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Abstract
Although finite state transducers are very natural and simple devices, surprisingly little is
known about the transducibility relation they induce on streams (infinite words). We collect
some intriguing problems that have been unsolved since several years. The transducibil-
ity relation arising from finite state transduction induces a partial order of stream degrees,
which we call Transducer degrees, analogous to the well-known Turing degrees or degrees
of unsolvability. We show that there are pairs of degrees without supremum and without
infimum. The former result is somewhat surprising since every finite set of degrees has a
supremum if we strengthen the machine model to Turing machines, but also if we weaken it
to Mealy machines.

1 Introduction

This paper is dedicated to Rob van Glabbeek, in the hope that the problems outlined in
our paper evoke his interest, hopefully with the result that he applies his widely known
problem solving powers to them. The open problems reported here have withstood several
attempts to solve them. The problems arise in a very natural setting, centered around finite
state transducers, devices that are natural in applications dealing with transforming infinite
streams of symbols. In fact, we notice that in the general theory of automata we come across
a relative terra incognita as soon as we come to automata as transducers on infinite words.
Let us elaborate on this state of the art in automata theory.
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Automata can be used as acceptors and transducers. As acceptors they simply accept or
reject input words, and thereby define a language of accepted words. Transducers have a
richer output. They transform input words into output words, and thereby realise a function
on words.

Both aspects have been studied extensively for automata on finite words. There is also a
large body of research on automata on infinite words, streams for short. Streams defined by
finite automata, known as automatic sequences, play an important role in number theory.
Automata for defining languages of streams are known as stream automata or ω-automata.
There are various versions of stream automata, in particular Büchi,Muller, Rabin and parity
automata. They are the foundation of model checking and formal verification as they allow
for describing the (un)acceptable behaviours of non-terminating systems such as operating
systems, control systems or hardware.

Surprisingly, finite automata for transforming streams have hardly been studied. An excep-
tion are Turing machines. The stream transformation realised by Turing machines gives rise
to a pre-order on the set of streams: here, for streams u, w, we have u ≥ w if u can be
transformed into w by some Turing machine. The ensuing hierarchy of stream degrees has
been extensively studied and is known as Turing degrees or degrees of unsolvability. Beyond
Turing machines, there has been almost no research on the power of finite automata, such as
finite state transducers or Mealy machines, for transforming streams.

In this paper, we are interested in the hierarchy of stream degrees arising from finite state
transduction. Again, we are interested in the pre-order ≥ on streams where u ≥ w if u
can be transformed into w by some finite state transducer. Two streams u, w are considered
equivalent, denoted u ≡ w, if u ≥ w and w ≥ u. The equivalence classes of ≡ are called
degrees, and ≥ induces a partial order on these degrees (which we also denote by ≥). We
refer to this hierarchy as the Transducer degrees. We are interested in the structural properties
of this partial order; basic features concern the existence of:

(i) bottom degree, the set of ultimately periodic streams

{uvvv · · · | u, v finite words, v non-empty};
(ii) top degree, not existing (however, the sub-hierarchy of computable degrees has a top-

degree);
(iii) infinite chains, ascending and descending;
(iv) atoms, that is, minimal non-bottom degrees;
(v) infima and suprema, these are the greatest lower and least upper bounds;

Some of these questions have been addressed in previous work; see further [23]. In this paper
we are interested in the existence of infima and suprema. Clearly this is analogous to the
existence of greatest common divisor and least common divisor on the natural numbers. In
this analogy, our atoms are the prime numbers. The present situation is different from the
one of natural numbers in that suprema and infima now do not always exist. Indeed, we will
construct, in a single joint construction, a pair of degrees that has no infimum and a pair of
degrees that has no supremum. This result was announced in a preliminary way, still without
proof, in [23].

1.1 Outline and contribution

In Sect. 2, we introduce finite state transducers and state some challenging questions that
already arise at this stage. In Sect. 3, we introduce the partial order of Transducer degrees
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Transducer degrees: atoms, infima and suprema 729

arising from the stream transformation realised by finite state transducers, and we describe
the results of an investigation [12,17,19,20] of the appearance of atoms in the hierarchy of
degrees. In Sects. 4 and 5, we introducemass products as computational tools to reason about
finite state transduction of spiralling streams. In Sect. 6, we characterise the transducts of
spiralling streams in terms of displaced mass products.

In Sect. 7, we answer a question from [17] by showing that there are pairs of degrees
without infimum and without supremum. The existence of such pairs of degrees without
supremum is somewhat surprising since every finite set of degrees has a supremum if we
strengthen the transformations to Turing machines (yielding Turing degrees), but also if
we weaken it to Mealy machines (yielding Mealy degrees). In both cases, a supremum of
a pair of degrees {u≡, w≡} can be obtained by taking the degree of the stream of pairs
(u(0), w(0)) ; (u(1), w(1)) ; · · ·

1.2 Related work

This paper is concerned with stream transformation via finite state transducers. We refer to
the hierarchies of stream degrees arising from finite state transducers, Turing machines and
Mealy machines as Transducer degrees, Turing degrees andMealy degrees, respectively.

TheTuring degrees have been the subject of extensive research, see for instance [30,33,34].
In contrast,Mealy degrees andTransducer degrees have hardly been studied. The partial order
of Mealy degrees is studied by G. Rayna [31] and A. Belov [2]. The Transducer degrees have
been studied in [12,17,19,20,23]. The papers [12,17,19,20] are concerned with atoms in this
hierarchy. A comparison of Transducer degrees with the Turing degrees can be found in [23].
An interesting result about finite state transduction is due to M. Dekking [6] who has shown
that every finite state transduct of a morphic stream is again morphic (or finite). Thusmorphic
sequences form a subhierarchy of the Transducer degrees.

Bosma and Zantema [5] study a hierarchy of two-sided infinite sequences arising from the
transformation realised by permutation transducers. While the ultimately periodic sequences
form the bottom degree under ordinary transduction, they split into three unpointed and seven
pointed equivalence classes under permutation transduction. This study is continued in [39]
with the focus on one-side infinite sequences.

2 Finite state transducers

Let us start with describing finite state transducers and give some examples how they operate
on infinite streams. Already at this initial stage there are some easily stated but hard open
problems.

A finite state transducer (FST) is a deterministic finite automaton which reads the input
stream letter by letter, in each step producing an output word and changing its state. An
example of an FST is depicted in Fig. 1.

We write ‘a|w’ along the transitions to indicate that the input letter is a and the output
word isw. In a finite state transducer, the output word given by a transition can have arbitrary
length (also empty).1 The total output word is the concatenation of all the output words
encountered along the edges.

1 Thereby FSTs generalise the class ofMealy machines. The latter are restricted to output precisely one letter
in each step. The transducer shown in Fig. 1 is not a Mealy machine, and there exists no Mealy machine
implementing this transformation.
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q0

q1

q2

0|ε

1|ε

1|10|1

1|0

0|0

Fig. 1 A finite state transducer realizing the difference of consecutive bits modulo 2

Example 1 The transducer in Fig. 1 computes the difference of consecutive bits modulo 2. It
transforms (transduces) the Thue–Morse sequenceM into the period doubling sequence PD:

0 1 1 0 1 0 0 1 · · · = M

→ 1 0 1 1 1 0 1 · · · = PD

The Thue–Morse sequence M is the fixed point of the morphism

{0 �→ 01, 1 �→ 10}
starting in 0. It can be obtained as the limit of iterating this morphism on the starting word 0:

0

�→ 01

�→ 0110

�→ 01101001

...

Likewise, the period doubling sequence PD can be obtained as the limit of iterating the
morphism {0 �→ 11, 1 �→ 10} on the starting word 1.

Formally, finite state transducers are defined as follows. (For a thorough introduction to
finite state transducers,we refer to [1,32].)Wewrite ε for the emptyword andΣ∞ = Σ∗∪ΣN

for the set of finite and infinitewords.Weonly consider sequential transducers andwill simply
speak of finite state transducers.

Definition 2 A finite state transducer A = 〈Σ,Δ, Q, q0, δ, λ〉 consists of
(i) a finite input alphabet Σ ,
(ii) a finite output alphabet Δ,
(iii) a finite set of states Q,
(iv) an initial state q0 ∈ Q,
(v) a transition function δ : Q × Σ → Q, and
(vi) an output function λ : Q × Σ → Δ∗.
Whenever Σ and Δ are clear from the context, we write A = 〈Q, q0, δ, λ〉.

We extend the output and transition functions of the transducer from single letters to finite
and infinite input words as follows.

Definition 3 Let A = 〈Σ, Δ, Q, q0, δ, λ〉 be a finite state transducer.We extend the transition
function δ from Q × Σ → Q to Q × Σ∗ → Q by

δ(q, ε) = q δ(q, aw) = δ(δ(q, a), w) (q ∈ Q, a ∈ Σ,w ∈ Σ∗)
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Transducer degrees: atoms, infima and suprema 731

The output function λ is extended to Q × Σ∞ → Δ∞ by

λ(q, ε) = ε λ(q, aw) = λ(q, a) · λ(δ(q, a), w) (q ∈ Q, a ∈ Σ,w ∈ Σ∞)

Wesometimeswrite A(u) as shorthand forλ(q0, u). So the transducer A realises a function
A : ΣN → Δ∞.

2.1 Challenging questions

Although finite state transducers are a very simple and elegant form of automata, hardly
anything is known about their power in transforming streams. Even for simple examples
of streams, there exist no techniques to determine whether one can be transformed into the
other. To wit, consider the following problems:

Open Problem 1 Consider the period doubling sequence PD and drop every third element:

PD = 1011 1010 1011 1011 1011 · · ·
PD′ = 10 1 1 10 01 10 1 1 11 · · ·

It is easy to find a finite state transducer that transforms PD into PD’. Is the reverse also
possible, or is information irrevocably lost?

