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Abstract
Place/transition Petri nets are a standard model for a class of distributed systems whose
reachability spaces might be infinite. One of well-studied topics is verification of safety and
liveness properties in this model; despite an extensive research effort, some basic problems
remain open, which is exemplified by the complexity status of the reachability problem
that is still not fully clarified. The liveness problems are known to be closely related to the
reachability problem, and various structural properties of nets that are related to liveness have
been studied. Somewhat surprisingly, the decidability status of the problem of determining
whether a net is structurally live, i.e. whether there is an initial marking for which it is live,
remained open for some time; e.g. Best and Esparza (Inf Process Lett 116(6):423–427, 2016.
https://doi.org/10.1016/j.ipl.2016.01.011) emphasize this open question. Here we show that
the structural liveness problem for Petri nets is ExpSpace-hard and decidable. In particular,
given a net N and a semilinear set S, it is decidable whether there is an initial marking of N
for which the reachability set is included in S; this is based on results by Leroux (28th annual
ACM/IEEE symposium on logic in computer science, LICS 2013, New Orleans, LA, USA,
June 25–28, 2013, IEEE Computer Society, pp 23–32, 2013. https://doi.org/10.1109/LICS.
2013.7).

1 Introduction

Petri nets (exemplified by Fig. 1) are a standard tool for modelling and analysing a class of
distributed systems; see e.g., [24] for an introduction. A natural liveness property of concern
is deadlock-freedom; in more detail we can ask if a concrete action, a transition in a Petri net,
can become dead, i.e., lose the potential to be performed in the future. We say that a Petri
net with an initial state, with an initial marking in Petri net terminology, is live if none of its
transitions can become dead.
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Fig. 1 Example of a net
N = (P, T ,W ), with marking
M = (3, 1, 0)

There is a close relationship of the liveness problem (is a given Petri net with an initial
marking live?) and the reachability problem (is onemarking reachable from another in a given
Petri net?), which has been clear since the earlyworks byHack [13,14]. The complexity of the
reachability problem is a tough research problem. The problem is known to be decidable [20],
with a non-primitive recursive upper bound [19]; for long time the best known lower bound
had been the ExpSpace-hardness by Lipton (see, e.g., [8]), but recently a non-elementary
lower bound has been announced in [6].

Here we study the structural liveness problem that asks whether there is an initial marking
for which a given Petri net is live. The semidecidability of the problem is clear by the
decidability of the liveness problem (which is due to the decidability of reachability), but
the decidability of structural liveness had been open, as recalled e.g. in [3]. We answer this
decidability question positively; this part is based on and extends the conference paper [15],
where the semidecidability of the complementary problem was shown by using the results
on effectively constructible semilinear reachability sets of Petri nets [18]. We also establish a
lower bound, namely the ExpSpace-hardness of structural liveness, by a reduction from the
coverability problem for reversible Petri nets. We note that it remains unclear if the structural
liveness problem is reducible to/from the reachability problem.

It might be worth noting that our proof also highlights the decidability of structural
semilinear safety properties, i.e. whether there exists a marking of a given net for which its
reachability set is included in a given semilinear set.

Section 2 provides the formal background, Sect. 3 shows the ExpSpace-hardness result,
and Sect. 4 shows the decidability result. In Sect. 5 a few comments are added, in particular
an example of a net is given where the set of live markings is not semilinear.

2 Basic definitions

By N we denote the set {0, 1, 2, . . . }. For a set A, by A∗ we denote the set of finite sequences
of elements of A, and ε denotes the empty sequence.

Nets

A Petri net, or just a net for short, is a tuple N = (P, T ,W ) where P and T are two disjoint
finite sets of places and transitions, respectively, and W : (P × T ) ∪ (T × P) → N is the
weighted flow function. A marking M of N is an element of N

P , a mapping from P to N,
often also viewed as a vector with |P| components (i.e., an element of N

|P|).
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Structural liveness of Petri nets is ExpSpace-hard and… 539

Figure 1 presents a net N = ({p1, p2, p3}, {t1, t2, t3},W ) where W (p1, t1) = 2,
W (p1, t2) = 1, W (p1, t3) = 0, etc.; we do not draw an arc from x to y when W (x, y) = 0,
and we assume W (x, y) = 1 for the arcs (x, y) with no depicted numbers. Figure 1 also
depicts a marking M by using black tokens, namely M = (3, 1, 0), assuming the ordering
(p1, p2, p3) of places.

Reachability

Assuming a net N = (P, T ,W ), for each t ∈ T we define the following relation
t−→ on

N
P :

M
t−→ M ′ ⇔df ∀p ∈ P: M(p) ≥ W (p, t) ∧ M ′(p) = M(p) − W (p, t) + W (t, p).

