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Abstract
We propose a calculus for concurrent reversible multiparty sessions, equipped with a flexible
choice operator allowing for different sets of participants in each branch. This operator
is inspired by the notion of connecting action recently introduced by Hu and Yoshida to
describe protocols with optional participants. We argue that this choice operator allows for a
natural description of typical communication protocols. Our calculus also supports a compact
representationof the history of processes and types,which facilitates the definitionof rollback.
Moreover, it implements afine-tuned strategy for backward computation.Wepresent a session
type system for the calculus and show that it enforces the expected properties of session
fidelity, forward progress and backward progress.

1 Introduction

Session types are a simple but expressive type formalism that specifies the structure of inter-
actions. Traditionally, session types have been used to ensure safety properties of interactions,
such as absence of communication errors, deadlock freedom and race freedom.

Reversibility is a means to improve system flexibility and reliability. Reversing a compu-
tation may be defined as the act of undoing some suffix of the computation, in order to return
to a previously visited state. In a nondeterministic computation, this possibility may be used
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to return to a previous branching point, in case the chosen branch has led to an unsuccessful
state.

In the setting of structured communications, reversibility has been first studied for con-
tracts [2,3] and transactions [11,12,21]. More recently, it has started to be investigated also
for session calculi, both binary [24,34] and multiparty [14,26,28,35] (see Sect. 6 for more
discussion on related work).

When reversing a structured interaction, one has to preserve the consistency of the global
state: if one partner triggers a rollback, then all its communicating partners should roll back
accordingly. Session types turn out to be very useful here, since they specify both the func-
tionality of communications (sender, receiver and type of message), and the order in which
they should occur.

We present a calculus for concurrent reversible multiparty sessions, whose distinctive
feature is a flexible choice operator, allowing for different sets of participants in its branches.
The only participant which is required to occur in all branches is the one which solves the
choice, henceforth called the choice leader.

Our choice operator is inspired by the notion of connecting action recently introduced by
Hu and Yoshida to describe protocols with optional participants [20]. The intuition behind
connecting actions is that in some parts of the protocol, delimited by a choice construct, some
participants are required to take part in the interaction while some others may be optional.
Connecting actions are used to invite optional participants to join the interaction along some
branches of the choice. For instance, in a PCmeeting, it could happen that in case of divergent
views about a paper, the PC chair launches a discussion among the concerned PC members,
but also invites some additional PCmembers to join the discussion. These additionalmembers
are optional in the sense that they are not required to discuss on that particular paper, but they
may be invited to do so in some cases.

Here we shall make a more permissive use of connecting actions than in [20].
The differences between our connecting actions and those in [20] are discussed in Sect. 6.
Compared to the standard choice operator of multiparty session calculi, our flexible choice

allows for a more natural description of typical communication protocols, such as the one
mentioned above. Another example is the vacation protocol discussed below, where Alice
has to decide between two destinations, and depending on her decision she will wish to
contact either an airline or a railway company but not both. This will be modelled by a choice
between two connecting actions, one with the airline and one with the railway company.

Another notable feature of our calculus is that it gives a compact representation of the
history of processes and types, which facilitates the definition of rollback. It also imple-
ments a fine-tuned strategy for backward computation, which is geared towards achieving
compliance. In essence, a backward move can only return to a past choice point, and it can
only be triggered by the leader of that choice; moreover, the past choice state is restored
without the already explored branch, thus forcing the choice leader to engage into a different
branch.

The main contributions of our paper may be summarised as follows:

– the introduction of a flexible choice operator based on connecting actions in a reversible
multiparty session framework;

– a fine-tuned strategy for rollback to checkpointed choices, whereby rollback can only be
triggered by choice leaders in predefined states of the computation, leading back to the
choice state stripped off the unsuccessful path.

This work builds on our previous papers [8,14]. As regards the treatment of reversibility
in multiparty sessions, the general principles and the use of checkpoints for return points are
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taken from [14], while the formalisation of histories and the specific rollback mechanism
are borrowed from [8]. The formalisation of histories is pushed a little further here than in
[8], including notions of causality and conflict for communication occurrences. On the other
hand, the use of connecting actions is new with respect to [8,14], and so is the study of their
interplay with reversible computations. This interplay is not entirely trivial, as it requires
revisiting the definition of projection of a global type onto its participants. A relevant new
notion to this purpose is that of affecting choice for a participant: intuitively, a choice specified
by a global type affects a participant if the whole choice is needed to determine the projection
on that participant. By definition, a choice affects all its required participants while it does
not affect optional participants which appear in only one branch. If we ignore connecting
actions, the expressive power of our calculus is comprised between that of [14] and that of
[8]. Indeed, [8] allows for both parallel and sequential composition within processes and
types, yielding a powerful but somewhat complex calculus. Here we decided to stick to a
more standard syntax, in order to be able to focus on the main topic of the paper, namely
backward computation in the presence of connecting actions.

Vacation protocol example To illustrate our approach, we present a simple protocol involv-
ing five parties, Alice, Bob, Carol, the airline company Alitalia and the railway company
Trenitalia. This protocol, henceforth called the vacation protocol, will serve as our running
example throughout the paper.

For Easter holidays, Alice receives two independent invitations from Bob and Carol. Bob
proposes to Alice to visit him in Paris, while Carol offers to host her in her seaside house in
Amalfi. Since Alice lives in Rome, depending on her decision she will need to book a flight to
go to Paris or a train to reach Amalfi. To do so, Alice will either contact Alitalia or Trenitalia
to buy a ticket, and then inform both Bob and Carol of her decision. In case of a plane or train
strike, Alice is allowed to change her mind. Letting a,b, c, f, t denote respectively Alice,
Bob, Carol, Alitalia and Trenitalia, a global type describing this communication protocol is:

b
iP−→ a; c iA−→ a; (a

tk↔−→ f; a yes−→ b; a no−→ c C� a
tk↔−→ t; a no−→ b; a yes−→ c)

where C� is a choice with checkpoint label C , meaning that the choice leader (i.e. the
participant who makes the choice, Alice in this case) can rollback to take a different branch
of the choice. The communications between Alice and Alitalia/Trenitalia are connecting

communications (represented by messages of the form
λ↔). This means that there is no

assurance forAlitalia andTrenitalia that theywill receive amessage fromAlice.With standard
global types, Alitalia and Trenitalia should receive a message from Alice in both branches of
the choice, and this is clearly not realistic. A different way out would be to use three global
types instead of one, respectively with sets of participants {Alice, Bob, Carol}, {Alice,
Alitalia} and {Alice, Trenitalia}. The drawback of the latter solution is that, in the presence
of more than one global type, a simple session type system is not sufficient to ensure progress,
and one needs to recourse to more refined type systems [29].

Thanks to connecting actions, the vacation protocol may be described by a single global
type, without the constraints of standard global types.

Outline The rest of the paper is organised as follows. In Sect. 2 we define the syntax and
operational semantics—both forward and backward—of our calculus. In Sect. 3 we introduce
our syntax for global types and session types andwe establish well-formedness conditions for
global types. In Sect. 4 we present our type system and prove some preliminary properties.
In Sect. 5 we prove the soundness of our type system, namely that it ensures the expected

123



556 I. Castellani et al.

semantic properties of session fidelity and forward and backward progress. We conclude in
Sect. 6with some discussion on related and futurework. TheAppendix proves the correctness
of a possible implementation of backward reduction.

2 Calculus

We assume the following base sets: simple messages, ranged over by λ, λ′, . . . and forming

the set Msg; connecting messages, ranged over by
λ↔,

λ′↔, . . . and forming the set CMsg;
checkpoint labels, ranged over by C,C ′ and forming the set ChLa; and session participants,
ranged over by p,q, r and forming the set Part. We useΛ to range over both simple messages
and connecting messages.

We use Δ to range over sets of checkpoint labels, and γ to stand for either the empty
set or a singleton consisting of an overlined checkpoint label (curly brackets will be omitted
around singletons):

Δ ::= ∅ || Δ,C γ ::= ∅ || C

Sets Δ and γ are associated with choices in processes. More precisely, a set Δ is associated
with an external choice and said to be passive, while a set γ is associated with an internal
choice and said to be active. Intuitively, an overlined label C is the handle for a backward
move: a participant who crossed an internal choice (henceforth called the choice leader)
with checkpoint label C , and then proceeded in the computation, may decide to return to that
choice whenever she has the ability to send amessage.Within a network, this backwardmove
of the choice leader will have to be matched by backward moves of all the participants who
did some action after crossing the matching external choice, whose checkpoint set contains
label C . The asymmetry between Δ and γ is justified by the fact that there is only one choice
leader who can send messages to various participants.

Let π ∈ {p?Λ,p!Λ | p ∈ Part,Λ ∈ Msg ∪ CMsg} denote an atomic action, namely a
simple input/output action or an input/output action establishing a connection. As in [20],
connecting inputs may be dangling forever, whereas simple inputs will eventually take place.
This gives a natural freedom in the definition of communication protocols as illustrated in
the examples of the introduction. An atomic action can bear a hat, in which case it represents
an already executed action.We use π̃ to stand for either π or π̂ . External choices and internal
choices are denoted by

∑

and
⊕

, respectively.

Definition 1 (Processes) Processes are defined by:

P ::=Δ

∑

i∈I
˜pi?Λi ; Pi || γ

⊕

i∈I
˜pi !Λi ; Pi || μX .P || X || end

where in both kinds of choice the pairs (pi ,Λi ) are assumed to be all distinct. Moreover,
for external choices we also assume that the Λi ’s are either all simple or all connecting
messages. This condition allows us to distinguish between simple and connecting external
choices according to the kind of their inputs. This is essential for requiring that at least one
of the inputs in a simple external choice will eventually be matched by a message. Instead
all inputs in a connecting external choice can wait forever. Processes without hats are called
user processes and the others are runtime processes.

We will omit empty sets of checkpoint labels, choice symbols in one-branch choices, and
trailing end processes.
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External and internal choices are assumed to be associative, commutative, and non-empty
(except when combined with binary choices). A prefixed process may be either an input
process or an output process. We require recursion to be guarded. Processes are treated equi-
recursively, i.e. they are identified with their generated tree [33]. In other words, we consider
processes up to the standard structural equivalence of processes.

The typing rules of Sect. 4 will ensure that in a choice, at most one of the first atomic
actions bears a hat. This condition expresses the fact that executing a choice amounts to
executing one of its branches.

In a full-fledged calculus, messages would carry values, namely they would be of the form
Λ(v). Here, for simplicity we consider only pure messages.

Networks are parallel compositions of pairs p[[ P ]], where participant p has behaviour P .

Definition 2 (Networks) Networks are defined by: N ::= p[[ P ]] || N ‖ N
The operator ‖ is associative and commutative, with neutral element p[[ end ]] for each p.
These laws, together with the structural equivalence of processes, give the structural equiv-
alence of networks.