Open Problem 2 The Mephisto waltz sequence

W = 001001110001001110110110001 · · ·
is obtained as the limit of iterating the morphism {0 �→ 001, 1 �→ 110} on the starting word
0. Can the Thue–Morse sequence M be transformed intoW via a finite state transducer?2 Is
the reverse possible?

There are currently no techniques available to answer such simple questions. We will come
back these problems in the next section.

3 Transducer degrees

The transducibility relation arising from finite state transduction induces a partial order of
stream degrees, which we call Transducer degrees. Here a stream u is at least as complex as
w if u can be transformed into w by a finite state transducer. If the reverse is also possible,
then both streams have the same complexity. A degree is an equivalence class of streams that
have the same complexity.

The Transducer degrees are analogous to—but much more fine-grained than—the
recursion-theoretic degrees of unsolvability or Turing degrees. Turing degrees have been
the subject of extensive research in the 60’s and 70’s of the last century with many fasci-
nating results and techniques (see for instance [27,30,33–36]). In the Turing degrees, sets
of natural numbers are compared by means of transducibility using Turing machines. Note
that a set of natural numbers is also a stream over the alphabet {0, 1} via its characteristic
function. Thus the degrees of unsolvability can equivalently be considered as a hierarchy of
stream degrees. Then we have Turing machines transforming streams into each other.

2 If such a transducer exists, then it must be an erasing transducer. That is, at least one of the output words
along the edges must be empty. A non-erasing transducer cannot do the transformation since it preserves
α-substitutivity [37].
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732 J. Endrullis et al.

For a complexity comparison, Turing machines are too strong. We are typically interested
in computable streams, but they are all identified by transducibility via Turing machines. In
the hierarchy of Turing degrees, all computable streams are trivialised in the bottom degree.
We are therefore interested in studying transducibility of streamswith respect to less powerful
devices, such as finite state transducers. A reduction of the computational power results in
a finer structure of degrees. This point of view is also pursued in [39], further restricting to
permutation transducers, leading to an even more refined hierarchy.

Here is the formal definition of the partial order of Transducer degrees.

Definition 4 Let Σ , Γ be finite alphabets, and u ∈ ΣN, w ∈ Γ N streams. Let A =
〈Σ,Δ, Q, q0, δ, λ〉 be a FST. We write u ≥A w if w = λ(q0, u). We write

u ≥ w ,

and say that w is a transduct of u, if there exists a FST A such that u ≥A w.
We write u ≡ w if a forth and a back transformation is possible, that is, u ≥ w andw ≥ u.

Thus,

≡ = (≥ ∩ ≤).

We say that streams related by ≡ are equivalent.

It is easily checked that ≡ forms an equivalence relation, and we refer to the equivalence
classes of ≡ as degrees.

Every stream over a finite alphabet is equivalent to some stream over {0, 1}. So, every
degree contains a representative from the set {0, 1}N. Thus, when investigating the partial
order of stream degrees, it suffices to consider streams over the alphabet 2 = {0, 1}.
Definition 5 The degree u≡ of a stream u ∈ 2N is the equivalence class of u with respect to
≡, that is:

u≡ = {w ∈ 2N | u ≡ w}.
We write 2N/≡ to denote the set of degrees {u≡ | u ∈ 2N}.

The transducibility relation ≥ induces a partial order on the set of degrees 2N/≡. We refer
to this partial order as Transducer degrees.

Definition 6 The Transducer degrees are the partial order 〈2N/≡, ≥ 〉 where
u≡ ≥ w≡ ⇐⇒ u ≥ w

for all words u, w ∈ 2N.

Figure 2 displays some initial results about the hierarchy of Transducer degrees that have
been obtained in [12,17,19,20,23], and points to some open problems. We use the following
notation: for f : N → N we define the stream

〈 f 〉 =
∞∏

i=0

10 f (i) = 10 f (0) 10 f (1) 10 f (2) · · · .

We say that f is the block function of 〈 f 〉. By a block we refer to an occurrence of a factor
in 〈 f 〉 of the shape 1 00 · · · 0︸ ︷︷ ︸

0 or more

that is followed by a 1.
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computable degrees

0
ultimately periodic words

atoms Q5

M PD′

sup?

〈n〉 〈n2〉 〈pk〉

〈nk〉
Q3

polynomials
of order k ≥ 3

Q4

Q1

Fig. 2 The partial order of Transducer degrees. Some open problems are indicated in red: 1, …, 5 refer to
open problems 1, …, 5, respectively. The blue nodes are degrees. Note that 〈n〉 and 〈n2〉 are atoms, while 〈nk 〉
is not an atom for k ≥ 3. The notation 〈 · 〉 is defined above. Here pk is a particular polynomial of order k. The
degree of 〈pk 〉 is an atom and all other polynomials of order k can be transduced to 〈pk 〉, but not vice versa
(color figure online)

We often write 〈 f (n)〉 to denote the sequence 〈n �→ f (n)〉. For instance:
〈n〉 = 1 10 100 1000 10000 100000 · · ·

〈n2〉 = 1 10 10000 1000000000 · · ·
The stream 〈n〉 is called ‘rarified ones’ in [26].

To get a better understanding of the hierarchies as mentioned, we discuss a few basic
properties: bottom degrees and atoms.

3.1 Initial observations

An initial study of this partial order of degrees has been carried out in [17]. The hierarchy
(displayed in Fig. 2) is not dense, not well-founded, there exist no maximal degrees, and a
set of degrees has an upper bound if and only if the set is countable. A comparison with the
well-known Turing degrees can be found in [23].

3.2 Bottom degree

The bottom degree 0 is a degree that is less than or equal to all other degrees:

0 bottom degree

other degrees

That is, for all degrees x we have 0 ≤ x. For the Turing degrees the bottom degree consists
of all computable streams. For the Transducer degrees, it consists of all ultimately periodic
streams, streams of the form uvvvv · · · for finite words u, v.
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734 J. Endrullis et al.

3.3 Atoms

An interesting concept is that of an atom degree, that is, a degree that is directly above the
bottom degree with nothing in-between:

0 bottom degree

atom degree

nothing in-between

Thus the atom degrees reduce only to 0 or themselves. Intuitively, the information content
of a stream residing in an atom degree is ‘indivisible’: whatever transducer is applied on this
stream, either the result is ultimately periodic (the structure is entirely destroyed), or there is
enough structure left for a transducer to reconstruct the original stream.

(i) In the Mealy degrees, there exist no atom degrees, see further [2].
(ii) In the Turing degrees, atoms are usually referred to as minimal degrees. A famous result

about Turing degrees, obtained by Spector [36], is the existence of an atom degree
strictly below the first Turing jump (the degree of the halting problem). Lacombe [33]
has extended the construction of Spector to show that there are continuum many atoms
in the Turing degrees. So, embedded in the Transducer degrees, these streams would be
uncomputable; hence above our focus of interest.

For the Transducer degrees, the existence of atoms has been investigated in the papers [12,
17,19,20]. We give a short account of our findings there. To discern atoms we focused on a
substructure of the degrees hierarchy inhabited by streams with polynomial block function.
We found that

(i) the degree of 〈n〉 is an atom,
(ii) the degree of 〈n2〉 is an atom, and
(iii) the degree of 〈nk〉 is not an atom for k ≥ 3.

Moreover, we found that for every k ≥ 1, there is a unique atom among the degrees of
polynomials of order k, namely the degree of 〈pk(n)〉 where

pk(n) =
k−1∑

i=0

(kn + i)k .

It turns out that for every polynomial q(n) of order k, we have 〈q(n)〉 ≥ 〈p(n)〉. So, the
degree of 〈p(n)〉 is the infimum of all degrees of polynomials of order k. This is illustrated
in Fig. 3.

So, the pk is somehow “generic”. We have

p1(n) = n

p2(n) = (2n + 0)2 + (2n + 1)2 = 8n2 + 4n + 1

...

Open Problem 3 How many degrees exist among polynomials of order k? What is the struc-
ture of the degrees of polynomials? In particular, is there a degree between 〈nk〉≡ and
〈pk(n)〉≡, for k ≥ 3?

Summarising, there is at least a countably infinite number of atom degrees. But it remains an
open problem whether there are continuum many.
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0

polynomials of order k (for k ≥ 3)

unique atom of order k
∑k−1

i=0 (kn + i)k

nk Q3

Fig. 3 Structure of degrees of polynomials of order k ≥ 3. The node 3 points to open problem 3 concerning
the view on this part of the degree structure

0 0

Fig. 4 Are these structures possible in the Transducer degrees?

3.4 Further problems for transducer degrees

Beyond these initial observations, the structure of the Transducer degrees is largely unex-
plored territory. There is a plethora of interesting further questions, including:

(i) Does every degree have a minimal cover, that is, a degree directly above with nothing
in-between?

(ii) When does a pair of degrees have a least upper (greatest lower) bound?
(iii) Is every degree a the greatest lower bound of a pair of degrees (�= a)?
(iv) Are there interesting dense substructures? Are there dense intervals? That is degrees

a and e with a � e such that for all b, d with a ≤ b � d ≤ e, there exists c with
b � c � d.

(v) How complex is the first-order theory in the language 〈≥, =〉?
(vi) Are there suitable notions of Kolmogorov complexity that have relations to the Trans-

ducer degrees.

Further, we want to highlight the following open questions.

Open Problem 4 Is the degree of Thue-Morse an atom?

