
Acta Informatica (2020) 57:81–106
https://doi.org/10.1007/s00236-019-00344-8

ORIG INAL ART ICLE

A symbolic algorithm for lazy synthesis of eager strategies

Swen Jacobs1 ·Mouhammad Sakr1,2

Received: 30 January 2019 / Accepted: 24 September 2019 / Published online: 4 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We present an algorithm for solving two-player safety games that combines a mixed
forward/backward search strategy with a symbolic representation of the state space. By
combining forward and backward exploration, our algorithm can synthesize strategies that
are eager in the sense that they try to prevent progress towards the error states as soon as pos-
sible, whereas standard backwards algorithms often produce permissive solutions that only
react when absolutely necessary. We provide experimental results for two classes of crafted
benchmarks, the benchmark set of the Reactive Synthesis Competition (SYNTCOMP) 2017,
as well as a set of randomly generated benchmarks. The results show that our algorithm in
many cases produces more eager strategies than a standard backwards algorithm, and solves
a number of benchmarks that are intractable for existing tools. Finally, we observe a connec-
tion between our algorithm and a recently proposed algorithm for the synthesis of controllers
that are robust against disturbances, pointing to possible future applications.

1 Introduction

Automatic synthesis of digital circuits from logical specifications is one of themost ambitious
and challenging problems in circuit design. The problem was first identified by Church [6]:
given a requirement φ on the input–output behavior of a boolean circuit, compute a circuit
C that satisfies φ. Since then, several approaches have been proposed to solve the problem
[4,24], which is usually viewed as a game between two players: the system player tries to
satisfy the specification and the environment player tries to violate it. If the system player has
a winning strategy for the game, then this strategy represents a circuit that is guaranteed to
satisfy the specification. Recently, there has been much interest in approaches that leverage
efficient data structures and automated reasoning methods to solve the synthesis problem in
practice [2,10,12,14,20,26].

In this paper, we restrict our attention to safety specifications. In this setting, most of
the successful implementations symbolicallymanipulate sets of states via their characteristic

B Swen Jacobs
jacobs@cispa.saarland

Mouhammad Sakr
mouhammad.sakr@cispa.saarland

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

2 Saarland University, Saarbrücken, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-019-00344-8&domain=pdf
http://orcid.org/0000-0002-9051-4050
http://orcid.org/0000-0002-5160-0327


82 S. Jacobs, M. Sakr

functions, represented as Binary Decision Diagrams (BDDs) [17]. The “standard” algorithm
works backwards from the unsafe states and computes the set of all states from which the
environment can force the system into these states. The negation of this set is the winning
region of the system player, and it defines the most permissive winning strategy: the strategy
that allows any move, except those that leave the winning region. Computing the winning
region is a very general and in some cases desirable approach, since all winning strategies
must operate within the winning region, which can therefore be used to find a more specific
strategy with desirable properties in a second computation step. However, this approach
may be suboptimal if the generality of the most permissive strategy is not necessary—either
because any solution would fit, or because we know how to compute a strategy with the
desired properties directly and more efficiently.

We aim at the generation of eager strategies that avoid progress towards the errorwhenever
possible, in stark contrast to the most permissive strategy. Such strategies are desirable in
many applications, e.g., if the system should be tolerant to hardware faults or perturbations
in the environment [9]. When used to find eager strategies, the standard algorithm may first
spend a lot of time on the exploration of states that could easily be avoided by the system
player, and only in the second step will find that they are not necessary for the eager solution.
To avoid this and keep the explored state space small, some kind of forward search from the
initial states is necessary. However, for pure forward search no efficient symbolic algorithm is
known, andmost existing approaches that integrate forward search into backwards algorithms
do so in a rather limited fashion [17]. Notably, Brenguier et al. [3] have integrated forward
search into an abstraction-based synthesis algorithm, however their experimental evaluation
showed only few benchmarks where the approach was faster than the standard backwards
approach.

1.1 Contributions

In this work, we introduce a lazy synthesis algorithm that combines a forward search for
candidate solutions with backward model checking of these candidates. All operations are
such that they can be efficiently implemented with a fully symbolic representation of the state
space and the space of candidate solutions. The combined forward/backward exploration
allows us to detect small subsets of the winning region that are sufficient to define a winning
strategy. As a result, it produces less permissive solutions than the standard approach and
can solve certain classes of problems more efficiently.

We evaluate a prototype implementation of our algorithm on three sets of benchmarks,
including the benchmark set of the Reactive Synthesis Competition (SYNTCOMP) 2017
[16]. We show that on many benchmarks our algorithm detects remarkably small subsets of
the winning region that are sufficient to solve the synthesis problem: on the benchmark set
from SYNTCOMP 2017, the biggest measured difference is by a factor of 1068. Moreover,
it solves a number of instances that have not been solved by any participant in SYNTCOMP
2017.

Finally, we observe a relation between our algorithm and the approach of Dallal et al. [9]
for systems with perturbations, and provide the first implementation of their algorithm as
a variant of our algorithm. On the SYNTCOMP benchmark set, we show that whenever a
given benchmark admits controllers that give stability guarantees under perturbations, then
our lazy algorithmwill terminate after exploring a small subset of the winning region and can
provide quantitative safety guarantees similar to those of Dallal et al. without any additional
cost.

123



A symbolic algorithm for lazy synthesis of eager strategies 83

A preliminary version of this paper was presented at the International Symposium on
Automated Technology for Verification and Analysis (ATVA), 2018 [18].

1.2 Overview

We introduce the synthesis problem in Sect. 2 and recapitulate a number of existing
approaches to solve it in Sect. 3. In Sect. 4 we introduce our lazy synthesis algorithm,
followed by a number of optimizations in Sect. 5. The experimental evaluation of our algo-
rithms is presented in Sect. 6, and we discuss further experiences with implementing forward
exploration in Sect. 7.1. In Sect. 8 we discuss connections of our approach to approaches
for the synthesis of controllers that are resilient against certain faults, before we conclude in
Sect. 9.

2 Preliminaries

Given a specification φ, the reactive synthesis problem consists in finding a system that
satisfies φ in an adversarial environment. The problem can be viewed as a game between
two players, Player 0 (the system) and Player 1 (the environment), where Player 0 chooses
controllable inputs and Player 1 chooses uncontrollable inputs to a given transition function.
In this paper we consider synthesis problems for safety specifications: given a transition
system that may raise a BAD flag when entering certain states, we check the existence of
a function that reads the current state and the values of uncontrollable inputs, and provides
valuations of the controllable inputs such that the BAD flag is not raised on any possible
execution. We consider systems where the state space is defined by a set L of boolean state
variables, also called latches. We writeB for the set {0, 1}. A state of the system is a valuation
q ∈ B

L of the latches. We will represent sets of states by their characteristic functions of
type BL → B, and similarly for sets of transitions etc.

Definition 1 A controllable transition system (or short: controllable system) T S is a 6-tuple
(L, Xu, Xc, R, BAD, q0), where:

– L is a set of state variables for the latches
– Xu is a set of uncontrollable input variables
– Xc is a set of controllable input variables
– R : BL ×B

Xu ×B
Xc ×B

L ′ → B is the transition relation, where L ′ = {l ′ | l ∈ L} stands
for the state variables after the transition

– BAD : BL → B is the set of unsafe states
– q0 is the initial state where all latches are initialized to 0.

We assume that the transition relationR of a controllable system is deterministic and total
in its first three arguments, i.e., for every state q ∈ B

L , uncontrollable input u ∈ B
Xu and

controllable input c ∈ B
Xc there exists exactly one state q ′ ∈ B

L ′
such that (q, u, c, q ′) ∈ R.

In our setting, characteristic functions are usually applied to a fixed vector of variables.
Therefore, if C : BL → B is a characteristic function, we write C as a short-hand for C(L).
Characteristic functions of sets of states can also be applied to next-state variables L ′, in that
case we write C ′ for C(L ′).

Let X = {x1, . . . , xn} be a set of boolean variables, and Y ⊆ X\{xi } for some xi . For
boolean functions F : BX → B and fxi : BY → B, we denote by F[xi ← fxi ] the boolean
function that substitutes xi by fxi in F .

123



84 S. Jacobs, M. Sakr

Definition 2 Given a controllable system T S = (L, Xu, Xc,R, BAD, q0), the synthesis
problem consists in finding for every x ∈ Xc a solution function fx : BL × B

Xu → B such
that if we replace R by R[x ← fx ]x∈Xc , we obtain a safe system, i.e., no state in BAD is
reachable.

If such a solution does not exist, we say the system is unrealizable.

