
Acta Informatica (2019) 56:521–535
https://doi.org/10.1007/s00236-018-0327-8

ORIG INAL ART ICLE

Parikh matrices for powers of words

Adrian Atanasiu1 · Ghajendran Poovanandran2 ·Wen Chean Teh2

Received: 17 October 2017 / Accepted: 24 August 2018 / Published online: 30 August 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Certain upper triangular matrices, termed as Parikh matrices, are often used in the combina-
torial study of words. Given a word, the Parikh matrix of that word elegantly computes the
number of occurrences of certain predefined subwords in that word. In this paper, we com-
pute the Parikh matrix of any word raised to an arbitrary power. Furthermore, we propose
canonical decompositions of both Parikh matrices and words into normal forms. Finally,
given a Parikh matrix, the relation between its normal form and the normal forms of words
in the corresponding M-equivalence class is established.

Mathematics Subject Classification 68R15 · 05A05

1 Introduction

The problem of finding the optimal number of subwords of a word needed to completely
determine that word still remains open [11]. In the spirit of solving this problem, Mateescu
et al. introduced Parikh matrices in [12] by generalizing the classical Parikh vectors [14]. In
general, theParikhmatrix of aword is an upper triangularmatrixwhich contains the number of
occurrences of certain predefined subwords of that word. Despite storing more information
about a word, not every Parikh matrix uniquely determines a word. Nevertheless, Parikh
matrices and their variants [3,7–9,20] have opened up the door to various new investigations
in the combinatorial study of words (for example, see [1,2,4–6,10,13,15,16,18,19,21–27]).

Repetition in words has been intensively studied in the literature and it dates back to the
works of Thue in the early 1900s. Often in the literature, a word is expressed as the power
of another word; for instance the word murmur can be written as (mur)2. In this paper, we
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deal with such powers of words in relative to Parikh matrices. Our main contributions would
be as follows:

(1) A general formula to obtain the Parikh matrix of any power of a given word;
(2) A normal form of an arbitrary Parikh matrix (respectively word) obtained by decom-

posing that matrix (respectively word) in terms of powers of other Parikh matrices
(respectively words).

The remainder of this paper is structured as follows. Section 2 provides the basic termi-
nology and preliminaries. Section 3 deals with Parikh matrices of powers of words. Apart
from presenting a general formula to obtain such Parikh matrices, the properties of these
matrices are studied as well. In the next section, we propose a normal form of Parikh matri-
ces sustained by a canonical decomposition. An algorithm to obtain this normal form is
presented for Parikh matrices over the binary alphabet. Section 5 proposes a normal form of
words, analogous to the one for Parikh matrices. The relation between the normal form of an
arbitrary Parikh matrix and the normal forms of the words represented by that matrix is then
established. Our conclusions follow after that.

2 Preliminaries

The set of all positive integers is denoted by N.
Suppose � is a finite and nonempty alphabet. The set of all words over � is denoted

by �∗ and λ is the unique empty word. Let �+ denote the set �∗\{λ}. If v,w ∈ �∗,
the concatenation of v and w is denoted by vw. An ordered alphabet is an alphabet � =
{a1, a2, . . . , as} with an ordering on it. For example, if a1 < a2 < · · · < as , then we may
write � = {a1 < a2 < · · · < as}. For convenience, we shall frequently abuse notation and
use � to denote both the ordered alphabet and its underlying alphabet.

A word v is a scattered subword (or simply subword) of w ∈ �∗ if and only if there exist
x1, x2, . . . , xn , y0, y1, . . . , yn ∈ �∗ (possibly empty) such that v = x1x2 · · · xn and w =
y0x1y1 · · · yn−1xn yn . If the letters in v occur contiguously in w (that is y1 = y2 = · · · =
yn−1 = λ), then v is a factor of w. The number of occurrences of a word v as a subword of
w is denoted by |w|v . Two occurrences of v are considered different if and only if they differ
by at least one position of some letter. For example, |abab|ab = 3 and |abcabc|abc = 4. By
convention, |w|λ = 1 for all w ∈ �∗. The reader is referred to [17] for language theoretic
notions not detailed here.

For any integer n ≥ 2, letMn denote the multiplicative monoid of n × n upper triangular
matrices with nonnegative integral entries and unit diagonal. For a matrix X , we denote its
(i, j)-entry by Xi, j .

Definition 2.1 Suppose � = {a1 < a2 < · · · < as} is an ordered alphabet, where s ≥ 2.
The Parikh matrix mapping with respect to �, denoted by �� , is the morphism

�� : �∗ → Ms+1

defined as follows: ��(λ) = Is+1; if ��(aq) = M , then Mi,i = 1 for each 1 ≤ i ≤ s + 1,
Mq,q+1 = 1 and all other entries of the matrix��(aq) are zero. Matrices of the form��(w)

for w ∈ �∗ are called Parikh matrices. We denote by P� the set of all Parikh matrices with
respect to � and let P+

� = P�\{Is+1}.
Theorem 2.2 [12] Suppose � = {a1 < a2 < · · · < as} is an ordered alphabet and w ∈ �∗.
The matrix ��(w) = M has the following properties:
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Parikh matrices for powers of words 523

• Mi,i = 1 for each 1 ≤ i ≤ s + 1;
• Mi, j = 0 for each 1 ≤ j < i ≤ s + 1;
• Mi, j+1 = |w|ai ai+1···a j for each 1 ≤ i ≤ j ≤ s.

