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Abstract We study the hardness of deciding probabilistic termination aswell as the hardness
of approximating expected values (e.g. of program variables) and (co)variances for proba-
bilistic programs.
TerminationWe distinguish two notions of probabilistic termination: Given a program P and
an input σ…

1. …does P terminate with probability 1 on input σ? (almost-sure termination)
2. …is the expected time until P terminates on input σ finite? (positive almost-sure termi-

nation)

For both of these notions, we also consider their universal variant, i.e. given a program P ,
does P terminate on all inputs? We show that deciding almost-sure termination as well as
deciding its universal variant isΠ0

2 -complete in the arithmetical hierarchy. Deciding positive
almost-sure termination is shown to be Σ0

2 -complete, whereas its universal variant is Π0
3 -

complete.
Expected valuesGiven a probabilistic program P and a random variable f mapping program
states to rationals, we show that computing lower and upper bounds on the expected value of
f after executing P is Σ0

1 - and Σ0
2 -complete, respectively. Deciding whether the expected

value equals a given rational value is shown to be Π0
2 -complete.

Covariances We show that computing upper and lower bounds on the covariance of two
random variables is both Σ0

2 -complete. Deciding whether the covariance equals a given
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rational value is shown to be in Δ0
3. In addition, this problem is shown to be Σ0

2 -hard as well
as Π0

2 -hard and thus a “proper” Δ0
3-problem. All hardness results on covariances apply to

variances as well.

1 Introduction

Probabilistic programs [28] are imperative programswith the ability to toss a (possibly biased)
coin and proceed their execution depending on the outcome of the coin toss.Whereas an ordi-
nary program maps inputs to outputs, a probabilistic program maps inputs to a (posterior)
distribution over outputs. Probabilistic programs are used to describe randomized algo-
rithms andBayesian networks [17]. Other application areas include, amongst others, machine
learning, systems biology, security [3], planning and control, quantum computing [44], and
software-defined networks [15]. This paper focuses on the computational hardness of the
following program analyses: two notions of probabilistic termination, approximating preex-
pectations [29,31], and determining covariances on preexpectations.

Program termination Probabilistic programs are normal-looking programs, but reasoning
about their correctness is intricate. The key property of program termination exemplifies
this. Whereas a classical program either certainly terminates on a given input or not, this is
no longer true for probabilistic programs. The program

i := 0;
c := 1;
while (c �= 0){

i := i + 1;
{c := 0} [1/3] {c := 1} // flip a biased coin1

}

computes a geometric distribution with parameter 1/3, as the probability that i equals N > 0
on termination is (2/3)(N−1) · 1/3. This program does not always terminate as it admits an
infinite run in which the variable c stays one forever. The probability of this single non-
terminating run, however, is zero. The program thus does not terminate certainly (meaning
that every single of its runs terminates), but it terminates with probability one. This is referred
to as almost-sure termination [41].

If a classical, deterministic program terminates, it reaches a unique final state in finitely
many steps. This is not always true for probabilistic programs: It is possible to reach a
final state with different probabilities and with different numbers of steps. For probabilistic
programs, we are thus interested in the expected (or average) number of steps required until
termination. As the expected value of a geometric distribution is finite, the above program
terminates almost surely and needs-on average-finitely many steps to do so.

Probabilistic programs that terminate in expected finitely many steps are called positively
almost-surely terminating—a terminology introduced by Bournez and Garnier [5]. Their
inspiration for the name “positive” comes fromMarkov chain theory, more specifically from
the distinction between positively recurrent states (a state is revisited with probability one
and the expected time until a revisit is finite) and null recurrent states (a state is revisited
with probability one but the expected time to revisit is infinite) [39, Section A.2, p. 588].

The difference between almost-sure termination and positive almost-sure termination is
highlighted by the following program:

1 The left branch is executed with probability 1/3 and the right branch with probability 2/3.
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x := 10;
while (x > 0){

{x := x - 1 } [1/2] {x := x + 1} // flip a fair coin
}

This program describes a left-bounded one-dimensional random walk where the particle
starts at position 10. With probability 1/2, the variable x is decremented by one (the particle
moves to the left); with the same likelihood x is incremented by one (the particle moves to the
right). This program terminates almost-surely [41], but on average requires infinitely many
computation steps until it terminates [23, Section 7.1]. It is thus not positively almost-surely
terminating.

These two sample programs show that there are several nuances when considering ter-
mination of probabilistic programs. Reasoning about positive almost-sure termination is not
trivial. For instance, positive almost-sure termination is not preserved under sequential com-
position. Consider program P , given by

x := 1;
c := 1;
while (c �= 0){

{c := 0 } [1/2] {c := 1}; // flip a fair coin
x := 2 · x

}

which is positively almost-surely terminating for the same reason as the geometric distribution
program. The simple program Q:

while (x > 0){
x := x - 1

}

terminates certainly on any input, and does so in a finite number of steps. The program
P; Q however is not positively almost-surely terminating as it requires on average an infinite
number of steps until termination.This is due to the fact that the variable x grows exponentially
in program P , whereas P’s termination probability decays exponentially and program Q
requires k steps when x equals k.

Computational hardness of program termination Almost-sure termination is an active field
of research [9,14] with seminal papers by Hart et al. [19,41] going back to 1983. A lot of
work has been done towards automated reasoning for almost-sure termination. For instance,
[42] gives an overview of some particularly interesting examples of probabilistic logic pro-
grams and the according intuition for proving almost-sure termination. Arons et al. [1] reduce
almost-sure termination to termination of nondeterministic programs by means of a planner.
This idea has been further exploited and refined into a pattern-based approach with proto-
typical tool support [13]. Chakarov and Sankaranarayanan use ranking supermartingales to
reason about positive almost-sure termination [7]. A related approach for reasoning about
expected runtimes is presented in [24]. A technique for synthesizing ranking supermartin-
gales is presented by Chatterjee et al. [8]. Dal Lago and Grellois have presented a completely
different approach for proving almost-sure termination by means of a type system [30].

Despite the existence of several (sometimes automated) approaches to tackle almost-sure
termination, most authors claim that it must intuitively more difficult than the termination
problem for ordinary programs. Esparza et al. [13], for instance, claim that almost-sure termi-
nation is more involved to decide than ordinary termination since for the latter a topological
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argument suffices while for the former arithmetical reasoning is needed. Hence, one cannot
use standard termination provers that have been developed for ordinary programs.