A set of solution functions for all x ∈ Xc is also called a strategy (for Player 0). We call
the states that are reachable under a given strategy the care-set of the strategy. Note that the
behavior of the system does not change if the strategy is modified on states outside of the
care-set. If BAD is unreachable under a given strategy, we call it a winning strategy.

To determine the possible behaviors of a controllable system, two forms of image compu-
tation can be used: i) the image of a set of states C is the set of states that are reachable from
C in one step, and the preimage are those states from which C is reachable in one step—in
both cases ignoring who controls the input variables; ii) the uncontrollable preimage of C
is the set of states from which the environment can force the next transition to go into C ,
regardless of the choice of controllable variables. Formally, we define:

Definition 3 Given a controllable system T S = (L, Xu, Xc,R, BAD, q0) and a set of states
C , we have:

– image(C) = {q ′ ∈ B
L ′ | ∃(q, u, c) ∈ B

L × B
Xu × B

Xc : C(q) ∧ R(q, u, c, q ′)}. We
also write this set as ∃L ∃Xu ∃Xc (C ∧ R).

– preimage(C) = {q ∈ B
L | ∃(u, c, q ′) ∈ B

Xu × B
Xc × B

L ′ : C(q ′) ∧ R(q, u, c, q ′)}.
We also write this set as ∃Xu ∃Xc ∃L ′ (C ′ ∧ R).

– U PRE(C) = {q ∈ B
L | ∃u ∈ B

Xu ∀c ∈ B
Xc ∃q ′ ∈ B

L : C(q ′) ∧ R(q, u, c, q ′)}. We
also write this set as ∃Xu ∀Xc ∃L ′ (C ′ ∧ R).

A direct correspondence of the uncontrollable preimageU PRE for forward computation
does not exist: if the environment can force the next transition out of a given set of states,
in general the states that we reach are not uniquely determined and depend on the choice of
Player 0.

2.1 Efficient symbolic computation

BDDs are a suitable data structure for the efficient representation andmanipulation of boolean
functions, including all operations needed for the computation of image, preimage, and
U PRE . Between these three, preimage can be computed most efficiently, while image
and U PRE are more expensive: there exist a number of optimizations for the computation
of preimage that cannot be used when computing image (see Sect. 5); andU PRE contains
a quantifier alternation, which makes it much more expensive than the other two operations.

3 Existing approaches

As mentioned before, the safety synthesis problem is usually seen as a game between Player
1, who chooses the uncontrollable inputs, and Player 0, who chooses the controllable inputs.
The goal of Player 0 is to choose the inputs in a way that he never visits an unsafe state.
The classical approach to solve such a game is to compute the so-called winning regions of
the two players, where the winning region of Player 1 is the set of states from which he can

123



A symbolic algorithm for lazy synthesis of eager strategies 85

force Player 0 into an unsafe state and the winning region for Player 0 is any state that is not
winning for Player 1.

Before we introduce our new approach, we recapitulate three existing approaches and
point out their benefits and drawbacks.

3.1 Backward fixed-point algorithm

Given a controllable transition system T S = (L, Xu, Xc,R, BAD, q0) with BAD 
= 0,
the standard backward BDD-based algorithm (see e.g. [17]) computes the winning region of
Player 1, i.e., the set of states from which the environment can force the system into unsafe
states, in a fixed-point computation that starts with the unsafe states. The winning region of
Player 1 is the least fixed-point of U PRE on BAD : μC . U PRE(C ′) ∪ BAD ∪ C .

Since safety games are determined, the complement of the computed set is the winning
region for Player 0, i.e., the set of all states from which the system can win the game. Thus,
this set also represents the most permissive winning strategy for Player 0. We note two things
regarding this approach:

1. To obtain the winning region, it computes the set of all states that cannot avoid moving
into an error state, using the rather expensive U PRE operation.

2. The most permissive winning strategy will not avoid progress towards the error states
unless we reach the border of the winning region.

3.2 A forward algorithm [5,21]

A forward algorithm is presented by Cassez et al. [5] for the dual problem of solving reach-
ability games, based on the work of Liu and Smolka [21]. The algorithm starts from the
initial state and explores all states that are reachable in a forward manner. Whenever a state is
visited, the algorithm checks whether it is losing; if it is, the algorithm revisits all reachable
states that have a transition to this state and checks if they can avoid moving to a losing state.
Although the algorithm is optimal in that it has linear time complexity in the state space, two
issues should be taken into account:

1. The algorithm explicitly enumerates states and transitions, which is impractical even for
moderate-size systems.

2. A fully symbolic implementation of the algorithm does not exist, and it would have to
rely heavily on the expensive forward image computation.

We will discuss the difficulties of implementing a symbolic forward algorithm in more
detail in Sect. 7.1.

3.3 Lazy synthesis [13]

Lazy synthesis interleaves a backwards model checking algorithm that identifies possible
error paths with the synthesis of candidate solutions. To this end, the error paths are encoded
into a set of constraints, and an SMT solver produces a candidate solution that avoids all
known errors. If new error paths are discovered, more constraints are added that exclude
them. The procedure terminates once a correct candidate is found (see Fig. 1). The approach
works in a more general setting than ours, for systems with multiple components and partial
information.When applied to our setting and challenging benchmark problems, the following
issues arise:

123



86 S. Jacobs, M. Sakr

Fig. 1 High-level description of
the lazy synthesis algorithm Model check

Refine

error paths

SMT-solver

ca
nd
id
at
e

constraints

Solution
correct

Fig. 2 High-level description of
the symbolic lazy synthesis
algorithm Model check

Refine and Solve

no
n-
de

t.
ca
nd

id
at
e

er
ro
r
pa

th
s

controllable
system

Solution
correct

1. Even though the error paths are encoded as constraints, the representation is such that it
explicitly branches over valuations of all input variables, for each step of the error paths.
This is clearly impractical for systems that havemore than a dozen input variables (which
is frequently the case in the classes of problems we target).

2. In each iteration of the main loop a single deterministic candidate is checked. Therefore,
many iterations may be needed to discover all error paths.

4 Symbolic lazy synthesis algorithms

In the following, we present symbolic algorithms that are inspired by the lazy synthesis
approach and overcome some of itsweaknesses tomake it suitable for challenging benchmark
problems like those from the SYNTCOMP library. We show that in our setting, we can avoid
the explicit enumeration of error paths. Furthermore, we can use non-deterministic candidate
models that are restricted such that they avoid the known error paths. When choosing these
restrictions, we prioritize the removal of transitions that are close to the initial state, which can
help us avoid error paths that are not known yet. The high-level control flow of the algorithm
is depicted in Fig. 2.

4.1 The basic algorithm

To explain the algorithm, we need some additional definitions. Fix a controllable system
T S = (L, Xu, Xc,R, BAD, q0).

An error level Ei is a set of states that are on a path from q0 to BAD, and all states in Ei

are reachable from q0 in i steps. Formally, Ei is a subset of

{
qi ∈ B

L
∣∣∣∣ ∃q1, . . . , qi−1, qi+1, . . . , qn ∈ B

L :
qn ∈ BAD and ∃(q j , u, c, q j+1) ∈ R for 0 ≤ j < n

}
.

123



A symbolic algorithm for lazy synthesis of eager strategies 87

We call (E0, . . . , En) a sequence of error levels if i) each Ei is an error level, ii) each
state in each Ei has a transition to a state in Ei+1, and iii) En ⊆ BAD. Note that the same
state can appear in multiple error levels of a sequence, and E0 contains only q0.

Given a sequence of error levels (E0, . . . , En), an escape for a transition (q, u, c, q ′)with
q ∈ Ei and q ′ ∈ Ei+1 is a transition (q, u, c′, q ′′) such that ∀m > i : q ′′ /∈ Em . We say the
transition (q, u, c, q ′) matches the escape (q, u, c′, q ′′).

Given two error levels Ei and Ei+1, we denote by RTi the following set of tuples, rep-
resenting the “removable” transitions, i.e., all transitions from Ei to Ei+1 that match an
escape:

RTi = {(q, u, q ′) | q ∈ Ei , q
′ ∈ Ei+1 and ∃(q, u, c, q ′) ∈ R that has an escape}.