Remark 2.3 Suppose � = {a1 < a2 < · · · < as}. The Parikh vector �(w) =
(|w|a1 , |w|a2 , . . . , |w|as ) of a word w ∈ �∗ is contained in the second diagonal of the
Parikh matrix ��(w).

Example 2.4 Suppose � = {a < b < c} and w = ababcc. Then

��(w) = ��(a)��(b)��(a)��(b)��(c)��(c)

=

⎛
⎜⎜⎝
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ · · ·

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
1 2 3 6
0 1 2 4
0 0 1 2
0 0 0 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 |w|a |w|ab |w|abc
0 1 |w|b |w|bc
0 0 1 |w|c
0 0 0 1

⎞
⎟⎟⎠ .

The following is a basic property used to decide whether a matrix in M3 is a Parikh
matrix.

Theorem 2.5 (see [13]) Suppose M ∈ M3. The matrix M is a Parikh matrix if and only if
M1,3 ≤ M1,2 · M2,3.

Definition 2.6 Suppose � is an ordered alphabet. Two words w,w′ ∈ �∗ are M-equivalent,
denoted by w ≡M w′, iff ��(w) = ��(w′). A word w ∈ �∗ is M-ambiguous iff it
is M-equivalent to another distinct word. Otherwise, w is M-unambiguous. We denote the
M-equivalence class of a word w ∈ �∗ by Cw.

3 Powers of Parikhmatrices

The following result can be used to compute any power of a given matrix in Mn where
integer n ≥ 2. In particular, since every Parikh matrix is a matrix in Mn for some integer
n ≥ 2, this result can be applied to it as well.

Theorem 3.1 For every integer m ≥ 1, n ≥ 2, and X ∈ Mn,

(Xm)i, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑ j−i
t=1

(m
t

) ∑
i<k1<k2<···<kt−1< j

Xi,k1Xk1,k2 · · · Xkt−1, j

︸ ︷︷ ︸
understood to be Xi, j when t=1

if 1 ≤ i < j ≤ n,

1 if 1 ≤ i = j ≤ n,

0 if 1 ≤ j < i ≤ n.
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Proof We prove by induction on the power m. The base step is obvious. For the induction
step, we only consider the case i < j as the other two cases trivially hold. We have

(Xm+1)i, j =
n∑

l=1

(Xm)i,l Xl, j (∗)

=
j∑

l=i

(Xm)i,l Xl, j

= Xi, j +
j−1∑

l=i+1

(Xm)i,l Xl, j + (Xm)i, j .

Now,

j−1∑
l=i+1

(Xm)i,l Xl, j =
j−1∑

l=i+1

⎡
⎣

l−i∑
t=1

(
m

t

) ∑
i<k1<k2<···<kt−1<l

Xi,k1Xk1,k2 · · · Xkt−1,l

⎤
⎦ Xl, j (∗∗)

=
j−1∑

l=i+1

l−i∑
t=1

⎡
⎣

(
m

t

) ∑
i<k1<k2<···<kt−1<l

Xi,k1Xk1,k2 · · · Xkt−1,l Xl, j

⎤
⎦

=
j−i−1∑
t=1

j−1∑
l=i+t

⎡
⎣

(
m

t

) ∑
i<k1<k2<···<kt−1<l

Xi,k1Xk1,k2 · · · Xkt−1,l Xl, j

⎤
⎦

=
j−i−1∑
t=1

(
m

t

) j−1∑
l=i+t

∑
i<k1<k2<···<kt−1<l

Xi,k1Xk1,k2 · · · Xkt−1,l Xl, j

=
j−i−1∑
t=1

(
m

t

) ∑
i<k1<k2<···<kt−1<l< j

Xi,k1Xk1,k2 · · · Xkt−1,l Xl, j

=
j−i−1∑
t=1

(
m

t

) ∑
i<k1<k2<···<kt< j

Xi,k1Xk1,k2 · · · Xkt , j

=
j−i∑
t=2

(
m

t − 1

) ∑
i<k1<k2<···<kt−1< j

Xi,k1Xk1,k2 · · · Xkt−1, j

= −Xi, j +
j−i∑
t=1

(
m

t − 1

) ∑
i<k1<k2<···<kt−1< j

Xi,k1Xk1,k2 · · · Xkt−1, j .

(The third equality is obtained by interchanging the order of summation.) Since
(m+1

t

) =( m
t−1

) + (m
t

)
, the induction step is complete because by combining (∗) and (∗∗), we have

(Xm+1)i, j =
j−i∑
t=1

[(
m

t − 1

)
+

(
m

t

)] ∑
i<k1<k2<···<kt−1< j

Xi,k1Xk1,k2 · · · Xkt−1, j .
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Since every Parikh matrix is in Mn for some integer n ≥ 3, the Parikh matrix of a word
to the power of m (where m is a positive integer) can be computed by Theorem 3.1. The
following example illustrates this.

Example 3.2 Consider the word abb in {a < b}∗. Suppose m is a positive integer. Then the
Parikh matrix of the word (abb)m can be computed as follows:

��((abb)m) = (��(abb))m =
⎛
⎝
1 1 2
0 1 2
0 0 1

⎞
⎠

m

=
⎛
⎝
1 m · 1 m · 2 + (m

2

) · 1 · 2
0 1 m · 2
0 0 1

⎞
⎠

=
⎛
⎝
1 m m2 + m
0 1 2m
0 0 1

⎞
⎠ .

