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Abstract
The synthesis of reactive systems from linear temporal logic (LTL) specifications is an impor-
tant aspect in the design of reliable software and hardware. We present our adaption of the
classic automata-theoretic approach to LTL synthesis, implemented in the tool Strix which
has won the two last synthesis competitions (Syntcomp2018/2019). The presented approach
is (1) structured, meaning that the states used in the construction have a semantic structure
that is exploited in several ways, it performs a (2) forward exploration such that it often con-
structs only a small subset of the reachable states, and it is (3) incremental in the sense that
it reuses results from previous inconclusive solution attempts. Further, we present and study
different guiding heuristics that determinewhere to expand the on-demand constructed arena.
Moreover, we show several techniques for extracting an implementation (Mealy machine or
circuit) from the witness of the tree-automaton emptiness check. Lastly, the chosen construc-
tions use a symbolic representation of the transition functions to reduce runtime and memory
consumption. We evaluate the proposed techniques on the Syntcomp2019 benchmark set
and show inmore detail how the proposed techniques compare to the techniques implemented
in other leading LTL synthesis tools.

1 Introduction

Synthesis refers to the problemof finding for a formal specification of an input–output relation
amatching implementation [37], e.g. an (I/O)-transducer, aMealymachine, aMooremachine
or a circuit. In our case we focus on linear temporal logic (LTL) as the specification logic.
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While an asymptotically optimal synthesis algorithmhas been given in [37], this approach and
other algorithms solving this task1 have not yet been successfully put into industrial practice.
Tools able to deal with large specifications have been elusive and those that are available
often produce subpar results compared to straight-forward manual implementations when
successfully applied. [29] identifies four challenges that hinder the practical impact of these
synthesis algorithms: “algorithmic, methodological, scope, and qualitative” [29]. The first
challenge is to find efficient synthesis algorithms. The second challenge is the discrepancy
between the assumed synthesis setting and reality: a finished and complete specification is
the exception and not the rule. Users often iterate specifications and thus this brings up the
task of reusing and composing intermediate results. The third challenge is expressiveness
and succinctness of input and output formats. Finally, the fourth challenge is not only to
compute any valid solution, but to find implementations that have good quality. In this paper
we primarily address the algorithmic and qualitative side of the synthesis problem, but also
sketch ideas for the two other areas.

The classic automata-theoretic synthesis procedure using deterministic automata suffers
from the “messy state space” [29] of Safra’s determinisation, which hinders efficient imple-
mentations that need to work on top of it. Moreover this automata-theoretic approach to
synthesis requires the construction of a potentially double exponentially sized automaton (in
the length of the specification) [22]. These two issues gave rise to “Safraless” approaches
[5,9,14,27,30] to avoid the complicated state structure and to alleviate the state space explo-
sion problem. Further, bounded synthesis adds to the synthesis problem an additional size
constraint on the matching implementation. This effectively turns the synthesis problem into
a search problem.

We, on the other hand, address the “messy state space” issue by employing a collection of
“Safraless” LTL to deterministic parity automaton (DPA) translations [12,13,38] in combina-
tion with a special product automaton construction that includes a latest appearance record
(LAR) construction and a formula decomposition in the spirit of [10,15,34,35]. Our construc-
tion recovers the Boolean structure present in the input specification. The state explosion
problem is tackled by exploring the on-demand constructed parity game using a forward
search resembling the optimisation described in [17]. This enables our customised strategy
iteration [31] to leave most of the arena (and thus of the automaton) unexplored. Further, the
decomposition allows us to split-off formulas and use them to prune the search-space which
is a generalisation of a central insight from [39].

Further, we propose two heuristics guiding the construction of the arena in directions of
probably decisive regions and thus focussing on important states, while skipping irrelevant
parts. One approach is agnostic about the internal structure of the parity game, while the
other one extracts information from the special parity automaton construction. Lastly, since
we use strategy iteration to compute winning strategies, we can reuse so-far constructed
solution attempts after expanding the arena, thereby reducing the amount of iterations until
stabilisation is reached. We believe that our approach could be adapted to cache intermediate
results (constructed automata, partial strategies) when using LTL synthesis interactively to
speed up synthesis, which addresses the second area.

Regarding the quality of the synthesised structures “there is no emphasize [sic]” on con-
structing optimal or well-structured systems [29]. While in this paper we do not look at
general methods for producing qualitatively good solutions and do not support synthesis
under a specific quality measure, we provide a set of best-effort heuristics to produce good
solutions: we make use of a range of post-processing steps to ensure that the solution is

1 See [3] for an introduction to reactive synthesis and related graph games.
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Practical synthesis of reactive systems from LTL specifications… 5

as small as possible. We also provide a modular encoding of the product automata into
circuits that retains the Boolean structure of the specification. This approach surprisingly
yields on some of the specifications used in the experimental evaluation smaller circuits
compared to extracting a circuit out of a minimised Mealy machine. This data suggests that
minimisation of the implementation represented as a Mealy machine might be in some cases
diametral to generating small circuits. It seems that this area has not been studied enough and
we think enriching specifications with additional, explicit optimisation goals is worthwhile,
but currently these ideas have not manifested in specifications such as the Syntcomp2019
benchmarks.

We implement and test the outlined ideas within Strix2 [33], which relies on [28] for
automata translations and [32] for parity game solving. An older version of Strix won
in the TLSF/LTL track in all six categories of Syntcomp2018 against other mature tools
such as ltlsynt [23], which also implements synthesis using parity games, and BoSy [14],
which implements several bounded synthesis approaches. We further improve the prototype
by representing the transition relation symbolically to address scalability issues for large
alphabets and replace external tooling such as Speculoos with an internal implementation
able to cope with larger systems. This newer version again won in all TLSF/LTL tracks of
Syntcomp2019 against ltlsynt.

The rest of the paper is structured as follows: after introducing preliminaries, we give a
high-level overview of the synthesis procedure and detail it in the following subsections. We
then put our improvements to the test by evaluating them on the Syntcomp2019 benchmarks
and comparing them with the old version, ltlsynt and BoSy. Each section, if appropriate,
contains its specific discussion of related work.

Editorial Note. This paper is an extended version of the preliminary report published in [33].
The synthesis approach is the same, but we give a much more detailed explanation of the
techniques used, e.g., the decomposition and the product automaton construction. Further,
we describe new extensions for different exploration strategies in Sect. 3.2.1 and different
encoding strategies in Sect. 3.3.2. We also give an updated experimental evaluation on a
larger set of benchmarks and a comprehensive comparison with the old version and other
tools.

2 Preliminaries

2.1 !-languages and!-automata

Let Σ be a finite alphabet. An ω-word w over Σ is an infinite sequence of letters a0a1a2 . . .

with ai ∈ Σ for all i ≥ 0 and an ω-language is a set of ω-words. The set of all ω-words is
denoted Σω. We denote the i-th letter of an ω-word w (starting at 0) by w(i) and the infinite
suffix w(i)w(i + 1) . . . by wi .

In this paper we focus on deterministic ω-automata with accepting conditions defined on
transitions which is nowadays the preferred acceptance condition in implementations due to
the succinctness and in-line with other recent papers and tools [2,8,20,28]. The discussed
constructions can also be transferred to automata with acceptance defined on states with the
folklore translation from transition acceptance to state acceptance.

2 https://strix.model.in.tum.de/.
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A deterministic pre-automaton (DA) over Σ is a tuple (Q, δ, q0) where Q is a finite set
of states, δ : Q × Σ → Q is a transition function, and q0 is an initial state. A transition is a
triple (q, a, q ′) such that q ′ = δ(q, a).

A deterministic Parity automaton (DPA) is a deterministic pre-automaton automaton A =
(Q, δ, q0, χ, d, p) with the addition of the transition colouring χ : Q ×Σ → {0, 1, . . . , d},
d ≥ 1 the maximal colour and p ∈ {0, 1} the parity that determines whether a run is
accepting or not (as defined below). A run of A on an ω-word w : N0 → Σ is an ω-
sequence of states ρ : N0 → Q such that ρ(0) = q0 and for all positions i ∈ N0, we
have that (ρ(i), w(i), ρ(i + 1)) ∈ δ. Given a run ρ over a word w, the infinite sequence
of colours traversed by the run ρ is denoted by χ(ρ) := (

χ(ρ(i), w(i))
)

i∈N0
. The minimal

colour appearing infinitely often along a run ρ is lim inf χ(ρ). A run ρ is accepting if
lim inf χ(ρ) ≡2 p (with x ≡2 y :⇔ (x − y) mod 2 = 0). An ω-word w is in the language
of A, denoted w ∈ L(A), iff the run for w on A is an accepting run.

For a parity p ∈ {0, 1}, define p := 1 − p as the switched parity. Note that by changing
the parity p to p, we obtain a complement automaton A := (Q, δ, q0, χ, d, p) for which we
have L(A) = Σω\L(A).

To change the parity p to p while preserving the language, one can use A′ := (Q, δ, q0, χ ′,
d+1, p)withχ ′(q, a) := χ(q, a)+1,which has onemore colour and satisfiesL(A′) = L(A).

A deterministic Büchi automaton (DBA) with the set of accepting transitions α is a DPA
with colours {0, 1}, parity 0 and χ defined as:

χ(q, a) :=
{
0 if (q, a, δ(q, a)) ∈ α

1 otherwise

A deterministic co-Büchi automaton (DCA)with the set of rejecting transitions β is a DPA
with colours {0, 1}, parity 1 and χ defined as:

χ(q, a) :=
{
0 if (q, a, δ(q, a)) ∈ β

1 otherwise

A deterministic weak automaton (DWA) with the set of accepting states γ is a DPA with
colours {0, 1} and parity 0 or 1, where for each strongly connected component S ⊆ Q, either
S ⊆ γ or S ∩ γ = ∅. Then χ is defined as:

χ(q, a) :=
{

p if δ(q, a) ∈ γ

p otherwise

Note that for weak automata, we can switch between parity 0 and 1 while preserving the
language without increasing the number of colours.

A bottom state of a DPA is a special state⊥ ∈ Q such that δ(⊥, a) = ⊥ andχ(⊥, a) ≡2 p
for each a ∈ Σ . A top state of a DPA is a special state � ∈ Q such that δ(�, a) = � and
χ(�, a) ≡2 p for each a ∈ Σ .