Open Problem 5 Are there continuum many atoms? Does there exist some non-computable
atom? Here a degree is non-computable if it contains a non-computable stream (then all
streams in the degree are non-computable).

Open Problem 6 Can every finite partial order be embedded in the hierarchy? Can every
finite distributive lattice be embedded in the hierarchy? In particular:

(i) Is there a degree that has precisely three degrees below itself: two incomparable degrees
and the bottom degree?

(ii) Is there a degree that has precisely two degrees below itself?

Structures (i) and (ii) are displayed in Fig. 4 on the left and right, respectively.
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4 The algebra of masses

To introduce our counterexample (to the existence of suprema and infima in the Transducer
degrees) in the next section, we need some preparations. In particular, we need certain linear
operations on functions f : N → Q which we refer to as mass products. Many of these
tools are from [12,19,20]. However, we simplify the presentation and strengthen some of the
results.

4.1 Mass products and displacements

Definition 7 A weight is a non-empty tuple of non-negative rational numbers. A weight
〈a0, . . . , ak−1〉 is called zero if a0, . . . , ak−1 = 0.

Let α = 〈α0, . . . , α
−1〉 and β = 〈β0, . . . , β
′−1〉 be tuples. We define

– the length |α| = 
,
– the rotation α(0) = α and α(n+1) = 〈α1, . . . , α
−1, α0〉(n),
– the concatenation α ; β = 〈α0, . . . , α
−1, β0, . . . , β
′−1〉, and
– the unfolding αn for n > 0 by induction: α1 = α and αn+1 = α ; αn .

Definition 8 A mass is a non-empty tuple of weights. A positive mass consists only of non-
zero weights.

For a mass −→
α = 〈α0, . . . ,α�−1〉, we define

||−→α || = |α0| + |α1| + · · · + |α�−1|,
that is, the sum of the lengths of its entries.

Let A be a set and f : N → A a function. We write Sk( f ) for the k-th shift of f , defined
by Sk( f )(n) = f (n+k). So, Sk( · ) is the operator removing the first k elements of a stream.

Our goal is to realise periodic transformations on streams as in Example 9. Here ‘mass
products’ are a general format to transform streams by multiplying and grouping consecutive
elements together, and ‘displacements’ are used for adding constants to the elements of
a stream in a periodic fashion. Mass products and displacements are best understood by
examples.

Example 9 Define f : N → Q by f (n) = n2 for every n ∈ N. Let −→α = 〈α0,α1〉 be a mass
where α0 = 〈1, 2, 3〉 and α1 = 〈0, 1〉. Moreover, let β = 〈4, 1〉. Then β ⊕ (

−→
α ⊗ f ) can be

visualised as
f · · ·0 1 4 9 16 25 36 49 64 81

−→
α ⊗ f · · ·14 16 244 81

β ⊕ (
−→
α ⊗ f )

· · ·

18 17 248 82

×1 ×2 ×3 ×0 ×1 ×1 ×2 ×3 ×0 ×1

+4 +1 +4 +1

The weight α0 = 〈1, 2, 3〉 means that 3 consecutive entries are added while being multiplied
by 1, 2 and 3, respectively.

A finite state transducer that realises the displaced mass product β ⊕ (
−→
α ⊗ f ) on the

corresponding block streams is shown in Fig. 5. For every f : N → N, the transducer
transforms the block stream 〈 f 〉 to 〈β ⊕ (

−→
α ⊗ f )〉.
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Transducer degrees: atoms, infima and suprema 737

q0 q1 q2 q3 q4

0|0 0|00 0|000 0|ε 0|0

1|ε 1|ε 1|00001 1|0

1|1

Fig. 5 A finite state transducer that realises the mass product and displacement given in Example 9 on the
corresponding block stream

The implementation of these transformations is entirely straightforward, the details are as
in the following definition.

Definition 10 Let f : N → Q be a function, −→
α = 〈α0,α1, . . . ,αm−1〉 a mass, α0 =

〈a0, . . . , ak−1〉 a weight, and β = 〈b0, b1, . . . , bm−1〉 ∈ Q
+.

(i) The scalar product α0 · f ∈ Q is defined by

α0 · f = a0 f (0) + a1 f (1) + · · · + ak−1 f (k − 1) .

(ii) The mass product −→
α ⊗ f : N → Q is defined by induction on n:

(
−→
α ⊗ f )(0) = α0 · f

(
−→
α ⊗ f )(n + 1) = (

−→
α (1) ⊗ S |α0|( f ))(n) (n ∈ N)

(iii) The displacement β ⊕ f : N → Q is defined by induction on n:

(β ⊕ f )(0) = f (0) + b0

(β ⊕ f )(n + 1) = (β(1) ⊕ S1( f ))(n) (n ∈ N)

Remark 11 The transducer in Fig. 5 can also be viewed as an infinitary term rewrite sys-
tem [18,24] operating on infinite words. The rewrite rules are:

q00 → 0q0 q10 → 00q1 q20 → 000q2 q30 → q3 q40 → 0q4
q01 → q1 q11 → q2 q21 → 00001q3 q31 → 0q4 q41 → 1q0.

Rewrite systems are more powerful than transducers. This flexibility can be convenient for
reasoning about transformations of infinite words (or infinite terms). On the other hand, the
increased power results in undecidability of many properties such as equivalence [9,15,16].

As a rewrite system, the properties termination (normalisation) and confluence are of
interest; see for instance [7,21,22,28,38]. This rewrite system above is not infinitary normal-
ising [11,29] on all terms due to the term q30000 · · · admitting an infinite divergent rewrite
sequence. So, when viewing erasing transducers as rewrite systems, the notion of interest is
that of local termination [8,25] and local productivity [13,14,40] on a given set of starting
terms.

4.2 Computing withmass products

The following definitions help computing with mass products.
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Definition 12 For a mass −→
α = 〈α0, . . . ,α�−1〉 we define

〈α|0, α|1, . . . , α|||−→α ||−1〉 = α0 ; · · · ; α�−1.

So, α|i denotes the i-th element of the weight α0 ; · · · ; α�−1 (we count from 0).

Example 13 Let −→α = 〈〈3, 1, 5〉, 〈1〉, 〈2, 4〉〉. Then we have
α|0 = 3 α|1 = 1 α|2 = 5 α|3 = 1 α|4 = 2 α|5 = 4.

For a mass −→
α = 〈α0, . . . ,α�−1〉, we define a function ϕ(

−→
α , · ) that maps the index i of

an element α|i to the number j of the weight α j that α|i belongs to.
Definition 14 For a mass −→

α = 〈α0, . . . ,α�−1〉, we define a function
ϕ(

−→
α , · ) : {0, . . . , ||−→α || − 1} → {0, . . . , |−→α | − 1}

by

ϕ(
−→
α , i) = min{k ∈ {0, . . . , 
 − 1} | i < |α0| + · · · + |αk|}

for every 0 ≤ i < ||−→α ||.
Example 15 Let −→α = 〈〈3, 1, 5〉, 〈1〉, 〈2, 4〉〉. Then

ϕ(
−→
α , 0) = 0 ϕ(

−→
α , 1) = 0 ϕ(

−→
α , 2) = 0

ϕ(
−→
α , 3) = 1 ϕ(

−→
α , 4) = 2 ϕ(

−→
α , 5) = 2.

It is not hard to see that this amounts to simply stepping through a mass and recording the
number of the weight you are in. So, −→α yields 000122 for the steps 012345.

The following lemma provides an alternative way to compute mass products.

Lemma 16 Let −→α = 〈α0, . . . ,α�−1〉 be a mass. Then

(
−→
α ⊗ f )(h|−→α | + h′) =

∑

i∈{0,...,||−→α ||−1}
ϕ(

−→
α ,i)=h′

(
α|i · f (h||−→α || + i)

)

for every f : N → Q, h ∈ N and h′ ∈ {0, . . . , |−→α | − 1}. ��
Example 17 We consider the mass product from Example 9. Let −→α = 〈α0,α1〉 where α0 =
〈1, 2, 3〉 and α1 = 〈0, 1〉. Then we have

α|0 = 1 α|1 = 2 α|2 = 3 α|3 = 0 α|4 = 1

ϕ(
−→
α , 0) = 0 ϕ(

−→
α , 1) = 0 ϕ(

−→
α , 2) = 0 ϕ(

−→
α , 3) = 1 ϕ(

−→
α , 4) = 1.

and |−→α | = 2, ||−→α || = 5. We compute (
−→
α ⊗ f )(3) = (

−→
α ⊗ f )(1|−→α | + 1):

(
−→
α ⊗ f )(1|−→α | + 1) =

∑

i∈{0,...,||−→α ||−1}
ϕ(

−→
α ,i)=1

(
α|i · f (1||−→α || + i)

)

= α|3 · f (1||−→α || + 3) + α|4 · f (1||−→α || + 4)

= 0 · 64 + 1 · 81 = 81.
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4.3 Properties of mass products

Unfolding a mass does not change its semantics.

Lemma 18 We have −→
α ⊗ f = −→

α n ⊗ f for every mass −→
α , function f : N → Q and natural

number n > 0. ��
By definition of mass products we have

S (
−→
α ⊗ f ) = −→

α (1) ⊗ S |α0|( f ). (1)

The following lemma generalises this to arbitrary shifts.

Lemma 19 Let f : N → Q and −→
α = 〈α0, . . . ,α�−1〉 a mass. Then

Sh|−→α |+h′
(
−→
α ⊗ f ) = −→

α (h′) ⊗ Sh||−→α ||+∑h′−1
i=0 |αi |( f )

for every h ∈ N and h′ ∈ {0, . . . , |−→α | − 1}.