By M
t−→ we denote that t is enabled in M , i.e., that there is M ′ such that M

t−→ M ′; an
enabled transition inM can be performed, yieldingM ′ (whereM t−→ M ′). The relations t−→
are inductively extended to

u−→ for all u ∈ T ∗: M ε−→ M ; if M
t−→ M ′ and M ′ u−→ M ′′,

then M
tu−→ M ′′. The reachability set for a marking M is the set

[M〉 =
{
M ′ | M u−→ M ′ for some u ∈ T ∗} .

For the net of Fig. 1 we have, e.g., (3, 1, 0)
t2−→ (4, 0, 1)

t1−→ (2, 0, 1)
t1−→ (0, 0, 1)

t3−→
(1, 1, 0); we can check that the reachability set for (3, 1, 0) is

{ (x, 1, 0) | x is odd } ∪ { (y, 0, 1) | y is even }. (1)

We also note themonotonicity property: if M1
u−→ M ′

1 and M2 ≥ M1 (i.e., M2(p) ≥ M1(p)

for all p ∈ P), then M2
u−→ M ′

2 where M ′
2 = M ′

1 + (M2 − M1).

Reversible nets

We use the following strong notion of reversibility: a net N = (P, T ,W ) is reversible if for
each transition t ∈ T there is a (“reversed”) transition t ′ ∈ T such that W (p, t ′) = W (t, p)
and W (t ′, p) = W (p, t) for all p ∈ P . This obviously entails that M ′ ∈ [M〉 implies
M ∈ [M ′〉.

Coverability, in particular in reversible nets

A marking C is coverable from a marking M in a net N if there exists a marking C ′ ≥ C
such that C ′ ∈ [M〉. By monotonicity, if M ′ ≥ M and C is coverable from M , then C is
coverable from M ′ as well.

The reversible coverability problem, denoted ReversCover, asks, given a reversible net
N , an initial marking I and a target marking C , if C is coverable from I in N .

Liveness

For a net N = (P, T ,W ), a transition t is dead in a marking M if there is no M ′ ∈ [M〉
such that M ′ t−→. (Such t can be never performed in N when we start from M .)
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540 P. Jančar, D. Purser

A transition t is live in M0 if there is no M ∈ [M0〉 such that t is dead in M . (Hence for

each M ∈ [M0〉 there is M ′ ∈ [M〉 such that M ′ t−→.) A set T ′ ⊆ T of transitions is live in
M0 if each t ∈ T ′ is live in M0. (Another natural definition of liveness of a set T ′ is discussed
in Sect. 5.)

A transition t in N is structurally live if there is M0 in which t is live. A set T ′ ⊆ T of
transitions in N is structurally live if there is M0 in which each t ∈ T ′ is live.

A marked net is a pair (N , M0) where N = (P, T ,W ) is a net and M0 is a marking,
called the initial marking. A marked net (N , M0) is live if each transition (in other words,
the set T ) is live in M0 (in the net N ). A net N is structurally live if there is M0 such that
(N , M0) is live.

E.g., the net in Fig. 1 is structurally live since it is live for the marking (3, 1, 0), as can
be easily checked by inspecting the transitions enabled in the elements of the reachability
set (1). We can also note that the net is not live for (4, 1, 0); we even have that no transition

is live in (4, 1, 0), since (4, 1, 0)
t1t1−→ (0, 1, 0) where all transitions are dead.

Liveness decision problems

– The partial liveness problem, denoted PLP, asks, given a marked net (N , M0) and a set
T ′ of its transitions, if T ′ is live in M0.

– The liveness problem, denoted LP, is a special case of PLP: it asks, given a marked net
(N , M0), if (N , M0) is live (i.e., if all its transitions are live in M0).

– The partial structural liveness problem, denoted PSLP, asks, given a net N and a set T ′
of its transitions, if T ′ is structurally live.

– The structural liveness problem, denoted SLP, is a special case of PSLP: it asks, given a
net N , if N is structurally live.

3 Problems SLP and PSLP are EXPSPACE-hard

We show that (partial) structural liveness is ExpSpace-hard, by a reduction from the problem
ReversCover (coverability for reversible nets).

3.1 REVERSCOVER is EXPSPACE-hard

The coverability problem for Petri nets is well known to be ExpSpace-hard due to Lipton.
The result was strengthened to yield ExpSpace-hardness of the problem ReversCover
(coverability for reversible nets) in the conference paper [4], with full proofs in the jour-
nal paper [22]; the problem, expressed in the framework of commutative semigroups,
is also discussed in [21]. The respective construction reduces the acceptance problem
for exponential-space bounded Turing machines to the equivalence/derivability problem
for finitely presented commutative semigroups; in fact, here it does not matter whether
equivalence (i.e. reachability) or coverability is used. Such finitely presented commutative
semigroups are equivalent to reversible Petri nets [12,22], entailing that ReversCover is
indeed ExpSpace-hard (in fact, ExpSpace-complete).