There are some results on computational hardness in connection with probabilistic pro-
grams, like non-recursive-enumerability results for probabilistic rewriting logic [6] and
decidability results for restricted probabilistic programming languages [34]. The compu-
tational hardness of almost-sure termination has, however, received scant attention. As a
notable exception, [43] establishes that deciding almost-sure termination of certain concur-
rent probabilistic programs is in Π0

2 ; the second level of the arithmetical hierarchy.
In this paper, we study the computational hardness of almost-sure termination and positive

almost-sure termination. We obtain that deciding almost-sure termination of probabilistic
program P on a given input σ is Π0

2 -complete. While for ordinary programs we have a
complexity leap when moving from the non-universal to the universal halting problem, we
establish that this is not the case for probabilistic programs: Deciding universal almost-
sure termination turns out to be Π0

2 -complete too. Our hardness results are established by
reductions from the universal halting problem for ordinary, i.e. non-probabilistic, programs.
The case for positive almost-sure termination is different, however: While deciding (non-
universal) positive almost-sure termination is Σ0

2 -complete, we show that universal positive
almost-sure termination is Π0

3 -complete.

Preexpectations Establishing the correctness of probabilistic programs needs—due to their
intricate behavior even more so than ordinary programs—formal reasoning. Weakest-
precondition calculi à la Dijkstra [12] provide an important apparatus to enable formal
reasoning. To develop such calculi, one takes into account that due to its random nature,
the final state of a program on termination is not unique. Thus, rather than a mapping from
inputs to outputs (as in Dijkstra’s approach), probabilistic programs map an initial state to
a distribution on possible final states. More precisely, we have sub-distributions where the
“missing” probability mass represents the likelihood of divergence. Given a random vari-
able f and an initial distribution, a key issue now is to determine f ’s expected value on
the probabilistic program’s termination. Kozen’s seminal work on a probabilistic variant of
propositional dynamic logic [29] focuses on this. McIver andMorgan [31] extended Kozen’s
approach with (amongst others) nondeterminism. In their jargon, f is called an expectation
and—à la Dijkstra—pre- and postexpectations are the quantitative counterparts of pre- and
postconditions. To illustrate preexpectations, consider the program:

{x := 0 } [1/2] {x := 1}; // flip a fair coin
{y := 0 } [1/3] {y := 1}; // flip a biased coin

that flips a pair of coins, one being fair and one being biased. The preexpectation of the
random variable x + y (i.e. the expected value of x + y after termination of the above
program) equals 1/2 · 0 + 1/2 · 1 + 1/3 · 0 + 2/3 · 1 = 7/6. We can also capture probabilities
of events, using indicator functions. For instance, we denote by [x + y = 0] the indicator
function of the event that x plus y equals 0. The preexpectation of the random variable
[x + y = 0] equals 1/6, i.e. the probability that after termination x plus y equals 0 is 1/6. As
another example, the preexpectation of [x = y] equals 1/2. As with ordinary programs, the
difficult part of the program analysis is to deal with loops; for example by finding appropriate
loop invariants [25].

Computational hardness of computing preexpectations and covariances This paper deals
with establishing the computational hardness of approximating preexpectations of probabilis-
tic programs. Morgan [33] remarks that while partial correctness for small-scale examples is

123



On the hardness of analyzing probabilistic programs 259

not harder to prove than for ordinary programs, the case for total correctness of a probabilistic
loop must be harder to analyze. This paper gives precise classifications of the level of arith-
metical reasoning that is needed to compute preexpectations by establishing the following
results:Wefirst show that computing lower bounds on the expected value of a randomvariable
f after executing a probabilistic program P on a given input σ is Σ0

1 -complete and therefore
arbitrarily close approximations from below are computably enumerable. Computing upper
bounds, on the other hand, is shown to beΣ0

2 -complete, thus arbitrarily close approximations
from above are not computably enumerable in general. We also show that deciding whether
the expected value is at all finite isΣ0

2 -complete. Deciding whether an expected value equals
some rational is shown to be Π0

2 -complete.
We complement these results by also considering obtaining bounds on (co)variances of

probabilistic programs. We show that obtaining bounds on (co)variances is computationally
more difficult than for expected values. In particular, we prove that computing upper and
lower bounds for (co)variances of preexpectations is bothΣ0

2 -complete, thus not computably
enumerable. We also show that determining the precise values of (co)variances is in Δ0

3 and
both Σ0

2 - and Π0
2 -hard. The covariance problem is thus a problem that lies “properly” in

Δ0
3. These results rule out analysis techniques based on finite loop-unrollings as complete

approaches for reasoning about covariances.
Organization of the paper Section 2 introduces probabilistic programs and computational
and arithmetical complexity. Section 3 formally defines the various decision problems for
preexpectations and determines their hardness. We treat preexpectations before termination,
since our hardness results on terminationmake use of the results on preexpectations. Section 4
defines (positive) almost-sure termination and presents detailed proofs of their computational
hardness. Our hardness results on probabilistic termination are then applied in Sect. 5 to study
the hardness of determining covariances. Section 6 concludes the paper. This paper is based
on the conference papers [21] and [22], provides a unified treatment of these results, sharpens
some of the results, and presents detailed proofs.

2 Preliminaries

2.1 Syntax and semantics of probabilistic programs

Our development builds upon a simple programming language called probabilistic guarded
command language (pGCL) [28,31]—a variant of Dijkstra’s guarded command language
[12] endowed with probabilistic choice constructs. Its syntax is given as follows:

Definition 1 (Syntax of pGCL [28,31]) LetVar be the (countable) set of programvariables.
The set Prog of pGCL programs adheres to the grammar

Prog −→ skip | diverge | v := e | Prog; Prog | if (b) {Prog} else {Prog}
| while (b) {Prog} | {Prog} [p] {Prog} ,

where v ∈ Var, e is an arithmetical expression over Var, p ∈ [0, 1] ∩ Q, and b is a
Boolean expression over arithmetical expressions over Var. We call the set of programs
that do not contain any probabilistic choices the set of ordinary programs and denote this
set by ordProg. �
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Let us shortly go over the language constructs: skip does nothing. diverge is a program
that certainly enters an infinite loop.2 v := e assigns the value of expression e evaluated
in the current variable valuation to variable v. P1; P2 is the sequential composition of P1
and P2. if (b) {P1} else {P2} is a conditional construct guarded by a Boolean expression b.
while (b)

{
P ′} is a loop construct also guarded by a Boolean expression b. {P1} [p] {P2}

denotes a probabilistic choice between the program P1 (which is executed with probability
p) and the program P2 (which is executed with probability 1 − p). A simple operational
semantics for pGCL is given in the following. We first define what a program configuration
is.