4.1.1 Overview

Figure 3 sketches the control flow of the algorithm where all operations are performed
symbolically on set of states. It starts by model checking the controllable system, without
any restriction on the transition relation wrt. the controllable inputs. If unsafe states are
reachable, the model checker returns a sequence of error levels. Iterating over all levels, we
identify the transitions from the current level forwhich there exists an escape, and temporarily
remove them from the transition relation. Based on the new restrictions on the transition
relation, the algorithm then prunes the current error level by removing states that do not have
transitions to the next level anymore. Whenever we prune at least one state, we move to the
previous level to propagate back this information. If this eventually allows us to prune the
first level, i.e., remove the initial state, then this error sequence has been invalidated and the
new transition system (with deleted transitions) is sent to the model checker. Otherwise the
system is unrealizable. In any following iteration, we accumulate information by merging
the new error sequence with the ones we found before, and reset the transition relation before
we analyze the error sequence for escapes.

4.1.2 Detailed description

In more detail, Algorithm 1 describes a symbolic lazy synthesis algorithm. The method takes
as input a controllable system and checks if its transition relation can be fixed in a way that
error states are avoided. Upon termination, the algorithm returns either unrealizable, i.e., the
system can not be fixed, or a restricted transition relation that is safe and total. From such a
transition relation, a (deterministic) solution for the synthesis problem can be extracted in the
same way as for existing algorithms. Therefore, we restrict the description of our algorithm
to the computation of the safe transition relation.

LazySynthesis: In Line 2, we initialize T R to the unrestricted transition relation R of
the input system and E to the empty sequence, before we enter the main loop. Line 4 uses a
model checker to check if the current T R is correct, and returns a sequence of error levels
mcLvls if it is not. In more detail, procedureModelCheck(T R) starts from the set of error
states and uses the preimage function (see Definition 3) to iteratively compute a sequence
of error levels.1 It terminates if a level contains the initial state or if it reaches a fixed point.
If the initial state was reached, the model checker uses the image function to remove from

1 This part is the light-weight backward search: unlikeU PRE in the standard backward algorithm, preimage
does not contain any quantifier alternation.

123



88 S. Jacobs, M. Sakr

modelCheck

isCorrect? solution
yes

extract&mergeErrorLevels

no

nextLevelpreviousLevel

delErrT rans

isPrunable?firstLevel?
yes

no

yes

lastLevel?
no

no

unrealizable

yes

Fig. 3 Control flow of the algorithm

the error levels any state that is not reachable from the initial state.2 Otherwise, in Line 6 we
return the safe transition relation. If T R is not safe yet, Line 7 merges the new error levels
with the error levels obtained in previous iterations by letting E[i] ← E[i] ∨mcLvls[i] for
every i . In Line 8 we call PruneLevels(sys.R, E), which searches for a transition relation
that avoids all error paths represented in E , as explained below. If pruning is not successful,
in Lines 9–10 we return “Unreali zable”.

PruneLevels: In the first loop,ResolveLevel(E, i, T R) is called for increasing values
of i (Line 4). Resolving a level is explained in detail below; roughly it means that we remove
transitions that match an escape, and then remove states from this level that are not on an
error path anymore. If ResolveLevel has removed states from the current level, indicated
by the return value of is Prunable, we check whether we are at the topmost level—if this is
the case, we have removed the initial state from the level, which means that we have shown
that every path from the initial state along the error sequence can be avoided. If we are not
at the topmost level, we decrement i before returning to the start of the loop, in order to
propagate the information about removed states to the previous level(s). If is Prunable is
false, we instead increment i and continue on the next level of the error sequence.

The first loop terminates either in Line 7, or if we reach the last level. In the latter case, we
were not able to remove the initial state from E[0] with the local propagation of information
during the main loop (that stops if we reach a level that cannot be pruned). To make sure that
all information is completely propagated, afterwards we start another loop were we resolve
all levels bottom-up, propagating the information about removed states all the way to the
top. If we arrive at E[0] and still cannot remove the initial state, we conclude that the system
is unrealizable. This last propagation is needed because, unlike previous propagations, it

2 This is the only place where our algorithm uses image, and it is only included to keep the definitions and
correctness argument simple - the algorithm also works if themodel checker omits this last image computation
step, see Sect. 5.

123



A symbolic algorithm for lazy synthesis of eager strategies 89

Algorithm 1 Lazy synthesis
1: procedure LazySynthesis(ControllableSystem sys)
2: T R ← sys.R, E ← ()

3: while true do
4: isCorrect,mcLvls ← ModelCheck(T R)

5: if isCorrect then
6: return T R
7: E ← mergeLevels(E,mcLvls)
8: isUnreali zable, T R ← PruneLevels(sys.R, E)

9: if isUnreali zable then
10: return Unreali zable

1: procedure PruneLevels(TransitionRelation TR, ErrorSequence E)
2: i ← 0
3: while i < length(E) − 1 do
4: is Prunable, T R, E ← ResolveLevel(E, i, T R)

5: if is Prunable then
6: if i == 0 then // we have removed the initial state from E[0]
7: return false, TR
8: i ← i − 1
9: else
10: i ← i + 1
11: while i ≥ 1 do // i == length(E) − 1 when we enter the loop
12: i ← i − 1
13: is Prunable, T R, E ← ResolveLevel(E, i, T R)

14: if is Prunable then // we have removed the initial state from E[0]
15: return false, TR
16: else // we could not remove the initial state from E[0]
17: return true, ∅
1: procedure ResolveLevel(ErrorSequence E, Int i, TransitionRelation TR)
2: RT ← (∃L ′ (( ∃Xc T R ) ∧ ¬E[i + 1 : n]′ )) ∧ E[i] ∧ E[i + 1]′
3: T R ← T R ∧ ¬RT
4: AV Set ← ∀Xu (E[i] ∧ ∃L ′( ∃Xc T R ∧ ¬E[i + 1 : n]′ ) )

5: E[i] ← E[i] ∧ ¬AV Set
6: return AV Set 
= ∅, T R, E

propagates all information up lo level E[0] even if some error level is not prunable. To see
why this is necessary, consider an error sequence obtained after merging error sequences
from different iterations, where a state q can be in more than one error level at the same time,
say in levels i and j with i < j . Now if some error level between i and j is not prunable,
then level i will not be resolved again, and escapes for transitions from q will not be used to
prune level i , even if they are used to prune level j .

ResolveLevel: Line 2 computes the set of transitions that have an escape: ∃L ′ (( ∃Xc

T R )∧¬E[i+1 : n]′ ) is the set of all (q, u) for which there exists an escape (q, u, c, q ′), and
by conjoining this set with E[i] ∧ E[i + 1]′ we compute all tuples (q, u, q ′) that represent
transitions from E[i] to E[i + 1] matching an escape. Line 3 removes the corresponding
transitions from the transition relation T R. Line 4 computes AvSet which represents the
set of all states such that all their transitions within the error levels match an escape. ∀Xu

(E[i] ∧ ∃L ′( ∃Xc T R ∧ ¬E[i + 1 : n]′ ) ) returns the set of states that have an escape for
every uncontrollable input. After removing AV Set from the current level, we return.

123



90 S. Jacobs, M. Sakr

Fig. 4 Error levels from
iteration 1

E1

Err

q0

00 10

00 10

Fig. 5 Solution for iteration 1

E1

Err

q0

00
01

10
11

00
01

10
11

Fig. 6 Error levels from
iteration 2

E1

E2

Err

init

00
01

10
11

000001 10

0001

4.1.3 Illustration of the algorithm

As an example, Fig. 4 shows error levels that may be obtained from the model checker in
a first iteration. The transitions are labeled with vectors of input bits, where the left bit is
uncontrollable and the right bit controllable. The last level is a subset of BAD. After the first
iteration of the algorithm, the transitions that are dashed in Fig. 5 will be deleted. Note that
another solution exists where instead we delete the two outgoing transitions from level E1

to the error level Err . This solution can be obtained by a backward algorithm. However, our
solution makes all states in E1 unreachable and thus has a care-set that is much smaller than
the winning region.

Figure 6 depicts merged error levels obtained from iteration 1 and 2 where you can see
that the initial state ini t cannot avoid the error level E1 on uncontrollable input 0. Figure 7
shows that a state can be pruned from level E1 as it state can avoid level E2. Pruning E1

allows ini t to find an escape for uncontrollable input 0 and as a consequence it can avoid E1

completely.

123



A symbolic algorithm for lazy synthesis of eager strategies 91

Fig. 7 Solution for iteration 2

E1

E2

Err

init

00
01

10
11

000001 10

0001

4.1.4 Comparison

Having defined our symbolic lazy synthesis algorithm formally, let us again compare it to
the existing lazy synthesis algorithm, as well as to the standard backwards algorithm.