Remark We stress that the mentioned ExpSpace lower and upper bounds are independent
of (unary or binary) encoding of numbers; in particular, the coverability in reversible nets
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Fig. 2 Net N ′ constructed for a reversible net N (the transitions of N are not depicted)

is ExpSpace-hard even when the numbers (in the flow function and the initial marking) are
given in unary [21].

3.2 ReducingREVERSCOVER to SLP and PSLP

We assume a given instance of ReversCover, i.e., N = (P, T ,W ), I ,C ; hence N is a
reversible net (each transition has its “reverse-transition”). Let P = {p1, . . . , pn}. We define
a net N ′ = (P ′, T ′,W ′), partially sketched in Fig. 2, as follows:

– P ′ = P ∪ {Z} (Z /∈ P is an additional place);
– T ′ = T ∪ {tR1 . . . tRn , tRZ , tC , tI } (hence n+3 new transitions are added);
– W ′(p, t) = W (p, t) and W ′(t, p) = W (t, p) for all p ∈ P and t ∈ T (which is not

depicted in Fig. 2);
– W ′(pi , tC ) = C(pi ) and W ′(tC , pi ) = C(pi ) + 1 (for i = 1, 2, . . . , n);
– W ′(tC , Z) = 2;
– W ′(pi , tRi ) = W ′(Z , tRi ) = W ′(tRi , Z) = 1 (for i = 1, 2, . . . , n);
– W ′(Z , tRZ ) = 2 and W ′(tRZ , Z) = 1;
– W ′(Z , tI ) = 1 and W ′(tI , pi ) = I (pi ) (for i = 1, 2, . . . , n).

For completeness we add thatW ′(x, y) = 0 for the pairs (x, y) ∈ (P ′ × T ′) ∪ (T ′ × P ′) not
mentioned in the above points.

Proposition 1 1. If C is not coverable from I in N, then tC is not structurally live in N ′
(and thus N ′ is not structurally live).
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542 P. Jančar, D. Purser

2. If C is coverable from I in N, then N ′ is structurally live.

Proof For convenience, when we write a marking of N ′ = (P ′, T ′,W ′) in the form (M, z),
then M is a marking of N and z is the number of tokens at place Z . By 0 we denote the zero
marking of N (hence 0(pi ) = 0 for all i ∈ {1, 2, . . . , n}).
1. We assume that C is not coverable from I in N , and we aim to show that tC is not

structurally live in N ′. We thus fix an arbitrary initial marking (M, z) of N ′, and we aim
to show that transition tC is not live in (M, z).

If z ≥ 1, then we can perform tRi M(pi )-times, for i = 1, 2, . . . , n; from (M, z) we thus

reach (0, z). Then by performing tRZ (z−1)-times we reach (0, 1), and we have (0, 1)
tI−→

(I , 0). In (I , 0), transition tC is dead (as well as tRZ and all tRi ) sinceC is not coverable from
I in N (and from (I , 0) net N ′ can thus only mimic the behaviour of N ).

If we fixed (M, 0) as the initial marking, and tC is not dead in (M, 0), then there is

(M ′, 0) ∈ [(M, 0)〉 such that (M ′, 0) tC−→ (M ′′, 2); by the above reasoning tC is not live in
(M ′′, 2), and thus tC is not live in (M, 0) either.

2. We assume that C is coverable from I in N , and we will show that (I , 0) is live for N ′.
We first show that (I , 0) is a “home marking” for N ′, i.e.,

for each (M, z) ∈ [(I , 0)〉 we have (I , 0) ∈ [(M, z)〉.

Let us consider (M, z) ∈ [(I , 0)〉. If z ≥ 1, then (I , 0) ∈ [(M, z)〉, as was already shown
above. If z = 0, then on a fixed path

(I , 0) = (M0, z0)
t ′1−→ (M1, z1)

t ′2−→ (M2, z2) · · · t ′k−→ (Mk, zk) = (M, 0)

demonstrating that (M, 0) ∈ [(I , 0)〉 let (Mj , z j )
t ′j+1−→ (Mj+1, z j+1) · · · t ′k−→ (Mk, zk) be

the longest suffix with z j = z j+1 = · · · = zk = 0. It is clear that either Mj = I , or
t ′j−1 = tI (since tI is the only transition that can make Z empty), and thus Mj ≥ I . Since
the transitions t ′j+1, . . . , t

′
k are necessarily from T in N = (P, T ,W ) and N is reversible,

we have Mj ∈ [M〉 in N , and thus (Mj , 0) ∈ [(M, 0)〉 in N ′. Since C is coverable from I
in N , and Mj ≥ I , we have that (C, 0) is coverable from (Mj , 0), and thus from (M, 0),
in N ′. When (C, 0) is covered, tC can be performed, after which (M ′, 2) is reached, and
(I , 0) ∈ [(M ′, 2)〉 as noted above. Thus (I , 0) is indeed a home marking in N ′.