Definition 2 (Program States and Configurations) Let

S = {σ | σ : V → Q, V ⊂ Var, V finite} .

be the set of program states. Notice that S is countable since the domain V of any state
σ : V → Q is finite. A state σ is considered a valid input for a given program P , iff all
program variables that occur in P are in the domain of σ . Notice that the domain of σ may
contain more variables than occur in P . For each program P ∈ Prog, let

SP = {σ ∈ S | σ is a valid input for P}
denote the set of valid inputs for P .3

For σ : V → Q, we denote by σ [x 	→ v] the state

σ [x 	→ v] : V ∪ {x} → Q, y 	→
{

σ(y), if x �= y

v, if x = y ,

i.e. we enlarge the domain of σ if necessary and let variable x evaluate to value v.
LetProg↓ = Prog∪{↓}∪{↓; P | P ∈ Prog}. For P ∈ Prog↓, we define SP analogously

to the case for P ∈ Prog. The set of program configurations (or simply configurations)
is given by

K = {〈P, σ, a, �〉 ∈ Prog↓ × S × ([0, 1] ∩ Q
) × {L , R}∗ | σ ∈ SP } .

Notice that the configurations in K couple only those states σ with programs P , where σ is
a valid input for P . Notice furthermore, that K is countable since it is a cartesian product
of countable sets. The last two components of a configuration are used for bookkeeping of
probabilistic choices as explained later. A configuration is a terminal configuration if it is
of the form 〈↓, σ, a, �〉. For a program P ∈ Prog and an initial state σ ∈ SP , we denote
by γP,σ the initial configuration 〈P, σ, 1, ε〉. �
Using the notion of configurations, we can now define our operational semantics in terms of
a configuration transition relation:

Definition 3 (Operational Semantics of pGCL) Let �e�σ ∈ Q and �b�σ ∈ {true, false}
be the evaluation of an arithmetical expression e and a Boolean expression b in state σ ,
respectively. Then the semantics of pGCL is given by the least relation� ⊆ K×K satisfying
the following inference rules:

(skip) 〈skip, σ, a, θ〉 � 〈↓, σ, a, θ〉
2 i.e. diverge is syntactic sugar for while (true) {skip}.
3 The notion of valid inputs is needed due to our restriction that program states have finite domains. If we drop
this restriction, the set of all program states becomes uncountable. Moreover, note that it is clearly decidable
whether a program state is valid for a given program.
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(diverge) 〈diverge, σ, a, θ〉 � 〈diverge, σ, a, θ〉
(assign) 〈v := e, σ, a, θ〉 � 〈↓, σ [v 	→ �e�σ ], a, θ〉
(seq-1)

〈P1, σ, a, θ〉 � 〈P ′
1, σ ′, a′, θ ′〉

〈P1; P2, σ, a, θ〉 � 〈P ′
1; P2, σ ′, a′, θ ′〉

(seq-2) 〈↓; P2, σ, a, θ〉 � 〈P2, σ, a, θ〉
(if-t)

�b�σ = true
〈if (b) {P1} else {P2} , σ, a, θ〉 � 〈P1, σ, a, θ〉

(if-f)
�b�σ = false

〈if (b) {P1} else {P2} , σ, a, θ〉 � 〈P2, σ, a, θ〉
(while-t)

�b�σ = true
〈while (b) {P ′} , σ, a, θ〉 � 〈P ′; while (b) {P ′}, σ, a, θ〉

(while-f)
�b�σ = false

〈while (b) {P ′} , σ, a, θ〉 � 〈↓, σ, a, θ〉
(prob-L) 〈{P1} [p] {P2}, σ, a, θ

〉 � 〈P1, σ, a · p, θ · L〉
(prob-R) 〈{P1} [p] {P2}, σ, a, θ

〉 � 〈P2, σ, a · (1 − p), θ · R〉 ,

where

σ [v 	→ �e�σ ] (v′) =
{

�e�σ , if v′ = v, and

σ
(
v′) , otherwise.

We use γ �k γ ′ in the usual sense, i.e. there exist k − 1 configurations γ1, . . . , γk ∈ K, such
that γ � γ1 � · · · � γk−1 � γ ′. �
The semantics given by the �-relation is mostly a straightforward operational semantics
except for two features: in addition to the program that is to be executed next and the current
variable valuation, each configuration also stores a sequence θ over the alphabet {L , R} that
encodes a history of the branches (Left or Right) that were chosen at the probabilistic choices
as well as the probability a that all those branches were chosen. It can easily be seen that the
graph that is spanned by the �-relation is just an unfolding of the Markov decision process
semantics for pGCL provided in [18]. An equivalent semantics has already been provided
in Kozen’s seminal work on probabilistic propositional dynamic logic (PPDL), where each
pGCL construct is shown to correspond to a PPDL formula [29].

It is a well-known result due to Kleene that for any ordinary program Q ∈ ordProg and
an associated configuration γ = 〈Q, σ, a, θ〉 the k-th successor with respect to � is unique
and computable. If, however, program P contains probabilistic choices, the k-th successor
of a configuration is not necessarily unique, because at various points of the execution the
program must choose a left or a right branch with some probability. However, if we resolve
those choices by providing a sequence of symbols w over the alphabet {L , R} that encodes
for all probabilistic choices which occur whether the Left or the Right branch shall be chosen
at a branching point, we can construct a computable function that computes a unique k-th
successor with respect to sequence w. Notice that for this purpose a sequence of finite length
is sufficient. We obtain the following:
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Proposition 1 (The Successor Configuration Function) Let K⊥ = K ∪ {⊥}. There exists a
computable total function T : N × K⊥ × {L , R}∗ → K⊥, such that

T0(γ, w) =
{

γ, if w = ε,

⊥, otherwise,

Tk+1(γ, w) =

⎧
⎪⎨

⎪⎩

Tk(γ ′, w′), if γ = 〈P, σ, a, θ
〉 � 〈P ′, σ ′, a′, θ · b〉 = γ ′,

with w = b · w′ and b ∈ {L , R, ε},
⊥, otherwise.