Lazy synthesis The approach depicted in Fig. 1 uses model checking to obtain information
on paths to the error states, just like our new approach. However, in contrast to our approach
the error paths are encoded into SMT constraints, and based on these constraints the SMT
solver chooses a deterministic strategy that avoids all known error paths. Thus, the two
essential differences are:

1. The SMT encoding explicitly branches over all possible decisions in the error paths,
making it impractical to encode long error paths due to the exponential growth of the
encoding.

2. The candidate generated by the SMT solver is deterministic, in contrast to the non-
deterministic strategy generated by the symbolic lazy algorithm, where the strategy is
only determinized after being found correct by the model checker.

To evaluate the impact of the second point, we have implemented a version of the algorithm
where the strategy is determinized before being sent to the model checker. As expected, it
can only solve a few small instances from the challenging SYNTCOMP benchmark set, and
the approach with non-deterministic strategies performs much better.

Standard backwards algorithm Compared to the standard backward fixed-point approach
(see Sect. 3.1), an important difference is that we explore the error paths in a forward analysis
starting from the initial state, and avoid progress towards the error states as soon as possible.
As a consequence, our algorithm can find strategies with a care-set that is much smaller than
the winning region, and may solve the problem faster than the standard approach. We give a
detailed comparison of the performance of our algorithm against the standard algorithm in
Sect. 6.

4.2 Correctness of Algorithm 1

Theorem 1 (Soundness) Every transition relation returned by Algorithm 1 is safe, and total
in the first two arguments.

123



92 S. Jacobs, M. Sakr

Proof The model checker guarantees that the transition relation is safe, i.e., unsafe states are
not reachable. To see that the returned transition relation is total in the first two arguments,
i.e., ∀q ∈ B

L ∀u ∈ B
X
u ∃c ∈ B

X
c ∃q ′ ∈ B

L ′ : (q, u, c, q ′) ∈ T R, observe that this property
holds for the initial T R, and is preserved by ResolveLevels: Lines 2 and 3 of the procedure
ensure that a transition (q, u, c, q ′) ∈ T R can only be deleted if ∃c′ ∈ B

X
c ∃q ′′ 
= q ′ ∈

B
L ′ : (q, u, c′, q ′′) ∈ T R, i.e., if there exists another transition with the same state q and

uncontrollable input u. ��
To prove completeness of the algorithm, we define formally what it means for an error

level to be resolved.

Definition 4 (Resolved) Given a sequence of error levels E = (E0, . . . , En) and a transition
relation T R, an error level Ei with i < n is resolved with respect to T R if the following
conditions hold:

– RTi = ∅
– ∀qi ∈ Ei\BAD : ∃u ∈ B

Xu ∃c ∈ B
Xc ∃qi+1 ∈ Ei+1 : (qi , u, c, qi+1) ∈ T R

Ei is unresolved otherwise, and En is always resolved.

Informally, Ei is resolved if every state in Ei , on some uncontrollable input u, cannot avoid
reaching lower levels (i.e. each controllable input of u leads to some E j where i < j ≤ n).
We can conclude the following lemma.

Lemma 1 A controllable system is unrealizable iff there exists an error sequence E0, E1, . . . ,

En where E0 = {q0}, and for all i ≤ n, Ei is resolved and non-empty.

Proof Suppose the system is unrealizable, i.e., Player 1 has a strategy to always reach BAD.
Then for some n ∈ N there exists a sequence of (non-empty) sets of states (E0, E1, . . . , En)

such that E0 = {q0}, En ⊆ BAD, and for every Ei and every q ∈ Ei , Player 1 can force
the game into Ei+1 in one step, i.e., ∀q ∈ Ei ∀c ∈ B

Xc ∃u ∈ B
Xu : (q, u, c, q ′) ∈ T R with

q ′ ∈ Ei+1. In particular, (E0, E1, . . . , En) is an error sequence. To see that it is resolved,
assume that it was not: then from some Ei , RTi would have to be non-empty, i.e., for some
q ∈ Eiand u ∈ B

Xu there would have to be a transition (q, u, c, q ′) ∈ T R with q ′ /∈ Ei+1,
contradicting the properties of our error sequence.

In the other direction, suppose there exists an error sequence (E0, E1, . . . , En)with E0 =
{q0} and ∀i ≤ n, Ei is resolved and non-empty. Then we can construct a strategy for Player
1 to win the game: in each Ei , there must exist a state q and inputs u, c such that there is
(q, u, c, q ′) ∈ T R with q ′ ∈ Ei+1, for which there is no escape. A winning strategy for
Player 1 is to always choose such an uncontrollable input u. ��
Theorem 2 (Completeness) If Algorithm 1 returns “Unrealizable”, then the controllable
system is unrealizable.

Proof Observe that the algorithm returns unrealizable only when there exists an error
sequence E0, E1, . . . , En where E0 = {q0} and all levels are resolved and non-empty.
Lines 2 and 3 of ResolveLevel guarantee that all transitions from Ei to Ei+1 that match
an escape will be deleted, so the only remaining transitions between Ei and Ei+1 are those
that have no escapes. Line 4 computes all states in Ei that no longer have transitions to
lower levels (levels with greater index) and Line 5 removes these states. Thus, after calling
ResolveLevel, the current level will be resolved.

123



A symbolic algorithm for lazy synthesis of eager strategies 93

Fig. 8 Example with small
solution

q0

However, sinceResolveLevelmay remove states from Ei , the levels E j with j < i could
become unresolved. To see that this is not an issue note that before we output Unrealizable,
we go through the second loop that resolves all levels from n to 0. After execution of this
second loop all levels are resolved, and if E0 still contains q0, then from our sequence of
error levels we can extract a subsequence3 of resolved and non-empty error levels, which by
Lemma 1 implies unrealizability. ��
Theorem 3 (Termination) Algorithm 1 always terminates.

Proof Every call of the procedure PruneLevels returns a transition relation that is guar-
anteed to avoid all error paths returned by the model checker in all previous iterations (see
Line 7 of procedure LazySynthesis). This is accomplished by making at least one state
on every path from the initial state to an error state unreachable (see Lines 6–7, 14–15 of
PruneLevels). In particular, any transition relation returned by PruneLevels is different
from all previous transition relations. Since for a fixed controllable system there is only a
finite number of possible transition relations, the procedure will eventually terminate. ��

4.3 Example problems

We want to highlight the potential benefit of our algorithm on two families of examples.
First, consider a controllable systemwhere all paths from the initial state to the error states

have to go through a bottleneck, e.g., a single state, as depicted in Fig. 8, and assume that
Player 0 can force the system not to go beyond this bottleneck. In this case, the care-set of
our solution only includes the states between the initial state and the bottleneck, whereas
the winning region detected by the standard algorithm may be much bigger (in the example
including all the states in the fourth row). Moreover, the strategy produced by our algorithm
will be very simple: if we reach the bottleneck, we force the system to stay there. In contrast,
the strategy produced by the standard algorithm will in general be much more complicated,
as it has to define the behavior for a much larger number of states.

Second, consider a controllable system where the shortest path between error and initial
state is short, but Player 1 can only force the system to move towards the error on a long path.
Moreover, assume that Player 0 can avoid entering this long path, for example by entering a
separate part of the state space like depicted in Fig. 9. In this case, our algorithm will quickly
find a simple solution: move to that separate part and stay there. In contrast, the standard
algorithm will have to go through many iterations of the backwards fixed-point computation,
until finally finding the point where moving into the losing region can be avoided.

3 It may be a subsequence due to the merging of error levels from different iterations of the main loop.

123



94 S. Jacobs, M. Sakr

Fig. 9 Example that is solved fast q0

5 Optimization

As presented, Algorithm 1 requires the construction of a data structure that represents the full
transition relation R, which causes a significant memory consumption. In practice, the size
of a BDD that represents the full transition relation can be prohibitive even for moderate-size
models.

Since the transition relation is deterministic, it can alternatively be represented by a vec-
tor of functions, each of which updates one of the state variables. Such a partitioning of the
transition relation is an additional computational effort, but it results in a more efficient repre-
sentation that is necessary to handle large systems. In the followingwe describe optimizations
based on such a representation.

Definition 5 A functional controllable system is a 6-tupleT S f = (L, Xu, Xc,F, BAD, q0),
where

– L is a set of state variables for the latches
– Xu is a set of uncontrollable input variables
– Xc is a set of controllable input variables
– F = ( f1, . . . , f|L|) is a vector of update functions fi : B

L × B
Xu × B

Xc → B for
i ∈ {1, . . . , |L|}

– BAD : BL → B is the set of unsafe states
– q0 is the initial state where all latches are initialized to 0.