Now it suffices to show that no transition is dead in (I , 0). Indeed, from (I , 0) we can
cover (C, 0) and then fire tC (increasing the number of tokens in all places) sufficiently many
times so that all transitions become enabled. 
�

The proposition and the ExpSpace-hardness of ReversCover entail the following the-
orem; as already discussed, the hardness result holds even when the numbers are presented
in unary.

Theorem 1 The problems SLP (structural liveness) and PSLP (partial structural liveness)
are ExpSpace-hard.
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4 Problems SLP and PSLP are decidable

In this section we prove the following theorem.

Theorem 2 The partial structural liveness problem (PSLP) is decidable; this also entails the
decidability of the structural liveness problem (SLP).

In Sect. 4.1 we briefly recall the semidecidability of the problems. Section 4.2 then shows
the semidecidability of the complementary problems.

4.1 Semidecidability of the positive case

We first explicitly recall the famous decidability result for reachability. The reachability
problem, denoted RP, asks if M ∈ [M0〉 when given N , M0, M .

Theorem 3 [20] The reachability problem (RP) is decidable.

Lemma 1 Problem PSLP is semidecidable.

Proof It is straightforward to reduce PLP (the partial liveness problem) to the reachability
problem [13,14]. This induces semidecidability of PSLP (the partial structural liveness prob-
lem): given N and T ′, we can systematically generate all markings M of N , always deciding
if T ′ is live in the currently generated M (and halt when the answer is positive). 
�

4.2 Semidecidability of the negative case

Given a net N = (P, T ,W ) and a set T ′ ⊆ T , we need to verify that T ′ is not structurally
live, i.e. T ′ is non-live in all markings M , if it is the case. We first sketch the idea, which is
then realized in detail.

First a (downward closed) set DT ′ of markings of N is constructed in which at least one
transition t ∈ T ′ is dead; for this a standard backward-coverability algorithm can be used.
Then we create a marked net (N ′, M ′

0) (partly sketched in Fig. 3) that works in two phases,
controlled by places added to N : in the first phase, an arbitrary marking M from the set DT ′
is generated, and then N is simulated in the reverse mode from M . If T ′ is not structurally
live, then the projection of the reachability set of (N ′, M ′

0) onto the set P of places of N is
the whole set N

P ; if T ′ is structurally live, then there is M ∈ N
P such that the projection of

any marking reachable from M ′
0 differs from M .

In the first case (with the whole set N
P ) the reachability set of (N ′, M ′

0) is semilinear,
i.e. Presburger definable. Due to a result by Leroux [18], there is an algorithm that finishes
with a Presburger description of the reachability set of (N ′, M ′

0) when this set is semilinear
(while it runs forever when not). This yields the announced semidecidability.

Now we show the details, assuming a fixed net N = (P, T ,W ) if not said otherwise.

Sets of “dead” markings are downward closed

We explore the set

DT ′ =
{
M ∈ N

P | some t ∈ T ′ is dead in M
}
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for T ′ ⊆ T . We note that the definition entails DT ′ = ⋃
t∈T ′ D{t}. E.g., in the net of Fig. 1

we have D{t1} = {(x, 0, 0) | x ≤ 1} ∪ {(0, x, 0) | x ∈ N}, D{t2,t3} = {(0, x, 0) | x ∈
N} ∪ {(x, 0, 0) | x ∈ N}, and

DT = {(0, x, 0) | x ∈ N} ∪ {(x, 0, 0) | x ∈ N}. (2)

Due to the monotonicity property (M1
u−→ M ′

1 and M2 ≥ M1 implies M2
u−→ M ′

1 + (M2 −
M1)), each DT ′ is downward closed; we say that D ⊆ N

P is downward closed if M ∈ D
implies M ′ ∈ D for all M ′ ≤ M . It is standard to characterize any downward closed subset
D of N

P by the set of its maximal elements, using the extension Nω = N ∪ {ω} where ω

stands for an “arbitrarily large number” satisfying ω > n for all n ∈ N. Formally we extend
a downward closed set D ⊆ N

P to the set

D̂ =
{
M ∈ (Nω)P | ∀M ′ ∈ N

P : M ′ ≤ M ⇒ M ′ ∈ D
}

.

We thus have

D =
{
M ′ ∈ N

P | M ′ ≤ M for some M ∈ Max(D̂)
}

where Max(D̂) is the set of maximal elements of D̂. (We can refer, e.g., to [9] where such
completions by “adding the limits” are handled in a general framework.) By (the standard
extension of) Dickson’s Lemma, the setMax(D̂) is finite.

E.g., for the set DT in (2) we haveMax(D̂T ) = {(0, ω, 0), (ω, 0, 0)}.
Proposition 2 Given N = (P, T ,W ) and T ′ ⊆ T , the set DT ′ is downward closed and the
finite setMax(̂DT ′) is effectively constructible.

