the manual optimization that we
applied for models opt n. However, using valuation interpolation still significantly improves
performance for all configurations. Moreover, configuration BFB is still by far the most
successful configuration. This also highlights the beneficial effects of combining abstraction
refinement strategies for clock and discrete variables, in line with our results in [31].

In case of models diag n, clock refinement strategy LU is not applicable. The other four
configurations, using FWITP for the handling of clocks, perform well regardless of search
strategy, with BFN being the fastest. In fact, in case of this particular model, not eliminating
diagonal constraints, and using zone interpolation seems to be the best of the examined
approaches.Moreover, as Figure 7, shows, there is a significant difference in the performance
of the two interpolation strategies, with FWITP having the better performance.

Finally, we point out that in case a model with diagonal constraints is analyzed by apply-
ing zone interpolation on its own (e.g. without zone splitting [5]), then termination is not
guaranteed. In particular, during our experiments, we found that the algorithm diverges on
the well-known example presented in [8].

6 Conclusions

In this paper, we presented an algorithmic framework for the lazy abstraction based location
reachability checking of timed automata with discrete variables. We formalized in our frame-
work several abstract domains and refinement strategies, both for clock and discrete variables,
including a novel strategy that propagates valuation interpolants forward (called forward val-
uation interpolation). We also formalized the combination of abstractions and proved their
properties. This framework allowed the straightforward implementation of efficient model
checkers using configurable combined strategies.

We performed empirical evaluation on 16 configurations that our tool currently supports
for 51 timed automatamodels, including ones that containmany discrete variables or diagonal
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constraints. Our results show that our framework offers configurations that are competitive in
terms of performance with the state-of-the-art. It turned out that for models with a significant
number of discrete variables (category MCTA) it is worth using forward zone interpolation,
combined with backward valuation interpolation. For the examined models with diagonal
constraints, using forward interpolation for the handling of clocks performs well. In case
of eager elimination of diagonal constraints by introducing new discrete variables, again a
combination of strategies (breadth-first search with forward zone interpolation and backward
valuation interpolation) is the most successful strategy. In general, using valuation interpo-
lation in this model category, both execution times and the size of the state space can be
significantly reduced.

According to themethod described in this paper, refinement is triggered upon encountering
a disabled transition. In the future, we intend to experiment with counterexample-guided
refinement for both the abstraction of discrete and continuous variables. In addition, we plan
to experiment with different abstract domains (e.g. intervals, octahedra, or polyhedra), and
investigate alternative refinement strategies.Moreover, we plan to exploremore sophisticated
strategies for finding covering states, as this can potentially yield considerable speedups for
our method.
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