Example 1 (Networks) A network for the vacation example of Sect. 1 is as follows:

N = a[[ Pa ]] ‖ b[[ Pb ]] ‖ c[[ Pc ]] ‖ f[[ P f ]] ‖ t[[ P t ]]
where

Pa=b?iP; c?iA; (Pa
1 C⊕ Pa

2 ) with Pa
1=f!

tk↔ ;b!yes; c!no and Pa
2 = t! tk↔ ;b!no; c!yes

Pb = a!iP; (a?yes C+ a?no) Pc = a!iA; (a?no C+ a?yes) P f = P t = Ca?
tk↔

The operational semantics is given by twoLTSs, one for processes and one for networks. In
the LTS for processes, forward transitions have the form P

π−→ P ′ and backward transitions
have the form P

C

�P ′ or P C

�P ′. We define P ↓out if P p!Λ−−→ P ′ for some p,Λ, P ′. In the
LTS for networks, forward and backward transitions have respectively the form N

pΛq−−→ N′

and N
C

�N′.
The LTSs for processes and networks are given in Fig. 1. Rules [ExtCh] and [IntCh]

allow an action to be extracted from one of the summands, as usual, but instead of discard-
ing the other summands they record the fact that the choice has been crossed by marking
the executed action with a hat. With this technique, inspired by [6] and already used for
reversible computations in [8,26], all the dynamic operators are turned into static operators
and nothing is lost of the original user process. Notice that when I = { j} these rules become

π j ; Pj
π j−→ π̂ j ; Pj . Rule [BackA] is the main backward rule: it applies to a past internal

choice in which one branch has been partially executed, and it allows the process to roll back
to the original choice where the executed branch is removed.1 For this to be possible, the
choice must have at least one alternative branch Pi and an overlined labelC , which will label
the back transition. This is essential to ensure (by means of typing) that the choice leader will
be the only participant habilitated to trigger a rollback to this choice. The condition P ↓out
1 We could also leave the executed branch, just erasing its hats. This change would preserve all the properties
of the calculus. We prefer the current formulation, since it avoids the possibility of going back and fourth
several times along the same branch (which could yield a livelock).
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Fig. 1 LTS for processes and networks

means that in order to trigger a rollback, the process P must be “in lead”, namely able to do
an output. In this way, rolling back acts as an alternative to one of its possible outputs.

Rule [BackP] is needed to allow the remaining participants to roll back. The mapping � �

erases hats from processes, yielding user processes, i.e.

�Δ

∑

i∈I
π̃i ; Pi� = Δ

(

∑

i∈I
πi ; � Pi�

)

�
γ

⊕

i∈I
π̃i ; Pi� = γ

(

⊕

i∈I
πi ; � Pi�

)

and � � acts homomorphically otherwise. Note that the rollback rules can only be applied to
processes that are not user processes: in particular, one branch can be erased only if at least
one of its actions has been executed.

Evaluation contexts are as expected.

Definition 3 (Evaluation contexts) Evaluation contexts E are defined by:

E ::=Δ

(

∑

h∈H
ph?Λh; Ph + ̂p?Λ; E

)

||
γ

(

⊕

h∈H
ph !Λh; Ph ⊕ ̂p!Λ; E

)

|| [ ]

An evaluation context E is ok for C (C) if C /∈ Δ (C �= γ ) whenever E has a sub-context
of the shape Δ(

∑

h∈H Ph + π̂; E′) (
γ
(
⊕

h∈H Ph ⊕ π̂; E′)). We use this condition in rules

[CtBA] and [CtBP] to assure that all participants involved in a recursion go back to the
same checkpoint, namely to the outermost one, as in [28]. This is needed to assure subject
reduction, see Example 6.
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Rule [Com] is standard and deals with both simple and connecting messages. We write

P
C� �if Rule [CtBP] (with labelC) cannot be applied to P . This means thatC can only occur

in user processes within P . In other words, P does not contain an executed Δ+with C ∈ Δ.
In a well-typed network, Rule [Back] will make participant p roll back to an internal choice
and moreover, all participants that can roll back to corresponding external choices will do
so in the same step. This will be the basis for our soundness result in Sect. 5. Notice that
the only requirements of rule [Back] concern process P , since it is easy to verify that either

Q
C

�Q′ or Q
C� �for any other process Q. Note that a direct implementation of rule [Back]

would be unrealistic. We discuss a possible asynchronous implementation of this rule at the
end of the section.

When the labels of transitions are not relevant, we write them simply as −→ and �.

In this case, we use −→∗ to denote the reflexive and transitive closure of −→ and

�∗−→ to
denote the reflexive and transitive closure of −→ ∪ �.

Example 2 (Reduction of networks)We describe the evolution of the networkN of Example 1.
At each step we only show the participants that are modified by the reduction.

N
b iP a−−−→ a[[̂b?iP; c?iA; (Pa

1 C⊕ Pa
2 ) ]] ‖ b[[̂a!iP; (a?yes C+ a?no) ]] ‖ · · ·

c iA a−−−→ a[[̂b?iP;̂c?iA; (Pa
1 C⊕ Pa

2 ) ]] ‖ c[[̂a!iA; (a?no C+ a?yes) ]] ‖ · · ·
a

tk↔ f−−−→ a[[̂b?iP;̂c?iA; (̂f! tk↔;b!yes; c!no C ⊕ Pa
2 ) ]] ‖ f[[ C

̂

a?
tk↔]] ‖ · · ·

a yes b−−−→ a[[̂b?iP;̂c?iA; (̂f! tk↔; ̂b!yes; c!no C ⊕ Pa
2 ) ]] ‖ b[[̂a!iP; ( ̂a?yes C + a?no) ]] ‖ · · ·

C

�

−→ a[[̂b?iP;̂c?iA; C Pa
2 ]] ‖ b[[̂a!iP; (a?yes C+ a?no) ]] ‖ f[[ Ca? tk↔]] ‖ · · ·

The last rollback is triggered by a [BackA]move of Alice synchronisedwith [BackP]moves
of Bob and Alitalia.

In the rest of this section we discuss a possible implementation of rule [Back], which
decomposes the simultaneous rollback of a set of participants into a sequence of backward
moves, one for each participant in the set. The first move of the sequence is always that of
the choice leader.

We introduce states to define systems, which are pairs of networks and states.
States are defined by σ := 〈c,P1,P2〉, where c denotes either a checkpoint label C

or ‘−’, and P1,P2 form a partition on the set of network participants. In a state of the
form 〈−,P1,P2〉, the set P2 is always ∅. A state is ready if it is of the shape 〈−,P,∅〉. A
communication can only take place in a ready state, yielding a ready state again. Similarly,
the starting move of a rollback can only take place in a ready state, but it gives rise to a state
of the form 〈C,P1,P2〉. In a state 〈C,P1,P2〉, a rollback is underway: the participants in
P1 have already contributed to the rollback, while the participants inP2 still need to respond
to the rollback “call” from the choice leader.

Systems have the form N � 〈c,P1,P2〉, where P1 ∪ P2 is the participant set of N. A
systemN � σ is ready if the state σ is ready. Figure 2 gives the LTS for systems. We use the

labelled double arrows
α�⇒ and the labelled curly arrows

sC

�,
yC

�,
nC

�,
eC

�for communication
and backward moves of systems, respectively. In this way the labelled arrows for networks
and systems are disjoint.

The reverse rule [Back] of Fig. 1 splits into four rules for systems:
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Fig. 2 LTS for systems

– rule [BackS] allows the choice leader p to start a rollback: the new state contains the
checkpoint label and all participants but p are required to roll back, if possible;

– rule [BackY] allows participant p to roll back to the checkpoint label memorised in the
state: the new state records the rollback of p;

– rule [BackN] modifies the state recording that participant p cannot roll back with the
current checkpoint label;

– rule [BackE] ends the rollback by erasing from the state the current checkpoint label
when all participants have become aware of the rollback.

The participants different from the choice leader are split into those that may roll back
and those that may not.

The first ones reduce by rule [BackY] and the second ones reduce by rule [BackN].
In “Appendix A” we prove the equivalence between the LTS of Fig. 1 and the one of Fig. 2.

Example 3 (Reduction of systems) We show now how the rules of Fig. 2 may be used to
simulate the execution of the network N in Example 2. First observe that, since the initial
state is σ = 〈−, {a,b, c, f, t},∅〉, the first four communications of the system can be derived
by rule [ComS], leaving the state σ unchanged and yielding the same network as in Example 2
(fourth line), namely N′ = N1 ‖ N2 where:

N1 = a[[̂b?iP;̂c?iA; (̂f! tk↔; ̂b!yes; c!no C ⊕ Pa
2 ) ]] ‖ b[[̂a!iP; ( ̂a?yes C + a?no) ]]

N2 = c[[̂a!iA; (a?no C+ a?yes) ]] ‖ f[[ C
̂

a?
tk↔]] ‖ t[[ Ca? tk↔]]

Then, an application of rule [BackS] starts the rollback and a possible evolution of the system
N′ � σ is the following:
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N′ � 〈−, {a,b, c, f, t},∅〉 sC

�a[[̂b?iP;̂c?iA; C Pa
2 ]] ‖ · · · � 〈C, {a}, {b, c, f, t}〉 [BackS]

yC

�b[[̂a!iP; (a?yes C+ a?no) ]] ‖ · · · � 〈C, {a,b}, {c, f, t}〉 [BackY]
nC

�c[[̂a!iA; (a?no C+ a?yes) ]] ‖ · · · � 〈C, {a,b, c}, {f, t}〉 [BackN]
yC

�f[[ Ca? tk↔]] ‖ · · · � 〈C, {a,b, c, f}, {t}〉 [BackY]
nC

�t[[ Ca? tk↔]] ‖ · · · � 〈C, {a,b, c, f, t},∅〉 [BackN]
eC

�· · · � 〈−, {a,b, c, f, t},∅〉 [BackE]
The application of rule [BackE] closes the rollback and brings the system back to the ready
state σ . Note that the [BackN] and [BackY] moves can be performed in any order as long
as they follow the [BackS] move by Alice. The networkN is typable in the system of Sect. 4
by the global type given in the Introduction. By the Subject Reduction Theorem (Theorem 1)
also the network N′ is typable. This example shows that the four back rules of Fig. 2 are all
used for reducing typable networks.

3 Global types and session types

According to [18,19], a multiparty session is a series of communications among participants
[20], which follows a predefined protocol specified by a global type. Global types are built
from choices among communications with the same sender, possibly using recursion. The
choices are required to be non-ambiguous, i.e. to have either different receivers or different
messages. As in processes, choices in global types have checkpoint labels which mark them
as return points for rollbacks, and the executed part is highlighted with hats. For consis-
tency, when a communication has a hat, then also all the communications that cause it (see
Definition 7) must have a hat. This condition is expressed by Definition 8.

The inputs/outputs of each participant are determined by her session type, which is
obtained by projecting the global type of the whole conversation. To define session types
we start with the syntax of session pre-types (Definition 9) and then we single out session
types (Definition 11) using the projection of global types (Fig. 5). The crucial point in the
definition of projection is to determine when a participant which is not the choice leader of
a choice may be realised by an external choice of processes. To this aim we define a meet
operation on session pre-types (Definition 10).

We use γ to denote either the empty set or a singleton made of a checkpoint label:

γ ::= ∅ || C

Sets γ will be associated with choices in global types.

Let αp ∈ {p Λ−→ q | q ∈ Part,Λ ∈ Msg ∪ CMsg} denote an atomic communication

with sender p. The communication p
λ−→ q is simple, while the communication p

λ↔−→ q
is connecting. An atomic communication can bear a hat, in notation ̂αp, in which case it
represents a past or executed communication. The symbol ˜αp stands for either αp or ̂αp. We

write α̃ instead of ˜αp when the sender is not relevant. Given a communication α = p
Λ−→ q,

we define the sender and receiver of α to be sender(α) = p and recv(α) = q. Moreover, we
denote by part(α) = {recv(α), sender(α)} the participants of the communication α.

A global typeK specifies an interaction that is still to start. A general global typeG specifies
a partially executed interaction, whose parts that have been discarded in choices or remain
to be executed are specified by subterms K. By |I | we denote the cardinality of the set I .
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Fig. 3 Participants of global types

Definition 4 (Global types) Global types G are defined by:

K ::= γ α; K || γ � j∈J α
p
j ; K j || μt.K || t || End

G ::= K || γ α̃;G || γ (�i∈I α
p
i ; Ki � ̂αp ; G)

where |J | > 1, |I | > 0 and all atomic communications in a choice are different. I.e. αp
h �= α

p
k

for all h �= k ∈ J in a choice γ � j∈J α
p
j ; K j , and α

p
h �= α

p
k for all h �= k ∈ I and α

p
h �= αp

for all h ∈ I in a partially executed choice γ (�i∈I α
p
i ; Ki � ̂αp ; G).