Proof The claim is obvious for h′ = 0. For h′ > 0 it follows from (1) by induction on h′. ��

4.4 Composition of mass products

We have already defined how a mass
−→
β is applied to a function f : N → Q (a stream of

rational numbers) with the result a function
−→
β ⊗ f . Often we need to iterate such products,

obtaining for a second mass −→
α the product

−→
α ⊗ (

−→
β ⊗ f ).

In analogywith ordinary function composition, satisfying ( f ◦g)(x) = f (g(x)) for functions
f , g, it will be convenient to have likewise a composition of masses, again denoted with ⊗,
so that we have the ‘associative rule’

−→
α ⊗ (

−→
β ⊗ f ) = (

−→
α ⊗ −→

β ) ⊗ f .

Note that the left-hand side is already defined, but the right-hand side not yet; we have to

define −→
α ⊗ −→

β .

Bearing in mind how
−→
β ⊗ f is defined in Definition 10, it is straightforward how to

proceed, in particular viewing the ‘tripod’ picture inExample 9.Allwe have to do is pipelining

this tripod (in general ‘n-pods’ in periodic repetition) construction for
−→
β with a second layer

for −→
α as in the following example and figure. Having this double layered tripod processing,

we must then describe the effect of the two layers, for masses −→
α and

−→
β , into a single layer,

a mass called −→
α ⊗ −→

β . It is then clear by the construction that indeed −→
α ⊗ (

−→
β ⊗ f ) =

(
−→
α ⊗ −→

β ) ⊗ f .

Of course, the extraction of the precise formal definition of −→
α ⊗ −→

β requires meticulous
care, but in principle is straightforward based on the periodical repetitions of the weights

in both masses −→
α and

−→
β . We give an example that displays the intuition, and provide the

ensuing formal definition.
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f ···

→
β ⊗ f ···

α ⊗ (
→
β ⊗ f) ···

9 16 25 36 49 64 81 100 121 144 160 176

14 16 244 81 674 176

44 244 836 176

1 2 3 0 1 1 2 3 0 1 1 2 3 0 1

2 1 1 2 1 1

f ···

(→α ⊗ →
β ) ⊗ f ···

0 1 4

0 1 4 9 16 25 36 49 64 81 100 121 144 160 176

44 244 836 176

2 4 6 0 1 1 2 3 0 2 1 2 3 0 1

repetition

Fig. 6 The composition of masses derived from a two-layered ‘tripod’ construction

Example 20 Continuing Example 9, let −→α = 〈α0,α1〉 and −→
β = 〈β0,β1〉, where

α0 = 〈2, 1〉 β0 = 〈1, 2, 3〉
α1 = 〈1〉 β1 = 〈0, 1〉.

The composition −→
α ⊗ −→

β can be derived by the two-layered ‘tripod’ construction displayed

in Fig. 6. We unfold (repeat) the masses −→
α and

−→
β such that we have ||−→α || = |−→β |; then the

tripods align and there is a repetition. Afterwards the edges are ‘composed’ by multiplying
the labels along the path. We derive

−→
β ⊗ −→

α = 〈〈2, 4, 6, 0, 1〉, 〈1, 2, 3〉, 〈0, 2, 1, 2, 3〉, 〈0, 1〉〉.
See Example 23 for the formal computation.

We now derive a formal definition of the composition −→
α ⊗ −→

β which follows closely the
idea of the construction displayed in Fig. 6.

Definition 21 For a ∈ Q≥0 and a weight α = 〈α0, . . . , α
−1〉, we define:
a · α = 〈a · α0, . . . , a · α
−1〉 .

If
−→
β = 〈β0, . . . ,β�−1〉 is a mass, we define the scalar product

α · −→
β = (α0 · β0) ; · · · ; (α
−1 · β�−1).

Definition 22 The product −→
α ⊗ −→

β of masses −→
α and

−→
β is defined as follows. Let −→

α =
〈α0, . . . ,α�−1〉 and −→

β = 〈β0, . . . ,β�′−1〉.
If ||−→α || = |−→β |, define

−→
α ⊗ −→

β = (α0 · −→
γ0 ) ; (α1 · −→

γ1 ) ; · · · ; (α�−1 · −−→
γ�−1),

where, for 0 ≤ i < 
,

−→
γi = 〈βki ,βki+1, . . . ,βki+|αi |−1〉
ki = ||〈α0,α1, . . . ,αi−1〉|| = |α0| + |α1| + · · · + |αi−1|.
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If ||−→α || �= |−→β |, define
−→
α ⊗ −→

β = −→
α c/||−→α || ⊗ −→

β c/|−→β |,

where c is the least common multiple of ||−→α || and |−→β |.

Example 23 We continue Example 20. We compute −→
α ⊗ −→

β . We have ||−→α || = 3 and

|−→β | = 2. Thus, we have to unfold −→
α twice and

−→
β thrice:

−→
α 2 = 〈α0,α1,α0,α1〉 −→

β 3 = 〈β0,β1,β0,β1,β0,β1〉.
Then

−→
α ⊗ −→

β = −→
α 2 ⊗ −→

β 3

= 〈α0,α1,α0,α1〉 ⊗ 〈β0,β1,β0,β1,β0,β1〉
= (α0 · 〈β0,β1〉) ; (α1 · 〈β0〉) ; (α0 · 〈β1,β0〉) ; (α1 · 〈β1〉)
= 〈〈2, 4, 6, 0, 1〉, 〈1, 2, 3〉, 〈0, 2, 1, 2, 3〉, 〈0, 1〉〉.

Lemma 24 We have −→
α ⊗ (

−→
β ⊗ f ) = (

−→
α ⊗ −→

β ) ⊗ f for every function f : N → Q, and

all masses −→
α ,

−→
β .

Proof Left to the reader; see the construction in Fig. 6 and Example 20. ��

4.5 Operations that leave the degree unchanged

Displacements leave the degree of the associated block sequence unchanged.

Lemma 25 We have 〈 f 〉 ≡ 〈β ⊕ f 〉 for every f : N → Q≥0 and every β ∈ Q
+ such that

β ⊕ f is non-negative.

Proof Finite state transducers can add (and remove) a constant amount of zeros to (from)
blocks 10 · · · 0 in a periodic fashion. ��

The next lemma enables us to ‘drop’ zero weights from masses, while leaving the degree
of the corresponding block stream unchanged.

Lemma 26 Let −→
α = 〈α0, . . . ,α�−1〉 be a mass such that 
 ≥ 2 and αk is zero for some

0 ≤ k < 
.

(i) If k > 0, define

−→
α′ = 〈α0, . . . ,αk−2,β,αk+1, . . . ,α�−1〉 β = αk−1 ; αk.

(ii) If k < 
 − 1, define

−→
α′ = 〈α0, . . . ,αk−1,β,αk+2, . . . ,α�−1〉 β = αk ; αk+1.

In both cases, we have 〈−→α ⊗ f 〉 ≡ 〈−→α′ ⊗ f 〉 for every f : N → N.
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Proof Let f : N → N. Let g = −→
α ⊗ f and g′ = −→

α′ ⊗ f . Since αk is zero, we have that
g(k + 
n) = 0 for every n ∈ N. We consider the cases (i) and (ii).

For case (i), the mass
−→
α′ is obtained from −→

α by merging (concatenating) the weights

αk−1 and αk. Likewise, for case (ii), the mass
−→
α′ is obtained from −→

α by concatenating αk
and αk+1.

In both cases, thinking of g and g′ as sequences of natural numbers, it follows that g′
is obtained from g by dropping the elements at indices k + 
n for n ∈ N. As we have
g(k + 
n) = ak for every n ∈ N, it follows that 〈g〉 ≡ 〈g′〉 since a finite state transducer can
easily realise the periodic insertion or removal of blocks of size 0. Thus, 〈−→α ⊗ f 〉 ≡ 〈−→α′ ⊗ f 〉
in both cases. ��
Example 27 To illustrate Lemma 26, let

−→
α = 〈〈1, 2〉, 〈0, 0〉, 〈5〉, 〈2, 3〉〉.

Then, in the lemma, we have

(i)
−→
α′ = 〈〈1, 2, 0, 0〉, 〈5〉, 〈2, 3〉〉, or

(ii)
−→
α′ = 〈〈1, 2〉, 〈0, 0, 5〉, 〈2, 3〉〉.

In both cases, we have 〈−→α ⊗ f 〉 ≡ 〈−→α′ ⊗ f 〉 for every f : N → N.

Theorem 28 Let −→
α be a mass containing at least one non-zero weight. Then there exists a

positive mass
−→
α′ such that

〈−→α ⊗ f 〉 ≡ 〈−→α′ ⊗ f 〉
for every f : N → N.

Proof By repeated application of Lemma 26 we can drop all zero weights from α. This yields

〈−→α ⊗ f 〉 ≡ 〈−→α′ ⊗ f 〉 for mass
−→
α′ consisting only of non-zero weights. ��

5 The algebra of spiralling functions

For our construction, we consider the subhierarchy of degrees based on the interesting class
of spiralling number-theoretic functions [3,4,12] and as a computational device, a form of
scalar products.

Definition 29 A function f : N → N is called spiralling if

(i) limn→∞ f (n) = ∞, and
(ii) for every m ≥ 1, the function n �→ f (n) mod m is ultimately periodic.

A stream 〈 f 〉 is called spiralling whenever f is spiralling.