2.2 Linear temporal logic

We present LTL [36] with a larger than usual set of modal operators and Boolean connectives,
instead of aminimalistic syntax often found in other publications.While aminimalistic syntax
reduces the amount of cases, e.g., in an induction, we want to keep as much structure of the
given formula as possible and thus add redundancy. In particular, we are going to present
customised constructions in order to deal with the Boolean connective ↔ that effectively
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Practical synthesis of reactive systems from LTL specifications… 7

reduces the size of the automaton that is constructed. We work with a syntax for LTL in
which formulas within the scope of modal operators (X, U) are written in negation-normal
form, i.e., negations only occur in front of atomic propositions. Thus we need to introduce
ff , ¬a, ∨, and the temporal operator R (release) in order to remove ¬ from the syntax. It
is easy to see that LTL formulas with the usual syntax can be translated to equivalent LTL
formulas of the same size in our syntax. A formula of LTL over a set of atomic propositions
(Ap) is given by the following syntax:

Definition 1 (Syntax of LTL)

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ↔ ϕ | ψ

ψ ::= tt | ff | a | ¬a | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ | ψRψ with a ∈ Ap

We also define the usual abbreviationsFϕ := ttUϕ (eventually) andGϕ := ffRϕ (always).
The satisfaction relation |� between ω-words over the alphabet Σ := 2Ap and formulas is
inductively defined as follows:

Definition 2 (Semantics of LTL)

w |� tt
w �|� ff
w |� a iff a ∈ w(0)
w |� ¬a iff a /∈ w(0)
w |� ϕ ∧ ψ iff w |� ϕ and w |� ψ

w |� ϕ ∨ ψ iff w |� ϕ or w |� ψ

w |� ϕ ↔ ψ iff w |� ϕ if and only if w |� ψ

w |� Xϕ iff w1 |� ϕ

w |� ϕUψ iff ∃k. wk |� ψ and ∀ j < k. w j |� ϕ

w |� ϕRψ iff ∀k. wk |� ψ or ∃k. wk |� ϕ and ∀ j ≤ k. w j |� ψ

We denote by L(ϕ) the language of ϕ defined as L(ϕ) := {w ∈ Σω | w |� ϕ}.

2.3 Notable fragments of LTL

In the latter section we are going to consider the following four fragments of LTL:

– μLT L and νLT L:
μLT L is the fragment of LTL restricted to the temporal operatorU, the Boolean connec-
tives (∧,∨), the literals (a,¬a), and the next operator (X). νLT L is defined analogously,
but with the operator R instead of U. In the literature μLT L is also called syntactic co-
safety and νLT L syntactic safety.

– G(μLT L) and F(νLT L):
These fragments contain the formulas of the formGϕ, where ϕ ∈ μLT L , and Fϕ, where
ϕ ∈ νLT L .

The reason for the namesμLT L and νLT L is thatU is a least-fixed-point operator, in the
sense that its semantic is naturally formulated by a least fixed point, e.g., in the μ-calculus,
while the semantics of R is naturally formulated by a greatest fixed point.

For all these fragments several translations to deterministic automata are known and
we are going to use the constructions for μLT L , νLT L , GF(μLT L), and FG(νLT L)

described in [13], for G(μLT L) and F(νLT L) the construction described in [38], and for
arbitrary LTL formulas the construction described in [12]. It should be noted that of course
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8 M. Luttenberger et al.

these constructions can be swapped with other constructions, but some of the implemented
heuristics rely on the specific state structure these constructions yield.

2.4 Synthesis problem

Let ϕ be a specification given as an LTL formula and let the atomic propositions Ap =
Apin � Apout be partitioned into input symbols Apin and output symbols Apout. We then
define Σ := 2Ap, Σin := 2Apin , and Σout := 2Apout .

Then the synthesis problem is to decide if a function σ : Σ∗
in → Σout exists such that for

every ω-word v ∈ Σω
in, the ω-word w ∈ Σω defined by w(i) := v(i) ∪ σ(v(0)v(1) . . . v(i))

satisfies w ∈ L(ϕ). In the positive case, also a finite and executable representation of σ in
the form of a controller should be produced, e.g., a Mealy machine or a circuit.

3 Synthesis procedure

We start with an overview on how Strix constructs parity games from specification formulas
and solves them. For the controller extraction we refer the reader to Sect. 3.3.We illustrate the
intuition of Algorithm 1 using a simple arbiter example and refer to functionality explained
in subsequent sections via oracles: First, the formula is analysed with OT and a DPA is
constructed on-the-fly viaOq0 ,Op , andOδ . Second, the DPA is interpreted as a parity game
and the game is solved via Owin computing the winning regions. Further an exploration
heuristic (Oexpl) guides which parts of the parity games are extended. To be more precise,
we use the following oracles:

– OT (ϕ): Given the formula ϕ, the oracle returns an annotated formula α that labels syntax
nodes with a recommended automaton type to be used for this subformula for translation
and how to compose a (product) DPA from these components.

– Oq0(α): Given the annotated formula α, the oracle returns the initial state q0 of the
(product) DPA recognising ϕ.

– Op(α): Given the annotated formula α, the oracle returns the parity p of the (product)
DPA recognising ϕ.

– Oδ(α, q): Given the annotated formula α and a (product) state q , the oracle returns a set
of outgoing transitions from q . The elements of the set are tuples (I , O, c, q ′), where
I ⊆ Σin are the input letters, O ⊆ Σout are the output letters, c is the colour of the
transition and q ′ is the successor state. Formally for each such tuple (I , O, c, q ′) we
have δ(q, i ∪ o) = q ′ and χ(q, i ∪ o) = c for all i ∈ I and o ∈ O . The oracle will return
q ′ = ⊥ for states that are trivially losing for the system and q ′ = � for states that are
trivially winning.

– Owin: Given (V©, V�, E, χ, B, q, P, p, κ), compute whether the state q is won by player
P ∈ {©,�}, where V© is the set of nodes from which player © moves, V� is the set of
nodes from which player � moves, E ⊆ (V© ∪ V�) × 2Σ × (V© ∪ V�) is the labeled
edge relation, χ : E → N0 is an edge colouring, B ⊆ V� is the set of boundary nodes
(i.e. nodes whose successors have yet to be constructed), p is the parity for player P, i.e.
player P wins if the minimal colour occurring infinitely often along the edges of a play
has parity p, and κ is an initial (partial, nondeterministic)3 strategy for player P. Owin

3 We will later see the advantage of using nondeterministic strategies (multiple actions allowed) compared to
deterministic strategies (only one action allowed).
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Practical synthesis of reactive systems from LTL specifications… 9

Algorithm 1 Forward-explorative, incremental synthesis algorithm.
Require: LTL formula ϕ, input letters Σin, output letters Σout
Ensure: (P, κ), where P is the winner of the game and κ is a corresponding (non-deterministic) strategy.
1: α ← OT (ϕ)

2: q0 ← Oq0 (α)

3: (V©, V�) ← (∅, {q0, ⊥,�})
4: p ← Op(α)

5: (E, χ) ← ({(⊥, Σ,⊥), (�, Σ,�)}, {((⊥, Σ,⊥), p), ((�, Σ,�), p)})
6: σ, τ ← (∅, ∅)

7: B ← {q0}
8: while B �= ∅ do
9: X ← Oexpl(α, V©, V�, E, χ, B, q0, p, σ, τ )

10: B ← B \ X
11: for all q ∈ X do
12: for all (I , O, c, q ′) ∈ Oδ(α, q) do
13: if q ′ /∈ V� then
14: B ← B ∪ {q ′}
15: end if
16: V© ← V© ∪ {(q, I )}
17: V� ← V� ∪ {q ′}
18: E ← E ∪ {(q, I , (q, I )), ((q, I ), O, q ′)}
19: χ ← χ ∪ {((q, I , (q, I )), ∞), (((q, I ), O, q ′), c)}
20: end for
21: end for
22: (won©, σ ) ← Owin(V©, V�, E, χ, B, q0, ©, p, σ )

23: if won© then
24: return (©, σ )

25: end if
26: (won�, τ ) ← Owin(V©, V�, E, χ, B, q0, �, p, τ )

27: if won� then
28: return (�, τ )

29: end if
30: end while

also returns an updated strategy κ ′, which is winning from q for P if q is won by player
P. Depending on the player P boundary nodes are declared as winning for the opponent
in order to correctly under-approximate the parity game on the completely constructed
arena.

– Oexpl: Given a set B of boundary nodes, the so far constructed arena and the intermediate
strategies, the oracle returns a nonempty subset of B of nodes that should be further
explored.

We use the specification of a simple arbiter as an example. In this setting two processes
(i ∈ {1, 2}) request access to the critical section by raising the flag ri and the arbiter eventually
grants access to process i by raising gi . Thus we have Apin = {r1, r2} and Apout = {g1, g2}
and the following specification:

φ = G(¬g1 ∨ ¬g2)︸ ︷︷ ︸
ψ0

∧G(r1 → Fg1)︸ ︷︷ ︸
ψ1

∧G(r2 → Fg2)︸ ︷︷ ︸
ψ2

Applying the annotation oracle, we obtain from the specification φ an annotated syntax tree α

shown in Fig. 1 that represents a decomposition of φ into subformulas w.r.t. the weakest class
of deterministic automata needed for their translation and how to combine the automata in
order to obtain the automaton for φ itself. In our example, ψ0 is a simple mutex requirement
which is classified as recognisable by a DWA (denoted by W), and ψ1 and ψ2 are fairness
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10 M. Luttenberger et al.

Fig. 1 Annotated syntax tree α for φ

(a) (b) (c)

Fig. 2 DAs for ψ0, ψ1, and ψ2. Note that ψ1 and ψ2 are isomorphic up to alphabet renaming

requirements that are classified as recognisable by a DBA (denoted by B). The conjunctions
ψ1∧ψ2 and φ itself are then also recognisable by aDBA (denoted byB∧). The corresponding
automata are displayed in Fig. 2.

We query Oq0(α) and obtain q0 := (a0, ((b0, c0), 0)), which matches the tree structure
of α. Here, we have add a round-robin counter r ∈ {0, 1} for the intersection of the two
Büchi automata representing ψ1 and ψ2: This round-robin counter remembers which of the
two Büchi automata is due to take an accepting transition. To ease notation for our example
and the corresponding figures we flatten (a0, ((b0, c0), 0)) to (a0, b0, c0)with the underlined
state representing the round-robin counter. Further, we queryOp(α) for the parity associated
with the controller, i.e. player ©. In our example it is 0 and © wins a play if the minimal
colour encountered infinitely often is even.

As we are using Mealy semantics, we let the environment � move from the initial node
(a0, b0, c0). Our parity game also includes two nodes ⊥ and � where by our construction ⊥
is always won by the environment �, while � is always won by the controller ©.

We now start the on-the-fly forward exploration of parity game arena. In every iteration
of the while-loop in Algorithm 1 we extend the boundary B. The boundary always consists
of nodes belonging to the environment � whose successors have yet to be explored. Initially
the boundary is just the initial node of the parity game, in our example B = {(a0, b0, c0)}.

As initially B is a singleton set, Oexpl tells us to explore all direct successors of
q0 = (a0, b0, c0). Oδ(α, q0) groups the outgoing transitions δ(q0, �) using Σin and Σout
as previously mentioned as a set of tuples of the shape (I , O, q ′, c). Due to the Mealy
semantics each such tuple (I , O, q ′, c) is broken up in two steps: starting in q0, first the
environment issues a signal i ∈ I , which leads the game into the intermediate state (q0, I );4

as this is only an intermediate step the corresponding edge is assigned the (w.r.t. min-parity)
“neutral” colour ∞; in (q0, I ) the controller © then issues a signal o ∈ O leading to the next
state of the DPA. We illustrate this using our example: we have 4 choices for the inputs at
(a0, b0, c0):

1. r1 r2 = {∅}, i.e. no process requests access;
2. r1 r2 = {{r1}}, i.e. only process 1 requests access;
3. r1 r2 = {{r2}}, i.e. only process 2 requests access; and

4 We represent the intermediate states simply by circular shaped nodes in the figures.
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Practical synthesis of reactive systems from LTL specifications… 11

Fig. 3 Parity game arena after one iteration of the main loop

4. r1 r2 = {{r1, r2}}, i.e. both processes want to access the critical section.