In a functional system with current state q and inputs u and c, the next-state value of the
i th state variable li is computed as fi (q, u, c). Thus, we can compute image and preimage
of a set of states C in the following way:

– image f (C) = ∃L ∃Xu ∃Xc (
∧|L|

i=1 l
′
i ≡ fi ∧ C)

– preimage f (C) = ∃L ′ ∃Xu ∃Xc (
∧|L|

i=1 l
′
i ≡ fi ∧ C ′)

However, computing
∧|L|

i=1 l
′
i ≡ fi ∧ C ′ is still very expensive and might be as hard as

computing the whole transition relation. To optimize the preimage computation, we instead
directly substitute the state variables in the boolean function that representsC by the function
that computes their new value:

preimages(C) = ∃Xu ∃Xc C[li ← fi ]li∈L

123



A symbolic algorithm for lazy synthesis of eager strategies 95

Since substitution cannot be used to compute image(C), forward exploration of the state
space is in practice much more expensive than backwards exploration. This even holds for
alternative, more efficient ways to compute image, such as using the range function [19].
We consider a forward algorithm based on this alternative in Sect. 7.1.

5.1 The optimized algorithm

The optimized algorithm takes as input a functional controllable system, and uses the fol-
lowing modified procedures:

OptimizedLazySynthesis: This procedure replaces LazySynthesis, to which it is dif-
ferent in two aspects concerning the model checker:

1. the preimage is computed using preimages , and
2. unreachable states are not removed, in order to avoid image computation. Thus, the error

levels are over-approximated.

OptimizedResolveLevel: This procedure replaces ResolveLevel and computes RT
and AvSet more efficiently. Note that for a given set of states C , the set pretrans(C) =
{(q, u, c) ∈ B

L×B
Xu×B

Xc | F(q, u, c) ∈ C} can efficiently be computed asC[li ← fi ]li∈L .
Based on this, we get the following:

– RT : we compute the transitions that can be avoided as the conjunction of the transitions
from Ei to Ei+1, given as pretrans(E[i + 1]′) ∧ E[i], with those transitions that have
an escape, ∃Xc pretrans(¬E[i + 1 : n]′) ∧ E[i].

– AvSet : The states that can avoid all transitions to the lower levels can now be computed
as ∀Xu [ ∃Xc pretrans(¬E[i + 1 : n]′) ∧ E[i] ].

5.1.1 Generalized deletion of transitions

In addition, we consider a variant of our algorithm that uses the following heuristic to speed
up computation: whenever we find an escape (q, u, c, q ′) with q ∈ Ei , then we not only
remove all matching transitions that start in Ei , but matching transitions that start anywhere,
and lead to a state q ′′ ∈ E j with j > i . Thus, we delete more transitions per iteration of the
algorithm, all of which are known to lead to an error.

6 Experimental evaluation

We implemented our algorithm in Python, using the BDD package CUDD [27]. We evaluate
our prototype on a family of parameterized benchmarks based on the examples in Sect. 4.3,
on the benchmark set of SYNTCOMP 2017 [16], and on a set of random benchmarks.

We evaluate two versions of our algorithm: a version without generalized deletion (see
Sect. 5.1.1), in the following called Lazy, and a version with generalized deletion, in the
following called LazyGD . We compare them against our own implementation of the standard
backward approach, in order to have a fair comparison between algorithms that use the same
BDD library and programming language. For the SYNTCOMP benchmarks, we additionally
compare against the results of the participants in SYNTCOMP 2017. Our implementations of
all algorithms include the most important general optimizations for this kind of algorithms,
including a functional transition relation and automatic reordering of BDDs (see Jacobs et
al. [17]).

123



96 S. Jacobs, M. Sakr

6.1 Parameterized benchmarks

On the parameterized versions of the examples from Sect. 4.3, we observe the expected
behaviour:

– for the first example, the care-set of the strategy found by our algorithm is always only
about half as big as the winning region found by the standard algorithm. Even more
notable is the size of the synthesized controller circuit: for example, our solution for an
instance with 218 states and 10 input variables has a size of just 9 AND-gates, whereas
the solution obtained from the standard algorithm has 800 AND-gates.

– for the second example, we observe that for systems with 15 to 25 state variables, our
algorithm solves the problem in constant time of 0.1s, whereas the solving time increases
sharply for the standard algorithm: it uses 1.7s for a system with 15 latches, 92s for 20
latches, and 4194s for 25 latches.

6.2 SYNTCOMP benchmarks

We compared our algorithms against the standard algorithm on the benchmark set that was
used in the safety track of SYNTCOMP 2017, with a timeout of 5000s on an Intel Xeon
processor (E3-1271 v3, 3.6GHz) and 32 GB RAM.

First, we observe that our algorithms often detect care-sets that are much smaller than the
full winning region: out of the 76 realizable benchmarks that the Lazy algorithm solved, we
found a strictly smaller care-set in 28 cases. In 14 cases, the care-set is smaller by a factor of
103 or more, in 8 cases by a factor of 1020 or more, and in 4 cases by a factor of 1030 or more.
The biggest difference in size is by a factor of 1068. For the LazyGD algorithm, the care-sets
are somewhat bigger, but the tendency is the same. Table 1 gives detailed information for a
selection of such examples.

However, note that our smaller sets do not necessarily correspond to smaller symbolic
representations of these sets. Table 2 compares the sizes of BDDs instead of explicit num-
ber of states, showing that in some cases the BDD is smaller, but more often the symbolic
representation for the smaller set of states is actually more complex. The results are also
mixed when regarding the size of the synthesized circuits: in 11 cases the Lazy algorithm
produces a smaller solution than the standard algorithm, in 21 cases it is the other way around.
The LazyGD algorithm produced smaller circuits in 15 cases. Table 3 contains a sample of
these results, including also the size of the symbolic representation of the winning strat-
egy. It is also important to note that the Lazy algorithm, for 10 out of the 11 benchmarks
with smaller synthesized circuits, has produced smaller care-sets. Furthermore LazyGD has
produced smaller care-sets for 11 out of the 15 benchmarks with smaller synthesized cir-
cuits.

Out of the 234 benchmarks, the Lazy algorithm solved 99 before the timeout, and the
LazyGD algorithm solved 116. While the standard algorithm solves a higher number of
instances overall (163), for a number of examples our algorithms are faster. In particular,
both versions each solve 7 benchmarks that are not solved by the standard algorithm, as
shown in Table 4. Moreover, we compare against the participants of SYNTCOMP 2017:
with a timeout of 3600s, the best single-threaded solver in SYNTCOMP 2017 solved 155
problems, and the virtual best solver (VBS; i.e., a theoretical solver that on each benchmark
performs as good as the best participating solver) would have solved 186 instances. If we
include our two algorithms with a timeout of 3600s, the VBS can additionally solve 7 out of
the 48 instances that could not be solved by any of the participants of SYNTCOMP before.

123



A symbolic algorithm for lazy synthesis of eager strategies 97

Table 1 Comparison of care-set and winning region size for selected benchmarks (number of states)

Instance Standard Lazy LazyGD Difference factor

load_2c_comp_comp5 1.08 ∗ 1040 5.67 ∗ 1013 3.79 ∗ 1022 > 1026

load_3c_comp_comp4 2.39 ∗ 1052 1.21 ∗ 1018 8.5 ∗ 1037 > 1044

load_3c_comp_comp7 4.97 ∗ 1086 1.21 ∗ 1018 6.28 ∗ 1057 > 1068

load_4c_comp_comp4 4.03 ∗ 1063 TO 4.79 ∗ 1052 > 1010

load_4c_comp_comp6 9.03 ∗ 1092 TO 2.2 ∗ 1071 > 1021

load_full_2_comp5 2.52 ∗ 1080 TO 4.21 ∗ 1065 > 1015

load_full_2_comp7 4.99 ∗ 10108 TO 3.11 ∗ 1085 > 1023

ltl2dba_C2-6_comp3 2.46 ∗ 1035 4.55 ∗ 1025 4.55 ∗ 1025 > 109

ltl2dba_E4_comp3 2.96 ∗ 1079 3.74 ∗ 1050 1.05 ∗ 1065 > 1028

demo-v10_5 1.93 ∗ 1025 1.31 ∗ 105 2.25 ∗ 1015 > 1020

demo-v12_5 2.81 ∗ 1014 1.64 ∗ 104 6.98 ∗ 1010 > 1010

demo-v14_5 1.23 ∗ 1014 356 2.69 ∗ 108 > 1011

demo-v16_5 9.03 ∗ 107 1.36 ∗ 104 3.09 ∗ 105 > 103

demo-v18_5 3.67 ∗ 1027 TO 6.97 ∗ 1016 > 1010

demo-v19_5 1.27 ∗ 1011 305 2.68 ∗ 108 > 108

demo-v20_5 2.31 ∗ 1041 3.44 ∗ 1010 1.22 ∗ 1024 > 1030

demo-v22_5 3.4 ∗ 1038 1.71 ∗ 1015 4.76 ∗ 1021 > 1023

demo-v23_5 1.37 ∗ 1012 9.22 ∗ 103 1.09 ∗ 109 > 108

demo-v24_5 3.27 ∗ 1063 1.17 ∗ 1031 4.23 ∗ 1028 > 1032

Results in bold are the smallest solutions for the given benchmark

As our algorithms also solve some instances much faster than the existing algorithms, they
would be worthwhile additions to a portfolio solver for SYNTCOMP.