The type γ α̃;G represents a prefixing communication. The choice operator � is
n-ary (n ≥ 2) and commutative, and “;” has higher precedence than �. The notation
γ (�i∈I α

p
i ; Ki � ̂αp ; G) stands for a choice where the branch initiating with ̂αp has

started to be executed, while the other branches have been discarded.
By abuse of notation, we will write γ � j∈J ˜α

p
j ;G j for either γ � j∈J α

p
j ;G j or

γ (� j∈J\{k} αp
j ;G j � ̂α

p
k ; Gk). In the examples we will write ˜α

p
1 ;G1 γ � ˜α

p
2 ;G2 and

γ (˜α
p
1 ;G1 � . . . � ˜α

p
n ;Gn). (Note however that only one of the ˜α

p
i may have a hat.)

We use γ �i∈I ˜α
p
i ;Gi to stand for γ

˜αp;G when I is a singleton and for γ �i∈I ˜α
p
i ;Gi

otherwise. Moreover, γ (�h∈H α
p
h ;Gh�̂αp ; G) stands for γ

̂αp;G when H = ∅. We write

γ (� j∈J\{k}˜αp
j ;G j�

˜α
p
k ;Gk) when we want to emphasise the branch ˜α

p
k ;Gk .

When the checkpoint set γ associated with a choice is empty, we omit it. We call rooted
interaction a subterm α̃;G. So α̃;G can denote either a rooted interaction or a prefixing
communication (the context will disambiguate if needed). A type γ � j∈J α̃ j ;G j is a choice
among more than one rooted interaction with the same sender, at most one of which bears a
hat. Recursion must be guarded and it is treated equi-recursively.

We use part(G) to denote the set of participants of G, as defined in Fig. 3.
We represent global types as trees, with γ � or γ ; on internal nodes, atomic communica-

tions on the branches, and End on the leaves. For simplicity we assume that each index set
I , J , H is of the form {1, . . . , n}, where n is its cardinality. The j th branch of a γ � node is
labelled by α̃ j , and the unique branch of a γ ; node, called 0th branch to distinguish it from
proper choice branches, is labelled by the corresponding communication. In case the global
type has some recursive subtype, the tree is an infinite (regular) tree.

Example 4 (Trees) Figure 4 shows the tree representing the global type

G = ̂

p
λ0−→ q;μt.(q

λ1↔−→ r; r λ2−→ p; t C�q
λ3−→ p;p λ4−→ q)

where αi denotes the communication with message Λi = λi or Λi = λi↔ for i = 0, . . . , 4.

We introduce now a notation to distinguish different occurrences of the same communi-
cation α̃ within a type G.

Communication occurrences in G, denoted by ξ, ξ ′, have the form σ α̃, where α̃ is a
possibly hatted communication and σ is a finite string over Nat, which represents the path
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Fig. 4 Tree representation of
G = α̂0;μt.(α1;α2; tC�α3;α4)

leading to that particular occurrence of α in the tree of G. Formally, the path σ records the
branch chosen at each γ � or γ ; node in G. In particular, the last element of σ specifies the
branch labelled by the communication α̃. (Note that in σ α̃ the path σ is not empty since it
contains at least the index of the branch labelled by α̃.) We use � (�) to denote the prefix
ordering (strict prefix ordering) between strings of naturals.

For instance, the two shown occurrences of α2 in the tree of Fig. 4 are identified by 010α2

and 01010α2.

Definition 5 (Occurrences) The set of communication occurrences of G, written Occ(G), is
defined by:

– Occ(End) = ∅ Occ(μt.K) = Occ(K{μt.K/t})
– Occ(γ α̃;G) = {0α̃} ∪ {0ξ | ξ ∈ Occ(G)}
– Occ(γ � j∈J α̃ j ;G j ) = { j α̃ j | j ∈ J } ∪ { jξ | j ∈ J and ξ ∈ Occ(G j )}

In the following, communication occurrences will be simply referred to as occurrences.
Given an occurrence ξ = σ α̃ of G, we define the path of ξ in G to be path(ξ) = σ , the
communication of ξ to be comm(ξ) = α̃ and the participants of ξ to be part(ξ) = part(α).

An occurrence ξ is executed in G if comm(ξ) bears a hat. We define ExOcc(G), the set of
executed occurrences of G, as follows:

ExOcc(G) = {ξ | ξ ∈ Occ(G) and comm(ξ) = α̂ for some α}
The relation of conflict on occurrences is handy. Intuitively, two occurrences are in conflict

if they mutually exclude each other in any computation.

Definition 6 (Conflict) The conflict relation in G, denoted by #G, is the symmetric irreflexive
relation on Occ(G) defined by: ξ #G ξ ′ if there exist σ0, σ1, σ2 such that path(ξ) = σ0iσ1
and path(ξ ′) = σ0 jσ2 with i �= j .
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Two conflicting occurrences have paths that diverge at some choice node of the tree. Since
the syntax of global types does not allow hats on more than one branch of a choice, this
implies that two conflicting occurrences can never be both executed.

We now formalise the notion of causality on occurrences by defining the set of causes of
a given occurrence. Intuitively, the set of causes of ξ in G is the set of occurrences in G on
which ξ depends, namely those that need to be executed before ξ in any computation allowed
by G.

Definition 7 (Causes)
Given an occurrence ξ ∈ Occ(G), the set of causes of ξ in G, written Causes(G, ξ), is the

smallest set that contains an occurrence ξ ′ if:
– either path(ξ ′) � path(ξ) and part(ξ ′) ∩ part(ξ) �= ∅;
– or ξ ′ ∈ Causes(G, ξ ′′) and ξ ′′ ∈ Causes(G, ξ) for some ξ ′′.

Our notions of conflict and causality are similar to those defined in [37] for Prime Event
Structures (although simpler, since we only deal with trees here).

We require global types to respect causality of occurrences, as formalised in the following
definition.

Definition 8 (Causally correct global type) A global type G is causally correct if, whenever
an occurrence ξ is executed in G, then every occurrence in Causes(G, ξ) is executed in G,
namely if ξ ∈ ExOcc(G) implies Causes(G, ξ) ⊆ ExOcc(G).

The conflict relation is hereditary, namely if ξ #G ξ ′ and ξ ′ ∈ Causes(G, ξ ′′), then ξ #G ξ ′′.
To show this property (which is an axiom in Prime Event Structures), it is enough to observe
that if path(ξ) = σ0iσ1 and path(ξ ′) = σ0 jσ2, then σ0 jσ2 � path(ξ ′′) implies path(ξ ′′) =
σ0 jσ2σ3 for some σ3.

Session types are projections of global types onto participants. They represent the contribu-
tions of individual participants to the session. The projection of a choice yields a union for
the choice leader and intersections for the receivers. Checkpoint labels of global types are
preserved by the projection onto session types, and the checkpoint label of the choice leader
is distinguished by overlining it.

We now define session pre-types, which are a superset of session types. Session types will
be session pre-types which are projections of global types. Session pre-types are obtained
from processes by replacing external and internal choices with intersections and unions, X
with t and end with End, with similar conventions.

Definition 9 (Session pre-types) Session pre-types are defined by:

T ::= Δ

∧

i∈I
˜pi?Λi ; Ti || γ

∨

i∈I
˜pi !Λi ; Ti || μt.T || t || End

As for processes, we assume that intersections and unions are not ambiguous, i.e. that the
pairs (pi ,Λi ) (i ∈ I ) are all distinct and the Λi ’s in intersections are either all simple or all
connecting messages.

We want projection to ensure that in a global choice, the choice leader makes the decision
and all the other participants act accordingly. We do so by requiring that, for any participant
except the choice leader, the set of projections of the choice branches on that participant, say
{Ti | i ∈ I }, be consistent, i.e., the meet of the types in the set,

�
i∈I Ti , be defined.

Themeet
�

i∈I Ti is a partial operator,which checks that the Ti ’s are compatible behaviours
and then combines them into a single session type. Intuitively,

�
i∈I Ti is defined if the
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concerned participant receives a message that “notifies” her about the chosen Ti . If one of the
Ti ’s is an intersection of simple inputs, then somust be all the other Ti ’s. Instead, intersections
of connecting inputs can be combined with End.

To build the meet of intersection types, we define an auxiliary operator �, which takes an
intersection

∧

i∈I ˜pi?Λi ; Ti and an input type (after removing checkpoint labels in both of
them) and combines them, if possible:

(

∧

i∈I
˜pi?Λi ; Ti

)

� ˜p?Λ; T =
∧

i∈I
˜pi?Λi ; Ti ∧ ˜p?Λ; T

if the resulting intersection is not ambiguous
(

∧

i∈I
˜pi?Λi ; Ti

)

� ˜p?Λ; T =
∧

i∈I
˜pi?Λi ; Ti

if p = p j and Λ = Λ j and T = T j for some j ∈ I
(

∧

i∈I

˜

pi?
λi↔; Ti

)

� End =
∧

i∈I

˜

pi?
λi↔; Ti

To define � on two intersection types, we just iterate the above definition on the members
of one of the intersections. In a similar way, we can extend � to a set of types. Using � we
are able to build meets.

Definition 10 (Meet) The meet of a set of session pre-types is defined by:

�

i∈I
Ti =

{

Δ �i∈I T′i if Ti = Δi
T′i for all i ∈ I and Δ =⋃

i∈I Δi

End if Ti = End for all i ∈ I

If possible we combine the Ti with � as explained above. The set of checkpoint labels of
the resulting intersection is the union of the corresponding sets for the Ti ’s. If some Ti is
End, it means that the participant terminates in the branch Ti . Then it must terminate or be
connecting in all the other branches.

We do not need to define the meet when the arguments are recursive types, since we
consider recursion equi-recursively. The meet is not defined in all other cases, i.e. between
intersections and unions, between unions etc.

To define projection we need one last auxiliary operator, the labelling of a session pre-type
T by a set γ of at most one checkpoint label (notation γ �T�), defined by:

γ �Δ
∧

i∈I
π̃i ; Ti� = γ∪Δ

∧

i∈I
π̃i ; Ti γ �End� = End

Labelling adds γ to the first (possibly empty) set Δ found in T. Intuitively, the checkpoint
labels that are spread along successive choices in the global typemay get grouped together on
a single local choice represented by an intersection when projected on participants. Labelling
of union and recursive types is not defined since this operator is only used with types resulting
from the application of the meet.

The projection of global types uses the projections of rooted interactions, see the first line
of Fig. 5, where the projection operator “� ” has higher precedence than “ ; ”. The projection
of a choice is a union for the sending participant, and it is otherwise computed as the meet
of the projections on the branches. By abuse of notation, in Fig. 5 γ means C if γ = C and
∅ if γ = ∅. The meet operation can be undefined, and therefore also the projection of global
types can be undefined. The definition of projection does not ensure that all the branches of a
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Fig. 5 Projection of global types onto participants

choice γ �i∈I ˜α
p
i ;Gi have the same participants. They can differ for participants whose first

communication is a connecting input. Notice that projection respects hats and checkpoint
labels (transforming C to C for the leader of a C-labelled choice).

Example 5 (Projection) Let us see our notion of projection at work on a few examples.