Hence Tk(γ, w) returns a successor configuration γ ′ �= ⊥, if γ �k γ ′ and the inference
rules for probabilistic choices (prob-L) and (prob-R) have been applied exactly |w| times to
resolve all probabilistic choices in γ according to w. Otherwise Tk(γ, w) returns ⊥. Note
in particular that for both the inference of a terminal configuration 〈↓, σ, a, θ〉 within less
than k steps as well as the inference of a terminal configuration through less or more than
|w| probabilistic choices, Tk(γ, w) results in ⊥.

2.2 Computational and arithmetical complexity

Our hardness results will be stated in terms of levels in the arithmetical hierarchy—a notion
for classifying sets according to the complexity required to define them in the language of
first-order Peano arithmetic.4 We first briefly recall this concept:

Definition 4 (Arithmetical Hierarchy [26,35]) The class Σ0
n is defined as5

Σ0
n ={

A
∣∣ A = {

x
∣∣ ∃y1 ∀y2 ∃y3 · · · ∃/∀yn : (x, y1, y2, y3, . . . , yn) ∈ R

}
,

R is a decidable relation
}

,

the class Π0
n is defined as

Π0
n ={

A
∣∣ A = {

x
∣∣ ∀y1 ∃y2 ∀y3 · · · ∃/∀yn : (x, y1, y2, y3, . . . , yn) ∈ R

}
,

R is a decidable relation
}

,

and the class Δ0
n is defined as Δ0

n = Σ0
n ∩ Π0

n , for every n ∈ N. Multiple consecutive
quantifiers of the same type can be contracted into one quantifier of that type, so the number
n refers to the number of necessary quantifier alternations rather than to the actual number
of quantifiers occurring in a defining formula. A set A is called arithmetical, iff A ∈ Γ 0

n ,
for some Γ ∈ {Σ, Π, Δ} and n ∈ N. The inclusion diagram

Σ0
n

Π0
n

⊂
⊂

Δ0
n+1

⊂
⊂

Σ0
n+1

Π0
n+1

with Σ0
n �= Π0

n holds for every n ≥ 1, thus the arithmetical sets form a strict hierarchy.
Furthermore, note that Σ0

0 = Π0
0 = Δ0

0 = Δ0
1 is the class of the decidable sets and Σ0

1 is
the class of the computably enumerable sets. �
4 Note that we allow the values of the quantified variables to be drawn from a computable domain other than
N that could be encoded in the natural numbers such as Q, the set of syntactically correct programs, etc.
5 The last quantifier is universal if n is even and existential if n is odd.
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The notion of the arithmetical hierarchy is of utter utility: Besides establishing a strong con-
nection between computability and logic, stating precisely at which level in the arithmetical
hierarchy a decision problem must be placed amounts to giving a measure of just “how
unsolvable” the decision problem is [10].

In order to establish results of the form “problemA is at least as hard to solve as problem
B”, we make use of two notions called many-one reducibility and many-one completeness.

Definition 5 (Many-One Reducibility and Completeness [11,35,38]) LetA and B be arith-
metical sets and let X and Y be some appropriate universes such that A ⊆ X and B ⊆ Y . A
is called many-one reducible (or simply reducible) to B, denoted

A ≤m B ,

iff there exists a computable function f : X → Y , such that

∀ x ∈ X : x ∈ A ⇐⇒ f (x) ∈ B .

If f is a function such that f reduces A to B, we denote this by f : A ≤m B. Note that ≤m
is transitive.

Given Γ ∈ {Σ, Π, Δ}, a set A is called many-one complete for Γ 0
n (or simply Γ 0

n -
complete) iff both A is a member of Γ 0

n and A is Γ 0
n -hard, meaning C ≤m A, for any

set C ∈ Γ 0
n . Note that if A is Γ 0

n -complete and A ≤m B, then B is necessarily Γ 0
n -hard.

Furthermore, note that if A is Σ0
n -complete, then A ∈ Σ0

n \ Π0
n . Analogously if A is Π0

n -
complete, then A ∈ Π0

n \ Σ0
n . �

Many well-known and natural problems are complete for some level of the arithmetic hier-
archy. Arguably one of the most prominent problems is the halting problem for ordinary
programs:

Theorem 1 (TheHaltingProblem [36]) Thehalting problem is the problemwhether an ordi-
nary program terminates on a given valid input. The according problem setH ⊂ ordProg×S

is defined as

(P, σ ) ∈ H iff σ ∈ SP and ∃ k ∈ N ∃ σ ′ ∈ S : Tk(γP,σ , ε) = 〈↓, σ ′, 1, ε〉 .

The complement of the halting problem is the problemwhether a program does not terminate
on a given valid input. It is given by

(P, σ ) ∈ H iff σ ∈ SP and (P, σ ) /∈ H .

H is Σ0
1 -complete and H is Π0

1 -complete.

The halting problem is the problem of whether a given program terminates on a given valid
input. Its universal version is the problem of whether a given program terminates on all valid
inputs.

Theorem 2 (The Universal Halting Problem [36]) The universal halting problem is the
problem whether an ordinary program terminates on all possible valid inputs. The according
problem set UH ⊂ ordProg is defined as

P ∈ UH iff ∀ σ ∈ SP : (P, σ ) ∈ H .

The complement of UH is given by UH = ordProg \ UH.
UH is Π0

2 -complete and UH is Σ0
2 -complete.
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We observe that we have a complexity jump from H to UH, namely from Σ0
1 to Π0

2 , i.e. a
jump one level up and to the “other side” of the hierarchy.

Since we go as high as the third level of the arithmetical hierarchy, we introduce a third
Σ0

3 -complete problem: the problem of whether the set of valid inputs on which a given
ordinary program does not terminate is finite.