6.3 Random benchmarks

The SYNTCOMP benchmark library consists of crafted benchmarks that were submitted
by the participants. An inspection of these benchmarks shows that in many cases these
benchmarks are such that progress towards the error states can only be avoided when we
reach the border of the winning region. Obviously, benchmarks with such a structure benefit
the standard backward approach and do not allow the lazy synthesis approach to show its
strengths.

To obtain additional benchmarks that avoid the potential bias of hand-crafted examples, we
developed a scheme for generating random benchmarks. Our prototype implementation takes
as input the number of controllable variables c, the number of uncontrollable variables u and
the number of latches l, and generates an AIGER benchmark based on a uniformly random
distribution over all controllable systems with these parameters. The implementation uses
ROBDD as an intermediate representation of the benchmark to be generated and therefore
the uniformity is guaranteed by the canonicity of ROBDDs. For a fixed u, c, and l there are
22

u+c+l
different boolean functions, and we need one such function to update each latch, and

in addition we need a boolean function only over l that determines the BAD output. Thus,
overall we have a space of (22

u+c+l
)l · (22

l
) possible benchmarks.

123



98 S. Jacobs, M. Sakr

Table 2 Comparison of care-set
and winning region size for
selected benchmarks
(number of BDD nodes in
symbolic representation)

Instance Standard Lazy LazyGD

load_2c_comp_comp5 299 986 518

load_3c_comp_comp4 345 9299 669

load_3c_comp_comp7 442 11253 1507

load_4c_comp_comp4 2075 TO 3263

load_4c_comp_comp6 4413 TO 7814

load_full_2_comp5 1308 TO 2182

load_full_2_comp7 2068 TO 5071

ltl2dba_C2-6_comp3 199 484 501

ltl2dba_E4_comp3 7361 454 508

demo-v10_5 16 83 49

demo-v12_5 10 44 34

demo-v14_5 53 83 87

demo-v16_5 262 233 132

demo-v18_5 125535 TO 52687

demo-v19_5 156 83 76

demo-v20_5 87 135 600

demo-v22_5 226 1373 1768

demo-v23_5 46 139 92

demo-v24_5 195 4075 561

Results in bold are the smallest solutions for the given benchmark

Table 3 Comparison of the size of solutions for selected benchmarks (number of AND-gates in synthesized
circuit/number of BDD nodes in winning strategy)

Instance Standard Lazy LazyGD

amba10c6n 28137/18612 28621/18711 25816/17466

driver_d10y 226581/140789 156776/105244 TO

factory_assembly_7x5_2_0errors 31469/22841 19853/18541 21453/17713

genbuf12c30n 3914/4808 2153/3278 2278/3172

genbuf24c30y 23974/15528 18495/12365 9789/6529

genbuf56c40n 135025/59629 TO 65284/32154

genbuf8c30n 5767/5536 5753/5463 5189/4890

genbuf16c4y 7137/10605 49373/55322 7375/10469

demo-v18_5_REAL 50620/88189 TO 140172/105279

driver_d8n 171348/108099 TO 180917/116347

factory_assembly_5x5_2_0errors 11187/8578 21078/13728 22586/16680

factory_assembly_5x5_2_1errors 21300/17118 46963/33821 52730/33430

Results in bold are the smallest solutions for the given benchmark

Optionally, we can restrict the number o of latches that are used to define BAD. Using
fewer latches for BAD decreases the expected size of the error states and increases the chance
of obtaining a realizable benchmark.

We have generated thousands of random benchmarks from different classes, where a
class is defined by the number of controllable variables, uncontrollable variables, latches,
and output function variables. A primary observation is that whenever a benchmark is

123



A symbolic algorithm for lazy synthesis of eager strategies 99

Table 4 Comparison of solving time for benchmarks solved by a lazy algorithm, but not by the standard
algorithm (seconds)

Instance Standard Lazy LazyGD SYNTCOMP
2017 participants

gb_s2_r3_comp1 TO 38 TO Solved by 1

genbuf48c6y TO TO 3839 Solved by 4

ltl2dba_E6_comp4 TO 2435 TO Not solved

ltl2dba_Q4_comp5 TO 125 304 Solved by 1

ltl2dba_U1-6_Comp3 TO TO 4590 Not solved

ltl2dpa_alpha5_Comp2 TO TO 1880 Not solved

ltl2dpa_alpha5_Comp3 TO TO 2651 Not solved

ltl2dpa_E4_comp2 TO 1081 TO Not solved

ltl2dpa_E4_comp4 TO 2122 TO Not solved

ltl2dpa_U14_comp2 TO 4019 615 Not solved

ltl2dpa_U14_comp35 TO 2605 1681 Not solved

easy to solve because there are many winning strategies (e.g., if parameters o and u are
much smaller than l and c, respectively), then the standard algorithm is usually able to
find a solution faster. However, when it is hard to find a winning strategy, then the results
change. For instance, we compared the lazy algorithm with and without general deletion
against the standard algorithm on 100 random benchmarks with c = 3, u = 1, l = 13
(i.e., 17 variables overall), and o = 12. For 66 benchmarks, both of our algorithms syn-
thesized circuits that were smaller or equal to the solutions of the standard algorithm
(out of these 66, 30 where strictly smaller). Moreover, the Lazy algorithm solved 26
faster than the standard algorithm, and the LazyGD algorithm was faster on 33 bench-
marks.

Figures 10, 11, and 12 compare solving time between the Lazy and the standard
algorithm, for benchmarks with 17,18, and 19 variables respectively. For the bench-
marks with 19 variables the Lazy algorithm solved 6 instances out of 100 that the
standard algorithm could not solve, visible on the line on the right-hand side, marked
with TO. The remaining benchmarks that we generated had 16 or fewer variables, and
every single benchmark could be solved by all three algorithms, usually in a few sec-
onds.

For the benchmarks we generated, we chose the parameters of our random generator in
order to obtain interesting benchmarks, i.e.,

1. not too easy to solve (benchmarks with ≤ 16 variables can almost always be solved very
quickly)

2. not too hard to solve (for 19 variables, both tools already run into a timeout on many
examples), and

3. preferably realizable (by having more controllable than uncontrollable inputs).

We prefer realizable benchmarks since we also want to compare properties of the solutions,
such as care-set/winning region or the size of the synthesized circuit.

123



100 S. Jacobs, M. Sakr

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

Backward

TO

L
az
y

T
O

Fig. 10 Time comparison between backward and lazy approaches for benchmarks with 17 variables. 100
random benchmarks with c = 3, u = 1, l = 13, o = 12, and 100 random benchmarks with c = 3, u = 1, l =
13, o = 11

7 Why not a purely forward exploration?

7.1 A forward algorithm

In Sect. 3.2 we mentioned a completely forward algorithm presented by Cassez et al. [5].
The algorithm starts from the initial state and explores all states that are reachable in a
forward manner and checks if they can avoid moving to a losing state. The algorithm is
not symbolic and it explicitly enumerates states and transitions. In this section, we propose a
symbolic implementation and report on our experiences with integrating this form of forward
exploration into our algorithms.

For a symbolic implementation, given a set of states, we need to compute all states that are
reachable from this set in one transition. This can be accomplished by computing the image
as defined in Sect. 5. However, image computation is very expensive in terms of memory and
may be as hard as computing the whole transition relation. We explain below two methods
that aim to reduce the overhead of image computation.