Consider the case that the environment chooses the input I = r1 r2. Oδ groups the outputs
available to © into the three groups g1 g2 (grant access to both processes), g1 g2 (grant access
to only process 1), and g1 (donot grant access to process 1). In case of O = g1 = {{}, {g2}}, the
DBAAψ1 takes a non-accepting transition, hence, the round-robin counter stays unchanged,
while the other two automata take a loop, arriving at state (a0, b1, c0) in the product; Oδ

determines by analysing α that we only need the colours {0, 1} for the parity game under
construction; asAψ1 takes a non-accepting transition,Oδ gives the input–output pair (I , O) =
(r1 r2, g1) a colour of parity p in order to prevent © from replying to r1 r2 by g1 infinitely
often. Thus (r1 r2, g1, 1, (a0, b1, c0)) ∈ Oδ(α, q0). For O = g1 g2 we obtain analogously
the entry (r1 r2, g1 g2, 0, (a0, b0, c0)): as all automata take an accepting loop in this case
the input–output pair is given the colour 0 and, as the round-robin counter is incremented
twice, we are back in the initial node of the parity game. Finally, for O = g1 g2 the oracle
Oδ determines that © has no chance of winning anymore as the DWA Aψ0 representing
the mutex requirements cannot reach an accepting transition anymore; for this reason, Oδ

simplifies the successor state to ⊥ which by construction is always won by the environment
� and includes the tuple (r1 r2, g1g2, 1,⊥) into its output.5 Analogously, Oδ handles the
other three possible inputs by � which eventually leads to the arena shown in Fig. 3 with
border B = {(a0, b0, c1), (a0, b0, c1), (a0, b1, c1)}.

We now run the parity game solver, i.e. query Owin for the so-far constructed arena. We
first mark the boundary nodes as losing for the controller and askOwin for an optimal winning
strategy for the controller. In this case, this leads to the nondeterministic strategy σ depicted
in Fig. 4 where the thick edges in dark green belong to σ , while edges disabled by σ are drawn
as dashed lines. We will describe our instantiation of Owin in Sect. 3.2 in more detail, but
intuitivelyOwin tries tomaximise the distance from the trivial losing states⊥ and the boundary
B with each colour interpreted as a distance; hence, in the intermediate states corresponding
to I ∈ {r1 r2, r1 r2, r1 r2}, Owin chooses to let the controller play back to the initial state so
that ideally never the losing state is reached and thus the distance to it is maximised. One
particular feature of our instantiation of Owin is that it outputs nondeterministic strategies,

5 ShouldOδ determine that all automata will accept any possible input–output pairs from now on, it simplifies
the successor state to � which, again by construction, is always won by ©.
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12 M. Luttenberger et al.

Fig. 4 Optimal strategy for the controller in the parity game arena of Fig. 3

Fig. 5 Parity game arena after two iterations of the main loop and optimal winning strategy for the controller.
For the sake of succinctness the colour χ(((a0, b1, c0), r2), g1g2) was changed from 1 to 0 to reduce the
number of iterations

i.e. a strategy σ for � is still required to respect the edge relation of the parity game but σ(q)

is only required to be some subset of the successors of q in the parity game; in particular
σ(q) = ∅ is allowed and has to be interpreted as © giving up at node q which is the case of
the strategy shown in Fig. 4 at the intermediate node (q0, r1 r2). Note that we do not draw ⊥
and the corresponding edges in Figs. 4 and 5 asOwin will always prefer to tell the controller©
to give up instead of playing to ⊥ (analogously for � and �). More importantly, if a strategy
tells a player to give up at a specific node this means that the player loses any play reaching
this specific node. For this reason, the computed strategy σ is not winning for the controller
so far, hence, we also askOwin if the environment�might win the initial state—nowwith the
boundary marked as winning for the controller. As Owin also fails to find a winning strategy
for the environment (© can easily force � directly into the boundary), we proceed to further
explore and construct the arena.

In this iterationOexpl now uses σ and τ : as neither the controller nor the environment wins
the initial node so far, starting in q0 = (a0, b0, c0) each player can force his opponent into
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the boundary; hence, σ and τ give us some information where to further explore the arena;
further, from α we obtain scores that tell us how far from acceptance resp. rejection a given
boundary state is w.r.t. to the product of the underlying automata; in our example, using α

the oracle Oexpl tells us to first explore only the two states (a0, b1, c0) and (a0, b0, c0) as
in both cases only one of the two processes is waiting for being granted access. Proceeding
as before, we further extend the parity game under construction leading to the parity game
shown in Fig. 5 (which also shows the strategy obtained for ©) and again ask if either © or
� can now win the initial node q0. As the extended parity game coincides with that of the
previous iteration in all but the boundary nodes, we pass the so-far computed strategies also
to Owin in order to re-use the information stored in them.

Fig. 5 shows the strategy that Owin now computes: the updated σ coincides with the
previous σ on the nodes where © did not give up (edges coloured in dark green); it only
adds the edges coloured in light blue. The so updated σ now wins the initial node for the
controller. In particular, σ keeps the nondeterminism at (q0, r1 r2) where it only tells the
controller to grant access to exactly one process but it does not tell © which one of the
processes should be preferred. This ambiguity can be used when translating the strategy into
a circuit or a program to reduce the description size. Finally note that as we mark the nodes
on the boundary as losing for the respective “main” player when calling Owin, if the “main”
player can win the so-far constructed parity game, then his strategy has to avoid the boundary,
i.e. by construction we always find winning strategies that try to enclose all plays starting in
the initial node in a “minimal” winning region. We remark that this bears some similarity to
the local strategy iteration schemes by Friedmann [17]; but there the parity game is assumed
to be explicitly given, and the goal is simply to speed-up strategy iteration itself; in our case
the goal is to construct as little as possible from the actual parity game, while the actual
choice of the oracle Owin is unimportant at this point.

This brings us to the end of our walk-through of the main algorithm. In the following
sections we describe in more detail how we choose to instantiate the oracles.

3.1 DPA construction

3.1.1 Formula analysis and decomposition

Before constructing a DPA the formula is analysed and its syntax-tree is annotated with
automata acceptance conditions based on syntactic criteria. Such a formula decomposition
focussed on conjunctions has been previously used in other work such as [10,15,34]. How-
ever, we will also consider disjunctions and bi-implications. In Sect. 2.1 we introduced the
following three sub-classes of DPAs: DWAs, DBAs, and DCAs. Accordingly we annotate
the LTL formula with “acceptance-typing” information:

Definition 3 [Acceptance-Type Annotated LTL]

α ::= B∧(α, α) | C∧(α, α) | P∧(α, α) | W∧(α, α)

| B∨(α, α) | C∨(α, α) | P∨(α, α) | W∨(α, α)

| B↔(α, α) | C↔(α, α) | P↔(α, α) | W↔(α, α)

| B(ϕ) | C(ϕ) | P(ϕ) | W(ϕ) with ϕ ∈ LT L

Weobtain an acceptance-typed LTL formula α from an LTL formula ϕ using the following
heuristic approach: First, we determine syntactically the “simplest” acceptance type, denoted
τϕ , such that we can build a deterministic automaton with acceptance τϕ for ϕ efficiently.
Second, we annotate ϕ with this information and obtain α as the result of Tϕ . Formally:
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14 M. Luttenberger et al.

Definition 4 Let ϕ be a formula. Then τ is recursively defined as:

τϕ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

τψ1 � τψ2 if ϕ = ψ1 op ψ2 with op ∈ {∧,∨}
W if ϕ ∈ μLT L ∪ νLT L

or if ϕ = ψ1 ↔ ψ2 and {τψ1 , τψ2} = {W}
B if ϕ ∈ G(μLT L)

C if ϕ ∈ F(νLT L)

P otherwise

where � denotes the least upper bound relative to the partial order � defined by W ≺ B,
W ≺ C, B ≺ P , C ≺ P , B � C and C � B. The acceptance-type annotated formula Tϕ is
then recursively defined as:

Tϕ =

⎧
⎪⎨

⎪⎩

(τϕ)op(Tψ1 , Tψ2) if ϕ = ψ1 op ψ2 with op ∈ {∧,∨,↔}
and {τψ1 , τψ2} �= {P}

τϕ(ϕ) otherwise

In a specific implementation this decomposition and annotation might be fine-tuned to
allow better translation performance, e.g. safety properties classified as separate weak sub-
formulas might be grouped for performance reasons.

Further, letX ,Y , andZ be acceptance-typed LTL formulas.Wemake use of the following
simple pattern matching notation:

– X = B∧(X1,X2): HereX1 andX2 are fresh variables binding to the left and right subtree
of X , which is constrained to be a conjunction typed as Büchi acceptance.

– Y = Y∨(C1,Y2): Here C1 and Y2 are fresh variables binding to the left and right subtree
of Y . Further, C1 has to be typed as co-Büchi acceptance and Y can be typed with any
acceptance condition, but needs to be a disjunction.

– Z = W↔(W1,W2): Here W1 and W2 are fresh variables binding to the left and right
subtree of Z and are both typed with weak acceptance. Moreover, Z is a bi-implication
with weak acceptance.

Moreover, instead of only binary conjunctives, we use Büchi conjunction and co-Büchi
disjunction of sets, i.e. we add

α ::=B∧(B1, . . . ,Bn) | C∨(C1, . . . , Cn)

for any n ≥ 2 to the syntax. We restrict this rule to applications where all children are in the
Büchi class forB∧ (resp. co-Büchi class for C∨). After computing Tϕ , successive conjunctions
are directly grouped together with the rule B∧(B∧(B1,B2),B3) = B∧(B1,B∧(B2,B3)) =
B∧(B1,B2,B3), and the respective rule for C∨.

3.1.2 Product construction with LAR

Given an acceptance-type annotated syntax tree Tϕ for a formula ϕ, we now describe a
recursive procedure to construct a (transition-based) DPA A(Tϕ) with L(A(Tϕ)) = L(ϕ).
Observe that not all patterns that are syntactically possible are covered, but all patterns
generated by Tϕ .
Base Case. In the case Tϕ ∈ {W(ϕ),B(ϕ), C(ϕ),P(ϕ)} we use one of the direct automata
constructions described in Sect. 2.3.
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Conjunction. Now consider the case for the conjunction Tϕ = X∧(Tψ1 , Tψ2), or Tϕ =
B∧(Tψ1 , . . . , Tψn ). We start the construction by recursively constructing DPAs A(Tψi ) =
(Qi , δi , q0

i , χi , di , pi ) for each child Tψi . Then we apply a case distinction based on Tϕ and
each Tψi .