Definition 3.3 Supposem and n are positive integers such that n ≥ 2. We define the function
fm : Mn → Mn by fm(X) = Xm for all X ∈ Mn .

If X is a Parikh matrix, then clearly fm(X) is a Parikh matrix as well. However, the
converse is not necessarily true. In fact, the following is a consequence of Theorem 2.5 and
Theorem 3.1 for the binary alphabet which can be used to determine whether fm(X) is a
Parikh matrix.

Proposition 3.4 Suppose X ∈ M3 andm is a positive integer. Let X =
⎛
⎝
1 x z
0 1 y
0 0 1

⎞
⎠. Thematrix

Xm is a Parikh matrix if and only if either of the following holds:

(1) If either x or y is zero, then z = 0;

(2) Otherwise if both x and y are nonzero, then
z

xy
≤ m + 1

2
.

Proof The biconditional holds trivially for (1), thus it remains to show (2). By Theorem 3.1,

we have Xm =
⎛
⎜⎝
1 mx mz + m(m − 1)

2
xy

0 1 my
0 0 1

⎞
⎟⎠. By Theorem 2.5, the matrix Xm is a Parikh

matrix if and only if

mz + m(m − 1)

2
xy ≤ mx · my.

The above inequality can be reduced to
z

xy
≤ m + 1

2
, thus the conclusion holds. 	


The following is immediate by Proposition 3.4.

Corollary 3.5 Suppose � is an ordered alphabet with |�| = 2. For every matrix X ∈ M3

with nonzero entries above the main diagonal, there exists a positive integer M such that
Xm ∈ P+

� for all integers m ≥ M.
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Example 3.6 Let� = {a < b}. Consider thematrix X =
⎛
⎝
1 2 9
0 1 2
0 0 1

⎞
⎠. Then X4 =

⎛
⎝
1 8 60
0 1 8
0 0 1

⎞
⎠ ∈

P� . It can easily be checked by using Theorem 2.5 or Proposition 3.4 that Xm /∈ P� for all
integers 1 ≤ m < 4. An example of word w ∈ �∗ with ��(w) = X4 is w = a7b4ab4.

The following result shows that for every positive integer m, the function fm is injective.

Theorem 3.7 Suppose m is a positive integer and X , Y ∈ Mn for some integer n ≥ 2. If
Xm = Ym, then X = Y .

Proof Suppose Xm = Ym . We prove by strong induction that the second diagonal, the third
diagonal and so forth of X and Y are equal, thus X = Y . For the base step (corresponding to
the second diagonal), we need to show that Xi, j = Yi, j whenever j − i = 1. (It is understood
that 1 ≤ i and j ≤ n must hold.) Fix 1 ≤ i ≤ n − 1. By Theorem 3.1, (Xm)i,i+1 = mXi,i+1

and (Ym)i,i+1 = mYi,i+1. Since Xm = Ym , it follows that Xi,i+1 = Yi,i+1.
For the induction step, we need to show that Xi, j = Yi, j holds whenever j − i = N + 1,

assuming that (X)i, j ′ = (Y )i, j ′ whenever 1 ≤ j ′ − i ≤ N . Fix 1 ≤ i ≤ n − N − 1 and let
j = i + N + 1. By Theorem 3.1,

(Xm)i, j =
j−i∑
t=1

(
m

t

) ∑
i<k1<k2<···<kt−1< j

Xi,k1Xk1,k2 · · · Xkt−1, j .

Therefore,

Xi, j = (Xm)i, j −
j−i∑
t=2

(
m

t

) ∑
i<k1<k2<···<kt−1< j

Xi,k1Xk1,k2 · · · Xkt−1, j

= (Ym)i, j −
j−i∑
t=2

(
m

t

) ∑
i<k1<k2<···<kt−1< j

Yi,k1Yk1,k2 · · · Ykt−1, j = Yi, j ,

thus the proof is complete. (Note that the last equality holds by our induction hypothesis and
the assumption that Xm = Ym .) 	

Corollary 3.8 Suppose � is an ordered alphabet with |�| ≥ 2 and v,w ∈ �∗. Then either
of the following holds:

(1) vm ≡M wm for all positive integers m;
(2) vm �≡M wm for all positive integers m.

Proof If v ≡M w, it follows trivially that vm ≡M wm for all integers m. Hence, it suffices
to prove that if there exists an integer m ≥ 2 such that vm ≡M wm , then v ≡M w. Suppose
vm ≡M wm for some integerm ≥ 2. Then (��(v))m = ��(vm) = ��(wm) = (��(w))m .
Since ��(v),��(w) ∈ M|�|+1, by Theorem 3.7, we have ��(v) = ��(w) and thus
v ≡M w. 	


Weend this section by the following observation on theM-equivalence class of an arbitrary
power of any word.

Proposition 3.9 Suppose � is an ordered alphabet with |�| ≥ 2 and w ∈ �∗. For every
positive integer m, we have |Cwm | ≥ |Cw|m.
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Proof Fix a positive integer m. If wi ≡M w for all integers 1 ≤ i ≤ m, then wm =
www · · · w︸ ︷︷ ︸

m times

≡M w1w2 · · · wm . Thus, |Cwm | ≥ |Cw||Cw| · · · |Cw|︸ ︷︷ ︸
m times

= |Cw|m . 	