7.1.1 Early quantification [7]

When computing a BDD respresentation of an expression that contains existential quan-
tification, it is desirable to evaluate terms under existential quantifiers as early as possible:

123



A symbolic algorithm for lazy synthesis of eager strategies 101

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

Backward

TO

L
az
y

T
O

Fig. 11 Time comparison between backward and lazy approachses for benchmarks with 18 latches. 100
random benchmarks with c = 3, u = 1, l = 14, o = 12

existentially quantified variables can be completely eliminated from the ROBDD, which
often results in a considerable reduction in the size of the BDD. Unfortunately, existential
quantification is not distributive over conjunction and therefore we often have to first compute
the result of the conjunction before we can remove the quantified variables.

However, if a term contains variables that are used only in this term, then existential
quantification of these variables can always be performed locally. For synthesis algo-
rithms, this would be useful for the update functions fi of latches li . To take advantage
of this property, one can use heuristics to search for a convenient ordering of update
functions, represented as a permutation π : {1, . . . , n} → {1, . . . , n} such that as many
existentially quantified sub-expressions can be evaluated as early as possible. Let Ei ←
support( fπ(i))\ ⋃i−1

k=1 support( fπ(k)) then the image can be computed as follows:

1. S1 ← C
2. Si+1 ← ∃x ∈ Ei (Si ∧ (l ′π(i) ≡ fπ(i)))

3. image f (C) = Sn+1

We did not implement this optimization since an inspection of the benchmark set from
SYNTCOMP has shown that the support of most of the update functions and the ROBDDs
that represent them contain all the variables, which makes this optimization unlikely to be
very useful. It remains open if this could be a worthwhile addition to synthesis tools, at least
on certain kinds of benchmarks.

123



102 S. Jacobs, M. Sakr

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

Backward

TO

L
az
y

T
O

Fig. 12 Time comparison between backward and lazy approachses for benchmarks with 19 latches. 100
random benchmarks with c = 4, u = 2, l = 13, o = 12

7.1.2 The range function

Definition 6 [19] Given a function f : A → B and C ⊆ A, define:

– range( f ) = {y ∈ B | ∃x ∈ A with y = f (x)}.
– image( f ,C) = {y ∈ B | ∃x ∈ C with y = f (x)}.
Given f : A → B one can easily see that range can be used to compute the image of f

on A, since range( f ) = image( f ,A). However what we need for forward exploration of
the state space is a way to compute image( f ,C) for arbitrary C ⊆ A.

Another way to view this is that instead of range( f ), where f covers the whole set A,
we are interested in range( f ′) for some restriction f ′ of f that is only defined on C . To
this end, Coudert et al. [8] introduced the constraint operator, a variant of the generalized
cofactor [28].

Definition 7 Let fi : Bm → B, F : Bm → B
n with F = ( f1, . . . fn) and C : Bm → B. The

generalized cofactor F|C = ( f1|C , . . . fn |C ) is defined as

F|C (x) =
{
X if C(x) = False

F(x) if C(x) = True

In the above definition X denotes a vector of “don’t care” values, and these can be chosen
in a way that makes the BDD that represents F|C smaller than the BDD of F.

123



A symbolic algorithm for lazy synthesis of eager strategies 103

Now, we can use the following theorem to implement the desired image computation:

Theorem 4 [8,28] range(F|C ) = image(F,C)

Although this method alleviates the memory requirements of
∧|L|

i=1 l
′
i ≡ fi ∧ C ′, the

algorithm to compute range(F|C ) is a recursive algorithm [19] that requires a large number
of recursive calls.

We have tried to integrate this form of forward search into our algorithms in order to
detect unreachable states and prune the corresponding error paths. In our experiments, we
experienced unacceptably large computation times, even on rather small examples, and with
optimizations such as storing intermediate computation results. Therefore, we do not expect
an algorithm based on image or range computation to be competitive on the class of bench-
marks that we considered.

8 Synthesis of resilient controllers

As mentioned in Sect. 1, our algorithm produces strategies that avoid progress towards the
error states as early as possible, which can be useful for generating controllers that allow
for a margin of error, e.g. in the presence of sporadic faults or perturbations. In this section
we review an algorithm that generates strategies with resilience to perturbations, compare
it to the lazy synthesis algorithm and observe commonalities of their behavior on certain
benchmarks.

8.1 Controllable systems with perturbations

Dallal et al. [9] have modeled systems with perturbations, which are defined as extraordinary
transitions where values for the controllable inputs, or a subset thereof, are chosen non-
deterministically. Thus, in a perturbation step Player 0 has only limited control over the
behavior of the system, or none at all.

Formally, we modify controllable transition systems by fixing a subset XP ⊆ XC and
considering a transition relation of the form R : BL × B

Xu × B
XP × B

Xc\XP × B
L ′ → B.

Given a set of solution functions for Xc and a bound k on the number of perturbations, the
semantics of the composed system is the same as before, except that in a given run of the
system, up to k times the values for variables in XP are not chosen according to the solution
function, but can be arbitrary.

Then, we are interested in an upper bound on the number of perturbations such that the
synthesis problem can still be solved, and in strategies for the system with this number of
perturbations, called maximally resilient strategies.

8.2 An algorithm for synthesis of resilient controllers

Dallal et al. [9] introduced an algorithm that produces maximally resilient strategies. It can
be summarized as follows:

1. use the standard fixed-point algorithm to compute the winning region without perturba-
tions,

2. use a mixed forward/backward analysis to find a strategy that makes as little progress
towards the losing region as possible.

123



104 S. Jacobs, M. Sakr

Table 5 Benchmarks with
resilience guarantees

Instance Lazy synthesis Dallal et al. [9]

beembrdg2f1_c0to1 32 32

demo-v10_5 6 6

demo-v12_5 7 7

demo-v20_5 6 5

ltl2dba_C2-6_comp3 0 3

ltl2dba_E4_comp3 4 4

For lazy synthesis, we give the distance to error states, regardless of
controllability after a perturbation. For Dallal et al., we give the distance
to the losing region, taking controllability into account, i.e., the number
of perturbations that the controller is resilient against

The second part can be seen as a variant of our lazy synthesis algorithm, except that it
only has to handle a restricted setting: instead of the error states, the winning region can be
used as a basis for the backwards analysis, and the forward analysis is simplified by the fact
that from all states inside the winning region there is a winning strategy, so no backtracking
is necessary to remove states from which winning is impossible.

8.3 Implementation, experiments and comparison to lazy synthesis

We have implemented this algorithm as a combination of the backward fixed-point algorithm
and symbolic lazy synthesis, providing to our knowledge its first implementation. An eval-
uation on the SYNTCOMP 2017 benchmarks provides interesting insights: only on 6 out
of the 234 benchmarks the algorithm can give a guarantee of resilience against one or more
perturbations, as shown in Table 5.

When inspecting the behavior of our lazy algorithms on these benchmarks, we find that for
5 out of 6 benchmarks, our algorithms can give an additional quantitative safety guarantee
by measuring the distance between the error states and any states that can be visited under
the given strategy. Note that this information can be extracted without additional cost, simply
by inspection of the final sequence of error levels. However, also note that this distance is
not the same as the resilience property of Dallal et al., since (i) we compute the distance to
the unsafe states, not to the losing region, and (ii) we do not take into account whether after
a single perturbation there is still a winning strategy for Player 0. Thus, a distance of k to the
unsafe states does not imply that the strategy is resilient to k perturbations—in fact, such a
strategy does not always exist, as the results for benchmark demo-v20_5 in Table 5 show.

Furthermore, we observe that on all of these examples our algorithms detect a care-set
that is much smaller than the full winning region. The results in Table 1 include 5 of the 6
benchmarks, and show that the care-sets provided by lazy synthesis are smaller by a factor
of 109 or more. This leads us to the conjecture that lazy synthesis performs particularly well
on synthesis problems that allow resilient controllers, together with the observation that not
many of these appear in the SYNTCOMP 2017 benchmark set that we have tested against.

9 Conclusion

We have introduced lazy synthesis algorithms with a novel combination of forward and
backward exploration. Our experimental results show that in many cases our algorithms

123



A symbolic algorithm for lazy synthesis of eager strategies 105

detect solutions with care-sets that are much smaller than the full winning region. Moreover,
they can solve a number of problems that are intractable for existing synthesis algorithms,
both in crafted and random benchmarks. Finally, our algorithm produces eager solutions, and
in some cases we can give quantitative safety guarantees, i.e., we can determine the minimum
distance to any error state that a system running on our generated strategy will keep during
execution.

In the future, we want to further investigate which classes of benchmarks are difficult for
the standard backwards algorithm, and for which classes of benchmarks the lazy algorithms
are preferable. Based on this, we further want to explore how lazy synthesis can be integrated
into portfolio solvers and hybrid algorithms. Finally, we also want to explore the applications
of eager strategies in the synthesis of resilient controllers [9,11,15,23] and connections to
symbolic synthesis algorithms for infinite-state systems [1,22,25].