– In the cases where we have X∧(W1,X2) (and symmetrically X∧(X1,W2)), we can use
a simple product construction. Then define the DPA

A(X∧(W1,X2)) := (Q1 × Q2, δ, (q
0
1 , q0

2 ), χ, d2, p2)

with:

δ(q, a) := (δ1(q1, a), δ2(q2, a)) χ(q, a) :=
{

χ2(q2, a) if χ1(q1, a) = p1
p2 if χ1(q1, a) �= p1

– In the cases where we have X∧(C1,X2) (and symmetrically X∧(X1, C2)), we can also
use a product construction, with possibly one extra colour. W.l.o.g. assume p2 = 1. This
can be achieved by switching the parity of A(X2) if necessary. Then define the DPA

A(X∧(C1,X2)) := (Q1 × Q2, δ, (q
0
1 , q0

2 ), χ, d2, 1)

with:

δ(q, a) := (δ1(q1, a), δ2(q2, a)) χ(q, a) :=
{
0 if χ1(q1, a) = 0

χ2(q2, a) if χ1(q1, a) = 1

– Next, we consider the case B∧(B1, . . . ,Bn) with two or more Büchi children, and only
Büchi children. Here, on top of a product construction, we need an additional round-
robin-counter to track of successive satisfaction of the Büchi acceptance of the children.
We define the DBA

A(B∧(B1, . . . ,Bn)) := (Q × {0, 1, . . . , n − 1}, δ, (q0, 0), χ, 1, 0)

with Q := (Q1 × . . . × Qn), q0 := (q0
1 , . . . , q0

n ) and

δ((q, r), a) := ((δ1(q1, a), . . . , δn(qn, a)), r ′ mod n)

χ((q, r), a) :=
{
0 if r ′ = n

1 if r ′ < n

where r ′ := max{s ∈ {r , r + 1, . . . , n} | ∀r < j ≤ s : χ j (q j , a) = 0}.
– Last, we consider the caseP∧(B1,P2) (and symmetricallyP∧(P1,B2)).W.l.o.g. wemay

assume p2 = 1 by switching parity if necessary. Here, we need additional memory to
remember the minimal colour of P2 between acceptances of B1. We define the DPA

A(P∧(B1,P2)) := (Q1 × Q2 × {0, 1, . . . , d2}, δ, ((q0
1 , q0

2 ), d2), χ, d, 1)

with d := min{d ∈ {d2, d2 + 1} | d ≡2 0} and

δ((q, c), a) :=
{

((δ1(q1, a), δ2(q2, a)), d2) if χ1(q1, a) = 0

((δ1(q1, a), δ2(q2, a)), c′) otherwise

χ((q, c), a) :=
{

c′ if χ1(q1, a) = 0

d otherwise

where c′ := min (c, χ2(q2, a)).
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Note that if some child in a conjunction reaches a non-accepting sink, then we also know
that the conjunction can never accept again, and we can simplify the product state. A similar
argument holds if all children reach a accepting sink. Formally, we replace δ by δ′ and χ by
χ ′ defined by:

δ′(q, a) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q if q ∈ {⊥,�}
� if for all i we have δi (qi , a) = �
⊥ if for some i we have δi (qi , a) = ⊥
δ(q, a) otherwise

χ ′(q, a) :=

⎧
⎪⎨

⎪⎩

p if δ′(q, a) = �
p if δ′(q, a) = ⊥
χ(q, a) otherwise

Disjunction. The construction of the DPA A(X∨(X1,X2)) or A(C∨(C1, . . . , Cn)) for the dis-
junctive X∨ is dual to the conjunction case.
Bi-implication. Finally, we consider the bi-implication X↔(X1,X2). This can be expressed
through X∧ and X∨ by the logical equivalence ϕ ↔ ψ ≡ (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ). However,
this construction would increase the state space and number of colours in some cases, since
four automata (ϕ, ¬ϕ, ψ , ¬ψ) instead of two (ϕ, ψ) need to be constructed. Therefore we
have a special construction for the DPA A(X↔(X1,X2)). As before, we start by constructing
the DPAs for the children X1,X2. Let A(Xi ) = (Qi , δi , q0

i , χi , di , pi ) for i ∈ {1, 2}.
– In the caseW↔(W1,W2), we can apply a simple product construction. W.l.o.g. assume

p1 = p2 by switching parity if necessary. We define the DWA

A(W↔(W1,W2)) := (Q1 × Q2, δ, (q
0
1 , q0

2 ), χ, 1, 0)

with:

δ(q, a) := (δ1(q1, a), δ2(q2, a)) χ(q, a) := (χ1(q1, a) + χ2(q2, a)) mod 2

– Now we consider the general case for P↔(X1,X2) (note that B↔ and C↔ never occur).
W.l.o.g. assume that X1 �= P and thus d1 = 1. We consider X2 to be of class P and need
to store its minimal colour between acceptances of X1, as for conjunction. However,
whenever X1 does not accept, we emit the colour of A2, shifted by one. If X1 = W , we
can actually omit the memory to store the colour of X2. We define the DPA

A(P↔(X1,X2)) := ((Q1 × Q2) × {0, 1, . . . , d2}, δ, ((q0
1 , q0

2 ), d2), χ, d, p)

with d := d2 + 1, p := (p1 + p2) mod 2 and

δ((q, c), a) :=
{

((δ1(q1, a), δ2(q2, a)), d2) if χ1(q1, a) = p1 or X1 = W
((δ1(q1, a), δ2(q2, a)), c′) if χ1(q1, a) �= p1

χ(q, a) :=
{

c′ if χ1(q1, a) = p1
χ2(q2, a) + 1 if χ1(q1, a) �= p1

where c′ := min (c, χ2(q2, a)).
– We note that the construction of the previous case can be generalized to the product of

two arbitrary DPAs by remembering for each colour c of A(X1) the minimal colour of
A(X2) between minimal occurrences of c in A(X1).
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As with conjunction, we apply the simplification to A(X↔(X1,X2)), that if both children
reach a state in {⊥,�}, also the product state is either ⊥ or �. Replace δ by δ′ and χ by χ ′
defined by:

δ′(q, a) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q if q ∈ {⊥,�}
� if δ1(q1, a), δ2(q2, a) ∈ {⊥,�} and δ1(q1, a) = δ2(q2, a)

⊥ if δ1(q1, a), δ2(q2, a) ∈ {⊥,�} and δ1(q1, a) �= δ2(q2, a)

δ(q, a) otherwise

χ ′(q, a) :=

⎧
⎪⎨

⎪⎩

p if δ′(q, a) = �
p if δ′(q, a) = ⊥
χ(q, a) otherwise

Let ϕ be a formula and let α = Tϕ be the acceptance-type annotated formula. We then
implement the oracles Op , Oq0 , and Oδ by the DPA A(α) = (Q, δ, q0, χ, d, p) in the
following way: Op(α) := p, Oq0(α) := q0, and Oδ(α, q) := {({i}, {o}, χ(q, i ∪ o), δ(q, i ∪
o)) | i ∈ Σin, o ∈ Σout}.

3.1.3 Implementation details

On-the-fly construction. For this construction, the functions δ and χ only need to query the
local state, and never need a global state. They might call the functions δ and χ for their
children, but those also only depend on the local state and their respective children. Therefore
it is possible to implement the construction of theDPA A(α) for a decompositionα on-the-fly:
Starting with the initial state, successor states are only generated when necessary, and the
DPA is not fully constructed until all states have been queried. This holds both for the root
automaton and for any child automata constructed by the decomposition.

Memoization. When querying the root DPA for successors, the successors of the same state
in a child DPA may be needed several times. Instead of recomputing them each time, the
successors of the state are cached or memoized for direct access.

Formula Isomorphism. Building up on the memoization feature the construction only con-
structs one automaton for a pair of formulas isomorphic under renaming atomic propositions
und remaps letters in the query stage, effectively reducing the automata states needed to be
constructed for parametric formulas, where the same pattern is repeated with different atomic
propositions.

Symbolic Construction and Representation of Transition Relations. The description of the
oracle interface only specifies that successor function representedby a set needs to be returned.
An implementation can choose to represent such a transition relation explicitly (e.g. by a list
of length 2n) or symbolically (e.g. by an MTBDD). In fact Strix 19.07 relies on a symbolic
construction and representation of the transition relation of the arena and the automata. This
then allows efficient (symbolic) grouping of inputs and outputs into equivalence classes by
Oδ .

3.2 Parity game solver

We instantiate Owin with a variant of the strategy iteration algorithm in [31].
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Wefirst give a brief description ofwhat strategy iteration is andwhywedeem it particularly
useful when combined with a demand-driven construction of the arena. We then exemplify
these ideas in a bit more detail using our preceding example from Sec. 3.

In brief, strategy iteration consists of improving the current strategy (resp. controller)
by iterating the two steps: (i) compute the “worst case” the environment can inflict on the
system w.r.t. the current strategy; (ii) state-wise redefine the current strategy by selecting any
successor(s) which lead to a better “worst case”. The iteration stops as soon as the strategy
cannot be improved anymore i.e. if the currently selected successors led to the best “worst
case”. Strategy iteration nicely combines with our approach of constructing the actual arena
in a demand drivenway: we only construct the arena to that extent that allows the controller to
stay within the constructed subarena; all nodes resp. edges which are outside of this subarena
are simply flagged to be lost to the controller, when checking for realisability, resp. the system,
when checking for unrealisability; in addition, if we need to further explore the arena as we
could neither prove realisability nor unrealisability using the subarena constructed so far,
we can re-use the already computed strategies as initial strategies for computing the optimal
strategies for the extended subarena.

We exemplify these ideas now. Let A = (V©, V�, E, χ, B) be a parity game arena with
nodes V = V© ∪ V� split between the two players © and �, edges E , edge colouring
χ : E → N0, and boundary nodes B ⊆ V . We assume that A includes two special nodes ⊥
and � where ⊥ is always won by the environment � and � is always won by the controller
©. We further require that all nodes in V \B have at least one successor w.r.t. E .6 To simplify
notation, we forget about the inputs and outputs that also label the edges (as shown e.g. in
Fig. 3) s.t. we can simply write vE for the set of successors of the node v.

BesidesA, the parity game solver takes as additional input the “main player” P ∈ {©,�},
the parity p ∈ {0, 1} with which P wins a play, a node q ∈ V of the arena whose winner we
want to determine, and an initial strategy κ for the main player P. We will write P for the
opponent of P s.t. {P, P} = {©,�} with the parity of the opponent P being p accordingly.
All nodes in B are considered to be losing for the main player P , i.e. P can win be forcing P
into B.

In order to solve the parity game, we reformulate the winning condition into a sup-inf-
distance problem: To this end, we first introduce an (implicit) auxiliary node • to which only
the main player P can move to in order to give up. This node is in addition to the two nodes
� and ⊥ and only serves to simplify presentation. All edges leading to • are defined to be
coloured by ∞ (“don’t care”). We denote such a modification of an arena A by A•.

We interpret the edge coloursχ(v,w) asweights γ (v,w) thatmeasure how close P comes
to winning resp. losing when taking the corresponding edge. Let C ⊆ N0 be the set of all
colours occurring inA except for ∞. (Recall that we used the colour “∞” for edges that are
unimportant w.r.t. the winning condition.) A colour c ∈ C is identified with the multiset {c}
which we represent by its characteristic function w.r.t. N

C
0 . The colour ∞ is identified with

the empty multiset resp. its characteristic function. Addition on N
C
0 is defined point-wise as

usual s.t. it coincides with the union of multisets. The weight of a finite play is then simply
the sum of the weights of the edges traversed by it, i.e. the multiset of the colours of the edges
of a play.