1. If G is the global type shown in Example 4 we get

G�p =̂q!λ0;μt.(r?λ2; t C∧ q?λ3;q!λ4) G� r = μt.Cq?
λ1↔ ;p!λ2; t

G�q = ̂p?λ0;μt.(r! λ1↔ ; t C∨ p!λ3;p?λ4)
2. An example showing how projections can decorate intersections by more checkpoint

labels is G = p
λ1−→ q; (p

λ2↔−→ rC1�p
λ3↔−→ s)�p

λ4−→ q; (q
λ5↔−→ rC2�q

λ6↔−→ s) where

G� r = p?
λ2↔{C1,C2}∧q?

λ5↔.

3. Let G = μt.(p
λ1−→ q; t�p

λ2−→ q) and G′ = p
λ1−→ q;G�p

λ2−→ q. Then G � q =
μt.(p?λ1; t ∧ p?λ2) and G′ �q = p?λ1;G�q ∧ p?λ2.

In the followingwewill consider only causally correct and projectable global types.The Sub-
ject Reduction Theorem (Theorem 1) shows that these conditions are preserved by reducing
networks that can be typed using the rules introduced in the next section.

We end this section by defining session types.

Definition 11 (Session types) A session pre-type T is a session type if T = G � p for some
global type G and some participant p.

4 Type system

In this section we define our type system and prove some initial results about it. The shape
of typing judgements is Γ � P : T, where the environment Γ associates process variables
with session types: Γ ::= ∅ || Γ , X : T. Process typing exploits the correspondence between
external choices and intersections, internal choices and unions. The typing rules for both
processes and networks are given in Fig. 6. Typing respects hats: in rules [t- ExtCh], and
[t- IntCh], the hats in processes and types are exactly on the same actions.
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Fig. 6 Typing rules for processes and networks

Fig. 7 Subtyping rules

Figure 7 gives the subtyping rules, where the double line indicates that the rules are inter-
preted coinductively [33] (Chapter 21). Subtyping takes into account the rules for intersection
and union and preserves hats. Rule [Sub- In- Skip] reflects the fact that connecting inputs
can be added without causing problems. Rule [t- Net] is the only rule for typing networks:
it requires that the types of all processes be subtypes of the projections of a unique global
type. The condition part(G) ⊆ {p1, . . . ,pn} ensures the presence of all session participants
and allows the typing of sessions containing p[[ end ]] for any p, a property needed to guar-
antee invariance of types under structural equivalence of networks. Clearly, typing imposes
constraints on the way hats and checkpoint labels are placed within processes.

Example 6 (ok condition on evaluation contexts) The following example shows the
need of the ok condition in reduction rules to assure subject reduction. Let P =
μX .(q!λ1; r!λ2; X C⊕ q!λ3; r!λ4; X) and Q = μY .(p?λ1; Y C+ p?λ3; Y ) and R =
μZ .(p?λ2; Z C + p?λ4; Z). The network p[[ P ]] ‖ q[[ Q ]] ‖ r[[ R ]] reduces by forward
reductions to p[[ P ′ ]] ‖ q[[ Q′ ]] ‖ r[[ R′ ]] where

P ′ =̂q!λ1;̂r!λ2; (q!λ1; r!λ2; P C⊕̂q!λ3; r!λ4; P) C⊕ q!λ3; r!λ4; P and
Q′ = ̂p?λ1; (p?λ1; Q C+ ̂p?λ3; Q)C + p?λ3; Q and R′ = ̂p?λ2; R C+ p?λ4; R. By
rule [Back], p[[ P ′ ]] ‖ q[[ Q′ ]] ‖ r[[ R′ ]] C

�p[[ P ′′ ]] ‖ q[[ Q ]] ‖ r[[ R ]] where P ′′ =
q!λ3; r!λ4; P . Without the condition E ok for C on rule [CtBA], we could have also the
backward move:
p[[ P ′ ]] ‖ q[[ Q′ ]] ‖ r[[ R′ ]] C

�p[[ P ′′′ ]] ‖ q[[ Q′′ ]] ‖ r[[ R ]], where
P ′′′ = (̂q!λ1;̂r!λ2;q!λ1; r!λ2; P) C ⊕ q!λ3; r!λ4; P and Q′′ = ̂p?λ1; Q C+ p?λ3; Q. Then
Subject Reduction would fail, since the network p[[ P ]] ‖ q[[ Q ]] ‖ r[[ R ]] is typable with the
global type μt.p

λ1−→ q;p λ2−→ r; t C�p
λ3−→ q;p λ4−→ r; t, while p[[ P ′′′ ]] ‖ q[[ Q′′ ]] ‖ r[[ R ]]

is not typable. In fact the output r!λ2 has a hat in the session type of P ′′′, while the corre-
sponding input p?λ2 does not have a hat in the session type of R. This example shows also
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why it would not be possible to roll back to the innernost checkpoints in recursive processes,
since they could be different for different participants.

In the remainder of this section we prove some properties of our type systemwhich will be
used to show the soundness results in the next section. The reader not interested in proofs can
go directly to Sect. 5. We start with the classical lemmas of inversion and canonical forms.

Lemma 1 (Inversion Lemma)

1. If Γ � Δ
∑

i∈I π̃i ; Pi : T, then T = Δ
∧

i∈I π̃i ; Ti and Γ � Pi : Ti for i ∈ I .
2. If Γ �

γ

⊕

i∈I π̃i ; Pi : T, then T =
γ

∨

i∈I π̃i ; Ti and Γ � Pi : Ti for i ∈ I .

3. If Γ � μX .P : T, then T = μt.T′ and Γ , X : t � P : T′.
4. If Γ � X : T, then T = t and Γ = Γ ′, X : t.
5. If Γ � end : T, then T = End.
6. If � p1[[ P1 ]] ‖ · · · ‖ pn[[ Pn ]] : G, then � Pi : Ti and Ti � G � pi for 1 ≤ i ≤ n and

part(G) ⊆ {p1, . . . ,pn}.
Lemma 2 (Canonical Form Lemma)

1. If Γ � P : Δ
∧

i∈I π̃i ; Ti , then P = Δ
∑

i∈I π̃i ; Pi and Γ � Pi : Ti for i ∈ I .
2. If Γ � P :

γ

∨

i∈I π̃i ; Ti , then P =
γ

⊕

i∈I π̃i ; Pi and Γ � Pi : Ti for i ∈ I .
3. If Γ � P : μt.T, then P = μX .Q and Γ , X : t � Q : T.
4. If Γ � P : t, then P = X and Γ = Γ ′, X : t.
5. If Γ � P : End, then P = end.
6. If � N : G and part(G) = {p1, . . . ,pn}, then N ≡ p1[[ P1 ]] ‖ · · · ‖ pn[[ Pn ]] and
� Pi : Ti and Ti � G�pi for 1 ≤ i ≤ n .

The mapping � � defined at page 7 for processes may be extended in the obvious way to
session types. As expected, this mapping preserves typing.

Lemma 3 If � P : T, then � �P� : �T�.

Another classical lemma we need for proving Subject Reduction is the following, which
retrieves the shape of processes and networks from their labelled transitions.

Lemma 4 1. If P
p?Λ−−→ P ′, then P = E[Δ

∑

i∈I πi ; Pi ], where π j = p?Λ for some j ∈ I ,
and P ′ = E[Δ(

∑

i∈I\{ j} πi ; Pi + π̂ j ; Pj )].
2. If P

p!Λ−−→ P ′, then P = E[γ⊕i∈I πi ; Pi ], where π j = p!Λ for some j ∈ I , and
P ′ = E[γ(⊕i∈I\{ j} πi ; Pi ⊕ π̂ j ; Pj )].

3. If P
C

�P ′, then P = E[
C
(
⊕

i∈I πi ; Qi ⊕ π̂; Q)] and Q ↓out and I �= ∅ and E ok for C
and P ′ = E[

C

⊕

i∈I πi ; Qi ].
4. If P

C

�P ′, then P = E[Δ
∑

i∈I Pi ] and C ∈ Δ and E ok for C and P ′ =
E[�Δ

∑

i∈I Pi�].
5. If P

C� �, then P does not contain an executed external choice with checkpoint label Δ

and C ∈ Δ.

6. If N
pΛq−−→ N′, then N = p[[ P ]] ‖ q[[ Q ]] ‖ N0 and P

q!Λ−−→ P ′ and Q
p?Λ−−→ Q′ and

N′ = p[[ P ′ ]] ‖ q[[ Q′ ]] ‖ N0.

7. If N
C

�N′, then N = p[[ P ]] ‖ Πh∈Hph[[ Ph ]] ‖ Πk∈Kpk[[ Pk ]] and P
C

�P ′ and

Ph
C

�P ′h for all h ∈ H and Pk
C� �for all k ∈ K and

N′ = p[[ P ′ ]] ‖ Πh∈Hph[[ P ′h ]] ‖ Πk∈Kpk[[ Pk ]]
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We now introduce some notions that are specific to the present type system, and prove
some results about them. More precisely:

– we define session contexts (Definition 12) andwe show that they correspond to evaluation
contexts (Lemma 5);

– by extending the definition of meet to session contexts (Definition 14), we show how
session contexts may be retrieved as projections of global contexts (Definition 13);

– we show that the maximal hatted path in the tree of a global type splits the global type
into a global context and the global type filling the hole (Definition 15);

– the main result is Lemma 6: it devises the shape of global types starting from one of its
projections. It uses the notion of “global type affecting a participant” (Definition 16).

We start by defining session contexts, which mirror process evaluation contexts (Defini-
tion 3):

Definition 12 (Session contexts) Session contexts are defined by:

T ::= Δ(
∧

h∈H ph?Λh; Th∧̂p?Λ; T) ||
γ
(
∨

h∈H ph !Λh; Th∨̂p!Λ; T) || [ ]
We generalise typing, subtyping, and the definitions of ok for C (C) to session contexts.

We omit these definitions, which are trivial due to the correspondence between process
evaluation contexts and session contexts.

The following lemma gives easy relations between contexts and typing/subtyping.

Lemma 5 1. If T [T] � T′ and T′ �= End, then T′ = T ′ [T′′] and T � T ′ and T � T′′.
Moreover if T is ok for C (C), then T ′ is ok for C (C).

2. If T � T [T′], then T = T ′[T′′] and T ′ � T and T′′ � T′. Moreover if T is ok for C (C),
then T ′ is ok for C (C).

3. If Γ � E[P] : T, then T = T [T′] and Γ � E : T and Γ � P : T′. Moreover if E is ok for
C (C), then T is ok for C (C).

4. If Γ � E : T and Γ � P : T and T [T] is a type, then Γ � E[P] : T [T].
5. If Γ � P : T [T], then P = E[Q] and Γ � E : T and Γ � Q : T. Moreover if T is ok for

C (C), then E is ok for C (C).

Proof By induction on contexts.

We define now global contexts, which identify subtypes of global types which do not
occur in discarded branches.

Definition 13 (Global contexts) Global contexts are defined by:

G ::= γ α̃;G || γ (�i∈I αi ; Ki � α̃;G) || [ ]
We extend to session contexts the labelling defined at page 14 by γ �[ ]� = [ ]. This

allows us to define projections of global contexts into session contexts using [ ]� p = [ ] and
generalising the definition of the meet operator as follows:

Definition 14 (Meet with contexts) The meet of session contexts and session types is defined
by:

Δ(
∧

h∈H Th∧π̂; T)
�

Δ′T = Δ ∪Δ′((
∧

h∈H Th � T)∧π̂; T) if the resulting
intersection is a
session context;

Δ(
∧

h∈H Th∧π̂; T)
�
End = Δ(

∧

h∈H Th∧π̂; T) if Th for h ∈ H and
π̂ are all connecting inputs.
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Projections of global contexts define session contexts only for a subset of participants. A

simple example is G = p
λ−→ q; [ ], whose projections on all r �= p,q is G� r = [ ]. However,

G�p = q!λ; [ ] and G�q = p?λ; [ ] are not session contexts because the actions before the
hole are not hatted. A more interesting example is the ternary choice:

G′ = p
λ1↔−→ q�p

λ2↔−→ r�
̂

p
λ3↔−→ q; [ ]

In fact G′ � p = q! λ1↔ ∨ r! λ2↔ ∨ ̂

q! λ3↔; [ ] and G′ � q = p?
λ1↔ ∧̂

p?
λ3↔; [ ] are session

contexts, while G′ � r = p?
λ2↔ ∧[ ] is not. Notice that without connecting communications

such kind of example would be longer, since the participants q and r would have to occur in
all branches of the choice.