Remark 3.10 Suppose � is an ordered alphabet with |�| = 2, w ∈ �+ and m is a positive
integer. If |Cwm | = |Cw|m , then |Cw| = 1. The converse however does not hold. For instance,
let w = aba (clearly, |Cw| = 1). Then, Cw2 = {abaaba, aabbaa, baaaab}, therefore
|Cw2 | = 3.

4 A normal form of Parikhmatrices

Suppose � is an ordered alphabet. In this section, given a Parikh matrix M ∈ P� , we aim to
decompose M into a product of some other Parikh matrices, each raised to a certain power.
For Parikh matrices with entries large enough, the following decomposition is interesting.

Definition 4.1 Suppose � is an ordered alphabet with |�| = s and M ∈ P+
� .

• Define μ(M) = max{n ∈ N | M = A · Bn for some A ∈ P� and B ∈ P+
� }.

• Define σ(M) to be the sum of the entries in the second diagonal of M .
• Define ϑ(M) as follows:

– if μ(M) = 1, then ϑ(M) is defined to be the minimum element of the following set:

{σ(B) | B ∈ P+
� and M = A · B for some A ∈ P+

� } with μ(A) �= 1},
provided it is nonempty; otherwise, it is defined to be σ(M);

– ifμ(M) > 1, then ϑ(M) is defined to be the maximum element of the following set:

{σ(B) | B ∈ P+
� and M = A · Bμ(M) for some A ∈ P�}.

• Define SM = {(A, B, μ(M)) | A ∈ P� and B ∈ P+
� with M = A · Bμ(M) and σ(B) =

ϑ(M)}.
Let k be a nonnegative integer. For every integer 0 ≤ i ≤ k, suppose Bi ∈ P� and ni ∈ N.
We say that Bnk

k Bnk−1
k−1 · · · Bn0

0 is a rl-Parikh normal form of M if and only if the following
holds:

Let A0 = M , Ai = Bnk
k Bnk−1

k−1 · · · Bni
i (1 ≤ i ≤ k) and Ak+1 = Is+1.

Then (Ai+1, Bi , ni ) ∈ SAi for all 0 ≤ i ≤ k.

Equivalently, we say that M is rl-Parikh normalized to the form Bnk
k Bnk−1

k−1 · · · Bn0
0 .

Remark 4.2 The requirement B ∈ P+
� in the first item of Definition 4.1 eliminates the trivial

decomposition of a Parikh matrix M into M = M · I ns+1 at each stage as n does not have an
upper bound in this case.

Remark 4.3 Suppose � is an ordered alphabet and M ∈ P+
� . Let Bnk

k Bnk−1
k−1 · · · Bn0

0 be a
rl-Parikh normal form of M . For any integer 0 ≤ i ≤ k, the form Bnk

k Bnk−1
k−1 · · · Bni

i is a
rl-Parikh normal form of the matrix Bnk

k Bnk−1
k−1 · · · Bni

i .

Remark 4.4 Suppose� is an ordered alphabet andM ∈ P+
� . IfM = A·Bn for some A ∈ P� ,

B ∈ P+
� and positive integer n, then μ(M) ≥ n.
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One can see that the rl-Parikh normal form of a Parikh matrix is not necessarily unique.
For a trivial example, let � = {a < b} and consider the word w = abba. Then, the
matrix ��(w) has two rl-Parikh normal forms, which are ��(a)[��(b)]2��(a) and
��(b)[��(a)]2��(b).

The following is a feasible approach to find the Parikh normal form(s) of a Parikh matrix
for the binary alphabet. (Here, we are only interested in “nontrivial” cases where both entries
in the second diagonal are nonzero.)

At each stage of decomposition, given a Parikh matrix M =
⎛
⎝
1 u t
0 1 v

0 0 1

⎞
⎠ with integers

u, v > 0, we aim to find two other Parikh matrices A =
⎛
⎝
1 p r
0 1 q
0 0 1

⎞
⎠ and B =

⎛
⎝
1 x z
0 1 y
0 0 1

⎞
⎠ such

that for some positive integer n, we have M = A · Bn where (A, B, n) ∈ SM .

By Theorem 3.1, we have Bn =
⎛
⎝
1 nx nz + (n

2

)
xy

0 1 ny
0 0 1

⎞
⎠, thus it follows that A · Bn =

⎛
⎝
1 p + nx r + nz + npy + (n

2

)
xy

0 1 q + ny
0 0 1

⎞
⎠. Since M = A · Bn , the following system holds:

⎧⎪⎨
⎪⎩

p + nx = u,

q + ny = v,

r + nz + npy + (n
2

)
xy = t .

Furthermore, by Theorem 2.5, we have

r ≤ pq, z ≤ xy.

We propose the following algorithm to find the solution to the above system.

Algorithm 1 Decomposition of a Parikh Matrix M into A · Bn where n is maximal (for the
binary alphabet)
1: begin
2: n ← max{u, v}
3: Z ← {}
4: X ← {(x, y) | x, y > 0, u − nx ≥ 0, v − ny ≥ 0}
5: while X �= {} do
6: choose (x, y) ∈ X
7: X ← X\{(x, y)}
8: p ← u − nx
9: q ← v − ny
10: Y ← {(r , z) | 0 ≤ r ≤ pq, 0 ≤ z ≤ xy, r + npy + nz + (n

2
)
xy = t}

11: if Y �= {} then
12: for every (r , z) ∈ Y do
13: Z ← Z ∪ {(n, p, q, r , x, y, z)}
14: if Z = {} then
15: n ← n − 1
16: goto 4
17: else
18: return Z
19: end
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Clearly, each z ∈ Z corresponds to some A ∈ P� , B ∈ P+
� and positive integer n such

that M = A · Bn and n = μ(M). It remains to choose the triplet(s) (A, B, n) satisfying the
equality σ(B) = ϑ(M) (see Definition 4.1).