Spiralling functions are called ‘cyclically ultimately periodic’ in the literature, see for
instance, [3,4].3 The class of spiralling functions is closed under addition and multiplica-
tion. It is also closed under the addition of constants and the multiplication with non-zero

3 The papers [3,4] consider regularity preserving operations on regular languages. There spiralling functions
are employed in the context of regularity preserving filter operations. See also [10] for functions that preserve
but do not reflect regularity.
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constants. For instance, polynomials with natural numbers as coefficients are spiralling (if
they are not constant).

Note that for every f : N → N and d ∈ N>0, 〈 f 〉 ≡ 〈d · f 〉. So, we may ignore constant
factors as they do not change the degree of the stream. This enables us to use functions
f : N → Q≥0 with, as it were, ‘rational block size’, as long as there exists d ∈ N>0 such
that d · f : N → N.

Definition 30 A function f : N → Q≥0 has a common denominator if there exists d ∈ N>0

such that d · f (n) ∈ N for every n ∈ N.
For a function f : N → Q≥0 with a common denominator, we define

[ f ] = d · f and 〈 f 〉 = 〈[ f ]〉,
where d ∈ N>0 is minimal with the property d · f (n) ∈ N for every n ∈ N.

Definition 31 A function f : N → Q≥0 is called spiralling if

(i) f has a common denominator, and
(ii) [ f ] is spiralling.
We write to denote the set of spiralling function from N → Q≥0. We use

N
to denote

the spiralling functions from N → N.

Definition 32 A function f : N → Q is called non-negative if f (n) ≥ 0 for every n ∈ N.

The next two lemmas follow straightforwardly by the respective definitions and elementary
arithmetic. The existence of a common denominator is preserved under displacements and
mass products.

Lemma 33 Let f : N → Q≥0 be a function with common denominator. Let −→
α be a mass,

and let β ∈ Q
+ such that β ⊕ f is non-negative. Then the functions −→

α ⊗ f and β ⊕ f have
a common denominator. ��

The class of spiralling sequences is closed under shifts, displacements and mass products
with positive masses.

Lemma 34 Let f ∈ . Then

(i) Sn(f) ∈ for every n ∈ N,

(ii) β ⊕ f ∈ for every β ∈ Q
+ such that β ⊕ f is non-negative, and

(iii)
→α ⊗ f ∈ for every positive mass −→

α . ��

Lemma 35 For every positive integer p, and f ∈ N, (n �→ pf(n)) ∈ N.

Proof Let m ∈ N. We show that p f (n) is ultimately periodic modulo m. By the pigeonhole
principle, there are a, b > 0 such that pa ≡ pa+b(modm). Hence, we have () pa

′ ≡
pa

′+kb(modm) for all a′ ≥ a and k ∈ N. Since f is ultimately periodic modulo b, there
exist n0, r ∈ N such that f (n) ≡ f (n + r)(mod b) for all n ≥ n0. Now let N ≥ n0 be such
that f (n) > a for all n ≥ N . Then for all n > N , there exist a′ ≥ a and k1, k2 ∈ N such
that f (n) = a′ + k1b and f (n + r) = a′ + k2b. Then by () we conclude p f (n) ≡ pa

′ ≡
p f (n+r)(modm). ��
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Clearly, the identity function is spiralling, hence, by Lemma 35, pn is spiralling. A second
application of the lemma yields that also ppn is a spiralling function.

Remark 36 The condition that limn→∞ f (n) exists in the definition of spiralling is necessary
for Lemma 35. For a counterexample, consider the function f : N → N given by f (n) = 1 if
n = k!+1 for some k, and f (n) = n otherwise. Letm ∈ N. Then∀k ≥ m, k!+1 ≡ 1(modm),
and hence f (n) ≡ n(modm) for large enough n ∈ N. This function f is ultimately periodic
modulo every m ∈ N, but it has no limit. Then 2 f (n) ≡ 2(mod 4) if and only if n is of the
form n = k! + 1, thus not periodic.

6 Characterisation of transducts of spiralling sequences

In this section, we characterise the transducts of spiralling sequences in terms of mass prod-
ucts.

The following theorem characterises transducts of spiralling sequences up to equivalence
in terms of displaced mass products.

Theorem 37 ([12]) Let f ∈ , and σ ∈ 2N. We have 〈 f 〉 ≥ σ if and only if

σ ≡ 〈β ⊕ (
−→
α ⊗ Sn0( f ))〉

for some n0 ∈ N, a mass −→
α and β ∈ Q

|−→α |.

For our purposes, we require a slight strengthening of this theorem ensuring that the
transduct is either ultimately periodic or spiralling.

Theorem 38 Let f ∈ , and σ ∈ 2N. We have 〈 f 〉 ≥ σ if and only if

(i) σ is ultimately periodic, or
(ii) σ ≡ 〈−→α ⊗ Sn0( f )〉 for some n0 ∈ N, and a positive mass −→

α .

In the latter case, we have
→α ⊗ Sn0(f) ∈ by Lemma 34.

Proof The direction ‘⇐’ follows from Theorem 37.
For ‘⇒’, let f ∈ and let σ ∈ 2N be not ultimately periodic. By Theorem 37 and

Lemma 25 we have σ ≡ 〈−→α ⊗ Sn0( f )〉 for some n0 ∈ N, and a mass −→
α . As σ is not

ultimately periodic, −→α contains some non-zero weights. By Theorem 28 we conclude that

σ ≡ 〈−→α ⊗ Sn0( f )〉 ≡ 〈−→α′ ⊗ Sn0( f )〉 for some positive mass
−→
α′ . ��

Theorem 38 characterises transducts of spiralling sequences up to equivalence. The fol-
lowing theorem strengthens the characterisation (equivalence is replaced by shifts) for the
case the transduct is also a spiralling sequence.

Theorem 39 ([19]) Let f, g ∈ . Then 〈g〉 ≥ 〈 f 〉 if and only if some shift of f is a dis-

placement of a mass product of a shift of g, that is:

Sn0( f ) = β ⊕ (
−→
α ⊗ Sm0(g)) (2)

for some n0,m0 ∈ N, a mass −→
α and β ∈ Q

|−→α |.
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τ1 τ2

σ1 σ2

γ

τ1 τ2

σ1 σ2

γ

Fig. 7 The idea behind the construction to show that there are pairs of degrees without supremum, and pairs
of degrees without infimum; the degree γ does not exist

Theorem 38 states that every transduct of a spiralling stream is either ultimately periodic
(in the bottom degree) or again equivalent to a spiralling stream. So, the set of degrees con-
taining spiralling streams is closed under transduction and thus forms a subhierarchy of the
Transducer degrees. For understanding the structure of this subhierarchy it suffices to under-
stand when spiralling streams can be transduced into each other. Theorem 39 characterises
this inter-transducibility of spiralling streams in terms of displaced mass products:

For spiralling functions f , g we have 〈g〉 ≥ 〈 f 〉 if and only if some shift of f is the
displaced mass product of some shift of g.

So, the interesting question is: what preorder does equation (2) induce on the set of spiralling
functions?

7 Infima and suprema

After our account of the presence of atom degrees, a next natural focus point of our attention
is the question whether the degree hierarchy has suprema and infima for pairs of degrees.
Here another contrast with Turing degrees and Mealy degrees manifests itself. While these
last hierarchies do possess suprema for every finite set of degrees, we show that this is not
the case for Transducer degrees, and thereby answers a question of [17].

We now present two counterexamples for the price of one. We give one construction that
yields at the same time that there are pairs of degrees without infimum and pairs of degrees
without supremum. The idea of the construction is illustrated in Fig. 7.

We construct streams σ1, σ2, τ1, τ2 in such a way that the degrees σ≡
1 , σ≡

2 are upper
bounds of {τ≡

1 , τ≡
2 }, and the following property holds:

() there exists no degree γ ≡ that is at the same time a lower bound of {σ≡
1 , σ≡

2 } and an
upper bound of {τ≡

1 , τ≡
2 }.

Observe that any infimum of {σ≡
1 , σ≡

2 } or supremum of {τ≡
1 , τ≡

2 }would satisfy this property.
Showing that such a the degree γ ≡ does not exist, thus implies that {σ≡

1 , σ≡
2 } has no infimum,

and {τ≡
1 , τ≡

2 } has no supremum.
For convenience, we introduce the following notation:

Definition 40 For sets of streams (or degrees) U , V we write U ≥ V if u ≥ v for every
u ∈ U and v ∈ V .

We have {σ1, σ2} ≥ {τ1, τ2}, but there does not exist γ such that

{σ1, σ2} ≥ {γ } ≥ {τ1, τ2}. ()
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To this end, we choose σ1, σ2, τ1, τ2 as follows:

Definition 41 We define σ1, σ2, τ1, τ2 ∈ {0, 1}ω by:

σ1 =
∞∏

i=0

(102
2i

103
33
i

) σ2 =
∞∏

i=0

(103
33
i

102
2i

)

τ1 =
∞∏

i=0

102
2i = 〈22i 〉 τ2 =

∞∏

i=0

103
33
i

= 〈333i 〉

We have

{σ1, σ2} ≥ {τ1, τ2}
by deleting every second block (beginning from the first or second block, respectively). Thus,
σ≡
1 , σ≡

2 are upper bounds of {τ≡
1 , τ≡

2 }. Figure 8 illustrates the growth of the block sizes in
σ1, σ2, τ1, τ2 and indicates possible and impossible transductions between these streams.

Proving () is non-trivial as we need to reason about all possible upper/lower bounds, and
all possible finite state transductions. To reason about the transducts of σ1 and σ2, we will
employ Theorems 38 and 39.

Remark 42 Note that the double exponential growth 22
i
of the block sizes is necessary for

the construction. Consider

σ ′
1 =

∞∏

i=0

(102
i
103

33
i

) σ ′
2 =

∞∏

i=0

(103
33
i

102
i
)

τ ′
1 =

∞∏

i=0

102
i

τ ′
2 =

∞∏

i=0

103
33
i

.