Proof We consider a net N = (P, T ,W ) and a set T ′ ⊆ T . As discussed above, the set DT ′
is downward closed.

Instead of a direct construction of the finite set Max(̂DT ′), we first show that the set
ST ′ = Min(NP

�DT ′), i.e. the set of minimal elements of the (upward closed) complement
of DT ′ , is effectively constructible.

For each t ∈ T ′, we first compute St = Min(NP
�D{t}), i.e. the set of minimal markings

in which t is not dead. One standard possibility for computing St is to use the following
backward algorithm, where

MinPre(t ′, M) is the unique marking inMin({M ′ | ∃M ′′ ≥ M : M ′ t ′−→ M ′′}).
(For each p ∈ P ,MinPre(t ′, M)(p) = W (p, t ′) + max{M(p)−W (t ′, p), 0}.)

An algorithm for computing St :

1. Initialize the variable S, containing a finite set of markings, with the value

S0 = {MinPre(t, 0)}
(where 0 is the zero marking).

2. Perform the following step repeatedly, as long as possible:
if the current value of S is S i , and for some t ′ ∈ T and M ∈ S i the marking
M ′ = MinPre(t ′, M) is not in the upward closure of S i (hence M ′

� M ′′ for each
M ′′ ∈ S i ), then put in S the value

S i+1 = S i ∪ {M ′}�{M ′′ ∈ S i | M ′ ≤ M ′′}.
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Termination is clear by Dickson’s Lemma, and the final value of S is obviously the set St (of
all minimal markings from which t can get enabled). We can remark that related studies in
more general frameworks can be found, e.g., in [1,10].

Having computed the sets St = Min(NP
�D{t}) for all t ∈ T ′, we can surely compute the

set ST ′ = Min(NP
�DT ′) since

ST ′ = Min
({

M ∈ N
P | (∀t ∈ T ′)(∃M ′ ∈ St ): M ≥ M ′})

.

This also entails that the maximum B ∈ N of values M(p) where M ∈ ST ′ (and p ∈ P) is
bounded by the maximum value M(p) where M ∈ St for some t ∈ T ′. Since the finite (i.e.,
non-ω) numbers M(p) in the elements M of Max(̂DT ′) are obviously less than B, the set
Max(̂DT ′) can be constructed when given ST ′ . 
�

Remark Generally we must count with at least exponential-space algorithms for construct-
ing Max(̂DT ′) (or Min(NP

�DT ′)), due to Lipton’s ExpSpace-hardness construction that
also applies to the coverability (besides the reachability). On the other hand, by Rackoff’s
results [23] the maximum B mentioned in the proof is at most doubly-exponential w.r.t. the
input size, and thus fits in exponential space. (We can recall that Rackoff’s doubly-exponential
bound on the length of a shortest covering run only depends on the target marking, not on the
initial one.) Nevertheless, the precise complexity of computing Max(̂DT ′) is not important
in our context.

Sets of “live” markings are more complicated

Assuming N = (P, T ,W ), for T ′ ⊆ T we define

LT ′ =
{
M ∈ N

P | T ′ is live in M
}

.

The set LT ′ is not the complement of DT ′ in general, but our definitions readily yield the
following equivalence:

Proposition 3 M ∈ LT ′ iff [M〉 ∩ DT ′ = ∅.
We note that LT ′ is not upward closed in general. We have already observed this on the

net in Fig. 1, where DT = {(0, x, 0) | x ∈ N} ∪ {(x, 0, 0) | x ∈ N} (i.e., Max(D̂T ) =
{(0, ω, 0), (ω, 0, 0)}). It is not difficult to verify that in this net we have

LT =
{
M ∈ N

{p1,p2,p3} | M(p2)+M(p3) ≥ 1 and M(p1)+M(p3) is odd
}

. (3)

Proposition 3 has the following simple corollary:

Proposition 4 The answer to an instance N = (P, T ,W ), T ′ of PSLP (the partial structural
liveness problem) is

1. YES if LT ′ �= ∅, i.e., if {M ∈ N
P ; [M〉 ∩ DT ′ �= ∅} �= N

P .
2. NO if LT ′ = ∅, i.e., if {M ∈ N

P ; [M〉 ∩ DT ′ �= ∅} = N
P .

It turns out important for us that in the case 2 (NO) the set {M ∈ N
P ; [M〉 ∩ DT ′ �= ∅}

is semilinear. We now recall the relevant notions and facts, and then we give a proof of
Theorem 2.
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Semilinear sets

For a fixed (dimension) d ∈ N, a set L ⊆ N
d is linear if there is a (base) vector ρ ∈ N

d and
(period) vectors π1, π2, . . . , πk ∈ N

d (for some k ∈ N) such that

L = {ρ + x1π1 + x2π2 + · · · + xkπk | x1, x2, . . . , xk ∈ N} .