Example 4.5 The Parikh matrix

M =
⎛
⎝
1 8 16
0 1 3
0 0 1

⎞
⎠

has the following Parikh normal forms:

(1)

⎛
⎝
1 1 0
0 1 0
0 0 1

⎞
⎠

4

·
⎛
⎝
1 0 0
0 1 1
0 0 1

⎞
⎠ ·

⎛
⎝
1 2 1
0 1 1
0 0 1

⎞
⎠

2

;

(2)

⎛
⎝
1 1 0
0 1 0
0 0 1

⎞
⎠

2

·
⎛
⎝
1 0 0
0 1 1
0 0 1

⎞
⎠ ·

⎛
⎝
1 1 0
0 1 0
0 0 1

⎞
⎠

2

·
⎛
⎝
1 2 2
0 1 1
0 0 1

⎞
⎠

2

.

Theorem 4.6 Suppose � is an ordered alphabet. If w ∈ �∗ is M-unambiguous, then the
rl-Parikh normal form of ��(w) is unique.

Proof Suppose w is M-unambiguous and let ��(w) = M . We argue by contradiction.
Assume there exist two distinct rl-Parikh normal forms of M ; let them be Bnk

k Bnk−1
k−1 · · · Bn0

0

and C
mkj
j C

m j−1
j−1 · · ·Cm0

0 respectively. Since they are distinct, it follows that there exists an
integer 0 ≤ l ≤ min{ j, k} such that

(1) ni = mi and Bi = Ci for all integers 0 ≤ i ≤ l − 1;
(2) nl �= ml or Bl �= Cl .

Let A = Bnl−1
l−1 Bnl−2

l−2 · · · Bn0
0 = Cml−1

l−1 Cml−2
l−2 · · ·Cm0

0 , B ′ = Bnk
k Bnk−1

k−1 · · · Bnl
l and C ′ =

C
mkj
j C

m j−1
j−1 · · ·Cml

l . Then, we have B ′ ·A = M = C ′ ·A. Since Parikhmatrices are invertible,
it follows that B ′ = C ′. By Remark 4.3, it holds that nl = μ(B ′) = μ(C ′) = ml and
σ(Bl) = ϑ(B ′) = ϑ(C ′) = σ(Cl). Since nl = ml , by (2), it must be the case that Bl �= Cl .

Let v, v′ ∈ � be such that ��(v) = Bl and ��(v′) = Cl . Note that v �= v′ because
Bl �= Cl . Also, |v| = |v′| because σ(Bl) = σ(Cl). Let u, u′, y ∈ �∗ be such that ��(u) =
Bnk
k Bnk−1

k−1 · · · Bnl+1
l+1 , ��(u′) = C

m j
j C

m j−1
j−1 · · ·Cml+1

l+1 and ��(y) = A. Then, ��(uvy) =
B ′A = M = C ′A = ��(u′v′y). Since |v| = |v′| but v �= v′, it follows that uvy and u′v′y
are distinct words. However, this gives us a contradiction as w is M-unambiguous. Thus our
conclusion holds. 	


Ourfinal result in this section is a characterization of the following class of Parikhmatrices.
One can see that this class of Parikh matrices arises naturally by Definition 4.1.

Definition 4.7 Suppose � is an ordered alphabet and M ∈ P� . We say that M is a primitive
Parikh matrix if and only if the only rl-Parikh normal form of M is M itself.

Theorem 4.8 Suppose � is an ordered alphabet and M ∈ P� . The matrix M is a primitive
Parikh matrix if and only if every w ∈ �∗ with ��(w) = M is square-free.

Proof This is straightforward by Definitions 4.1 and 4.7. 	
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5 A normal form of words

In this section, we introduce a notion analogous to the one in Sect. 4—in the perspective of
words.

Definition 5.1 Suppose � is an alphabet and w ∈ �+.

• Define Rw = {(u, v, n) ∈ �∗ × �+ × N | w = uvn}.
• Define τ(w) = max{n ∈ N | (u, v, n) ∈ Rw for some u ∈ �∗ and v ∈ �+}.
• Define θ(w) as follows:

– if τ(w) = 1, then θ(w) is defined to be the minimum element of the following set:

{|v| | v ∈ �+ and w = uv for some u ∈ �+ with τ(u) �= 1},
provided it is nonempty; otherwise θ(w) = |w|.

– if τ(w) > 1, then θ(w) is defined to be the maximum element of the following set:

{|v| | v ∈ �+ and w = uvτ(w) for some u ∈ �+}.
• Define ρ(w) = (u′, v′, τ (w)) to be the unique triplet in Rw such that |v′| = θ(w).
• Let w0 = w and (w1, v0, n0) = ρ(w0). For all integers i ≥ 1 and while wi �= λ,

recursively define (wi+1, vi , ni ) = ρ(wi ). Let k ≥ 1 be the largest integer such that
wk �= λ.

We say that vnkk v
nk−1
k−1 · · · vn00 is the rl-Parikh normal form of w, denoted by Pnr (w). Equiva-

lently, we say that w is rl-Parikh normalized to the form v
nk
k v

nk−1
k−1 · · · vn00 .