Acknowledgements We thank Bernd Finkbeiner andMartin Zimmermann for fruitful discussions. This work
was supported by the German Research Foundation (DFG) under the project ASDPS (JA 2357/2-1).

References

1. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based approach to solving games
on infinite graphs. In: Jagannathan, S., Sewell, P. (eds.) POPL, pp. 221–234. ACM (2014). https://doi.
org/10.1145/2535838.2535860

2. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: VMCAI, LNCS,
vol. 8318, pp. 1–20. Springer, Berlin (2014)

3. Brenguier, R., Pérez, G.A., Raskin, J., Sankur, O.: AbsSynthe: abstract synthesis from succinct safety
specifications. SYNT, EPTCS 157, 100–116 (2014). https://doi.org/10.4204/EPTCS.157.11

4. Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies. Trans. Am. Math. Soc.
138, 295–311 (1969). https://doi.org/10.2307/1994916

5. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis
of timed games. In: CONCUR, LNCS, vol. 3653, pp. 66–80. Springer, Berlin (2005)

6. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis. Summaries of the
Summer Institute of Symbolic Logic I, pp. 3–50 (1957)

7. Clarke, J.B.E., Long, D.: Representing circuits more efficiently in symbolic model checking. In: 28th
ACM/IEEE Design Automation Conference, pp. 403–407 (1991)

8. Coudert, O., Berthet, C., Madre, J.C.: Verification of synchronous sequential machines based on symbolic
execution. In: Automatic Verification Methods for Finite State Systems, Lecture Notes in Computer
Science, vol. 407, pp. 365–373. Springer, Berlin (1989). https://doi.org/10.1007/3-540-52148-8_30

9. Dallal, E., Neider, D., Tabuada, P.: Synthesis of safety controllers robust to unmodeled intermittent
disturbances. In: CDC, pp. 7425–7430. IEEE (2016). https://doi.org/10.1109/CDC.2016.7799416

10. Ehlers, R.: Symbolic bounded synthesis. Form. Methods Syst. Des. 40(2), 232–262 (2012). https://doi.
org/10.1007/s10703-011-0137-x

11. Ehlers, R., Topcu, U.: Resilience to intermittent assumption violations in reactive synthesis. In: HSCC,
pp. 203–212. ACM (2014). https://doi.org/10.1145/2562059.2562128

12. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for LTL synthesis. Form.Methods
Syst. Des. 39(3), 261–296 (2011). https://doi.org/10.1007/s10703-011-0115-3

13. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: VMCAI, LNCS, vol. 7148, pp. 219–234. Springer, Berlin
(2012). https://doi.org/10.1007/978-3-642-27940-9_15

14. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013). https://doi.org/10.1007/
s10009-012-0228-z

15. Huang, C., Peled, D.A., Schewe, S., Wang, F.: A game-theoretic foundation for the maximum software
resilience against dense errors. IEEE Trans. Softw. Eng. 42(7), 605–622 (2016). https://doi.org/10.1109/
TSE.2015.2510001

16. Jacobs, S., Basset, N., Bloem, R., Brenguier, R., Colange, M., Faymonville, P., Finkbeiner, B., Khalimov,
A., Klein, F., Michaud, T., Pérez, G.A., Raskin, J., Sankur, O., Tentrup, L.: The 4th reactive synthesis
competition (SYNTCOMP 2017): Benchmarks, participants & results. In: SYNT@CAV, EPTCS, vol.
260, pp. 116–143 (2017). https://doi.org/10.4204/EPTCS.260.10

123

https://doi.org/10.1145/2535838.2535860
https://doi.org/10.1145/2535838.2535860
https://doi.org/10.4204/EPTCS.157.11
https://doi.org/10.2307/1994916
https://doi.org/10.1007/3-540-52148-8_30
https://doi.org/10.1109/CDC.2016.7799416
https://doi.org/10.1007/s10703-011-0137-x
https://doi.org/10.1007/s10703-011-0137-x
https://doi.org/10.1145/2562059.2562128
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/978-3-642-27940-9_15
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1109/TSE.2015.2510001
https://doi.org/10.1109/TSE.2015.2510001
https://doi.org/10.4204/EPTCS.260.10


106 S. Jacobs, M. Sakr

17. Jacobs, S., Bloem, R., Brenguier, R., Ehlers, R., Hell, T., Könighofer, R., Pérez, G.A., Raskin, J., Ryzhyk,
L., Sankur, O., Seidl, M., Tentrup, L., Walker, A.: The first reactive synthesis competition (SYNTCOMP
2014). STTT 19(3), 367–390 (2017). https://doi.org/10.1007/s10009-016-0416-3

18. Jacobs, S., Sakr, M.: A symbolic algorithm for lazy synthesis of eager strategies. In: ATVA, Lecture
Notes in Computer Science, vol. 11138, pp. 211–227. Springer (2018). https://doi.org/10.1007/978-3-
030-01090-4_13

19. Kropf, T.: Introduction to Formal Hardware Verification. Springer, Berlin (2013)
20. Legg, A., Narodytska, N., Ryzhyk, L.: A SAT-based counterexample guided method for unbounded

synthesis. In: CAV (2), LNCS, vol. 9780, pp. 364–382. Springer (2016). https://doi.org/10.1007/978-3-
319-41540-6_20

21. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points (extended abstract). In:
ICALP, LNCS, vol. 1443, pp. 53–66. Springer (1998). https://doi.org/10.1007/BFb0055040

22. Neider, D., Topcu, U.: An automaton learning approach to solving safety games over infinite graphs.
In: Chechik, M., Raskin, J. (eds.) TACAS, Lecture Notes in Computer Science, vol. 9636, pp. 204–221.
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_12

23. Neider, D., Weinert, A., Zimmermann, M.: Synthesizing optimally resilient controllers. In: CSL, LIPIcs,
vol. 119, pp. 34:1–34:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.
4230/LIPIcs.CSL.2018.34

24. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM Press (1989).
https://doi.org/10.1145/75277.75293

25. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis from signal temporal
logic specifications. In: HSCC, pp. 239–248. ACM (2015). https://doi.org/10.1145/2728606.2728628

26. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the synthesis of reactive systems. STTT
15(5–6), 433–454 (2013). https://doi.org/10.1007/s10009-012-0224-3

27. Somenzi, F.: CUDD: CU decision diagram package, release 2.4.0. University of Colorado at Boulder
(2009)

28. Touati, H.J., Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-Vincentelli, A.: Implicit state enumeration of
finite state machines using bdd’s. In: Computer-AidedDesign, 1990. ICCAD-90. 1990 IEEE International
Conference on Digest of Technical Papers, pp. 130–133. IEEE (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10009-016-0416-3
https://doi.org/10.1007/978-3-030-01090-4_13
https://doi.org/10.1007/978-3-030-01090-4_13
https://doi.org/10.1007/978-3-319-41540-6_20
https://doi.org/10.1007/978-3-319-41540-6_20
https://doi.org/10.1007/BFb0055040
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.4230/LIPIcs.CSL.2018.34
https://doi.org/10.4230/LIPIcs.CSL.2018.34
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/2728606.2728628
https://doi.org/10.1007/s10009-012-0224-3

	A symbolic algorithm for lazy synthesis of eager strategies
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Overview

	2 Preliminaries
	2.1 Efficient symbolic computation

	3 Existing approaches
	3.1 Backward fixed-point algorithm
	3.2 A forward algorithm LiuS98,CassezDFLL05
	3.3 Lazy synthesis FinkbeinerJ12

	4 Symbolic lazy synthesis algorithms
	4.1 The basic algorithm
	4.1.1 Overview
	4.1.2 Detailed description
	4.1.3 Illustration of the algorithm
	4.1.4 Comparison

	4.2 Correctness of Algorithm 1
	4.3 Example problems

	5 Optimization
	5.1 The optimized algorithm
	5.1.1 Generalized deletion of transitions


	6 Experimental evaluation
	6.1 Parameterized benchmarks
	6.2 SYNTCOMP benchmarks
	6.3 Random benchmarks

	7 Why not a purely forward exploration?
	7.1 A forward algorithm
	7.1.1 Early quantification clarke1991representing
	7.1.2 The range function


	8 Synthesis of resilient controllers
	8.1 Controllable systems with perturbations
	8.2 An algorithm for synthesis of resilient controllers
	8.3 Implementation, experiments and comparison to lazy synthesis

	9 Conclusion
	Acknowledgements
	References