The paths that are not on discarded branches in the tree representation of a global type
G may be used to split G between a global context and the subtype filling the hole. This is
formalised in the following definition.

Definition 15 (Contexts and subtypes determined by paths) Let σ be a path in a global type
G.

1. The context determined by σ , Ctx(G, σ ), is defined by:

– Ctx(G, ε) = [ ]
– Ctx(γ α̃;G′, 0σ) = γ α̃;Ctx(G′, σ )

– Ctx(γ (� j∈J\{k} α j ; K j � α̃k;Gk), kσ) = γ (� j∈J\{k} α j ; K j � α̃k;Ctx(Gk, σ ))

– Ctx(μt.K, σ ) = Ctx(K{μt.K/t}, σ )

2. The subtype determined by σ , SubT(G, σ ), is defined by:

– SubT(G, ε) = G
– SubT(γ α̃;G′, 0σ) = SubT(G′, σ )

– SubT(γ (� j∈J\{k} α j ; K j � α̃k;Gk), kσ) = SubT(Gk, σ )

– SubT(μt.K, σ ) = SubT(K{μt.K/t}, σ )

Note that Ctx(G, σ ) and SubT(G, σ ) are defined if and only if the occurrences on σ are
not in conflict with executed occurrences, in other words if all ξ ∈ ExOcc(G) are such that
path(ξ) � σ or σ � path(ξ).

It is easy to verify that G = Ctx(G, σ )[SubT(G, σ )] whenever Ctx(G, σ ) is defined.
The properties of our calculus mainly depend on the possibility of deriving information

on the shape of a global type from its projections on participants. A useful notion is that of
global type “affecting” a participant, which essentially means that the whole type is needed
in order to obtain the projection on that participant. A global type G affects p if:

– either there is one branch of G whose first communication has participant p
– or there are two branches of G whose projections on p are both different from End.

Definition 16 (Affecting global types) A global type γ �i∈I α̃i ;Gi affects participant p if
one of the following holds:

– p ∈ part(αi ) for some i ∈ I ;
– |{i ∈ I | α̃i ;Gi �p �= End}| > 1.

For instance, if G is the global type of Example 4, then G affects participants p and q but it
does not affect participant r, as shown by their projections given in Example 5(1).
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In the projection of a global type G on p, the intersections have sets of checkpoint labels.
We know that at most one of these checkpoint labels is the label of the subtype of G which
affects p. But which one? The projection does not give us enough information to decide. We
overcome this problem by means of an equality relation on session types which disregards
the sets of checkpoint labels decorating intersections.

We say that two session types T and T′ are equal up to intersection labelling, dubbed
T

.= T′, if they are equal (T = T′) or they are the same intersection with different sets of
checkpoint labels (T = ΔT′′, T′ = Δ′T

′′ for some T′′).
We have now enough machinery to prove that if the projection of G on p is split into a

session context and a session type Twhich is either a union or an intersection of simple inputs,
then this is mirrored by a splitting of G into a global context and a subtype which affects p.
Moreover, if the session context is a hole, then all the choices along the path leading to the
hole in G must be unary choices. Distinguishing the two shapes of T we can also show that:

– if T is a union type, then the subtype of G is a choice with leader p;
– if T is an intersection of simple inputs, then each “long enough” path in G leads to a

communication that projects onto one of these inputs.

Lemma 6 1. If G � p = T [
γ

∨

i∈I Ti ], then there is a unique path σ in G such that

SubT(G, σ ) = γ �i∈I ˜α
p
i ;Gi affects p and

Ctx(G, σ )�p = T and SubT(G, σ )�p =
γ

∨

i∈I
Ti .

2. If G�p = T [Δ
∧

i∈I ˜qi?λi ; Ti ], then there is a unique path σ in G such that SubT(G, σ )

affects p and

Ctx(G, σ )�p = T and SubT(G, σ )�p .= Δ

∧

i∈I
˜qi?λi ; Ti .

Moreover for each path σ ′ in SubT(G, σ ) there are j ∈ I and σ j such that

σσ j

˜

q j
λ j−→ p ∈ Occ(G) and either σ j � σ ′ or σ ′ � σ j .

In both cases if T is the hole, then σ is a possibly empty string of 0’s.

Proof (1) By induction on session type contexts. If T = [ ], then G � p =
γ

∨

i∈I Ti and
by definition of projection G = γ �i∈I ˜α

p
i ;Gi , so G affects p. In this case σ = ε is the

required path, since SubT(G, ε) = G affects p and Ctx(G, ε) � p = [ ] � p = [ ] and
SubT(G, ε)�p = G�p =

γ

∨

i∈I Ti .
Moreover, σ is unique because for any path σ ′ �= ε the first communication along σ ′

would be an output from p, which would imply Ctx(G, σ ′)�p �= [ ]wheneverCtx(G, σ ′)�p
is defined.

If T = Δ(
∧

i∈I Ti∧̂q?Λ; T ′), then
̂

q
Λ−→ p occurs in G by definition of projection. This

means that there exists ξ ∈ Occ(G) such that ξ = σ ′
̂

q
Λ−→ p and there does not exist

ξ ′ ∈ Occ(G) such that path(ξ ′) � σ ′ and p ∈ part(ξ ′). The definition of meet implies
that there is no j ∈ I such that T j starts by q?Λ. Let G′ = SubT(G, σ ′). By construction
G′ �p = T ′[

γ

∨

i∈I Ti ]. By induction hypothesis on T ′ there is a unique path σ ′′ such that

SubT(G′, σ ′′) affects p and Ctx(G′, σ ′′) � p = T ′ and SubT(G′, σ ′′) � p =
γ

∨

i∈I Ti . We

can then choose σ = σ ′σ ′′. The proof of the other inductive case is similar.
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(2) By induction on session type contexts. Let T = Δ
∧

i∈I ˜qi?λi ; Ti . If T = [ ] the proof
proceeds by an inner induction on the path ap(p,G) defined by:

ap(p,G) =
{

0 ap(p,G′) if G = α̃;G′ and p /∈ part(α)

ε otherwise

Intuitively, ap(p,G) represents the access path to the first choice affecting p in G. Let σ =
ap(p,G). If σ = ε, then G = γ �h∈H α̃h;Gh must satisfy either |H | > 1 or p ∈ part(α j )

for the unique j ∈ H . In the latter case, G trivially affects p. If |H | > 1, then by definition of
projection and the fact that all inputs are simple, there are two branches whose projections
on p are different from End. Therefore G affects p. In both cases we have Ctx(G, ε) � p =
[ ]�p = [ ] and SubT(G, ε)�p = G�p = T.

We show that σ is unique. Let σ ′ = jσ ′′ for some j ∈ H and suppose that Ctx(G, σ ′)�p
is defined. If p ∈ part(α j ), then clearly Ctx(G, σ ′)�p �= [ ]. If |H | > 1, then Ctx(G, σ ′)�p
contains the projection on p of all the paths of G starting with a branch different from the
j th one. Since p appears as receiver along all these paths as shown below, this again implies
Ctx(G, σ ′)�p �= [ ].

If σ = 0 σ ′ where σ ′ = ap(p,G′) and G = α̃;G′, then by inductive hypothesis on σ ′
we have that SubT(G′, σ ′) affects p and Ctx(G′, σ ′) � p = [ ] and SubT(G′, σ ′) � p = T.
Therefore, SubT(G, 0σ ′) affects p and Ctx(G, 0σ ′) �p = [ ] and SubT(G, 0σ ′) �p = T. By
induction hypothesis σ ′ is unique and so is σ .
The proof for T �= [ ] is as in (1).
In the remaining we prove that for each path σ ′ in SubT(G, σ ) there are σ ′′ and j ∈ I

such that σσ ′′
˜

q j
λ j−→ p ∈ Occ(G) and either σ ′′ � σ ′ or σ ′ � σ ′′. The path σ ′ crosses

different choices. By the assumption that all inputs are simple and by the definition of �,
the projections of the branches of these choices on p must be intersections of types starting

with inputs with different senders or messages, namely ˜q j?λ j ( j ∈ I ′ ⊆ I ). Moreover, the

corresponding communications
˜

q j
λ j−→ p ( j ∈ I ′)must be the first communications involving

p in paths of SubT(G, σ ). Therefore, given σ ′ in SubT(G, σ ) there are σ ′′ and α such that
ξ = σσ ′′α̃ ∈ Occ(G) and ξ is the first occurrence with p ∈ part(ξ) and either σ ′′ � σ ′ or

σ ′ � σ ′′. The definition of projection implies α̃ = ˜

q j
λ j−→ p for some j ∈ I ′. ��

5 Soundness

This section is devoted to the formulation and the proof of the properties of our calculus,
i.e. subject reduction, session fidelity and progress. These proofs are not trivial due to the
presence of both reverse computations and connecting communications.

Lemma 7 deals with subtypes of global contexts. It uses the notions of “alive” and
“enabled” for communication occurrences. An occurrence of a communication is alive if
it can be executed in the future, and it is enabled if it can be immediately executed. We
also define the notions of “alive” and “enabled” for checkpoint labels as they are needed for
session fidelity. A checkpoint label is alive if it can be the target of a rollback in the future,
and it is enabled if the next action of the choice leader is an output, possibly triggering a
backward reduction of the network.
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Definition 17 (Alive and enabled)

1. An occurrence ξ is alive in G if ξ ∈ Occ(G)\ExOcc(G) and there is no ξ ′ ∈ ExOcc(G)

such that ξ ′#G ξ .
2. An occurrence ξ is enabled in G if it is alive in G and Causes(G, ξ) ⊆ ExOcc(G).
3. A path σ is ok for the checkpoint label C in G if C does not occur along the path σ in

the tree of G.
4. A checkpoint label C is alive in G if for some path σ ok for C (in G)

SubT(G, σ ) = C(� j∈J\{k} αp
j ; K j�̂α

p
k ;Gk)

and |J | > 1 and there are σ ′ and αp such that σkσ ′αp ∈ Occ(G) is alive in G.
5. A checkpoint label C is enabled in G if it is alive in G and σkσ ′αp is enabled in G, where

σ , k, σ ′ and αp are as in (3).

For instance in the global type of Example 4 the occurrence 01α1 is enabled and the occur-
rence 0101α1 is alive but not enabled. The checkpoint label C is enabled for the path ε in

the global type p
λ1−→ q C�

̂

p
λ2−→ q;p

λ3↔−→ r, since the occurrence 20p
λ3↔−→ r is enabled

in G. The checkpoint label C is alive but not enabled for the path ε in the global type

p
λ1−→ q C�

̂

p
λ2−→ q;q λ3−→ p;p

λ4↔−→ r, since the occurrence 200p
λ4↔−→ r is alive, but not

enabled in G.