We order N
C
0 from the point of view of P by means of the following order relation ≺P:

Given two distinct functions g, g′ ∈ N
C
0 , let c := min{c′ ∈ C | g(c′) �= g′(c′)} be the least

colour in which the two differ; if c has parity p, we set g ≺P g′ if and only if g(c) < g′(c);

6 Actually, the edges are also labeled by corresponding inputs and outputs coming from the environment and
the controller, respectively.
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Fig. 6 The arena of Fig. 3 extended by the auxiliary node •. The colours 0, 1 and ∞ have been transformed
into the respective edge weights (1, 0), (0, 1) and (0, 0) in N

C
0 . We assume that we have to decide whether the

controller P = © can win in the initial node (a0, b0, c0). Here, the parity of P is p = 0 so the colour 0 resp.
the tuple (1, 0) is positive from the point of view of ©, while the colour 1 resp. the tuple (0, 1) is negative.
When not given an initial strategy, we start with the strategy that tells P to give up at every node controlled by
P, thereby preventing the existence of negative cycles in any case, as shown in the figure on the left. This leads
to the sup-inf-distance to be (0, 0) at every node s.t. playing back to the initial node is an improvement as it
closes in each case a cycle of positive weight. Choosing all these improvements (thick dotted edges) yields the
strategy shown in the figure on the right; after removing the auxiliary node •, this yields the strategy shown
already in Fig. 4

else if c has parity p, we set g ≺P g′ if and only if g(c) > g′(c). For instance, taking a
look at the arena of Fig. 3, the colours 0 and 1 are mapped on the functions (represented
as tuples) (1, 0) and (0, 1), respectively. From the perspective of the controller © and its
winning parity 0, the weight (1, 0) (representing the colour 0) is more attractive than the
weight (0, 1) (representing the colour 1), i.e. (1, 0) ≺P (0, 1).

To make the interpretation of the functions in N
C
0 as weights more intuitive, let us remark

that one can recover the order ≺P by reading the function g ∈ N
C
0 as a numeral w.r.t. the

alternating basis −b, i.e. g is interpreted as the integer
∑

c∈C g(c) · (−1)p+c · b−c+maxC

where b is any sufficiently large positive integer, e.g. b = |V |. This ensures that in every
simple cycle inAwe have that the cycle is won by P if and only if the total weight of the cycle
is positive, i.e. staying forever in the cycle leads to gaining infinite distance. For instance in
the arena of Fig. 6 we could choose b = 2 s.t. (1, 0) is mapped onto 2, while (0, 1) is mapped
on −1.

P’s goal thus becomes to maximise the distance to losing, i.e. the minimal total weight
accumulated along a play—thus P will only accept infinite plays if these yield an infinite
distance to losing, otherwise P will use the option to play to • (or into the boundary) in order
to terminate a play and bound the distance to losing to a finite value.

Computation of the sup-inf-distances inA• is complicated by the existence of both positive
and negative cycles (w.r.t. the interpretation of N

C
0 as numerals). For this reason, we use

strategy iteration, i.e. we construct a sequence of strategies for P where each strategy only
allows for positive cycles, while negative cycles are prevented by playing to •: Assume P
uses a (nondeterministic memoryless) strategy κ (i.e. ∅ �= κ(v) ⊆ vE for all v ∈ VP ) s.t.
in the accordingly restricted arena A•

κ (i.e. P may only move to a successor in κ(v) at every
node v ∈ VP) s.t. no negative cycles exist anymore (e.g. consider κ = VP × {•}); then the
sup-inf-distance for every node can be easily computed using fixed-point iteration just as
in the case of the standard attractor computation using some variant of the Bellmann-Ford
algorithm (in order to identify infinite positive sup-inf-distance). Let dκ (v) denote the sup-
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inf-distance of node v inA•
κ . For every node v in B ∪{•}, we define dκ (v) = 0; for the nodes

⊥ and � we predefine dκ accordingly; for every v controlled by P we have the unrestricted
optimality equation dκ (v) = min≺P{γ (v,w)+dκ (w) | w ∈ vE}, while for v controlled by P
we have the κ-restricted optimality equation dκ (v) = max≺P{γ (v,w) + dκ (w) | w ∈ κ(v)}
(with γ (v,w) the weight induced by the colour of the edge from v to w). We call any
nondeterministic strategy κ ′ an improvement of κ if (1) κ ′ �= κ , (2) ∅ �= κ ′(v) ⊆ vE for all
v ∈ VP , (3) if (v,w) ∈ κ ′\κ , then dκ (v) < γ (v,w) + dκ (w) (i.e. v’s sup-inf-distance can
be improved by playing to w), and (4) if (v,w) ∈ κ ′ ∩ κ , then dκ (v) = γ (v,w) + dκ (w).
[31] shows that any such improvement κ ′ does not introduce any negative cycles and that
dκ ′ > dκ , i.e. the sup-inf-distances w.r.t. κ ′ do not decrease for any node and strictly improves
for at least one node. Thus, no strategy can be encountered twice. Finally, note that if WP�WP
is the winning partition of the nodes V of A w.r.t. the min-parity-condition, then P can use
his (memoryless deterministic) winning strategy from the parity game to ensure infinite sup-
inf-distance on WP also in A•, while P can use his winning strategy from the parity game
to ensure at least finite sup-inf-distance in A•. Hence, eventually the strategy iteration will
terminate in a strategy that guarantees infinite sup-inf-distance on exactly WP (Fig. 7).

In our implementation, we make use of the fact that the fixed-point iteration used for
solving the optimality equations stated above can be easily parallelised in order to make use
of modern multi-core CPUs (or even GPUs [32]).

3.2.1 Exploring the boundary

Oexpl selects nodes from the boundary B that should be further explored, i.e., where succes-
sors should be computed. After each expansion B is recomputed such that it contains the
nodes which successors have not yet been explored. We instantiate Oexpl with two different
approaches. One is based on breadth-first search exploration, and one on a priority queue
ordering states in the boundary by some quality score. For each method, we then have an
additional variant that filters the states that are currently needed to determine the winner of
the arena. In total, this results in the following four methods.

– Obfs
expl (breadth-first search (BFS) exploration): In the initial implementation the algo-

rithm explored and constructed the parity game using a breadth-first-search (BFS). This
approach helps to ignore parts of the game that are far away from the initial state and not
decisive for winning the game, however it also explores states that are close to the initial
state, but are irrelevant with the currently computed strategy.
Conceptually, we use the exploration function that picks states from B with a minimal
distance from the initial state q0 in each step. Define Obfs

expl by:

Obfs
expl(α, V©, V�, E, χ, B, q0, p, σ, τ ) := argmin

b∈B
dist(V© ∪ V�, E, q0, b)

dist(V , E, q0, q) := min{|π | | π is a path from q0 to q in (V , E)}
In the implementation, instead of recomputing the minimal distances in each step, we
select the next state from the boundary from a worklist queue.

– Obfs+
expl (BFS exploration with strategy-based worklist filtering): This exploration strategy

is a variant of Obfs
expl. The worklist is still populated in a BFS way, but we only keep

states that we know are needed to determine if the initial state is winning or losing. These
are states which are reachable through some path not blocked by an already winning or
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Fig. 7 The arena after one exploration step as show in Fig. 5 but extended with the node •. To simplify
presentation, we have removed the node ⊥ as © will always rather play to •; we also have dropped the neutral
edge weights i.e. every unlabelled edge is implicitly labeled by (0, 0). Top figure: Here, we are given the
strategy we computed in Fig. 6 as initial strategy for ©; for every node added by the exploration step, we
extend the strategy by letting © play to • again. We identify as improvements the thick dotted edges. This
gives us the strategy shown in the figure in the middle where the edges in green have been inherited from the
initial strategy, while the edges in blue are the improvement identified in the preceding step of the strategy
iteration. W.r.t. this strategy we only identify one further improvement which leads to the final strategy shown
in the lower figure that wins the node (a0, b0, c0)
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losing state. We define the exploration function Obfs+
expl as follows:

Obfs+
expl (α, V©, V�, E, χ, B, q0, p, σ, τ )

:= Obfs
expl(α, V©, V�, E, χ, filter(B), q0, p, σ, τ )

filter(B) := {b ∈ B | ∃ path π from q0to b s.t. ∀q ∈ π : winner(q) = ? }

winner(q) :=

⎧
⎪⎨

⎪⎩

© if Owin(V©, V�, E, χ, B, q, ©, p, σ ) returns true

� if Owin(V©, V�, E, χ, B, q,�, p, τ ) returns true

? otherwise

We reuse the results ofOwin already computed in themain algorithm.However, in contrast
to Obfs

expl, we need to check for existence of a path from q0 to all states b ∈ B without
already won states, which we do using a single linear-time search in each iteration.

– Opq
expl (priority queue exploration based on scores): This exploration method is based on

quality scores (to be defined in the next section) assigned to each state in the boundary.
The idea is that a high score means this state is a promising state for © to win the game
from the initial state, while a low score is a promising state for � to win the game. As
we initially do not know if the specification is realisable or unrealisable, and thus do
not know for which player the initial state is winning, this method explores both states
with high and low scores simultaneously. We assign scores not to states, but to edges, to
incorporate information from colours and updates in the LAR. LetOscore(α, q, a, q ′) be
a function assigning a score to a given edge (q, a, q ′) of the parity automaton A(α). With
an intermediate function s(b) assigning to a state b ∈ B all scores of incoming edges,
we define the exploration method Opq

expl by:

Opq
expl(α, V©, V�, E, χ, B, q0, p, σ, τ )

:=
(
argmin

b∈B
(min s(b))

)
∪

(
argmax

b∈B
(max s(b))

)

s(b) := {Oscore(q, i ∪ o, b) | (q, I , q ′), (q ′, O, b) ∈ E, i ∈ I , o ∈ O}
We implement this method with a double-ended priority queue, in which states are
inserted with their respective minimal and maximal score of an incoming edge upon
discovery.

– Opq+
expl (priority queue exploration with strategy-based worklist filtering): Finally, we can

combine the exploration using scoreswith the filtering function filter fromObfs+
expl , yielding

the method Opq+
expl defined by:

Opq+
expl(α, V©, V�, E, χ, B, q0, p, σ, τ )

:= Opq
expl(α, V©, V�, E, χ, filter(B), q0, p, σ, τ )

3.2.2 Quality scores

We now describe how to compute scores by Oscore(Tϕ, q, a, q ′) for an edge (q, a, q ′) of the
DPA A(Tϕ) leading to a boundary state q ′. We first define a function score, which takes
the acceptance-type annotated formula Tϕ and an edge (q, a, q ′) of A(Tϕ), and returns a
weighted score (w, s) = score(Tϕ, q, a, q ′). We always assign the score value s such that
s = 0 if q ′ = ⊥, s = 1 if q ′ = � and 0 < s < 1 otherwise. The function score(Tϕ, q, a, q ′)
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computes (w, s) recursively on Tϕ , similarly to the LAR-product construction, and we define
it by case distinction on Tϕ and q .

– If q = ⊥, return w = 1 and s = 0.
– If q = �, return w = 1 and s = 1.
– In the base case forW(ϕ),B(ϕ), C(ϕ) andP(ϕ), returnw = 1 and compute s depending

on the type of automaton.

– If we encounterW(ϕ), then ϕ ∈ μLT L ∪ νLT L . By using the construction of [13]
the state q ′ is in fact a Boolean formula over modal operators treated as variables.
Let V be the set of variables and let M be the set of satisfying assignments of q ′.
We then set s = |M|/2|V|. Using this definition, we assign to the state tt (which
corresponds to �) s = 1 and to the state ff (which corresponds to ⊥) s = 0.