Such vectors ρ, π1, π2, . . . , πk constitute a description of the set L .
A set S ⊆ N

d is semilinear if it is the union of finitely many linear sets; a description
of S is a collection of descriptions of Li , i = 1, 2, . . . ,m (for some m ∈ N), where
S = L1 ∪ L2 ∪ · · · ∪ Lm and Li are linear.

It is well known that an equivalent formalism for describing semilinear sets are Pres-
burger formulas [11], the arithmetic formulas that can use addition but no multiplication (of
variables); we also recall that the truth of (closed) Presburger formulas is decidable. E.g.,
all downward (or upward) closed sets D ⊆ N

P are semilinear, and also the above sets (1)
and (3) are examples of semilinear sets. Moreover, given the set Max(D̂) for a downward
closed set D, constructing a description of D as of a semilinear set is straightforward.

It is also well known that the reachability sets [M〉 are not semilinear in general; similarly
the sets LT ′ (of live markings) are not semilinear in general. (We give an example in Sect. 5.)
But we have the following result by Leroux:

Theorem 4 [18] There is an algorithm that, given a marked net (N , M0), halts iff the reach-
ability set [M0〉 is semilinear, in which case it produces a description of this set.

Roughly speaking, the algorithm guaranteed by Theorem 4 generates the reachability
graph forM0 while performing certain “accelerations”when possible (which captures repeat-
ings of some transition sequences by simple formulas); this process is creating a sequence of
descriptions of increasing semilinear subsets of the reachability set [M0〉 until the subset is
closed under all steps

t−→ (which can be effectively checked); in this case the subset (called
an inductive invariant in [18]) is equal to [M0〉, and the process is guaranteed to reach such
a case when [M0〉 is semilinear. (A consequence highlighted in [18] is that in such a case all
reachable markings can be reached by sequences of transitions from a bounded language.)

Proof of Theorem 2 (decidability of PSLP)

Given N = (P, T ,W ) and T ′ ⊆ T , we will construct a marked net (N ′, M ′
0) where N ′ =

(P ∪ Pnew, T ∪ Tnew,W ′) so that we will have:

(a) if LT ′ = ∅ in N (i.e., T ′ is non-live in each marking of N ) then [M ′
0〉 is semilinear and

the projection of [M ′
0〉 onto P is equal to N

P ;
(b) if LT ′ �= ∅, then the projection of [M ′

0〉 onto P is not equal to N
P (and might be non-

semilinear).

This construction of (N ′, M ′
0) yields the required decidability proof, since we can consider

two algorithms running in parallel:

– One is the algorithm of Theorem 4 applied to (N ′, M ′
0); if it finishes with a semilinear

description of [M ′
0〉, which surely happens in the case a), then we can effectively check

if the projection of [M ′
0〉 onto P is N

P , i.e. if LT ′ = ∅. (A projection of a semilinear
set is effectively semilinear, the set-difference of two semilinear set is also effectively
semilinear [11], and checking emptiness of a semilinear set is trivial.)
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Fig. 3 Construction of (N ′, M ′
0) for deciding the (partial) structural liveness (PSLP)

– The other algorithm generates all M ∈ N
P and for each of them checks if there is

M ′ ∈ [M ′
0〉 such that M ′

�P (i.e., M ′ projected to P) is equal to M . It thus finds some
M with the negative answer if, and only if, LT ′ �= ∅ [(the case b)]. The existence of
the algorithm checking the mentioned property for M follows from a standard extension
of the decidability of reachability (Theorem 3); for our concrete construction below this
extension is not needed, and just the claim of Theorem 3 will suffice.

The construction of (N ′, M ′
0) is illustrated in Fig. 3; we create a marked net that first gen-

erates an element of DT ′ on the places P , and then simulates N in the reverse mode. More
concretely, we assume the ordering (p1, p2, . . . , pn) of the set P of places in N , and compute
a description of the semilinear set DT ′ ⊆ N

P (by first constructing the setMax(̂DT ′); recall
Proposition 2). We thus get

DT ′ = L1 ∪ L2 ∪ · · · ∪ Lm,

given by descriptions ρi , πi1, πi2, . . . , πiki of the linear sets Li , for i = 1, 2, . . . ,m.

Remark We choose this description ofDT ′ to make clear that the construction can be applied
to any semilinear set, not only to a downward closed one.

The construction of (N ′, M ′
0), where N ′ = (P ∪ Pnew, T ∪ Tnew,W ′), is now described

in detail:

1. Given N = (P, T ,W ), create the “reversed” net Nrev = (P, T ,Wrev), where

Wrev(p, t) = W (t, p) and Wrev(t, p) = W (p, t) for all p ∈ P and t ∈ T .
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(By induction on the length of u it is easy to verify that M
u−→ M ′ in N iff M ′ urev−→ M

in Nrev, where urev is defined inductively as follows: εrev = ε and (tu)rev = urevt .)
2. To get N ′, extend Nrev as described below; we will have

W ′(p, t) = Wrev(p, t) and W ′(t, p) = Wrev(t, p) for all p ∈ P and t ∈ T .