Lemma 7 1. If σ jα is enabled inG and p ∈ part(α), then Ctx(G, σ )�p is a session context.
2. If SubT(G, σ ) = γ �i∈I αi ;Gi , then σ iαi is alive in G for all i ∈ I .
3. If SubT(G, σ ) = γ (�i∈I\{ j} αp

i ; Ki � α
p
j ;G j ) and recv(α

p
j ) = q and both Ctx(G, σ )�p

and Ctx(G, σ )�q are session contexts, then σ jαp
j is enabled in G.

Proof (1) If σ jα is enabled in G, then Causes(G, σ jα) ⊆ ExOcc(G) and ξ ∈ ExOcc(G)

impliespath(ξ) � σ . HenceCtx(G, σ ) is defined. Ifp ∈ part(α), defineCausesp(G, σ jα) =
Causes(G, σ jα)∩{ξ ∈ Occ(G) | p ∈ part(ξ)}. Since the projection ofCtx(G, σ ) onp retains
only Causesp(G, σ jα) and forgets everything else on the path σ , and moreover it preserves
and reflects hats, Ctx(G, σ )�p is a session context.

(2) From SubT(G, σ ) = γ �i∈I αi ;Gi it follows that σ iαi ∈ Occ(G)\ExOcc(G). More-
over, since SubT(G, σ ) is defined, the path σ must follow the executed branches of G, if any,
thus ξ ∈ Causes(G, σ iαi ) implies path(ξ) � σ . Hence σ iαi is alive in G.

(3)By (2)σ jαp
j is alive inG.Weprove thatCauses(G, σ jαp

j ) ⊆ ExOcc(G)by inductionon

the definition of Causes. If ξ ∈ Causes(G, σ jαp
j ) because part(ξ)∩{p,q} �= ∅, then it must

be ξ ∈ ExOcc(G), otherwise the projection of the communication of ξ would appear unhatted
in Ctx(G, σ ) � p or in Ctx(G, σ ) � q . Suppose now that ξ ∈ Causes(G, σ jαp

j ) because

ξ ∈ Causes(G, ξ ′) and ξ ′ ∈ Causes(G, σ jαp
j ). By induction hypothesis ξ ′ ∈ ExOcc(G),

hence by causal correctness of G also ξ ∈ ExOcc(G). ��
Theorem 1 (Subject reduction) If � N : G and N

�∗−→ N′, then � N′ : G′ for some G′.
Proof By case analysis on the reduction rules for networks. Since the case of structural
equivalence is trivial, there are only two rules to consider, Rule [Com] and Rule [Back]. Let
the applied rule be [Com], then

P
q!Λ−−→ P ′ Q

p?Λ−−→ Q′

p[[ P ]] ‖ q[[ Q ]] ‖ N pΛq−−→ p[[ P ′ ]] ‖ q[[ Q′ ]] ‖ N
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By Lemma 4(2) P = E[γ⊕i∈I πi ; Pi ], where π j = p!Λ for some j ∈ I , and P ′ =
E[γ(⊕i∈I\{ j} πi ; Pi ⊕ π̂ j ; Pj )]. By Lemma 4(1) Q = E′[Δ

∑

h∈H π ′h; Qh], where π ′k =
p?Λ for some k ∈ H , and Q′ = E′[Δ(

∑

h∈H\{k} π ′h; Qh + ̂π ′k; Qk)].
By Lemma 1(6) � P : T and � Q : S and T � G � p and S � G � q . By Lemma 5(3)

T = T [T′] and � E : T and � γ

⊕

i∈I πi ; Pi : T′ and S = T ′[S′] and � E′ : T ′ and
� Δ

∑

h∈H π ′h; Qh : S′. ByLemma1(2) and (1) T′ = γ

∨

i∈I πi ; Ti and S′ = Δ
∧

h∈H π ′h; Sh .
By Lemma 5(1) G�p = T0[T′′] and T � T0 and γ

∨

i∈I πi ; Ti � T′′ and G�q = T ′
0[S′′]

and T ′ � T ′
0 and Δ

∧

h∈H π ′h; Sh � S′′. By definition of � we get T′′ = γ

∨

i∈I πi ; T′i with
Ti � T′i for i ∈ I and S′′ = Δ

∧

h∈H ′ π ′h; S′h with H ⊇ H ′ and Sh � S′h for h ∈ H ′.
From G � p = T0[γ ∨

i∈I πi ; T′i ] it follows by Lemma 6(1) that there is a unique path
σ of G such that SubT(G, σ ) = γ �i∈I α

p
i ;Gi affects p and Ctx(G, σ ) � p = T0 and

SubT(G, σ ) � p = γ

∨

i∈I πi ; T′i . Since π j = q!Λ, we have α
p
j = p

Λ−→ q. Consider

now the projection SubT(G, σ ) � q = (γ �i∈I α
p
i ;Gi ) � q . It must be SubT(G, σ ) � q =

γ ��i∈I ( α
p
i ;Gi )�q � .= Δ(

∧

h∈H ′\{k} π ′h; S′h ∧ π ′k; S′k) = S′′, where γ ∈ Δ and π ′k = p?Λ.
By definition we have G = Ctx(G, σ )[SubT(G, σ )]. Then we can choose G′ =

Ctx(G, σ )[γ (�i∈I\{ j} αp
i ; Ki�̂α

p
j ; K j )]. Indeed G′ �p = T0[T0] and G′ �q = T ′

0[S0], where
T0 = γ(

∨

i∈I\{ j} πi ; Ti∨π̂ j ; T j ) and S0 = Δ(
∧

h∈H ′\{k} πh; Sh∧̂π ′k; S′k), while G′ � r = G� r
for r �= p,q. By Lemma 5(4) � P ′ : T [T0] and � Q′ : T ′[S0]. Since T [T0] � G′ � p
and T ′[S0] � G′ �q we can derive � p[[ P ′ ]] ‖ q[[ Q′ ]] ‖ N : G′. By Lemma 7(3) σ jαp

j is
enabled in G, being both Ctx(G, σ ) �p and Ctx(G, σ ) �q session contexts. This implies the
causal correctness of G′. The projectability of G′ is immediate.

Let now the applied reduction rule be [Back], then:

P
C

�P ′ Ph
C

�P ′h h ∈ H Pk
C� �k ∈ K

p[[ P ]] ‖ Πh∈Hph[[ Ph ]] ‖ Πk∈Kpk[[ Pk ]] C

�p[[ P ′ ]] ‖ Πh∈Hph[[ P ′h ]] ‖ Πk∈Kpk[[ Pk ]]
By Lemma 4(3) P = E[

C
(
⊕

i∈I πi ; Qi ⊕ π̂; Q)] and Q ↓out and I �= ∅ and E ok for C
and P ′ = E[

C

⊕

i∈I πi ; Qi ]. By Lemma 4(4) Ph = Eh[Sh], and P ′h = Eh[�Sh�], where
Sh = Δh

∑

∈Lh
R and C ∈ Δh and Eh ok for C with h ∈ H . By Lemma 4(5), in a Pk with

k ∈ K there cannot be executed external choices whose checkpoint labels contain C .
By Lemma 1(6) � P : T for some T � G � p , and � Pj : T j for some T j � G � p j for

each j ∈ H ∪ K . By Lemma 1(1), in a Tk with k ∈ K there cannot be executed intersections
whose checkpoint labels contain C .

By Lemma 5(3) T = T [T′], where � E : T and T ok for C and

�
C
(
⊕

i∈I πi ; Qi ⊕ π̂; Q) : T′
and Th = Th[Sh], where � Eh : Th and Th ok for C and � Sh : Sh for each h ∈ H . By
Lemma 1(2) T′ =

C
(
∨

i∈I πi ; Ti∨π̂; TQ) and by Lemma 1(1) Sh is an intersection with Δh

as set of checkpoint labels (h ∈ H ).
By Lemma 5(1) G�p = T ′[T′′] and T � T ′ and T ′ ok for C and

C

(

∨

i∈I
πi ; Ti∨π̂; TQ

)

� T′′

and G�ph = T ′
h[S′h] and Th � T ′

h and T ′
h ok for C and Sh � S′h for h ∈ H . By definition

of � we get T′′ =
C
(
∨

i∈I πi ; T′i∨π̂; T′Q) with Ti � T′i for i ∈ I and TQ � T′Q and S′h is an
intersection with Δh as set of checkpoint labels (h ∈ H ).
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By Lemma 6(1), from G � p = T ′[
C
(
∨

i∈I πi ; T′i∨π̂; T′Q)] it follows that there is

a unique path σ of G such that SubT(G, σ ) = C(�i∈I α
p
i ; Ki � ̂αp;GQ) affects p and

Ctx(G, σ ) � p = T ′ and SubT(G, σ ) � p =
C
(
∨

i∈I πi ; T′i∨π̂; T′Q). The conditions T ′

ok for C and Th ok for C (h ∈ H) and Tk without executed intersections whose check-
point labels contain C (k ∈ K ) assure that the path σ is ok for C , i.e. that Ctx(G, σ )

does not contain occurrences of C . Therefore the occurrence of C in SubT(G, σ ) is the
outermost one and it is projected on the checkpoint labels of T′′ and Sh for h ∈ H . Then
we can choose G′ = Ctx(G, σ )[C(�i∈I α

p
i ; Ki )]. In fact G′ �p = T ′[

C

∨

i∈I πi ; T′i ] and
G′ �ph = T ′

h[�S′h�] for h ∈ H and G′ � pk = G � pk for k ∈ K . We can derive
� P ′ : T [

C

∨

i∈I πi ; Ti ] by Lemma 5(4) and � P ′h : Th[�Sh�] for h ∈ H by Lemma 3.
Since T [

C

∨

i∈I πi ; Ti ] � G′ �p and Th[�Sh�] � G′ �ph for h ∈ H we may conclude that
� p[[ P ′ ]] ‖ Πh∈Hph[[ P ′h ]] ‖ Πk∈Kpk[[ Pk ]] : G′. The causal correctness of G implies the
causal correctness of G′ since G′ is obtained from G by erasing one branch in a choice. The
projectability of G′ is immediate. ��

A standard property enforced by session types is session fidelity: all communications
occur as specified by global types. In our case this applies also to backward reductions. The
proof relies on the proof of subject reduction.

Theorem 2 (Session fidelity) Let � N : G.

1. If σp
Λ−→ q is enabled in G, then N

pΛq−−→ N′.
2. If N

pΛq−−→ N′, then σp
Λ−→ q is enabled in G for some σ .

3. If C is enabled in G, then N
C

�N′.
4. If N

C

�N′, then C is enabled in G.

Proof (1) Let σ = σ ′ j . Since σ ′ jp Λ−→ q is enabled in G, from Lemma 7(1) for some session
contexts T and T ′ we have T = Ctx(G, σ ′) � p and T ′ = Ctx(G, σ ′) � q . Therefore the
projections of G on p and q may be written as G�p = T [

γ
(
∨

i∈I\{ j} πi ; Ti ∨ q!Λ; T j )] and
G�q = T ′[Δ(

∧

h∈H\{k} π ′h; Sh ∧ p?Λ; Sk)].
By Lemma 2(6) N = p[[ P ]] ‖ q[[ Q ]] ‖ N′′ and � P : T and � Q : S and T � G�p and

S � G�q . By Lemma 5(2) and the definition of � we have :

– T = T1[γ
∨

i∈I πi ; T′i ] where π j = q!Λ with j ∈ I and T′i � Ti (i ∈ I ) and T � T1
– S = T2[Δ

∧

h∈H ′ π ′h; S′h] where πk = p?Λ with k ∈ H and H ′ ⊇ H and S′h � Sh
(h ∈ H ) and T ′ � T2.