– Ifwe encounterB(ϕ), thenwe apply the construction of [38] and the stateq ′ = (p, p′)
is a tuple of two Boolean formulas p and p′. We then construct p ∧ p′ and compute
the scoring for W(p ∧ p′).

– If we encounter C(ϕ), then we apply the same approach as in B(ϕ), since these
automata are obtained by complementing Büchi automata and have an identical
structure besides the acceptance condition.

– If we encounter P(ϕ), we bail and return s = 1
2 .

– In the case Tϕ = X∧(X1, . . . ,Xn) and Tϕ = X∨(X1, . . . ,Xn), we first compute the child
scores (wi , si ) = score(Xi , q, a, q ′). Then, for each Xi , we update wi and si as follows:

– If Tϕ = X∧, set wi ← wi · log1/2 si . This gives score values close to 0 an increased
weight, which could make the whole conjunction false.

– If Tϕ = X∨, set wi ← wi · log1/2(1 − si ). This gives score values close to 1 an
increased weight, which could make the whole disjunction true.

– If Tϕ = B∧(B1, . . . ,Bn), or Tϕ = C∨(C1, . . . , Cn), then Xi = B or Xi = C and
q = (q ′′, r) and q ′ = (q ′′′, r ′) for some round-robin counters r , r ′. Now if the child
caused the round-robin counter to increase, i.e. we have r ≤ i < r ′, then we set
wi ← 2 · wi and update the score. If Xi = B, set si ← 3+si

4 to increase the score,
and if Xi = C, set si ← si

4 to decrease the score.
– If either Tϕ = P∧(X1,X2), Xi = P , and X3−i = B, or Tϕ = P∨(X1,X2), Xi = P ,

and X3−i = C, then q = (q ′′, c) and q ′ = (q ′′′, c′) for some minimal colour memory
values c, c′. Let p be the parity of the DPA A(Tϕ). Now if A(Xi ) caused the memory
to decrease to a value with parity p, we increase the score, and if it decreased it to a
value with different parity, we decrease the score. Therefore if c′ < c and c′ ≡2 p,
then set wi ← 2 ·wi and si ← 3+si

4 , and if c′ < c and c′ ≡2 p, then set wi ← 2 ·wi

and si ← si
4 .

Finally, we return w := ∑n
i=1 wi and s := (∑n

i=1 wi · si
)
/ w.

– In the case X↔(X1,X2), we also first compute the child scores (wi , si ) =
score(Xi , q, a, q ′) for i ∈ {1, 2}, and then update eachwi and si similarly to conjunction
and disjunction:

– If 0 < si < 1, set wi ← wi · max(log1/2 si , log1/2(1 − si )).
– If Tϕ = P↔(X1,X2) and A(Xi ) is the child forwhichwe store the colours inmemory,

then q = (q ′′, c) and q ′ = (q ′′′, c′) for some minimal colour memory values c, c′
of A(Xi ). Let p be the parity of the DPA A(Tϕ). As for P∧ and P∨, if c′ < c and
c′ ≡2 p, then set wi ← 2 · wi and si ← 3+si

4 , and if c′ < c and c′ ≡2 p, then set
wi ← 2 · wi and si ← si

4 .
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Then we return w := ∑n
i=1 wi and s := (∑n

i=1 wi · si
)
/ w.

We then define Oscore(Tϕ, q, a, q ′) := s where (w, s) = score(Tϕ, q, a, q ′). The value w

is only necessary to normalise intermediate scores due to the recursive definition of score.

3.3 Controller extraction

3.3.1 Mealy machine

When we determine that © has a winning strategy σ from q0, we can extract a controller
from σ that ensures realisation of the specification.

We use an incompletely specified Mealy machine, where some outputs might not be
specified and could be instantiated either way. This allows further minimisation and more
compact representations by a circuit. Given an input/output partition Ap = Apin � Apout, a
Mealy machine is a tuple M = (Q, q0, δ, λ) where Q is a finite set of states, q0 ∈ Q is the
initial state, δ : Q ×2Apin → Q is the transition function and λ : Q ×2Apout → {0, 1, ?}Apout
is the output function, where ? stands for an unspecified output. The output can be given by
a Boolean product term, where missing variables are unspecified.

Let (V©, V�, E) be the parity game arena where © wins from q0 with the strategy σ .
We use Q := {q ∈ V� | Owin(V©, V�, E, χ, B, q, ©, p, σ )} as the set of states. For the
transition function, we define δ(q, i) := q ′ by choosing some q ′ where ((q, I ), O, q ′) ∈ σ

for some I ⊆ Σin with i ∈ I and any O ⊆ Σout. By construction, and as σ is a winning
strategy for all q ∈ Q, such a q ′ always exists. However, there may be multiple applicable
q ′. We construct Q and δ iteratively, starting from Q ← {q0}, and try to choose for every
q ∈ Q and i ∈ 2Apin a q ′ = δ(q, i) such that q ′ ∈ Q, if possible, and otherwise extend
Q ← Q ∪ {q ′}. As a secondary heuristic, we try to choose a successor that gives the most
flexibility in choosing the output, i.e. a q ′ such that

∑{|O| | ∃I : i ∈ I ∧((q, I ), O, q ′) ∈ σ }
is maximal.

For the output function, let δ(q, i) = q ′ be an edge of the Mealy machine; then take
a minimal prime implicant o′ of the Boolean formula over Apout that encodes the set {o |
∃I , O : i ∈ I ∧ o ∈ O ∧ (q, I ), O, q ′) ∈ σ }, and define λ(q, i) := o′. This again exploits
non-determinism of the strategy σ .

Example 1 Using the winning strategy for the simple arbiter specification in Fig. 5, we
obtain Q = {(a0, b0, c0), (a0, b1, c0), (a0, b0, c1)} as states of the Mealy machine. For
δ((a0, b0, c0), r1r2), we may choose any of the other two states as a successor. If we choose
(a0, b1, c0), we get the output o = λ((a0, b0, c0), r1r2) = g1g2, specifying o(g1) = 0 and
o(g2) = 1. For the output λ((a0, b0, c0), r1 r2), we may choose one of the two min-terms
g1 or g2 as an output. If we choose o = g1, then o(g1) = 0, but the output o(g2) = ? is
unspecified. An implementation is then free to choose o(g2) = 0 or o(g2) = 1.

This incompletely specified Mealy machine can optionally be minimised. We use the
exact minimisation algorithm from [1], which in turn uses a SAT solver. While this problem
is harder than minimisation of fully specified Mealy machines, it can also result in smaller
machines.

3.3.2 Controller as BDD or AIG

While we can directly output the controller as a Mealy machine, we can also encode it as
a binary decision diagram (BDD) or and-inverter graph (AIG), representing a circuit. For
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this, we need to encode the transition function δ and output function λ of the Mealy machine
as a BDD or AIG. Both of these representations use decisions over binary variables. The
inputs i ∈ 2Apin and outputs o ∈ {0, 1, ?}Apout are already binary vectors after one resolves
the unspecified ? outputs. However, one needs to choose a binary encoding of the state space
Q. Here we offer two options:

First, we can use an unstructured encoding lunstr. We simply enumerate the states
Q = {q0, . . . , qn} and use the encoding function lunstr : Q → 2�log2 |Q|� with lunstr(qi ) = i
which maps each state to the binary encoding of its number.

Second, we can use the shape of the states for a structured encoding lstruct. As a state q is a
vector (q1, . . . , qn), we can encode each component separately into a binary vector. Assume
that for each component 1 ≤ i ≤ n, the states qi are numbered from 0 to |Qi | − 1. Then we
use the encoding function lstruct : Q → 2

∑n
i=1�log2 |Qi |�, with

l(q1, . . . , qn) :=
n∑

i=1

qi · 2
∑i−1

j=1�log2 |Qi |�

which concatenates the binary encoding of the state number in each component. Note that
this also includes additional memory information such as the round-robin counter or minimal
colour memory.

Example 2 For theMealymachine obtained from the strategy in Fig. 5, we have as states Q =
{(a0, b0, c0), (a0, b1, c0), (a0, b0, c1)}. With the unstructured encoding for Q = {q0, q1, q2},
we get the binary state encodings lunstr(Q) = {002, 012, 102}. If we represent the prod-
uct states as numbers with qi = i for q ∈ {a, b, c} and the round-robin counter by
r ∈ {0, 1}, then after applying the structured encoding function, we get the state encod-
ings lstruct(Q) = {00002, 01002, 00112}.

We also minimise the controller for these output formats. When constructing a BDD,
we minimise it using the CUDD library [40] by reordering the variables. When construct-
ing an AIG, we first construct a BDD and minimise it, and then construct the AIG from
the BDD. Afterwards, we minimise the AIG using functionality from the ABC library
[6].

When using the encoding function, it can sometimes also be more effective to not
minimise the Mealy machine before, as this can destroy the structure from the prod-
uct state. Structured encoding can also sometimes increase the size of a circuit. We
offer an option to construct a circuit using the three following combinations in paral-
lel and then return the smallest circuit: Mealy minimisation and unstructured encoding,
no minimisation and structured encoding, and no minimisation and unstructured encod-
ing.

4 Experimental evaluation

The three main research questions we want to answer in this section are:

– RQ1 How does Strix compare to existing tools? Specifically, we analyse:

– Number of instances correctly identified to be realisable.
– Number of instances for which a correct controller was synthesised.
– Circuit size of the constructed controller.
– Performance with increasing alphabet size.
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– RQ2 What is the difference in performance of the proposed exploration strategies (bfs
and pq, with and without filtering)? Specifically, we analyse:

– Number of constructed states.
– Runtime.

– RQ3What is the difference in size of the proposed circuit encoding strategies (structured
and unstructured, with and without minimisation)? Specifically, we analyse:

– Circuit size.

Experimental Design We approach all three research questions by evaluating the different
tools and configurations on the specifications from the TLFS/LTL-track of the Synt-
comp2019 competition,7 which subsumes all benchmarks of Syntcomp2018 [25]. To the
best of our knowledge this dataset is the most complete set of LTL specifications for synthe-
sis stemming from a wide range of different applications. These include industrial examples
such as the AMBAAHB arbiter [4,21,26], and case studies for hardware controller synthesis
[16,18]. For more details, see previous Syntcomp competition reports [23–25]. The Synt-
comp2019 set of specifications contains in total 434 LTL synthesis specifications, of which
337 are realisable and 97 are unrealisable. All experiments were run on a server with an Intel
E5-2630 v4 clocked at 2.2GHz (boost disabled, 40 cores). We imposed a memory limit of
100GB (as in Syntcomp2019) and a wall-clock time limit of 1h for each specification.

In Sect. 4.1 we address RQ1 and evaluate overall performance on the benchmark set and
compare against ltlsynt, BoSy and a previous version of Strix. In Sect. 4.2 (RQ2), we
compare the different exploration strategies, and in Sect. 4.3 (RQ3) different construction
approaches for the circuit.
Independent Evaluations Since the first release of Strix [33] independent researchers used,
evaluated, and compared it to other tools. At Syntcomp2019, Strix in its submitted version
(19.07) again made first place in all categories in the LTL synthesis track. In two case studies
[16,18] by Finkbeiner et al. Strix was used to synthesise controllers for small hardware
devices; in the second case study [18], Strix was also compared to BoSy and the not
publicly available BoWSer where Strix was the only tool to solve all synthesis problems,
and also performed best w.r.t. time and size of the obtained controller in almost all of the
synthesis problems; interestingly, BoWSer clearly outperformed Strix in the specification
SensorSelector where BoWSer was roughly seven times faster than Strix and also
succeeds in finding a trivial controller with zero gates within 38s while Strix needed 280s
for returning a controller using 17 gates.