Then we have σ ′
1 ≡ σ ′

2, both streams reside in the same degree. For instance, for σ ′
1 ≥ σ ′

2:

delete the first block 10, and transduce every block 02
i
to 02

i−1
by replacing 00 �→ 0. Then

γ ≡ exists, e.g., take γ = σ ′
1.

We define functions s1, s2, t1, t2 : N → N that correspond to the block size of
σ1, σ2, τ1, τ2, respectively. We recall that the block size is the stream of run-lengths of blocks
of zeros (the distance of ones in the stream).

Definition 43 We define t1, t2 : N → N by

t1(n) = 22
n

t2(n) = 33
3n

,

and s1, s2 : N → N by

s1(n) =
{
t1(n/2) if n is even

t2((n − 1)/2) if n is odd
s2(n) =

{
t2(n/2) if n is even

t1((n − 1)/2) if n is odd.

Lemma 44 We have σ1 = 〈s1〉, σ2 = 〈s2〉, τ1 = 〈t1〉 and τ2 = 〈t2〉. ��

Lemma 45 We have . ��

123



Transducer degrees: atoms, infima and suprema 747

Fig. 8 The graphs illustrate growth of the block size of σ1 (upper left), σ2 (upper right), τ1 (lower left) and
τ2 (lower right). The green (solid) arrows stand for finite state transductions, while the red circle and the grey
(dotted) arrows represent impossible transductions (color figure online)

7.1 Proof idea

Before we get to the proof we will give a rough sketch of the idea. Assume that

{〈s1〉, 〈s2〉} ≥ {〈g〉} ≥ {〈t1〉, 〈t2〉}

for some g : N → N. By Theorem 38 we may assume that g is spiralling.
For functions f , h : N → N, we write
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f ≈ h ⇐⇒ ∃c1, c2 > 0. ∃n f , nh .

∀n. c1h(nh + n) ≤ f (n f + n) ≤ c2h(nh + n).

Note that ≈ is an equivalence relation (symmetric and transitive). (The relation ≈ is similar
to the well-known Big-Theta notation.)

The basic idea of the proof is as follows. We show that
({〈s1〉} ≥ {〈g〉} ≥ {〈t1〉, 〈t2〉}

) �⇒ s1 ≈ g, (3)

and similarly,
({〈s2〉} ≥ {〈g〉} ≥ {〈t1〉, 〈t2〉}

) �⇒ s2 ≈ g.

Then we have s1 ≈ g ≈ s2. However, this yields a contradiction since s1 �≈ s2!
We briefly outline the proof of (3). In this sketch we ignore shifts and displacements. By

Theorem 39 every spiralling transduct 〈h〉 of 〈s1〉 is of the form h = −→
α ⊗ s1:

s1 · · ·22
0

33
30 22

1
33

31 22
2

33
32 22

3
33

33 22
4

33
34

−→
α ⊗ s1 · · ·h(0) h(1) h(2) h(3)

α|0 α|1 α|2 α|3 α|4 α|0 α|1 α|2 α|3 α|4

We consider a transduction from 〈s1〉 to 〈t1〉; let t1 = −→
α ⊗ s1. In Fig. 8 this is a transduction

from the upper left to the lower left; referring to this figure we will speak of white and black
blocks. Then:

(i) The ‘only’ way to transduce 〈s1〉 to 〈t1〉 is to erase all black blocks of length 33
3n

, for
otherwise the lengths of the blocks of the transduct grows faster than t1(n) = 22

n
. As a

consequence ||−→α || is even and α|i = 0 for every odd i .
(ii) Thus, 〈t1〉 is created only from the white blocks of length 22

n
in 〈s1〉. The transduction

cannot erase (skip) any of these blocks as the resulting subsequence would grow faster
than t1. Thus, α|i > 0 if and only if i is even.

(iii) For the same reason, the transduction also cannot merge white blocks of length 22
n
in

〈s1〉. So, every weight in −→
α contains precisely one positive α|i with i even.

For a precise formulation of these properties, see Lemma 48.

Likewise, consider a transduction from 〈s1〉 to 〈t2〉; let t2 = −→
α′ ⊗ s1. Using similar

reasoning as above, we then can conclude that:

(iv) The transduction cannot erase any of the black blocks of length 33
3n

. Thus, we have
α′|i > 0 for every odd i .

See Lemma 49 for the precise formulation.
Now, if 〈g〉 exists, then we have 〈s1〉 ≥ 〈g〉 ≥ {〈t1〉, 〈t2〉}. This gives rise to transductions

from 〈s1〉 to 〈t1〉 and from 〈s1〉 to 〈t2〉which both ‘start’ with common transduction from 〈s1〉
to 〈g〉. Therefore, consider the common begin piece from 〈s1〉 to 〈g〉, say g = −→

β ⊗ s1. Then:

(v) The transduction can neither erase white blocks of length 22
n
by (ii), nor black blocks of

length 33
3n

by (vi). So, β|i > 0 for every i .
(vi) The transduction can also not merge the white blocks of length 22

n
with any other block

by (i) and (iii). Thus, every weight in
−→
β has length 1.

So, the crucial conclusion is: every weight in
−→
β is non-zero and has length 1! Thus, the

transduction 〈s1〉 ≥ 〈g〉 is of the form
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s1

g

· · ·

· · ·

22
0

β|0·220
β|0

33
30

β|1·333
0

β|1
22

1

β|2·221
β|2

33
31

β|3·333
1

β|3
22

2

β|0·222
β|0

33
32

β|1·333
2

β|1
22

3

β|2·223
β|2

33
33

β|3·333
3

β|3

As a consequence, we have s1 ≈ g. Now, the contradiction arises as outlined above.

7.2 Proof

Wewill now prove the non-existence of γ in several steps. In the next lemmas we investigate
how γ arises as a transduct of σ1 = 〈s1〉, and how γ gives rise to τ1 = 〈t1〉 and τ2 = 〈t2〉.
Lemma 46 Assume that {σ1, σ2} ≥ {γ } ≥ {τ1, τ2} for some stream γ ∈ 2N. Then the same
holds for a spiralling stream γ of the form

γ = 〈−→α ⊗ Sn0(s1)〉 (4)

for some n0 ∈ N and a positive mass −→
α .

Proof Let γ ∈ 2N such that {σ1, σ2} ≥ {γ } ≥ {τ1, τ2}. The stream γ is not ultimately
periodic as its transducts τ1 and τ2 are not. By Theorem 38 there exists n0 ∈ N and a positive
mass −→

α such that γ ≡ 〈−→α ⊗ Sn0(s1)〉. Since equivalent streams behave the same with
respect to transducibility, without loss of generality wemay assume that γ = 〈−→α ⊗Sn0(s1)〉.
Moreover, by Lemma 34 we have . ��

Lemma 47 Assume that {σ1, σ2} ≥ {γ } ≥ {τ1, τ2} for some stream γ ∈ 2N. Then we have
{σ1, σ2} ≥ {γ } ≥ {τ1, τ2} for some γ such that

γ = 〈−→α ⊗ Sz(s1)〉
Sm(t1) = δ ⊕ ((

−→
β ⊗ −→

α ) ⊗ Sz(s1))

Sm′
(t2) = δ′ ⊕ ((

−→
β ′ ⊗ −→

α (r)) ⊗ Sz′(s1))

for some z, z′ ∈ N with z ≤ z′, positive masses −→
α ,

−→
β ,

−→
β ′ , displacements δ ∈ Q

|−→β | and
δ′ ∈ Q

|−→β′ |, and r ∈ {0, . . . , |−→α | − 1}.
Moreover, we may assume that the following conditions hold:

|−→α | is even, ||−→β || = ||−→β ′ || = |−→α |,

z′ − z ≡
r−1∑

i=0

|αi |(mod ||−→α ||),

where −→
α = 〈α0, . . . ,α�−1〉.

Proof Let γ ∈ 2N such that {σ1, σ2} ≥ {γ } ≥ {τ1, τ2}. By Lemma 46 we may assume that

γ = 〈−→α′ ⊗Sn0(s1)〉 for some n0 ∈ N and a positive mass
−→
α′ such that .

Since γ ≥ τ1 and γ ≥ τ2, Theorem 39 yields

Sm(t1) = δ ⊕ (
−→
β ⊗ Sn1(

−→
α′ ⊗ Sn0(s1))),

Sm′
(t2) = δ′ ⊕ (

−→
β ′ ⊗ Sn2(

−→
α′ ⊗ Sn0(s1))). (5)
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for some m,m′, n1, n2 ∈ N, masses
−→
β ,

−→
β ′ and δ ∈ Q

|−→β |, δ′ ∈ Q
|−→β′ |. Without loss of

generality n1 ≤ n2, for otherwise we can take shifts (of left- and right-hand side) in (5).
Moreover, we may assume that

(i) |−→α′ | is even, for otherwise we can use
−→
α′ 2 instead of

−→
α′ , and

(ii) ||−→β || = ||−→β ′ || = |−→α′ |, for otherwise we can unfold
−→
α′ , −→

β ,
−→
β ′ , δ and δ′ to the least

common multiple of ||β||, ||−→β ′ ||, |−→α′ |.
There exist unique h1, h2 ∈ N and h′

1, h
′
2 ∈ {0, . . . , |−→α′ | − 1} such that

n1 = h1|
−→
α′ | + h′

1 n2 = h2|
−→
α′ | + h′

2.