3. Create the set Pnew of additional places

Pnew = {
start, lin1, lin2, . . . , linm, revN

}

and the set Tnew of additional transitions

Tnew =
⋃

i∈{1,2,...,m}

{
tρi , fi , tπi1 , tπi2 , . . . , tπiki

}

(as partly depicted in Fig. 3.)
4. Put M ′

0(start) = 1 and M ′
0(p) = 0 for all other places p ∈ P ∪ Pnew.

5. For each i ∈ {1, 2, . . . ,m}, put
W ′(start, tρi ) = W ′(tρi , lini ) = 1, and W ′(tρi , p j ) = (ρi ) j

for all j ∈ {1, 2, . . . , n}, where (ρi ) j is the j th component of the vector ρi ∈ N
n .

(We tacitly assume that the value of W ′ is 0 for the pairs (p, t) and (t, p) that are not
mentioned.)

6. For each tπi� (i ∈ {1, 2, . . . ,m}, � ∈ {1, 2, . . . , ki }) put
W ′(lini , tπi� ) = W ′(tπi� , lini ) = 1, and W ′(tπi� , p j ) = (πi�) j

for all j ∈ {1, 2, . . . , n}.
7. For each fi put W ′(lini , fi ) = W ′( fi , revN ) = 1.
8. For each transition t ∈ T in Nrev put W ′(revN , t) = W ′(t, revN ) = 1.

In the resulting (N ′, M ′
0) we have only one token moving on Pnew; more precisely, the set

[M ′
0〉 can be expressed as the union

[M ′
0〉 = Sstart ∪ Slin1 ∪ · · · ∪ Slinm ∪ SrevN

of the disjoint sets

Sp = {
M | M ∈ [M ′

0〉 and M(p) = 1
}
, for p ∈ {

start, lin1, . . . , linm, revN
}
.

It is clear that each of the sets Sstart, Slin1 , . . . , Slinm is linear, and that the projection of
SrevN onto P = {p1, p2, . . . , pn} is the set {M ∈ N

P ; [M〉 ∩DT ′ �= ∅} where [M〉 refers to
the net N .

The constructed (N ′, M ′
0) clearly satisfies the above conditions (a) and (b). In the algorithm

verifying (b), it suffices to generate the markings M of N ′ that satisfy M(revN ) = 1,
M(start) = M(lin1) = · · · = M(linm) = 0, and to check the (non)reachability from M ′

0
for each of them (recall Theorem 3).

We have thus finished a proof of Theorem 2.

Remark We also have another option (than Theorem 3) for establishing the non-reachability
of M from M ′

0, due to another result by Leroux (see, e.g., [17]): namely to find a description

of a semilinear set that contains M ′
0, does not contain M , and is closed w.r.t. all steps

t−→
(being thus an inductive invariant in the terminology of [17]).
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Fig. 4 Sets of live markings can
be non-semilinear

5 Additional remarks

Checking structural semilinear safety properties

We recall that our decision procedure for structural liveness of a net N first constructs the set
S of markings in which no transition is dead and then decides if there is an initial marking
(in S) for which its reachability set is included in S. The mentioned set S is upward closed
but our procedure yields the following more general theorem.

Theorem 5 Given a net N = (P, T ,W ) and a semilinear set S ⊆ N
P , it is decidable whether

there exists an initial marking M ∈ S such that [M〉 ⊆ S.

This problem can be interpreted as structural satisfiability of a safety property. However, one
must be careful, since such condition may be trivial in concrete cases, e.g. when 0 ∈ S.

Sets of live markings can be non-semilinear

In Petri net theory, there are many results that relate liveness to specific structural properties
of nets. We can name [2] as an example of a cited paper from this area. Nevertheless, the
general structural liveness problem is still not fully understood; one reason might be the fact
that the set of live markings of a given net is not semilinear in general.

As an example, we give a net N = (P, T ,W ) in Fig. 4. If the set LT of live markings was
semilinear, then its intersection with the set {(x1, 0, 1, 0, 1, x6) | x1, x6 ∈ N} would also be
semilinear (i.e., definable by a Presburger formula). But we will verify that the markings in
this set are live if, and only if, x6 > 2x1 , which makes the set clearly non-semilinear.