Finally, [11] compares Strix to GuiSynth, a tool for synthesising code for graphical
user interfaces. Here, GuiSynth clearly outperforms Strix in most benchmarks. As Ehlers
and Adabala already noted this probably has to be contributed to the fact that GuiSynth is
specifically designed for the task at hand and the embedding into a standard LTL synthesis
problem causes an exponential blow-up in the alphabet size.

4.1 RQ1: comparison with previous version, with ltlsynt, and withBoSy

Experimental Design We run Strix using the default exploration strategyObfs
expl, AIG output

and portfolio minimisation to find the smallest AIG.We compare against Strix in the version
submitted to CAV 2018 [33] in April 2018. This version also used the exploration strategy
Obfs

expl, but did not have many of the improvements such as formula isomorphism detection,

7 http://www.syntcomp.org/.
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Table 1 Overall results for Strix compared with its previous version, ltlsynt and BoSy

Max Strix (19.07) Strix (CAV’18) ltlsynt (2.8.1) BoSy (July’19)

Realisability 434 415 (29) 374 (0) 353 (0) 344 (0)

Synthesis 337 304 (28) 264 (0) 254 (0) 234 (2)

Total quality 674 571.66 425.17 242.82 416.94

Avg. quality 2.00 1.88 1.61 0.96 1.78

Bold values indicate the best result for each quantity. For Realisability and Synthesis, we give the number of
solved instances (unique instances) and for Quality the total accumulated and the average points over solved
synthesis instances

memoization, symbolic representation of edges, or structured encoding. Further, we compare
our implementation with BoSy and ltlsynt which achieved second8 and third place in
Syntcomp2018 in the “synthesis quantity”-ranking. We use ltlsynt from the Spot library
[8,23] in the version 2.8.1 from July 2019, with parameter --algo=ds, and against BoSy
[14] in the newest version available as of July 2019, with parameter --optimize.

We run each tool on each specification twice: once to check only realisability and in the
realisable case once more to synthesise a controller in the AIGER format. Table 1 gives the
overall results.

The category Realisability counts the number of specifications for which realisability is
correctly decided within the time limit, and the category Synthesis counts the number of
realisable specifications for which additionally a successfully verified controller is produced.
For this we verified the circuits with an additional time limit of 1h using the nuXmv model
checker [7] in version 1.1.1 with the check_ltlspec_klive routine.

The Quality rating compares the size of the solutions according to the Syntcomp2019
formula, where a tool gets max(0, 2− log10

n+1
r+1 ) quality points for each verified solution of

size n for a specification with reference size r . The size of a solution is given by the number
of and gates plus number of latches, and as reference size we chose the smallest size of a
verified solution produced by any of the four tools during our experiments.

Further, we list notable outliers in pairwise comparisons with other approaches. We com-
pute for each pair of tools and each specification successfully solved by both tools the
difference in order of magnitudes (| log10 x

y |)9 and select for each pair of tools the eight
largest differences.

In order to study the impact of growing alphabet sizes we look at 4 parametrised bench-
marks from Syntcomp2019 and measure the execution time for growing parameters. These
parameters scale up the number of components and the size of the alphabet. Namely, we pick
arbiter (AMBA), full_arbiter_enc, ltl2dba_Q, and ltl2dba_beta.

The results for these comparisons are given in table Table 2 for time to decide realisability,
in Table 3 for size of the solutions, and Table 4 gives a cross-comparison.

Analysis. Compared to the previous version of Strix we solve at least 40 additional speci-
fications in the Realisability and Synthesis categories and see a considerable improvement
in the Quality ratings. We believe that this is partly due to the symbolic construction and
representation of the transition relation which applies to the arena and the automata for LTL
fragments, e.g. safety. Only on smaller instances of the full_arbiter specification the
previous version is faster. This might be related to the overhead of using symbolic data-

8 Strix was ranked on the first place.
9 ...or | log10 x+1

y+1 | to compensate for circuits of size 0.
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Table 2 Time (s) to decide Realisability, comparing Strix with its previous version, ltlsynt and BoSy,
both pairwise on the specifications with the 8 largest differences and on selected parameterised instances

Specification |Apin| |Apout| Strix
(19.07)

Strix
(CAV’18)

ltlsynt
(2.8.1)

BoSy
(July’19)

Strix (19.07) vs Strix (CAV’18)

simple_arbiter_10 10 10 2.4 1603.2 818.0 time

detector_10 10 1 0.8 486.4 mem 506.0

prioritized_arbiter_8 9 9 2.1 1048.6 2450.7 time

ltl2dba_C2_10 10 1 1.1 457.2 mem 474.0

detector_unreal_10 10 1 1.7 465.1 mem 13.1

loadfull5 6 5 5.0 1253.9 3.5 10.9

amba_decomposed_lock_8 17 1 1.8 301.0 18.4 2.5

ltl2dba_theta_8 10 1 1.4 223.9 mem 96.5

Strix (19.07) vs ltlsynt (2.8.1)

ltl2dba_C2_8 8 1 1.2 17.8 3443.6 7.1

detector_unreal_8 8 1 1.4 19.7 3320.2 1.5

ltl2dpa22 6 3 1.2 time 2581.1 12.2

prioritized_arbiter_8 9 9 2.1 1048.6 2450.7 time

prioritized_..._unreal1_3_8 4 4 1.7 time 1686.7 time

TorcsSteeringSmart 4 6 51.2 17.7 0.1 0.7

torcs_steering_smart 4 6 49.4 16.9 0.1 0.6

simple_arbiter_10 10 10 2.4 1603.2 818.0 time

Strix (19.07) vs BoSy (July’19)

round_robin_arbiter_4 4 4 1.3 4.1 1.2 3178.3

ltl2dba_Q_6 6 1 0.9 4.9 1.1 1539.9

detector_10 10 1 0.8 486.4 mem 506.0

ltl2dba_C2_10 10 1 1.1 457.2 mem 474.0

SPIWriteManag 5 15 3.3 3.6 16.3 1076.3

SPI 4 16 5.1 6.6 10.0 1341.1

ltl2dba_R_6 6 1 4.8 time mem 1167.0

OneCounterGuiA6 9 9 2.9 7.3 79.0 464.7

selected parameterised instances

amba_..._arbiter_2 3 4 1.3 0.9 0.1 0.1

amba_..._arbiter_4 5 6 1.7 1.4 1.0 4.8

amba_..._arbiter_6 7 8 9.4 40.1 38.3 393.1

amba_..._arbiter_8 9 10 177.7 1629.1 time time

full_arbiter_enc_6 3 3 11.7 2.0 17.2 200.0

full_arbiter_enc_8 3 4 63.0 21.4 time time

full_arbiter_enc_10 4 4 337.8 303.7 time time

full_arbiter_enc_12 4 4 1274.5 time time time

ltl2dba_beta_4 8 1 1.1 6.1 1.1 2.4

ltl2dba_beta_6 12 1 1.5 237.0 72.5 152.5

ltl2dba_beta_8 16 1 19.0 time err mem

ltl2dba_beta_10 20 1 352.2 time err mem
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Table 2 continued

Specification |Apin| |Apout| Strix
(19.07)

Strix
(CAV’18)

ltlsynt
(2.8.1)

BoSy
(July’19)

ltl2dba_Q_6 6 1 0.9 4.9 1.1 1539.9

ltl2dba_Q_8 8 1 4.2 145.3 324.9 time

ltl2dba_Q_10 10 1 47.5 time time time

ltl2dba_Q_12 12 1 1042.4 time time time

Bold values indicate the shortest runtimes. We mark timeouts by time, memouts by mem, and errors by err

Table 3 Size of AIG for Synthesis and Quality, comparing Strix with its previous version, ltlsynt and
BoSy, pairwise on the specifications with the 8 largest differences

Specification |Apin| |Apout| Strix
(19.07)

Strix
(CAV’18)

ltlsynt
(2.8.1)

BoSy
(July’19)

Strix (19.07) vs Strix (CAV’18)

tictactoe 9 9 0✓ 153✓ time time

collector_v2_4 4 1 20✓ 2060� 8292✓ 10✓

ltl2dba_Q_6 6 1 114✓ 9761✓ 16563✓ 48591�
collector_v4_7 7 1 57✓ 3547� time time

collector_v2_5 5 1 24✓ 1238✓ time time

OneCounter 9 9 22✓ 870✓ 2534✓ mem

ltl2dba_C2_8 8 1 58✓ 2133� time mem

detector_8 8 1 58✓ 2133� time 440✓

Strix (19.07) vs ltlsynt (2.8.1)

narylatch_10 11 10 186� time 6349541� time

simple_arbiter_10 10 10 29✓ mem 996921� time

prioritized_arbiter_8 9 9 43✓ mem 747766� mem

ltl2dba_C2_6 6 1 31✓ 1071✓ 422872� 468✓

detector_6 6 1 31✓ 1071✓ 422872� 449✓

ltl2dba_E_10 10 1 29✓ time 321799� time

simple_arbiter_8 8 8 18✓ mem 87834� 21✓

narylatch_8 9 8 144✓ mem 376661� time

Strix (19.07) vs BoSy (July’19)

simple_arbiter_enc_6 3 3 751✓ 2699� 5276� 611824�
prioritized_arbiter_enc_6 3 3 1445� 7938� 66443� 897716�
ltl2dba_Q_6 6 1 114✓ 9761✓ 16563✓ 48591�
full_arbiter_7 7 7 911� mem 112488� 388240�
ltl2dba_E_6 6 1 17✓ 17✓ 3630✓ 5813✓

full_arbiter_6 6 6 373✓ 634✓ 28264� 117163�
round_robin_arbiter_4 4 4 94✓ 239✓ 1928✓ 19738✓

full_arbiter_5 5 5 284✓ 351✓ 7039✓ 47570�
Bold values indicate the smallest circuit for each specification. We mark timeouts by time, memouts by mem,
and errors by err. The symbol ✓ denotes successful verification and � denotes a timeout during verification
of the AIG
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Table 4 Cross-comparison of different tool

Time for realisability Size of AIG

Strix
(19.07)

Strix
(CAV’18)

ltlsynt
(2.8.1)

BoSy
(July’19)

Strix
(19.07)

Strix
(CAV’18)

ltlsynt
(2.8.1)

BoSy
(July’19)

Strix (19.07) – 105 124 145 – 212 293 190

Strix (CAV’18) 25 – 80 98 31 – 242 125

ltlsynt (2.8.1) 22 34 – 77 0 23 – 82

BoSy (July’19) 14 33 32 – 101 139 202 –

Each cell counts the number of instances where the result of the row tool is strictly better than the result of the
column tool, comparing time for realisability and size of the AIG as the number of and gates plus number of
latches. A time is only considered better if it is at least 5 s less than the other time

Table 5 Cross-comparison of different exploration strategies

|V�| Obfs
expl Obfs+

expl Opq
expl Opq+

expl Obest
expl Time Obfs

expl Obfs+
expl Opq

expl Opq+
expl Obest

expl

Obfs
expl – 10 45 36 5 Obfs

expl – 14 57 30 1

Obfs+
expl 30 – 50 37 11 Obfs+

expl 43 – 62 45 31

Opq
expl 31 28 – 6 5 Opq

expl 13 9 – 2 1

Opq+
expl 45 45 48 – 30 Opq+

expl 32 22 47 – 13

Each cell counts the number of instances where the result of the row strategy is strictly better than the result
of the column strategy. Obest

expl is the best of the three other exploration strategies. A time is only considered

better if it is at least 5 s less than the other time

structures for small alphabets. Further, the revised AIG encoding strategy yields smaller
controllers in comparison to the previous version.