By Lemma 5(5) we get P = E[P ′] and � E : T1 and � P ′ :
γ

∨

i∈I πi ; T′i and Q = E′[Q′]
and � E′ : T2 and � Q′ : Δ

∧

h∈H ′ π ′h; S′h . By Lemma 2(2) P ′ = γ

⊕

i∈I πi ; Pi and by
Lemma 2(1) Q′ = Δ

∑

h∈H ′ π ′h; Qh . Therefore

P
q!Λ−−→ E[P ′′] where P ′′ = γ(

⊕

i∈I\{ j} πi ; Pi ⊕ ̂q!Λ; Pj )

and

Q
p?Λ−−→ E′[Q′′] where Q′′ = Δ(

∑

h∈H ′\{k} π ′h; Qh + ̂p?Λ; Qk),

which imply N
pΛq−−→ p[[ E[P ′′] ]] ‖ q[[ E′[Q′′] ]] ‖ N′′.
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(2) By Lemma 4(6)N = p[[ P ]] ‖ q[[ Q ]] ‖ N0 and P
q!Λ−−→ P ′ and Q

p?Λ−−→ Q′. Therefore
rule [Com] has been applied and from the proof of Theorem 1 we know that σp

Λ−→ q is
enabled in G for some σ .

(3) From Definition 17(4) we know that there exists a path σ ok for C such

that SubT(G, σ ) = C(� j∈J\{k} αp
j ; K j�̂α

p
k ;Gk). Since G = Ctx(G, σ )[SubT(G, σ )] is

causally correct all the communications involving p in Ctx(G, σ ) are executed
communications. This implies that T = Ctx(G, σ ) � p is a session context and thus the
projection of G on p may be written as G�p = T [

γ
(
∨

j∈J\{k} π j ; T j ∨ π̂k; T)]. There-
fore T is ok for C and (α

p
j ; K j ) � p = π j ; T j for j ∈ J\{k} and (̂α

p
k ;Gk) � p = π̂k; T.

By Lemma 2(6) N = p[[ P ]] ‖ N′′ and � P : T′ and T′ � G � p . By Lemma 5(2)
T′ = T ′[

γ
(
∨

j∈J\{k} Si ∨ π̂k; S)] and T ′ � T and π j ; S j � π j ; T j for j ∈ J\{k} and
π̂k; S � π̂k; T.

By Lemma 5(5) P = E[P ′] and � E : T ′ and � P ′ :
γ
(
∨

j∈J\{k} π j ; S j ∨ π̂k; S). By
Lemma 2(2) P ′ = E[γ(⊕ j∈J\{k} π j ; Q j ⊕ π̂k; Q)] and � π̂k; Q : π̂k; S. Let σ ′ and h be

such that σkσ ′hαp ∈ Occ(G) is enabled in G. Then SubT(G, σkσ ′) = γ ′ �i∈I α
p
i ; Ki with

h ∈ I and α
p
h = αp and for some T ′′ we have that T = T ′′[

γ ′(
∨

i∈I T′i )]. By Lemma 5(2)

S = T ′′′[
γ ′(

∨

i∈I S′i )] for some T ′′′. By Lemma 2(2) Q = E′[
γ ′
⊕

i∈I Q′i ], which implies

Q ↓out . Then P
C

�P ′ andN C

�N′, since all processes inNmay contain or may not contain
executed internal choices labelled C .

(4) By Lemma 4(7) N = p[[ P ]] ‖ Πh∈Hph[[ Ph ]] ‖ Πk∈Kpk[[ Pk ]] and P
C

�P ′ and

Ph
C

�P ′h for all h ∈ H and Pk
C� �for all k ∈ K and

N′ = p[[ P ′ ]] ‖ Πh∈Hph[[ P ′h ]] ‖ Πk∈Kpk[[ Pk ]]
Therefore rule [Back] has been applied and from the proof of Theorem 1 we know that:

– P = E[
C
(
⊕

i∈I πi ; Qi ⊕ π̂; Q)] and Q ↓out and I �= ∅ and E ok for C

– SubT(G, σ ) = C(�i∈I α
p
i ; Ki � ̂αp;GQ) and σ is ok for C

– � P : T and T � G�p and � Q : TQ and TQ � GQ �p
– G�p = T ′[

C
(
∨

i∈I πi ; T′i∨π̂; T′Q)] and TQ � T′Q .

Let ̂αp;GQ be the th branch in SubT(G, σ ). By definition Q ↓out implies Q =
E′[

γ ′
⊕

j∈I ′ Q′j ].
From � Q : TQ and Lemma 5(3) TQ = TQ[SQ] and � γ ′

⊕

j∈I ′ Q′j : SQ . By

Lemma 1(2) SQ = γ ′
∨

j∈I ′ S j , which together with TQ � T′Q imply T′Q = T ′
Q[γ ′

∨

j∈I ′ S′j ]
by Lemma 5(1). Let T ′′ = T ′[

C
(
∨

i∈I πi ; T′i∨π̂; T ′
Q)], then G � p = T ′′[

γ ′
∨

j∈I ′ S′j ].
By Lemma 6(1) there is σ ′ such that SubT(G, σσ ′) =

γ ′ � j∈I ′ β
p
j ; K′j affects p and

Ctx(G, σσ ′)�p = T ′′ and SubT(G, σσ ′)�p =
γ ′

∨

j∈I ′ S′j . From Lemma 7(2) σσ ′ jβp
j

is alive in G for all j ∈ I ′ and then C is alive in G. We finally conclude that C is enabled in
G, since Ctx(G, σσ ′)�p is a session context, and this implies that σσ ′ jβp

j is enabled in G
for all j ∈ I ′. ��

The remainder of this section is devoted to the proof of forward and backward progress.
For forward progress we first show that a communication which is alive in a global type

has at least one enabled cause, and will eventually become enabled.
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Lemma 8 1. If ξ ∈ Occ(G) is alive in G, then either ξ is enabled in G or there is some
occurrence in Causes(G, ξ) which is enabled in G.

2. If � N : G and ξ ∈ Occ(G) is alive in G, thenN −→∗ N′ with � N′ : G′ and ξ is enabled
in G′.

Proof (1) By induction on the cardinality of the set of non executed occurrences in
Causes(G, ξ), namely on n = |Causes(G, ξ)\ExOcc(G)|. If n = 0, then ξ is enabled in
G by definition. Let n > 0. Note that every ξ ′ ∈ Causes(G, ξ)\ExOcc(G) must be alive,
because otherwise there would exist an executed ξ ′′ such that ξ ′′#Gξ ′, which by conflict
heredity would imply ξ ′′#Gξ , contradicting the assumption that ξ is alive. So, let us choose a
non executed ξ ′ ∈ Causes(G, ξ). If ξ ′ is enabled we are done, otherwise, since ξ ′ is alive and
Causes(G, ξ ′) ⊂ Causes(G, ξ), by inductive hypothesis there is ξ ′′ in Causes(G, ξ ′) which
is enabled in G.

(2) Again, we proceed by induction on n = |Causes(G, ξ)\ExOcc(G)|. If n = 0, then ξ

is enabled in G and the result is immediate by Theorem 2(1). Let now n > 0. By (1) there

exists ξ ′ in Causes(G, ξ) which is enabled in G. If ξ ′ = σp
Λ−→ q, by Theorem 2(1) we

have N
pΛq−−→ N′′ and then by Theorem 1 we have � N′′ : G′′. Let ξ ′′ = σ

̂

p
Λ−→ q. Since

Causes(G′′, ξ) = Causes(G, ξ) \ {ξ ′} ∪ {ξ ′′} and ExOcc(G′′) = ExOcc(G) ∪ ξ ′′, we have
Causes(G′′, ξ)\ExOcc(G′′) ⊂ Causes(G, ξ)\ExOcc(G). Then by induction N′′ −→∗ N′
(whence N −→∗ N′) with � N′ : G′ and ξ is enabled in G′. ��

Connecting communications cause the failure of the standard progress property, since a
participant offering an external choice between connecting communications can wait forever.
Instead, processes offering outputs or simple inputs can always communicate.

Theorem 3 (Forward progress)

1. If � p[[ E[
γ

⊕

i∈I πi ; Pi ] ]] ‖ N : G, then for every j ∈ I there exists an N j such that

p[[ E[
γ

⊕

i∈I πi ; Pi ] ]] ‖ N −→∗ p[[ E[
γ
(
⊕

i∈I\{ j} πi ; Pi ⊕ π̂ j ; Pj )] ]] ‖ N j .

2. If � p[[ E[Δ
∑

i∈I πi ; Pi ] ]] ‖ N : G and all πi are simple inputs, then there is N′ such
that p[[ E[Δ

∑

i∈I πi ; Pi ] ]] ‖ N −→∗ p[[ E[Δ(
∑

i∈I\{ j} πi ; Pi + π̂ j ; Pj )] ]] ‖ N′ for
some j ∈ I .

Proof (1) Let P = E[
γ

⊕

i∈I πi ; Pi ], by Lemma 1(6) � P : T and T � G�p . By Lemma 5(3)

T = T [T′] and � E : T and � γ

⊕

i∈I πi ; Pi : T′. By Lemma 1(2) T′ = γ

∨

i∈I πi ; Ti . By
Lemma 5(1) G�p = T ′[T′′] and T � T ′ and γ

∨

i∈I πi ; Ti � T′′. By definition of � we get
T′′ =

γ

∨

i∈I πi ; T′i with Ti � T′i for i ∈ I . Therefore G�p = T ′[γ ∨

i∈I πi ; T′i ].
From Lemma 6(1), for some σ we have that SubT(G, σ ) = γ �i∈I α

p
i ; Ki and Ctx(G, σ )�

p = T ′ and SubT(G, σ )�p = γ

∨

i∈I πi ; T′i . This implies, by Lemma 7(2), that σ jαp
j is

alive in G. Therefore from Lemma 8(2) we get that

p[[ E[
γ

⊕

i∈I πi ; Pi ] ]] ‖ N −→∗ p[[ E[
γ

⊕

i∈I πi ; Pi ] ]] ‖ N′j
with � p[[ E[

γ

⊕

i∈I πi ; Pi ] ]] ‖ N′j : G′ and σ jαp
j enabled in G′. From Theorem 2(1) we

conclude p[[ E[
γ

⊕

i∈I πi ; Pi ] ]] ‖ N′j
α
p
j−→ p[[ E[

γ
(
⊕

i∈I\{ j} πi ; Pi ⊕ π̂ j ; Pj )] ]] ‖ N j .
(2) Let P = E[Δ

∑

i∈I πi ; Pi ], by Lemma 1(6) � P : T and T � G �p . By Lemma 5(3)
T = T [T′] and � E : T and � Δ

∑

i∈I πi ; Pi : T′. By Lemma 1(1) T′ = Δ
∧

i∈I πi ; Ti .
By Lemma 5(1) G � p = T ′[T′′] and T � T ′ and Δ

∧

i∈I πi ; Ti � T′′. By definition
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of � we get and T′′ = Δ
∧

i∈I ′ πi ; T′i with I ⊇ I ′ and Ti � T′i for i ∈ I ′. Therefore
G�p = T ′[Δ

∧

i∈I ′ πi ; T′i ]. From Lemma 6(2) we have that there is σ such that SubT(G, σ )

affects p and Ctx(G, σ ) � p = T ′ and SubT(G, σ ) � p .= Δ
∧

i∈I ′ πi ; T′i . For each i ∈ I ′,
the action πi must have the form πi = qi?λi and be obtained projecting a communication

αi = qi
λi−→ p. We consider two cases: either SubT(G, σ ) is an executed choice, or it is either

a non executed choice or a sequence starting with a non executed communication.