We first observe that each marking M with M(p4) = M(p6) = 0 is not live (in this
case we have M ′(p4) = M ′(p6) = 0 for each M ′ ∈ [M〉). In each marking M where p4
is marked, i.e. M(p4) ≥ 1, no transition is dead; moreover, if p4 is marked, then it stays
marked forever. Hence each marking M with M(p4) ≥ 1 is live. Now we fix a marking
M = (x1, 0, 1, 0, 1, x6), depicted in Fig. 4 (where M(p4) = 0). It is straightforward to
check that if M ′ ∈ [M〉 and M ′(p4) = 0, then M ′(p5) ≤ 2x1 ; moreover, there is M ′ ∈ [M〉
where M ′(p4) = 0 and M ′(p5) = 2x1 . Hence if x6 ≤ 2x1 , then there is M ′ ∈ [M〉 where
M ′(p4) = M ′(p6) = 0 (using the transition left of p6); in this case M is not live. If x6 > 2x1 ,
then the transition right of p6 remains enabled unless it is performed and marks p4; hence
in this case M is live.
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Another version of liveness of a set of transitions

Given N = (P, T ,W ), we defined that a set T ′ of transitions is live in a marking M if each
t ∈ T ′ is live in M . Another option is to view T ′ as live in M if in each M ′ ∈ [M〉 at least one
t ∈ T ′ is not dead. But the problem of determining whether T ′ is live in M in this sense can
be easily reduced to the problem of determining whether a specific transition is live. (We can
add a place p̄ and a transition t̄ , puttingW ( p̄, t̄) = 1. For each t ∈ T ′ we then add t ′ and put
W (t ′, p̄) = 1 and W (p, t ′) = W (t ′, p) = W (p, t) for each p ∈ P . Then T ′ is live in M in
the new sense iff t̄ is live in M .) The above nuances in definitions thus make no substantial
difference.

Structural liveness is trivial for reversible and other restricted nets

We have defined reversibility in a strong sense: every transition has its reverse transition.
Nevertheless the reduction in Sect. 3 also works when we only require that M ′ ∈ [M〉
implies M ∈ [M ′〉; hence the effect of each transition can be undone by some series of
transitions (possibly different for different markings).

We note that the net N ′ in Fig. 2 arises from a reversible net N but N ′ itself is not reversible
(in a strong or weak sense). This is necessary, since every reversible net is structurally live.
Indeed, in a reversible net eachmarkingM0 is a homemarking (M ∈ [M0〉 entailsM0 ∈ [M〉),
and thus all transitions are live in a marking M0 that enables all transitions.

We can also recall marked graphs as an example of a class in which each net is structurally
live. Amarked graph is a Petri net N = (P, T ,W )where

∑
t∈T W (t, p) = ∑

t∈T W (p, t) =
1 for each p ∈ P (there is exactly one edge into and one edge out of each place). We note that
such graphs are equivalent to directed graphs where vertices represent transitions and edges
represent places; a marking thus associates a number of tokens with each edge [16]. By [5] a
marked graph is live if the token count on each directed cycle is positive. It is therefore clear
that such nets are structurally live, as each such net is live for the marking where each place
has one token.

We note that marked graphs constitute a special case of free-choice nets, where Com-
moner’s theorem (see e.g., [7]) clarifies the liveness problem, and also the structural liveness
problem. A detailed study of structural liveness in various Petri net subclasses can be a natural
topic of a future research.

Everywhere liveness

A net N is viewed as structurally live if there is M0 such that (N , M0) is live. We note that
the question if (N , M0) is live for all M0 is almost trivial. Indeed, (N , M0) is live for all M0

iff (N , 0) is live. (If there is no dead transition in the zero marking, then there is no dead
transition in any marking.) A net N = (P, T ,W ) with P = ∅ is trivially live for 0. If P �= ∅
and each t ∈ T has an input place, i.e. p ∈ P such that W (p, t) ≥ 1, then (N , 0) is not live.
In the remaining case, (N , 0) is live iff (N ′, 0) is live where N ′ arises from N by removing
all input-free transitions together with their output places.
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Open complexity status

We have not fully clarified the complexity of the (partial) structural liveness problem (PSLP,
SLP). The complexity of the (partial) liveness problem (PLP,LP) is “close” to the complexity
of the reachability problem RP (as follows already by the constructions in [13]), but it seems
natural to expect that the structural liveness problem might be easier. (E.g., the boundedness
problem, asking if [M0〉 is finite when given (N , M0), is ExpSpace-complete, by the results
of Lipton and Rackoff, but the structural boundedness problem is polynomial; here we ask,
given N , if (N , M0) is bounded for all M0, or in the complementary way, if (N , M0) is
unbounded for some M0.)

The recently announced nonelementary bound for reachability [6] also yields nonelemen-
tary complexity of liveness. Structural liveness might be indeed easier; it remains “only”
ExpSpace-hard since the existence of a reduction from reachability is not clear in this case.
On the other hand, it has been so far not excluded that structural liveness is even harder than
reachability (and thus harder than liveness), since we have no reduction to the reachability
problem either.
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