Remark 5.2 The requirement v ∈ �+ in the first item of Definition 5.1 eliminates the trivial
decomposition of a word w into w = w · λn at each stage as n does not have an upper bound
in this case.

Remark 5.3 Suppose � is an ordered alphabet and w ∈ �+. Let Pnr (w) = v
nk
k v

nk−1
k−1 · · · vn00 .

For any integer 0 ≤ i ≤ k, Pnr (v
nk
k v

nk−1
k−1 · · · vnii ) = v

nk
k v

nk−1
k−1 · · · vnii .

Remark 5.4 Suppose � is an ordered alphabet and w ∈ �+. If w = uvn for some u ∈ �∗,
v ∈ �+ and positive integer n, then τ(w) ≥ n.

Example 5.5 Suppose � = {a, b, c}. Then, we have Pnr (bbabbabba) = (bba)3,
Pnr (acccabab) = ac3(ab)2 and Pnr (cbcbbaabaaba) = (cb)2ba(aba)2. In the last case, it
is understood that the rl-Parikh normal form of theword cbcbbaabaaba is (cb)2(ba)1(aba)2

and not (cb)2b1a1(aba)2.

The next theorem establishes a significant relation between the rl-Parikh normal form of
a word and the rl-Parikh normal form(s) of the Parikh matrix corresponding to that word.

Definition 5.6 Suppose � is an alphabet and w,w′ ∈ �∗ are distinct words such that w and
w′ are M-equivalent. Let Pnr (w) = v

nk
k v

nk−1
k−1 · · · vn00 and Pnr (w′) = y

m j
j y

m j−1
j−1 · · · ym0

0 . We
write w ≺ w′ if and only if there exists an integer 0 ≤ N ≤ min{ j, k} such that
(1) ni = mi and vi = yi for all integers 0 ≤ i ≤ N − 1; and
(2) either of the following holds:

(i) nN < mN ;
(ii) nN = mN = 1 and |vN | > |yN |;
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(iii) nN = mN > 1 and |vN | < |yN |.

Definition 5.7 Suppose � is an ordered alphabet. We say that the word w is maximal with
respect to the relation ≺ (or simply ≺-maximal), if and only if there exists no other word
w′ ∈ Cw such that w ≺ w′.

Theorem 5.8 Suppose� is an ordered alphabet andw ∈ �∗. LetPnr (w) = v
nk
k v

nk−1
k−1 · · · vn00 .

If w is ≺-maximal, then [��(vk)]nk [��(vk−1)]nk−1 · · · [��(v0)]n0 is an rl-Parikh normal
form of ��(w).

Proof (The notations used here follow from Definitions 4.1 and 5.1.)
Suppose w is ≺-maximal. Let A0 = ��(w), Ai = [��(vk)]nk [��(vk−1)]nk−1 · · ·

[��(vi )]ni (1 ≤ i ≤ k) and Ak+1 = Is+1. By Definition 4.1, we need to show that
(Ai+1, ��(vi ), ni ) ∈ SAi for all 0 ≤ i ≤ k.

Fix an arbitrary index i . To deduce that (Ai+1, ��(vi ), ni ) ∈ SAi , we need to show that

(i) Ai+1 · [��(vi )]ni = Ai ; (ii) ni = μ(Ai ); and (iii) σ (��(vi )) = ϑ(Ai ).

(i) We have

Ai+1 · [��(vi )]ni = [��(vk)]nk [��(vk−1)]nk−1 · · · [��(vi+1)]ni+1

︸ ︷︷ ︸
Ai+1

·[��(vi )]ni

= [��(vk)]nk [��(vk−1)]nk−1 · · · [��(vi )]ni = Ai .

(ii) We argue by contradiction. Assume ni �= μ(Ai ). By definition, if ni > μ(Ai ), then
ni > max{n ∈ N | Ai = A · Bn for some A ∈ P� and B ∈ P+

� }. This is a contradiction as
Ai = Ai+1 · [��(vi )]ni .

Assume ni < μ(Ai ). By definition, there exist A ∈ P� and B ∈ P+
� such that

Ai = A · Bμ(Ai ). Choose u ∈ �∗ and v ∈ �+ such that ��(u) = A and ��(v) = B.
Thus we have ��(uvμ(Ai )) = Ai = ��(v

nk
k v

nk−1
k−1 · · · vnii ). By Remark 5.3, it holds that

Pnr (v
nk
k v

nk−1
k−1 · · · vnii ) = v

nk
k v

nk−1
k−1 · · · vnii .

Let w′ = uvμ(Ai )v
ni−1
i−1 v

ni−2
i−2 · · · vn00 . Since uvμ(Ai ) ≡M v

nk
k v

nk−1
k−1 · · · vnii , it follows by the

right invariance of M-equivalence that

w′ = uvμ(Ai )v
ni−1
i−1 v

ni−2
i−2 · · · vn11︸ ︷︷ ︸

u′

v
n0
0 ≡M v

nk
k v

nk−1
k−1 · · · vnii v

ni−1
i−1 v

ni−2
i−2 · · · vn11 v

n0
0 = w.

Let Pnr (w′) = y
mk′
k′ y

mk′−1
k′−1 · · · ym1

1 ym0
0 . Since w′ = u′vn00 , by Remark 5.4, it follows that

m0 ≥ n0. If m0 > n0, then by Definition 5.6, we have w ≺ w′ which is a contradiction as w

is maximal. Thus m0 = n0.