Let
−→
α′ = 〈α′

0, . . . ,α
′
�−1〉 and define

z = n0 + h1||
−→
α′ || +

h′
1−1∑

i=0

|α′
i |, z′ = n0 + h2||

−→
α′ || +

h′
2−1∑

i=0

|α′
i |.

From n1 ≤ n2 follows that h1 ≤ h2 and z ≤ z′. Then by Lemma 19, we have

Sm(t1) = δ ⊕ (
−→
β ⊗ (

−→
α′ (h′

1) ⊗ Sz(s1))),

Sm′
(t2) = δ′ ⊕ (

−→
β ′ ⊗ (

−→
α′ (h′

2) ⊗ Sz′(s1))).

Let −→α = −→
α′ (h′

1). Note that |−→α | = |−→α′ |, and thus, properties (i) and (ii) are not affected. Let
r ∈ {0, . . . , |−→α | − 1} such that h′

1 + r ≡ h′
2(mod |−→α |). Then −→

α (r) = −→
α′ (h′

2) and we have

Sm(t1) = δ ⊕ ((
−→
β ⊗ −→

α ) ⊗ Sz(s1)),

Sm′
(t2) = δ′ ⊕ ((

−→
β ′ ⊗ −→

α (r)) ⊗ Sz′(s1)) (6)

by Lemma 24. Moreover, 〈γ 〉 ≡ 〈Sn1(γ )〉 and by Lemma 19:

Sn1(γ ) = Sn1(
−→
α′ ⊗ Sn0(s1)) = −→

α ⊗ Sz(s1).

So, without loss of generality, we can take γ = −→
α ⊗ Sz(s1).

Since h1 ≤ h2,

z − z′ ≡
h′
1−1∑

i=0

|α′
i | −

h′
2−1∑

i=0

|α′
i | ≡ −

h′
2−1∑

i=h′
1

|α′
i | ≡ −

r−1∑

i=0

|αi |(mod ||−→α ||).

This concludes the proof. ��

The function s1 is an alternating interleaving of t1(n) = 22
n
and t2(n) = 33

3n

; we will
speak of white and black blocks, respectively. So, the white blocks are those at even positions,
and the black blocks are at the odd positions in 〈s1〉. The following lemma investigates how
〈t1〉 can arise as a transduct of 〈s1〉. It states that, any transduction that transforms 〈s1〉 into
〈t1〉 has the following properties:

(a) It must erase all black blocks; so, all the blocks of length 33
3n

must be multiplied by 0.
(b) It cannot erase (or merge) any of the white blocks of length 22

n
.
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A violation of (a) or (b) would result in a transduct whose block size grows too quickly, that
is, more than a constant factor faster than t1.

Lemma 48 Assume that

Sm(t1) = δ ⊕ (
−→
τ ⊗ Sz(s1)) (7)

for some m, z ∈ N,−→τ = 〈τ0, . . . , τ�′−1〉 a mass and δ ∈ Q
|−→τ |. Moreover, assume that ||−→τ ||

is even. Then:

(i) ∀i ∈ {0, . . . , ||−→τ || − 1}: τ |i = 0 ⇐⇒ z + i is odd.
(ii) If z is even, then ∀i ∈ {0, . . . , 
′ − 1}: ϕ(

−→
τ , 2i) = i .

(iii) If z is odd, then ∀i ∈ {0, . . . , 
′ − 1}: ϕ(
−→
τ , 2i + 1) = i .

Proof We start by showing that:

τ |i = 0for every i ∈ {0, . . . , ||−→τ || − 1}such that z + i is odd. (8)

For a contradiction, assume that τ |k �= 0 for some k ∈ {0, . . . , ||−→τ || − 1} such that z + k is
odd. Let δ = 〈δ0, . . . , δ
′−1〉.

From assumption (7) and Lemma 16 we obtain:

Sm(t1)(h|−→τ | + h′) = δh′ +
∑

i∈{0,...,||−→τ ||−1}
ϕ(

−→
τ ,i)=h′

(
τ |i · Sz(s1)(h||−→τ || + i)

)

for every h ∈ N and h′ ∈ {0, . . . , |−→τ | − 1}. Take h′ = ϕ(
−→
τ , k), then

Sm(t1)(h|−→τ | + h′) ≥ τ |k · Sz(s1)(h||−→τ || + k)

and, hence,

t1(m + h|−→τ | + h′) ≥ τ |k · s1(z + h||−→τ || + k) = τ |k · t2( z + h||−→τ || + k − 1

2
) (9)

since z + k is odd and ||−→τ || is even. Recall that t1(n) = 22
n
and t2(n) = 33

3n

. So, for large
enough h, the formula on the right grows much faster than that on the left-hand side of the
inequality. Thus, the inequality (9) cannot hold for all h ∈ N. This is a contradiction, and we
have established that (8) holds.

Thus, every second entry of τ0 ; · · · ; τ�′−1 is 0. However, none of the weights τ0, …,
τ�′−1 is zero since the left-hand side of (7) grows to infinity. So, each of these weights must
contain a non-zero entry. It follows that |−→τ | ≤ ||−→τ ||/2.

Next, we show that:

|−→τ | = ||−→τ ||/2. (10)

For a contradiction, assume |−→τ | < ||−→τ ||/2. Let 
0 = |τ0|. So,
τ0 = 〈τ |0, τ |1, . . . , τ |
0−1〉

Since τ0 is not zero, it holds that τ |k > 0 for some k ∈ {0, . . . , 
0 − 1}. Then z + k is even
by (8). Let h′ = ϕ(

−→
τ , k), then as above we have for every h ∈ N:

t1(m + h|−→τ | + h′) ≥ τ |k · s1(z + h||−→τ || + k) = τ |k · t1( z + h||−→τ || + k

2
)
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since z + k is even and ||−→τ || is even. Therefore,

22
m+h|−→τ |+h′ ≥ τ |k · 22

z
2 +h ||−→τ ||

2 + k
2
.

However, |−→τ | < ||−→τ ||/2. Hence, the inequality cannot hold for arbitrary large h. This is a
contradiction, and, thus, the claim (10) holds.

Let us summarise. Every second entry of τ0 ; · · · ; τ�′−1 is 0 by (8), and we have

′ = |−→τ | = ||−→τ ||/2 by (10). Thus, τ0 ; · · · ; τ�′−1 contains at most 
′ non-zero entries. On
the other hand, each weight τ0, …, τ�′−1 contains a non-zero entry. Therefore, we conclude
that τ0 ; · · · ; τ�′−1 contains precisely 
′ non-zero entries, and each weight τ0, …, τ�′−1
contains precisely one them. From (8) we obtain:

τ |i = 0 ⇐⇒ z + i is odd

for every i ∈ {0, . . . , ||−→τ || − 1}. Since each weight contains precisely one non-zero entry,
we conclude that:

(i) If z is even, then ∀i ∈ {0, . . . , 
′ − 1}: τi contains τ |2i .
(ii) If z is odd, then ∀i ∈ {0, . . . , 
′ − 1}: τi contains τ |2i+1.

This concludes the proof. ��
The following lemma investigates how t2 can be obtained as a transduct of s1. Roughly

speaking, the lemma states that the values of s1 at odd indices are copied, giving rise to t2.

Lemma 49 Assume that

Sm(t2) = δ ⊕ (
−→
τ ⊗ Sz(s1)) (11)

for some m, z ∈ N, −→τ = 〈τ0, . . . , τ�′−1〉 a mass and δ ∈ Q
|τ |. Moreover, assume that ||−→τ ||

is even. Then:

(i) ∀i ∈ {0, . . . , ||−→τ || − 1}: τ |i > 0 if z + i is odd.
(ii) If z is even, then ∀i ∈ {0, . . . , 
′ − 1}: ϕ(

−→
τ , 2i + 1) = i .

(iii) If z is odd, then∀i ∈ {0, . . . , 
′ − 1}: ϕ(
−→
τ , 2i) = i .

Proof First, we show that every weight τ0, . . . , τ�−1 contains some τ |i such that τ |i > 0 and
z + i is odd. More precisely, we prove:

∀h′ ∈ {0, . . . , |−→τ | − 1}. ∃i ∈ {0, . . . , ||−→τ || − 1}.
ϕ(

−→
τ , i) = h′ ∧ τ |i > 0 ∧ z + i is odd

(12)

For a contradiction, we assume that there exists h′ ∈ {0, . . . , |−→τ | − 1} such that
(†) τ |i = 0 for every i ∈ {0, . . . , ||−→τ || − 1} for which ϕ(

−→
τ , i) = h′ and z + i is odd.

From assumption (11) and Lemma 16 we obtain:

Sm(t2)(h|−→τ | + h′) = δh′ +
∑

i∈{0,...,||−→τ ||−1}
ϕ(

−→
τ ,i)=h′

(
τ |i · s1(z + h||−→τ || + i)

)

= δh′ +
∑

i∈{0,...,||−→τ ||−1}
ϕ(

−→
τ ,i)=h′

z+i is even

(
τ |i · t1( z + h||−→τ || + i

2
)
)

(by(†))
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for every h ∈ N since ||−→τ || is even. Thus, for
c =

∑

i∈{0,...,||−→τ ||−1}
ϕ(

−→
τ ,i)=h′

z+i is even

τ |i ,

we have

t2(m + h|−→τ | + h′) ≤ δh′ + c · t1( z + h||−→τ || + ||−→τ ||
2

) (13)

for every h ∈ N. Recall that t1(n) = 22
n
and t2(n) = 33

3n

. Thus, for large enough h, the
inequality (13) cannot hold. This is a contradiction, and hence, claim (12) holds.