Theorem 3 (The Cofiniteness Problem [36]) The cofiniteness problem is the problem of
deciding whether the set of valid inputs on which an ordinary program P terminates is
cofinite.6 The according problem set COF ⊂ ordProg is given by7

P ∈ COF iff {σ ∈ SP | (P, σ ) ∈ H} is cofinite.
Let COF = ordProg \ COF denote the complement of COF .

COF is Σ0
3 -complete and COF is Π0

3 -complete.

3 The hardness of approximating preexpectations

In this section we investigate the computational hardness of approximating expected values
of random variables assigning numbers to program states. For such random variables we
want to know the expected value after program execution. We work with a certain class of
random variables commonly called expectations [31]:

Definition 6 (Expectations [20,31]) The set of expectations is defined as

E =
{
f

∣∣∣ f : S → Q≥0, f computable
}

.

Notice that E is countable as there are only countably many computable functions. �
Given a probabilistic program P , initial state σ , and expectation f , we would like to answer
the question:

“What is the expected value of f after termination of P on input σ?”

For this problem, f is referred to as a postexpectation and the aforementioned expected value
of f is referred to as the preexpectation.8 We have restricted to computable postexpectations
since this (a) makes the set E countable and (b) there is no hope of determining the value of
a non-computable postexpectation in a final state.

In order to express preexpectations in our formalism,we need—in addition to the successor
configuration function T—another computable operation:

Proposition 2 There exists a total computable function ℘ : K⊥ × E → Q≥0, with

℘(γ, f ) =
{
f (σ ) · a, if γ = 〈↓, σ, a, 〉,
0, otherwise,

where represents an arbitrary value in {L , R}∗.

6 In this context, a set is cofinite iff its relative complement, i.e. its complementwith respect to some appropriate
universe, is finite.
7 i.e. iff SP \ {σ ∈ SP | (P, σ ) ∈ H} is finite.
8 This is because we ask for an a-priori expected value with respect to an initial state.

123



On the hardness of analyzing probabilistic programs 265

℘ takes a configuration γ and an expectation f and returns the probability of reaching γ

multiplied with the value of f in the configuration γ (this is where computability of f is
needed). It does so only if the provided configuration γ is a terminal configuration. Otherwise
it returns 0.

We can now define preexpectations using T and ℘ as follows:

Definition 7 (Preexpectations) Let f ∈ E and A≤k = ⋃k
i=0 A

i for a finite alphabet A. Then
the preexpectation of P with respect to postexpectation f in initial state σ ∈ SP is given
by

EP,σ ( f ) =
∞∑

k=0

∑

w∈{L , R}≤k

℘
(
Tk(γP,σ , w), f

)
.

For later use, we also define the notation Ek
P,σ ( f ) for the k-th summand of the outer sum of

EP,σ ( f ):

Ek
P,σ ( f ) =

∑

w∈{L , R}≤k

℘
(
Tk(γP,σ , w), f

)
. (�)

The preexpectation EP,σ ( f ) as defined here coincides with the weakest preexpectation
wp.P. f (σ ) à laMcIver andMorgan [31] for fully probabilistic programs, which in turn coin-
cides with Kozen’s [29] eventuality operation 〈P〉 f in probabilistic propositional dynamic
logic. In the above definition for EP,σ ( f ), we sum over all possible numbers of inference
step lengths k and sum over all possible probabilistic-choice-resolving sequences from length
0 up to length k. Using ℘ we filter out the terminal configurations γ and sum up the values
of ℘(γ, f ).

In order to investigate the complexity of approximating EP,σ ( f ), we define three sets:
LEXP , which relates to the set of rational lower bounds of EP,σ ( f ), REXP , which relates
to the set of rational upper bounds, and EXP which relates to the value of EP,σ ( f ) itself:

Definition 8 (Approximation Problems for Preexpectations) The problem sets LEXP,

REXP, EXP ⊂ Prog × S × E × Q≥0 are defined as

(P, σ, f, q) ∈ LEXP iff σ ∈ SP and q < EP,σ ( f ) ,

(P, σ, f, q) ∈ REXP iff σ ∈ SP and q > EP,σ ( f ) , and

(P, σ, f, q) ∈ EXP iff σ ∈ SP and q = EP,σ ( f ) . (�)

The computational hardness of approximating preexpectations coincides with the hardness
of deciding these problem sets. The first hardness result we establish is theΣ0

1 -completeness
of LEXP . For that, we show that LEXP is a Σ0

1 problem and then show by a reduction from
the (non-universal) halting problem for ordinary programs that LEXP is Σ0

1 -hard

Theorem 4 LEXP is Σ0
1 -complete.

Proof For proving themembershipLEXP ∈ Σ0
1 , first notice that σ ∈ SP is clearly decidable

and then consider the following:

(P, σ, f, q) ∈ LEXP
⇐⇒ σ ∈ SP ∧ q < EP,σ ( f ) (Definition 8)

⇐⇒ σ ∈ SP ∧ q <

∞∑

k=0

Ek
P,σ ( f ) (Definition 7)
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q

∃y −→

EP,σ (v)

(P, σ, v, q) ∈ LEXP
q

←− ∀ y −→

∃ δ > 0
EP,σ (v)

(P, σ, v, q) ∈ REXP

Fig. 1 Schematic depiction of the formulae defining LEXP (left diagram) and REXP (right dia-
gram), respectively. In each diagram, the solid line represents the monotonically increasing graph of∑y

k=0
∑

w∈{L , R}≤k ℘
(
Tk (γP,σ , w), v

)
plotted over increasing y

⇐⇒ σ ∈ SP ∧ ∃ y : q <

y∑

k=0

Ek
P,σ ( f ) (all summands are positive)

�⇒ LEXP ∈ Σ0
1 (the above is a Σ0

1 -formula)

Figure 1 (left) gives an intuition on the resultingΣ0
1 -formula:With increasingmaximumcom-

putation length y more and more probability mass of the expected value can be accumulated
until eventually a probability mass strictly larger than q has been accumulated.

It remains to show that LEXP is Σ0
1 -hard by constructing a computable function r such

that r : H ≤m LEXP . This function r takes an ordinary program Q ∈ ordProg and variable
valuation σ as its input and computes (P, σ, 1, 1/2), where P is the following probabilistic
program:

{skip} [1/2] {Q}

Correctness of the reduction: There are two cases: (1) Q terminates on input σ . Then P
terminates with probability 1 and the expected value of 19 after executing the program P on
input σ is thus 1. As 1/2 < 1, we have that (P, σ, 1, 1/2) ∈ LEXP .