Case 1 m0 = n0 = 1.
Since m0 = 1, by Definition 5.1, it follows that m1 = τ(y

m j
j y

m j−1
j−1 · · · ym1

1 ) > 1. Thus, by
Definition 5.1 again, it holds that |y0| = θ(w′) ≤ |v0|. If |y0| < |v0|, then by Definition 5.6,
we have w ≺ w′ which is a contradiction. Thus |y0| = |v0|.

Case 2 m0 = n0 > 1.
Then, by Definition 5.1, it follows that |y0| = θ(w′) ≥ |v0|. If |y0| > |v0|, then by Defini-
tion 5.6, we have w ≺ w′ which is a contradiction. Thus, |v0| = |y0|.
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In both cases, we have |v0| = |y0|. Since both v0 and y0 are suffixes of the word
v
ni
i v

ni−1
i−1 v

ni−2
i−2 · · · vn11 v

n0
0 , it follows that v0 = y0. Since n0 = m0 and v0 = y0, by simi-

lar argument as above, it can be shown thatm1 = n1 and v1 = y1. Arguing continuously like
this, we have yk = vk and mk = nk for all i − 1 ≤ k ≤ 0.

By our assumption, we have ni < μ(Ai ). Meanwhile by Definition 5.1, we have mi =
τ(uvμ(Ai )) ≥ μ(Ai ). Thus, ni < μ(Ai ) ≤ mi . By Definition 5.6, it follows that w ≺ w′
which is a contradiction. Therefore, we conclude that ni = μ(Ai ).
(iii) Note that since the second diagonal of the Parikh matrix of a word contains the Parikh
vector of that word, it follows that σ(��(x)) = |x | for any x ∈ �∗. We now argue by
contradiction. Assume σ(��(vi )) �= ϑ(Ai ).

Case 1 μ(Ai ) = ni = 1.
Consider the set


 = {σ(B) | B ∈ P+
� and Ai = A · B for some A ∈ P+

� with μ(A) �= 1}
in Definition 4.1.

Case 1.1 The set 
 is nonempty.
By Definition 4.1, it holds that ϑ(Ai ) is the minimum element of the set 
. Therefore, if
σ(��(vi )) < ϑ(Ai ), then it is a contradiction as Ai = Ai+1 · ��(vi ).

Assume σ(��(vi )) > ϑ(Ai ). Since set 
 is nonempty, there exist A, B ∈ P+
� such that

Ai = A · B withμ(A) �= 1 and σ(B) = ϑ(Ai ). Sinceμ(A) �= 1, it follows that A = A′ · B ′n′

for some A′ ∈ P� , B ′ ∈ P+
� and integer n′ > 1. Choose u′ ∈ �∗ and v′, v ∈ �+ such

that ��(u′) = A′, ��(v′) = B ′ and ��(v) = B. Thus we have ��(u′v′n′
v) = Ai =

��(v
nk
k v

nk−1
k−1 · · · vi ). Note that |v| < |vi | because

|v| = σ(��(v)) = σ(B) = ϑ(Ai ) < σ(��(vi )) = |vi |.
Let w′ = u′v′n′

vv
ni−1
i−1 v

ni−2
i−2 · · · vn00 . Since u′v′n′

v ≡M v
nk
k v

nk−1
k−1 · · · vni+1

i+1 vi , it follows by
the right invariance of M-equivalence that

w′ = u′v′n′
vv

ni−1
i−1 v

ni−2
i−2 · · · vn11 v

n0
0 ≡M v

nk
k v

nk−1
k−1 · · · vni+1

i+1 viv
ni−1
i−1 v

ni−2
i−2 · · · vn11 v

n0
0 = w.

Let Pnr (w′) = y
mk′
k′ y

mk′−1
k′−1 · · · ym0

0 . By similar argument as in (ii), it can be shown that y j = v j

and m j = n j for all 0 ≤ j ≤ i − 1. Now, as for mi , if mi > 1 = ni , then w ≺ w′ by
Definition 5.6 and thus a contradiction. On the other hand, if mi = 1, then since n′ > 1, it
follows that |yi | = θ(u′v′n′

v) ≤ |v|. Since |v| < |vi |, it follows that |yi | ≤ |v| < |vi |. By
Definition 5.6, again it follows that w ≺ w′ which is a contradiction.

Case 1.2 The set 
 is empty.
Note that Ai = [��(vk)]nk [��(vk−1)]nk−1 · · · [��(vi )]ni . Since ni = 1 and the set 
 is
empty, it follows that n j = 1 for all i ≤ j ≤ k. Meanwhile, by Remark 5.3, it holds that
Pnr (v

nk
k v

nk−1
k−1 · · · vnii ) = v

nk
k v

nk−1
k−1 · · · vnii . Therefore, since n j = 1 for all i ≤ j ≤ k, it must

be the case that i = k. That is to say, Ai = ��(vi ).
Since the set 
 is empty, by Definition 4.1, we have ϑ(Ai ) = σ(Ai ). Then, ϑ(Ai ) =

σ(Ai ) = σ(��(vi )), thus a contradiction.