– If SubT(G, σ ) = γ (�h∈H\{k} βh; Kh � ̂βk;Gk), then let σk be the longest path in
SubT(G, σ ) such that k � σk and σσk = path(ξ) for some ξ ∈ ExOcc(G). By
Lemma 6(2) there are σ ′ and j ∈ I ′ such that σσ ′α j ∈ Occ(G) and either σ ′ � σk
or σk � σ ′. Since ξ ′ ∈ ExOcc(G) implies path(ξ ′) � σσk , then ξ ′ is not in conflict with
σσ ′α j . Therefore σσ ′α j is alive in G.

– If SubT(G, σ ) = γ �h∈H βh;Gh , then σhβh is alive in G for all h ∈ H by Lemma 7(2).
Then by Lemma 6(2) for any h ∈ H we can find σh such that σσhα j is alive in G for
some j ∈ I ′.

In both cases there is σp such that σpα j is alive in G for some j ∈ I ′. Lemma 8(2) implies

p[[ E[Δ
∑

i∈I πi ; Pi ] ]] ‖ N −→∗ p[[ E[Δ
∑

i∈I πi ; Pi ] ]] ‖ N′j
and � p[[ E[Δ

∑

i∈I πi ; Pi ] ]] ‖ N′j : G′ with σpα j enabled in G′. From Theorem 2(1) we

conclude p[[ E[Δ
∑

i∈I πi ; Pi ] ]] ‖ N′j
α j−→ p[[ E[Δ(

∑

i∈I\{ j} πi ; Pi ⊕ π̂ j ; Pj )] ]] ‖ N′j . ��
Notice that the standard formulation of progress [13],which requires that each simple input

and each output that is persistently offered be eventually consumed, is an easy consequence
of this theorem.

Theorem 4 (Backward progress) If � N : G and C is alive in G, then there is N′ such that

N −→∗ N′ and N′ C

�N′′.

Proof By definition G = Ctx(G, σ )[C(� j∈J\{k} αp
j ; K j�̂α

p
k ;Gk)] and |J | > 1 and σ is ok

for C (in G) and there are σ ′ and αp such that σkσ ′αp ∈ Occ(G) is alive in G. Lemma 8(2)
implies that N −→∗ N′ and � N : G′ with σkσ ′αp enabled in G′.

This implies that C is enabled in G. We conclude N′ C

�N′′ by Theorem 2(3). ��
To sum up, our calculus enjoys:

– subject reduction for both forward and backward computations;
– session fidelity for enabled communications and for rollbacks to enabled checkpoint

labels;
– forward progress, assuring the absence of dangling actions but for connecting inputs;
– backward progress for alive checkpoint labels.

We end this section with a remark on causal consistency and the loop lemma [10]. Causal
consistency states that a cause cannot be reversed without first reversing its effects. Clearly,
our calculus enjoys causal consistency since a rollback to a checkpointed choice removes all
communications that were done after that checkpoint. The loop lemma prescribes that each
transition has an inverse. The loop lemma does not hold for our calculus, since a reverse
computation can only go back to a checkpointed choice whose leader currently offers an
output.
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6 Related work and conclusion

Since the seminal work byDanos andKrivine on reversible CCS [10], reversible computation
has beenwidely studied in process calculi. In [31], Phillips andUlidowski proposed amethod
for reversing process operators defined in a general SOS format, and noted that thread iden-
tifiers and histories were needed to record the past of computations. In [30] the authors use
a cursor to mark past actions, thus avoiding the use of extra memory information as in [10].

In [23], Lanese et al. extended the approach of Danos and Krivine by defining a reversible
variant of the higher-order π -calculus, using tags to identify threads, and explicit memory
processes. This calculus was enriched with a fine-grained rollback primitive in [22]. In [9],
Cristescu et al. proposed a causal semantic model for the reversible π-calculus.

Reversibility for structured communications was first studied in [11,12,21], where trans-
actionswith rollback and coordinated checkpoints were modelled in an extended CCS. More
recently, reversibility has been incorporated into contracts [1,4] and session calculi [17,18].
In [2,3], the authors investigated the notions of compliance and sub-behaviour for contracts
with checkpoints. While rollbacks are forgetful in [2], in [3] they are used as a strategy to
achieve compliance: in this case, after a rollback a process cannot engage again in the pre-
viously explored branch, presumably unsuccessful. We used a similar idea for defining our
rollback here.

Our backward mechanism is most closely related to the recent proposals [24–26,34,35].
Tiezzi and Yoshida [34] use tags and memories to allow full reversibility of binary sessions
with delegation. In [35], two forms of reversibility are considered: either a session is com-
pletely reversed in a single backward step, or any intermediate state is restored. Mezzina and
Pérez [24,25] use monitors as memories for reversing binary sessions. A key novelty of this
work is the use of session types with present and past. In [26], this approach is generalised to
multiparty sessions, asynchronous higher-order communications, and decoupled rollbacks.

In [28],Neykova andYoshida provide an algorithm to analyse and extract causal dependen-
cies from a given multiparty global type, and use it to ensure that communicating processes
are safely recovered from consistent states in the presence of a failure. In [27], Mezzina and
Tuosto propose a semantic control of reversibility: a computation along a branch is reversed
according to the guards on the current configuration. A feature of [27] is that inputs are
potentially irreversible actions, unless they appear within a loop.

Our work builds on our previous papers [8,14]. In [14] we introduced a multiparty session
calculus in which choices could be labelled with checkpoints. Participants could revert to
one of these checkpointed choices in order to make a different choice. Global types were
used to control reversibility, and shown to enforce the properties of fidelity and progress (both
forward and backward). In [8]we enriched the syntax for types and processeswith parallel and
sequential composition, and used amore compact representation for past communications and
a more refined strategy for backward moves. The current work borrows ideas and techniques
from both papers while sticking to a simpler syntax than [8], and improves on both of them
by allowing connecting communications.

As regards dynamic participants, in [13,15] global types prescribe the behaviours of fixed
roles, and each role includes an arbitrary number of participants, which can dynamically
join and leave roles. Instead, in the Conversation Calculus [7,36] the protocols describe
communications between participants which can dynamically join and leave conversations.
The model based on conversation contexts and labelled message-passing primitives is quite
different from multiparty session types and this makes it difficult to adapt their approach to
our setting.
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The paper [20] has been our inspiration for connecting messages, but our calculus is more
permissive than the original one. In fact, in [20] a connecting message can be exchanged
only between two participants that did not communicate before, unless they have been dis-

connected by an ad hoc primitive. This means for example that p
λ1↔−→ q;q

λ2↔−→ p is not
allowed. Another difference of [20] with respect to our calculus is that in a choice, the first
message received by a participant must be a connecting message, which forbids for instance

p
λ1−→ q�p

λ2−→ r. A further restriction is that all the inputs in an external choice must have
the same sender. A final major difference is that communication in [20] is asynchronous.

The properties of our calculus are standard for reversible session calculi, but their proofs
require some ingenuity due to the presence of connecting communications and to the speci-
ficity of our rollback mechanism. As argued already in Sect. 3, connecting communications
may be used to avoid the use of multiple global types. They could also be useful for incor-
porating delegation into global types. For example, a seller could delegate a bank to receive
a credit card number only when the client wants to buy an item, otherwise the bank is not
involved in the transaction (so delegation would appear in one branch of a choice but not
in the others). This is a topic we plan to investigate. As regards the conditions for reversing
a computation, a current limitation of our work is that the starting points of rollbacks are
statically determined. By contrast, these points are determined dynamically in [27], offering
a more realistic solution. We plan to introduce similar runtime conditions for rollback in our
calculus.

Finally, we would like to study the interpretation of global types into a model of Event
Structures, for which reversible variants have already been proposed [16,32]. We plan to
explore a reversible variant of Flow Event Structures [5], a model that has already been used
to interpret CCS processes with past in [6].

Acknowledgements We would like to thank the anonymous referees for their helpful comments.

A: Reductions of networks and systems

It is easy to define a bijection between networks and initial systems:

S(N) = N � 〈−,P,∅〉 N(N � 〈−,P,∅〉) = N

where P is the set of participants in N.
We establish now an operational correspondence between networks and their associated

systems. More precisely we prove the following:

– Communication preservation and reflection: every network communication is simulated
by a communication in the associated system and vice-versa;

– Rollback preservation: every network rollback is simulated by a sequence of backward
moves in the associated system, initiating with a starting backward move and terminating
with an ending backward move;

– Rollback reflection: every starting backward move in a system can be extended to a
complete sequence of backward moves such that the resulting system is the image of a
rollback in the source network.

In the following theorem we denote by
C

��the transitive closure of
yC

�and
nC

�.

Theorem 5 1. If N
pΛq−−→ N′, then S(N)

pΛq��⇒ S(N′).
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2. If S(N)
pΛq��⇒ S(N′), then N

pΛq−−→ N′.
3. If N

C

�N′, then S(N)
sC

�

C

��

eC

�S(N′).
4. If N � 〈−,P,∅〉 sC

�N′ � 〈C,P1,P2〉, then N′ � 〈C,P1,P2〉 C

��

eC

�N′′ � 〈−,P,∅〉 and
N

C

�N′′.

Proof (1) and (2). The result is immediate since Rule [Com] of Fig. 1 and Rule [ComS] of
Fig. 2 have the same antecedents.

(3). If N
C

�N′, then the applied rule is

P
C

�P ′ Pi
C

�P ′i 1 ≤ i ≤ m Pi
C� �m + 1 ≤ i ≤ n

[Back]
N

C

�N′

where

N = p[[ P ]] ‖ Π1≤i≤npi [[ Pi ]] and N′ = p[[ P ′ ]] ‖ Π1≤i≤mpi [[ P ′i ]] ‖ Πm+1≤i≤npi [[ Pi ]]
Then S(N) = N � σ and S(N′) = N′ � σ with σ = 〈−, {p} ∪ {pi | 1 ≤ i ≤ n},∅〉. We get

N � σ
sC

�p[[ P ′ ]] ‖ Π1≤i≤npi [[ Pi ]] � 〈C, {p}, {pi | 1 ≤ i ≤ n}〉
yC

�p[[ P ′ ]] ‖ p1[[ P ′1 ]] ‖ Π2≤i≤npi [[ Pi ]] � 〈C, {p,p1}, {pi | 2 ≤ i ≤ n}〉
yC

�· · ·
yC

�N′ � 〈C, {p} ∪ {pi | 1 ≤ i ≤ m}, {pi | m + 1 ≤ i ≤ n}〉
nC

�N′ � 〈C, {p} ∪ {pi | 1 ≤ i ≤ m + 1}, {pi | m + 2 ≤ i ≤ n}〉
nC

�· · ·
nC

�N′ � 〈C, {p} ∪ {pi | 1 ≤ i ≤ n},∅〉
eC

�N′ � σ

(4). If N � 〈−,P,∅〉 sC

�N′ � 〈C,P1,P2〉, then Rule [BackS] has been applied, so

P
C

�P ′ N = p[[ P ]] ‖ N1 N′ = p[[ P ′ ]] ‖ N1 P1 = {p} P2 = P \ {p}
Since P2 can be split in two subsets of participants, according to whether the associated

processes satisfy the premise of Rule [BackY] or of Rule [BackN] in Fig. 2, wemay assume
without loss of generality that

N1 = Π1≤i≤mpi [[ Pi ]] ‖ Πm+1≤i≤npi [[ Pi ]]

where for all i , 1 ≤ i ≤ n, Pi
C

�P ′i if i ≤ m and Pi
C� �otherwise. With a sequence of

reductions as in the proof of point (3), we then obtain for some network N′′:

N′ � 〈C, {p},P \ {p}〉 C

��

eC

�N′′ � 〈−,P,∅〉.
Since P and all the Pi for 1 ≤ i ≤ n satisfy the premises of Rule [Back] in Fig. 1, we may

apply this rule to N to conclude N
C

�N′′, as required. ��
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