Compared to BoSy, our approach can scale better on larger and complex specifications.
One can observe this on parameterised specifications thatmainly increase the number of input
propositions. Even though BoSy employs an input-symbolic QBF encoding it could not deal
with the large specifications. We hypothesise that this is caused by an explicit representation
somewhere in the synthesis chain. For synthesis, while BoSy produces a smaller solution in
101 cases, Strix produces a smaller solution in 129 cases, and often by a much larger factor.
We believe this is due to our structured encoding, which is hard to recover from a solution
given by the constraint solver that bounded synthesis employs.

4.2 RQ2: comparison of different exploration strategies

Experimental Design.Wecompare the four different exploration strategiesObfs
expl,O

bfs+
expl ,O

pq
expl

and Opq+
expl and measure the number of explored states and time needed to check realisability.

Table 5 gives a cross-comparison in order to identify a dominant approach. Further, Table 6
lists runtimes and number of explored states where there is a significant difference in the
number of explored states.

Analysis.Table 5 suggests thatOpq+
expl can avoid the exploration of states not relevant for decid-

ing realisability. However, this efficiency seems to be costly, since in the runtime comparison
it falls behind the Obfs+

expl configuration.
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Table 6 Comparison of different exploration strategies for checking realisability

Specification Explored states |V�| Time for realisability (s)

Obfs
expl Obfs+

expl Opq
expl Opq+

expl Obfs
expl Obfs+

expl Opq
expl Opq+

expl

amba_case_study_2 8187 3852 5598 2428 1008.9 451.4 707.3 306.8

collector_v3_5 78 73 148 54 2.3 2.3 4.3 2.6

collector_v3_6 148 147 206 32 6.5 6.0 13.0 4.6

collector_v3_7 306 305 386 22 42.2 39.9 94.0 18.2

detector_unreal_12 28 31 48 22 1.7 1.8 2.9 2.1

full_arbiter_unreal1_3_6 65536 65536 7475 6645 23.1 12.4 30.7 14.1

full_arbiter_unreal1_3_8 1685603 1678429 6576 6321 369.9 328.4 34.4 17.3

full_arbiter_unreal1_3_10 – – 6812 6249 time time 38.0 16.7

full_arbiter_unreal1_3_12 – – 6899 6418 time time 53.1 19.4

genbuf2 77479 61878 83025 35196 80.1 56.9 175.9 77.5

KitchenTimerV2 23 12 24 24 2.7 2.1 3.2 3.1

load_balancer_unreal1_2_10 2523 572 701 700 12.2 2.6 2.3 1.5

load_balancer_unreal1_2_12 10106 638 725 713 22.4 2.6 2.3 1.9

ltl2dba_R_6 162 80 29 14 4.7 4.0 3.8 3.0

ltl2dba_R_8 138 138 4 3 603.1 613.2 544.7 437.6

round_robin_[...]_unreal1_2_12 11703 16384 4096 4096 8.1 15.0 22.9 13.0

round_robin_[...]_unreal1_2_15 93623 93623 22509 21077 21.7 40.2 66.6 25.2

round_robin_[...]_unreal1_2_18 673158 669697 262144 45152 140.5 117.8 243.9 57.7

SliderDelayed 81 48 81 81 1.5 1.0 2.0 1.7

slider_delayed 50 81 81 81 1.3 1.4 2.2 1.4

TwoCounters3 11 11 99 99 9.1 8.2 44.5 40.4

TwoCountersInRangeM0 7 7 20 19 2.9 2.3 7.8 6.7

TwoCountersInRangeM1 7 7 24 23 2.7 2.4 9.1 7.9

Bold values indicate the shortest runtime and the smallest number of explored states, respectively

Table 7 Cross-comparison of different minimisation strategies

|AIG| lunstr lmin
unstr lstruct lmin

struct lbest

lunstr – 27 131 120 18

lmin
unstr 157 – 172 200 138

lstruct 80 61 – 71 29

lmin
struct 106 28 117 – 3

Each cell counts the number of instances where the size of the AIG from the row strategy is strictly smaller
than the result of the column strategy, and lbest gives the minimum over all three other strategies

We see that filtering the queue inObfs+
expl andO

pq+
expl in comparison toObfs

expl andO
pq
expl, respec-

tively, often reduces the amount of explored states. However, filtering the queue generally
incurs overhead, as the reachable state space needs to be explored and the queue rebuilt. For
instance, on amba_case_study_2, we half the number of states explored when filtering
is used. Further, comparingOpq

expl withO
bfs
expl, we see that using the scoring-based exploration
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Table 8 Comparison for different minimisation strategies, giving the size of the AIG as the number of and
gates plus number of latches

Specification |Apin| |Apout| Obfs
expl Size of AIG

|V�| lunstr lmin
unstr lstruct lmin

struct

collector_v2_5 5 1 144 446✓ 24✓ 73✓ 35✓

collector_v2_6 6 1 336 1610✓ 34✓ 101✓ 51✓

collector_v2_7 7 1 607 3052� 65✓ 113✓ 77✓

collector_v4_6 6 1 184 772✓ 1216✓ 209✓ 2020✓

collector_v4_7 7 1 375 1451✓ 57✓ 141✓ 173✓

full_arbiter_6 6 6 645 373✓ 3865� 758✓ 8469�
full_arbiter_7 7 7 1422 911� 10722� 1080✓ 20349�
full_arbiter_enc_8 3 4 15985 18533� 11623� 2904� 31195�
full_arbiter_enc_10 4 4 70662 time 147730� time time

KitchenTimerV3 4 6 69 48✓ 1✓ 64✓ 14✓

KitchenTimerV4 4 6 78 48✓ 1✓ 64✓ 14✓

load_balancer_8 9 8 2250 12903� 3751✓ 512✓ 4705✓

ltl2dba_beta_6 12 1 49 1026✓ 1026✓ 90✓ 90✓

ltl2dba_beta_8 16 1 81 1819✓ 1819✓ 151✓ 151✓

ltl2dba_beta_10 20 1 121 2445✓ 2445✓ 156✓ 156✓

ltl2dba_Q_6 6 1 170 3504✓ 3504✓ 114✓ 114✓

ltl2dba_Q_8 8 1 986 31821� 31821� 187✓ 187✓

ltl2dba_Q_10 10 1 5742 time 199301� 243✓ 243✓

ltl2dba_Q_12 12 1 33462 time time 309✓ time

prioritized_arbiter_enc_8 4 4 23554 57136� 33762� 3487� 85101�
prioritized_arbiter_enc_10 4 4 142337 time time 6906� time

prioritized_arbiter_enc_12 4 4 593921 time mem 12256� mem

round_robin_arbiter_7 7 7 9189 12119� 843✓ 2535✓ 1183✓

simple_arbiter_enc_8 3 4 10240 15906� 11308� 1317� 24468�
simple_arbiter_enc_10 4 4 65024 112422� 62369� 3356� time

TorcsSteeringSmart 4 6 421 4963� 67✓ 5131� 104✓

torcs_steering_smart 4 6 421 5006� 67✓ 5210� 104✓

Total solved and verified (unique) 292 (0) 299 (2) 300 (3) 298 (0)

Bold values indicate the smallest circuit for each specification. The symbol ✓ denotes successful verification
and � denotes a timeout during verification of the AIG

can significantly reduce the amount of explored states. This especially seems to hold for
unrealisable specifications. We assume this is because the environment player only needs to
find a path to a state that forces the controller player to violate the specification, while the
remaining states only contribute to satisfying the specification. However, Opq

expl and Opq+
expl

can also drive the exploration of the state-space in the wrong direction as seen for example
in TwoCountersInRangeM0 and TwoCounters3.

An artefact of the in-parallel runningparity gameconstruction andparity game solution can
be observed for the collector_v3_[5-7] and the ltl2dba_R_[6-8] specifications.
Here the construction of the states is faster than the algorithm solving the game and when
the translation slows down with the increasing size of the alphabet the solver catches up.
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4.3 RQ3: Comparison of different minimisation strategies

Experimental design We compare the effect of Mealy machine minimisation and structured
encoding on the size of the resulting AIG. For this experiment we use the exploration strategy
Obfs

expl. We compare the four possible combinations: the unstructured and structured encoding
functions applied to the unminimised Mealy machine (lunstr and lstruct) and to the minimised
Mealy machine (lmin

unstr and lmin
struct). Table 7 gives a cross-comparison over all realisable spec-

ifications and Table 8 contains outliers where the different techniques have the largest effect
and at the bottom cumulative results for the whole set.

Analysis The cross-comparison of Table 7 suggests that lmin
unstr is a good all-round strategy,

since it yields smaller circuits compared to the three other approaches. However, Table 8
shows that the structured encoding lstruct can sometimes give a significant reduction in size,
e.g. for ltl2dba_Q_[6–12]. But sometimes there is also an increase in size, e.g. for
round_robin_arbiter_7. This usually happens when minimisation is very effective.
The combination lmin

struct does usually not give an improvement over both lstruct and lmin
unstr on

their own. For ltl2dba_beta_[6–10]wehave that it can be implemented by a controller
using a vector of bits to remember which combinations of inputs have been encountered. The
unstructured encoding does not exploit this fact, but this natural structure is restored by lstruct.
For full_arbiter_7, lstruct gives a larger AIG than lunstr, however it is easier to verify
for our model checker, possibly due to the structure kept by lstruct. Due to these different
characteristics we think that a portfolio approach is a sensible default configuration for Strix.

5 Conclusion and future work

The success of the described approach implemented in Strix relies on several key factors:
(1) a demand-driven construction of the automata and the corresponding arena; (2) LTL
translations that produce small deterministic automata on-the-fly; (3) a strategy iteration
algorithm for solving parity games; especially the fact that the computed optimal strategy
in an exploration step serves as a good initial strategy when computing the strategy for the
next step; (4) semantic information that can be used for exploration guidance and controller
extraction.

While the experimental evaluation places Strix ahead of other competing tools, specifica-
tions with large alphabets are still a challenge and need to be addressed. We think restricting
the automata constructions of a decomposed formula to letters not violating other parts of the
formula, e.g., safety conditions, could be beneficial, as already shown in [39]. Further, we
think we only have scratched the surface of what can be done using the available semantic
information and we want to explore potential applications for guiding the exploration of the
arena and for extracting implementations, such as circuits but also reactive programs. There
are already attempts to extract reactive programs using bounded synthesis [19], but unfortu-
nately this only works for toy examples. Work in this area could help addressing the third
challenge mentioned in the introduction (representation of synthesised implementation).
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