As ||−→τ || is even, from (12) it follows that |−→τ | ≤ ||−→τ ||/2. We show that:

|−→τ | = ||−→τ ||/2. (14)

For a contradiction, assume |−→τ | < ||−→τ ||/2. Let 
0 = |τ0|. So,
τ0 = 〈τ |0, τ |1, . . . , τ |
0−1〉.

By (12), τ |k > 0 for some k ∈ {0, . . . , 
0 − 1} such that z + k is odd. Let h′ = ϕ(
−→
τ , k).

From assumption (11) and Lemma 16 it follows that:

t2(m + h|−→τ | + h′) ≥ τ |k · s1(z + h||−→τ || + k) = τ |k · t2( z + h||−→τ || + k − 1

2
)

for every h ∈ N, and hence,

t2(m + h′ + h|−→τ |) ≥ τ |k · t2( z + k − 1

2
+ h

||−→τ ||
2

).

However, t2(n) = 33
3n

and we have assumed |−→τ | < ||−→τ ||/2. Thus, the inequality cannot
hold for all h ∈ N. This is a contradiction, and hence the claim (14) holds.

So, ||−→τ || is even, 
′ = |−→τ | = ||−→τ ||/2 and every weight τ0, …, τ�′−1 contains some τ |i
such that z + i is odd. There are precisely ||−→τ ||/2 elements τ |i such that z + i is odd, and
thus each weight contains precisely one of them. This implies that

(i) If z is even, then ∀i ∈ {0, . . . , 
′ − 1}: τi contains τ |2i .
(ii) If z is odd, then ∀i ∈ {0, . . . , 
′ − 1}: τi contains τ |2i+1.

Moreover, using (12) we can conclude that

τ |i > 0 ⇐⇒ z + i is odd (15)

for every i ∈ {0, . . . , ||−→τ || − 1}. ��
Lemma 50 There exists no γ ∈ 2N such that {σ1, σ2} ≥ {γ } ≥ {τ1, τ2}.
Proof For a contradiction, assume that such γ ∈ 2N exists. Then, by Lemma 47, we have
{σ1, σ2} ≥ {γ } ≥ {τ1, τ2} for some γ such that

γ = 〈−→α ⊗ Sz(s1)〉
Sm(t1) = δ ⊕ ((

−→
β ⊗ −→

α ) ⊗ Sz(s1))

Sm′
(t2) = δ′ ⊕ ((

−→
β ′ ⊗ −→

α (r)) ⊗ Sz′(s1))
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for some z, z′ ∈ N with z ≤ z′, positive masses −→
α ,

−→
β ,

−→
β ′ , δ ∈ Q

|−→β | and δ′ ∈ Q
|−→β′ |, and

r ∈ {0, . . . , |−→α | − 1}.
Moreover, we may assume that |−→α | is even, ||−→β || = ||−→β ′ || = |−→α | and

z′ − z ≡ R(mod ||−→α ||),
where −→

α = 〈α0, . . . ,α�−1〉 and R = ∑r−1
i=0 |αi |.

The proof now proceeds in three parts, namely,

(A) We show that α|i > 0 for every i ∈ {0, . . . , ||−→τ || − 1}.
(B) We show that |αi | = 1 for every i ∈ {0, . . . , 
 − 1}.
(C) We put things together and conclude.

Part (A): Let −→τ = −→
β ⊗ −→

α and
−→
τ ′ = −→

β ′ ⊗ −→
α (r). Then

Sm(t1) = δ ⊕ (
−→
τ ⊗ Sz(s1))

Sm′
(t2) = δ′ ⊕ (

−→
τ ′ ⊗ Sz′(s1)).

By definition of ⊗, ||−→τ || = ||−→τ ′ || = ||−→α || and, for every i ∈ {0, . . . , ||−→τ || − 1},
τ |i = β|ϕ(

−→
α ,i) · α|i (16)

τ ′|i = β ′|ϕ(
−→
α (r),i) · α(r)|i . (17)

By Lemma 48,

τ |i > 0 ⇐⇒ z + i is even (18)

for every i ∈ {0, . . . , ||−→τ || − 1}; thus, by (16),

z + i is even �⇒ α|i > 0. (19)

By Lemma 49, z′ + j is odd �⇒ τ ′| j > 0 for every j ∈ {0, . . . , ||−→τ || − 1}; thus, by (17),
z′ + j is odd �⇒ α(r)| j > 0. (20)

By the definitions of R and α(r)| j ,
α|i = α(r)| j ⇐ i ≡ j + R(mod ||−→α ||)

⇔ i ≡ j + z′ − z(mod ||−→α ||)
⇔ z + i ≡ z′ + j(mod ||−→α ||) (21)

By (20), (21) and since ||−→α || is even,
z + i is odd �⇒ α|i > 0. (22)

for every i ∈ {0, . . . , ||−→τ || − 1}.
From (19) and (22) it follows that:

∀i ∈ {0, . . . , ||−→τ || − 1}. α|i > 0. (23)

Part (B): We show that

∀i ∈ {0, . . . , 
 − 1}. |αi | = 1. (24)
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For a contradiction, assume that |αk| > 1 for some k ∈ {0, . . . , 
 − 1}. Let
k1 = |α0| + |α1| + · · · + |αk−1|,
k2 = k1 + |αk| − 1.

Then k1 < k2, αk = 〈α|k1 , . . . , α|k2〉, and ϕ(
−→
α , i) = k for every i ∈ {k1, . . . , k2}. Let

h, h′ ∈ {k1, . . . , k2} such that z + h is even and z + h′ is odd. Since z + h is even, we
get τ |h > 0 from (18). As ϕ(

−→
α , h) = k, we conclude β|k > 0 by (16). However, by (16)

and (23), τ |i > 0 for every i ∈ {k1, . . . , k2}; thus also for i = h′. This contradicts (18) since
z + h′ is odd. Hence, claim (24) holds.

Part (C): Recall that

γ = 〈−→α ⊗ Sz(s1)〉.
By Theorem 39,

Sn0(
−→
α ⊗ Sz(s1)) = δ ⊕ (

−→
ξ ⊗ Sm0(s2))

for some n0,m0 ∈ N, a mass
−→
ξ = 〈ξ0, . . . , ξ�′−1〉 and δ ∈ Q

|−→ξ |.
In parts (A) and (B) of this proof, we have established that |αi | = 1 for every i ∈

{0, . . . , 
− 1}. As the functions s1 and s2 are both obtained by interleaving t1 and t2, we can
apply the same reasoning to transductions of 〈s2〉 as we have done for 〈s1〉. So, by reasoning
as above (using analogous versions of Lemmas 48 and 49), we conclude that |ξi | = 1 for
every i ∈ {0, . . . , 
′ − 1}.

By Lemma 19, we get

Sn0(
−→
α ⊗ Sz(s1)) = −→

α (n0) ⊗ Sz+n0(s1) = δ ⊕ (
−→
ξ ⊗ Sm0(s2))

since |αi | = 1 for every i ∈ {0, . . . , 
 − 1}.
Thus,

−→
ζ ⊗ Sn(s1) = δ ⊕ (

−→
ξ ⊗ Sm(s2)) (25)

for ζ = −→
α (n0), n = z + n0 and m = m0. Both

−→
ζ ,

−→
ξ are positive masses consisting only of

weights of length 1, and |δ| = |−→ξ |.
Without loss of generality we may assume that:

(i) n is even, for otherwise we can take a shift S ( · ) on left and right;

(ii) |−→ζ | = |−→ξ | = |δ| and |−→ζ | is even; otherwise, we unfold −→
ζ ,

−→
ξ and δ.

Then

−→
ζ = 〈〈ζ0〉, . . . , 〈ζ
−1〉〉
−→
ξ = 〈〈ξ0〉, . . . , 〈ξ
−1〉〉
δ = 〈〈δ0〉, . . . , 〈δ
−1〉〉

for some even 
 ∈ N, ζ0, . . . , ζ
−1 > 0 and ξ0, . . . , ξ
−1 > 0. From (25), we get

(
−→
ζ ⊗ Sn(s1))(h
) = (δ ⊕ (

−→
ξ ⊗ Sm(s2)))(h
)
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for every h ∈ N. We have

(
−→
ζ ⊗ Sn(s1))(h
) = ζ0 · t1((n + h
)/2)

(δ ⊕ (
−→
ξ ⊗ Sm(s2)))(h
) = δ0 + ξ0 · s2(m + h
)

and, hence,

ζ0 · t1((n + h
)/2) = δ0 + ξ0 · s2(m + h
)

for every h ∈ N. If m is even, then s2(m + h
) = t2((m + h
)/2). This gives a contradiction
since t2 grows much faster than t1. Thus m must be odd, and

ζ0 · t1((n + h
)/2) = ζ0 · 22(n+h
)/2

=

δ0 + ξ0 · s2(m + h
) = δ0 + ξ0 · t1((m + h
 − 1)/2) = δ0 + ξ0 · 22(m+h
−1)/2

for every h ∈ N. From

ζ0 · 22(n+h
)/2 = δ0 + ξ0 · 22(m+h
−1)/2

it follows that (n + h
)/2 = (m + h
 − 1)/2 and, thus, m = n + 1.
Likewise, we get

(
−→
ζ ⊗ Sn(s1))(h
 + 1) = ζ1 · t2((n + h
)/2)

(δ ⊕ (
−→
ξ ⊗ Sm(s2)))(h
 + 1) = δ1 + ξ1 · t2((m + h
 + 1)/2)

for every h ∈ N. It follows that (n + h
)/2 = (m + h
 + 1)/2 and, thus, m = n − 1.
We have reached a contradiction: n − 1 = m = n + 1, and, hence, our assumption must

have been wrong. This concludes the proof. ��
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