(2) Q does not terminate on input σ . Then P terminates with probability 1/2 and the
expected value of 1 after executing the program P on input σ is thus 1/2·1 = 1/2 since the right
branch contributes 0 to the expected value of 1. As 1/2 �< 1/2, we have that (P, σ, 1, 1/2) /∈
LEXP . ��
As an immediate consequence of Theorem 4, LEXP is computably enumerable (cf. Defini-
tion 5). This means that all lower bounds for preexpectations can be effectively enumerated
by some algorithm. Now, if upper bounds were computably enumerable as well, then preex-
pectations would correspond to computable reals. However, we show that the contrary holds,
because REXP is Σ0

2 -complete. Thus REXP /∈ Σ0
1 , i.e. upper bounds are not computably

enumerable.
We now establish the Σ0

2 -hardness ofREXP reduction from UH, i.e. the complement of
the universal halting problem for ordinary programs (see Theorem 2).

To simplify notation, we define the following abbreviation (function ℘ is introduced in
Proposition 2):

α : K⊥ → Q≥0, γ 	→ ℘(γ, 1) .

9 I.e. the postexpectation that maps every program state to constantly 1.
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Intuitively, α can be used to express termination probabilities, as we will see later.
Overall we get the following hardness result for approximating preexpectations from

above:

Theorem 5 REXP is Σ0
2 -complete.

Proof For proving the membership REXP ∈ Σ0
2 , consider the following:

(P, σ, f, q) ∈ REXP
⇐⇒ σ ∈ SP ∧ q > EP,σ ( f ) (Definition 8)

⇐⇒ σ ∈ SP ∧ q >

∞∑

k=0

Ek
P,σ ( f ) (Definition 7)

⇐⇒ σ ∈ SP ∧ ∃ δ > 0 ∀ y : q − δ >

y∑

k=0

Ek
P,σ ( f )

�⇒ REXP ∈ Σ0
2 (the above is a Σ0

2 -formula)

Figure 1 (right) gives an intuition on the resulting Σ0
2 -formula: No matter what maximum

computation length y we allow and thereby no matter how much probability mass of the
actual expected value we accumulate, this probability mass is strictly smaller than q (ensured
by the safety margin δ).

It remains to show that REXP is Σ0
2 -hard: We do this by constructing a function

r : UH ≤m REXP: This function r takes an ordinary program Q ∈ ordProg as its input
and computes the tuple (P, σ [v 	→ 0], v, 1), where σ is an arbitrary but fixed input, and
P ∈ Prog is the following probabilistic program:

i := 0;
{c := 0} [1/2] {c := 1};

while (c �= 0){ // compute geometric distribution of i
i := i + 1; // with parameter 0.5
{c := 0} [1/2] {c := 1}

};

k := 0;
{c := 0} [1/2] {c := 1};

while (c �= 0){ // compute geometric distribution of k
k := k + 1; // with parameter 0.5
{c := 0} [1/2] {c := 1}

};

v := 0;
T Q ,

where T Q is an ordinary program that computes10 α
(
Tk

(
γQ,gQ(i), ε

)) · 2k+1 and stores the
result in the variable v, and gQ : N → SQ is some computable enumeration of valid inputs

10 The ε in the Tk (. . . , ε) comes from the fact that Tk is supposed to simulate k steps of an ordinary program.
The ε thus stands for an empty sequence of resolutions of probabilistic choices.
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for Q. Thus α
(
Tk

(
γQ,gQ(i), ε

)) ·2k+1 returns 2k+1 if and only if Q terminates on input gQ(i)
after exactly k steps (otherwise it returns 0).

Correctness of the reduction: The two while-loops generate independent geometric dis-
tributions with parameter 1/2 on i and k, respectively, so the probability of generating exactly
the numbers i and k is 1/2i+1 · 1/2k+1 = 1/2i+k+2. The expected valuation of v after executing
the program P is hence independent of the input σ and given by

∞∑

i=0

∞∑

k=0

1

2i+k+2 · α

(
Tk

(
γQ,gQ(i), ε

))
· 2k+1 .

Since for each input, the number of steps until termination of Q is either unique or does
not exist, the formula for the expected outcome reduces to

∑∞
i=0

1/2i+1 = 1 if and only if
Q terminates on every input after some finite number of steps. Thus if there exists an input
on which Q does not eventually terminate, then (P, σ [v 	→ 0], v, 1) ∈ REXP as then the
preexpectation of v is strictly less than 1. If, on the other hand, Q does terminate on every
input, then this preexpectation is exactly 1 and hence (P, σ [v 	→ 0], v, 1) /∈ REXP . ��
As mentioned before, a consequence of Theorem 4 and Theorem 5 for approximating preex-
pectations is that upper bounds are not computable at all whereas lower bounds are at least
computably enumerable. Upper bounds would be computably enumerable if we had access to
an oracle for the (non-universal) halting problem H for ordinary programs. Given a rational
q it would then be semi-decidable whether q is an upper bound when provided access to an
oracle forH. Next, we establish that this is not the case for the problem of deciding whether q
equals exactly the value of the preexpectation. Formally, we establish the following hardness
result:

Theorem 6 EXP is Π0
2 -complete.

Proof For proving the membership EXP ∈ Π0
2 consider the following: By Theorem 5 there

exists a decidable relation R, such that

(P, σ, v, q) ∈ REXP iff ∃ r1 ∀ r2 : (r1, r2, P, σ, v, q) ∈ R .

Furthermore, by Theorem 4 there exists a decidable relation L, such that

(P, σ, v, q) ∈ LEXP iff ∃ � : (�, P, σ, v, q) ∈ L .