Case 2 μ(Ai ) = ni > 1.’
Then, by Definition 4.1, it holds that

ϑ(Ai ) = max{σ(B) | B ∈ P+
� and Ai = A · Bni for some A ∈ P�}.
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Thus if σ(��(vi )) > ϑ(Ai ), then it is a contradiction as Ai = Ai+1 · [��(vi )]ni .
Assume σ(��(vi )) < ϑ(Ai ). Let A ∈ P� and B ∈ P+

� be such that Ai = A · Bni with
σ(B) = ϑ(Ai ). Choose u ∈ �∗ and v ∈ �+ such that��(u) = A and��(v) = B. Thuswe
have ��(uvni ) = Ai = ��(v

nk
k v

nk−1
k−1 · · · vnii ). By Remark 5.4, it holds that τ(uvni ) ≥ ni .

Assume τ(uvni ) > ni . Then we have uvni = u′v′n′
for some u ∈ �∗ and v ∈ �+ where

n′ = τ(uvni ). However note that Ai = ��(u′)·[��(v′)]n′
and n′ = τ(uvni ) > ni = μ(Ai ).

This is a contradiction by the definition of μ(Ai ). Thus τ(uvni ) = ni .
Let w′ = uvni v

ni−1
i−1 v

ni−2
i−2 · · · vn00 . Since uvni ≡M v

nk
k v

nk−1
k−1 · · · vnii , it follows by the right

invariance of M-equivalence that

w′ = uvni v
ni−1
i−1 v

ni−2
i−2 · · · vn11 v

n0
0 ≡M v

nk
k v

nk−1
k−1 · · · vnii v

ni−1
i−1 v

ni−2
i−2 · · · vn11 v

n0
0 = w.

Let Pnr (w′) = y
mk′
k′ y

mk′−1
k′−1 · · · ym0

0 . By similar argument as in (ii), it can be shown that
yk = vk and mk = nk for all 0 ≤ k ≤ i − 1. Furthermore, we have τ(uvni ) = ni =
τ(v

nk
k v

nk−1
k−1 · · · vnii ) and |v| > |vi |. Thus by Definition 5.6, it follows that w ≺ w′ which is a

contradiction.

In both cases, we obtain a contradiction. Thus σ(��(vi )) = ϑ(Ai ). Since (i), (ii) and (iii)
hold, our conclusion follows. 	


Example 5.9 Suppose � = {a < b}. Consider the Parikh matrix M stated in Example 4.5.
That matrix M represents the following M-equivalent words:

aaaaabbabaa, aaaabaabbaa, aaaababaaba, aaaabbaaaab, aaabaaababa,

aaabaabaaab, aabaaaaabba, aabaaaabaab, abaaaaaabab, baaaaaaaabb.

Rewriting the above words in their respective Parikh normal forms, we have

a5b2aba2, a4ba2b2a2, a4b(aba)2, a4b2a4b, a3ba3(ba)2

a(aab)2a3b, a2ba5b2a, a2ba2(aab)2, aba5(ab)2, ba8b2.

Notice that a4b(aba)2 and a2ba2(aab)2 are the only ≺-maximal words. Correspondingly,
the only rl-Parikh normal forms of matrix M are

[��(a)]4[��(b)][��(aba)]2 and [��(a)]2[��(b)][��(a)]2[��(aab)]2,
which are in fact the matrices (1) and (2) in Example 4.5.

The following is the converse of Theorem 5.8.

Theorem 5.10 Suppose � is an ordered alphabet with |�| = s and M ∈ P� . Assume
Bnk
k Bnk−1

k−1 · · · Bn0
0 is an rl-Parikh normal form of M. Suppose w ∈ �∗ such that w =

v
nk
k v

nk−1
k−1 · · · vn00 where for every integer 0 ≤ i ≤ k, we have vi ∈ �+ with ��(vi ) = Bi .

Then, Pnr (w) = v
nk
k v

nk−1
k−1 · · · vn00 and w is ≺-maximal.

Proof It can be shown that Pnr (w) = v
nk
k v

nk−1
k−1 · · · vn00 and w is ≺-maximal by referring to

Definitions 5.1, 4.1, Remarks 4.3, 4.4 and arguing analogously to the proof of Theorem 5.8.
However, the explicit proof of this theorem is not presented here as it resembles that of
Theorem 5.8. 	
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6 Conclusion

We have seen that Parikh matrices are versatile in the study of subword occurrences in words
which are in the form of powers. In fact, by using Theorem 3.1, one can acquire information
on the subword occurrences in arbitrary power of any word by just knowing the base word.

Definitions 4.1 and 5.1 can be modified in a way such that the decompositions commence
from left to right. Accordingly, one could term the corresponding forms obtained as the lr -
Parikh normal forms. For both Parikh matrices and words, it can then be studied to what
extent the rl-Parikh normal forms and lr -Parikh normal forms are related to each other.

Last but not least, Proposition 3.9 is an interesting observation on the study of M-
equivalence of powers ofwords,whichwewould further investigate in our future contribution.
For� = {a < b < c}, we see that there existsw ∈ �∗ satisfying the equality |Cw2 | = |Cw|2
for arbitrary |Cw| = N . For the case N = 1, consider the word w = abcb while for the
case N > 1, consider the word w = aN−1cb (notice that |Cw| = N ). In both cases, we have
|Cw2 | = |Cw|2. Thus it is intriguing to know whether the following general result holds:

Suppose � = {a < b < c} and w ∈ �∗. For any positive integer m, there exists

w ∈ �∗ satisfying the equality |Cwm | = |Cw|m for arbitrary |Cw|.
Acknowledgements The second and third authors gratefully acknowledge support for this research by a
Research University Grant No. 1011/PMATHS/8011019 of Universiti Sains Malaysia. This paper is a part of
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