Let ¬R and ¬L be the (decidable) negations of R and L, respectively. Then:

(P, σ, v, q) ∈ EXP
⇐⇒ σ ∈ SP ∧ q = EP,σ (v) (Definition 8)

⇐⇒ σ ∈ SP ∧ q ≤ EP,σ (v) ∧ q ≥ EP,σ (v)

⇐⇒ σ ∈ SP ∧ ¬(
q > EP,σ (v)

) ∧ ¬(
q < EP,σ (v)

)

⇐⇒ σ ∈ SP ∧ ¬(∃ r1 ∀ r2 : (r1, r2, P, σ, v, q) ∈ R
) ∧ ¬(∃ � : (�, P, σ, v, q) ∈ L

)

⇐⇒ σ ∈ SP ∧ (∀ r1 ∃ r2 : (r1, r2, P, σ, v, q) ∈ ¬R
) ∧ (∀ � : (�, P, σ, v, q) ∈ ¬L

)

⇐⇒ σ ∈ SP ∧ ∀ r1 ∀ � ∃ r2 : (r1, r2, P, σ, v, q) ∈ ¬R ∧ (�, P, σ, v, q) ∈ ¬L
�⇒ EXP ∈ Π0

2 (the above is a Π0
2 -formula)

It remains to show thatEXP isΠ0
2 -hard.Wedo this byproving UH ≤m EXP . Reconsider the

reduction function r from the proof of Theorem 5: Given an ordinary program Q, r computes

123



On the hardness of analyzing probabilistic programs 269

the tuple (P, σ [v 	→ 0], v, 1), where P is a probabilistic program with EP,σ (1) = 1 if
and only if Q terminates on all inputs. Thus Q ∈ UH iff (P, σ [v 	→ 0], v, 1) ∈ EXP and
therefore r : UH ≤m EXP . ��
Apart from approximating preexpectations, we consider the question whether a preexpecta-
tion is finite. This is formalized by the problem set FEXP:

Definition 9 The problem set FEXP ⊂ Prog × S × E is defined as

(P, σ, f ) ∈ FEXP iff σ ∈ SP and EP,σ ( f ) < ∞. (�)

Since deciding whether a given rational number is an upper bound of a preexpectation is
Σ0

2 -complete (cf. Theorem 5), it is not surprising that deciding finiteness of preexpectations
is also in Σ0

2 . It is in fact Σ0
2 -complete as well.

Theorem 7 FEXP is Σ0
2 -complete.

Proof For proving the membership FEXP ∈ Σ0
2 , consider the following:

(P, σ, f ) ∈ FEXP
⇐⇒ σ ∈ SP ∧ EP,σ ( f ) < ∞
⇐⇒ σ ∈ SP ∧ ∃ q : EP,σ ( f ) < q

⇐⇒ ∃ q : σ ∈ SP ∧ EP,σ ( f ) < q

⇐⇒ ∃ q : (P, σ, f, q) ∈ REXP Definition 8)

�⇒ FEXP ∈ Σ0
2 (Theorem 5, the above is a Σ0

2 -formula)

The proof that FEXP is Σ0
2 -hard is deferred to Lemma 1, because we use a reduction from

the positive almost-sure termination problem (Definition 11), which is studied in detail in
the next section. ��

This concludes our study of the computational hardness of approximating preexpectations.
In the next section, we study computational aspects of analyzing the termination behavior of
probabilistic programs.

4 The hardness of deciding probabilistic termination

We now turn towards the computational hardness of analyzing the termination behavior
of probabilistic programs. We are interested in two notions: The termination probability
and finiteness of the expected runtime of the program. Note that these two notions do not
coincide but the latter implies the former. Using the function α as defined earlier, we can
capture the termination probability and the expected runtime of a probabilistic program on a
given input as follows: Recall γP,σ = 〈P, σ, 1, ε〉 (see Definition 2) and A≤k = ⋃k

i=0 A
i

(see Definition 7). Then we define the following:

Definition 10 (Termination Probabilities and Expected Runtimes) Let P ∈ Prog and σ ∈
SP . Then

1. the probability that P terminates on σ is given by

PrP,σ (↓) = EP,σ (1) ,
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2. the expected runtime of P on σ is given by

EP,σ (↓) =
∞∑

k=0

⎛

⎝1 −
∑

w∈{L , R}≤k

α
(
Tk(γP,σ , w)

)
⎞

⎠ . (�)

For the termination probability PrP (↓), we sum up the probabilities of all reachable final
configurations. This coincides with computing the expected value of the constant function
λσ . 1. As for EP,σ (↓), it is pointed out in [14] that the expected runtime of P on σ can be
expressed as

EP,σ (↓) =
∞∑

k=0

Pr(“P runs for more than k steps on σ”)

=
∞∑

k=0

(
1 − Pr(“P terminates within k steps on σ”)

)
.

Regarding the termination probability of a probabilistic program, the case of almost-sure
termination is of special interest: A program P terminates almost-surely on input σ iff P
terminates on σ with probability 1. Furthermore, we say that P terminates positively almost-
surely on σ iff the expected runtime of P on σ is finite. Lastly, we say that P terminates
universally (positively) almost-surely, if it does so on all possible inputsσ . Notice that almost-
sure termination does not imply positive almost-sure termination. The reversed implication,
however, is true. Thus positive almost-sure termination is the stronger notion.

For analyzing the hardness of deciding (universal) (positive) almost-sure termination, we
formally define the according problem sets:

Definition 11 (Probabilistic Termination Problem Sets) The setsAST ,PAST , UAST , and
PAST are defined as follows:

(P, σ ) ∈ AST iff σ ∈ SP and PrP,σ (↓) = 1

(P, σ ) ∈ PAST iff σ ∈ SP and EP,σ (↓) < ∞
P ∈ UAST iff ∀ σ ∈ SP : (P, σ ) ∈ AST

P ∈ UPAST iff ∀ σ ∈ SP : (P, σ ) ∈ PAST

Notice that both PAST ⊂ AST and UPAST ⊂ UAST hold. �
The problem of (universal) almost-sure termination is often considered as the probabilistic
counterpart to the (universal) halting problem for ordinary programs. Supported by our hard-
ness results,wewill, however, arguewhyperhaps (universal) positive almost-sure termination
is a more suitable probabilistic analog.

As a first hardness result, we establish that deciding almost-sure termination of a program
on a given input is Π0

2 -complete:

Theorem 8 AST is Π0
2 -complete.

Proof For proving AST ∈ Π0
2 , we show AST ≤m EXP . For that, consider the following

function r which takes a probabilistic program Q and a state σ as its input and computes the
tuple (Q, σ, 1, 1).

Correctness of the reduction:The expected value of postexpectation 1 after executing P on
input σ is exactly the termination probability, seeDefinition 10. Thus (P, σ, 1, 1) ∈ EXP iff
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(Q, σ ) ∈ AST and therefore r : AST ≤m EXP . Since EXP isΠ0
2 -complete byTheorem6,

it follows that AST ∈ Π0
2 .

It remains to show that AST is Π0
2 -hard. For that we reduce the Π0

2 -complete universal
halting problem to AST . Our reduction function r ′ takes an ordinary program Q as its
input and computes the pair (P ′, σ ), where σ is some arbitrary input in SP ′ and P ′ is the
probabilistic program

i := 0;
{c := 0} [1/2] {c := 1};

while (c �= 0){ // compute geometric distribution of i
i := i + 1; // with parameter 0.5
{c := 0} [1/2] {c := 1}

};

SQ(i) ,

where SQ(i) is an ordinary program that regardless of its input σ simulates the program Q
on input gQ(i), and gQ : N → SQ is some computable enumeration of valid inputs for Q.

Correctness of the reduction: The while-loop in P ′ establishes a geometric distribution
with parameter 1/2 on i and hence a geometric distribution on all possible inputs for Q.
After the while-loop, the program Q is simulated on the input generated probabilistically
in the while-loop. Obviously then the entire program P ′ terminates with probability 1 on
any arbitrary input σ , i.e. terminates almost-surely on σ , if and only if the simulation of Q
terminates on every input. Thus Q ∈ UH if and only if (P ′, σ ) ∈ AST . ��
While for ordinary programs there is a complexity gap between the halting problem for some
given input and the universal halting problem (Σ0

1 -complete vs. Π0
2 -complete), we establish

that there is no such gap for almost-sure termination, i.e. UAST is exactly as hard to decide
as AST :

Theorem 9 UAST is Π0
2 -complete.

Proof For proving UAST ∈ Π0
2 , consider that, by Theorem 8, there exists a decidable

relation R, such that

(P, σ ) ∈ AST iff ∀ y1 ∃ y2 : (y1, y2, P, σ ) ∈ R .

By that we have that

P ∈ UAST iff ∀ σ ∈ SP ∀ y1 ∃ y2 : (y1, y2, P, σ ) ∈ R

which is a Π0
2 -formula and therefore UAST ∈ Π0

2 .
It remains to show that UAST is Π0

2 -hard. This can be done by proving AST ≤m
UAST as follows: On input (Q, σ ) the reduction function r : AST ≤m UAST computes
a probabilistic program P that first initializes all variables according to σ and then executes
Q. This reduction is clearly correct. ��
As mentioned above, this result is sort of opposed to the result for ordinary programs.
There a Σ0

1 -formula expressing termination on a certain input is prepended with a universal
quantifier over all possible inputs yielding aΠ0

2 -formula. The reason for themissing complex-
ity gap between non-universal and universal almost-sure termination is that non-universal
almost-sure termination is already a Π0

2 -property, basically due to the inherent universal
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quantification over all resolutions of probabilistic choices. Prepending this Π0
2 -formula with

another universal quantifier over all possible inputs does not increase the complexity, as two
universal quantifiers can computably be contracted to a single one yielding again a Π0

2 -
formula.

We now investigate the computational hardness of deciding positive almost-sure termina-
tion: It turns out that decidingPAST isΣ0

2 -complete. Thus,PAST becomes semi-decidable
when given access to an H-oracle whereas AST does not. We establish Σ0

2 -hardness by a
reduction from UH. The implications of this reduction are counterintuitive as it means that
the reduction function effectively transforms each ordinary program that does not termi-
nate on all inputs into a probabilistic program that does terminate within an expected finite
number of steps.

Theorem 10 PAST is Σ0
2 -complete.

Proof For proving PAST ∈ Σ0
2 , consider the following:

(P, σ ) ∈ PAST
⇐⇒ σ ∈ SP ∧ ∞ > EP,σ (↓) (Definition 11)

⇐⇒ σ ∈ SP ∧ ∃ c : c > EP,σ (↓)

⇐⇒ σ ∈ SP ∧ ∃ c : c >

∞∑

k=0

⎛

⎝1 −
∑

w∈{L , R}≤k

α
(
Tk(σP,σ , w)

)
⎞

⎠ (Definition 10)

⇐⇒ σ ∈ SP ∧ ∃ c ∀ � : c >

�∑

k=0

⎛

⎝1 −
∑

w∈{L , R}≤k

α
(
Tk(σP,σ , w)

)
⎞

⎠

�⇒ PAST ∈ Σ0
2 (the above is a Σ0

2 -formula)

It remains to show that PAST is Σ0
2 -hard. For that, we use a reduction function r : UH ≤m

PAST with r(Q) = (P, σ ),whereσ is an arbitrary valid input for P and P is the probabilistic
program

c := 1; i := 0; x := 0; term := 0;
InitQ(i);

while (c �= 0){
StepQ(i);

if (term = 1){
Cheer(x);
i := i + 1; term := 0;
InitQ(i)

} else {skip};

x := x + 1;
{c := 0} [1/2] {c := 1}

} ,

where InitQ(i) is an ordinary program that initializes a simulation of the program Q on input
gQ(i) (recall the enumeration gQ from Theorem 5), StepQ(i) is an ordinary program that
does one single (further) step of that simulation and sets term to 1 if that step has led to
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termination of Q, and Cheer(x) is an ordinary program that executes 2x many effectless
computation steps. We refer to this as “cheering”.11

Correctness of the reduction: Intuitively, the program P starts by simulating Q on input
gQ(0). During the simulation, it—figuratively speaking—gradually looses interest in further
simulating Q by tossing a coin after each simulation step to decide whether to continue the
simulation or not. If eventually P finds that Q has terminated on input gQ(0), it “cheers” for
a number of steps exponential in the number of coin tosses that were made so far, namely for
2x steps. P then continues with the same procedure for the next input gQ(1), and so on.

The variable x keeps track of the number of loop iterations (starting from 0), which equals
the number of coin tosses. The x-th loop iteration takes place with probability 1/2x .

Notice that the simulation of a single step of the ordinary program Q, i.e. the program
StepQ(i), requires (in our runtimemodel) atmost a number linear in the number of instructions
in program Q. Since the size of program Q is fixed in the construction of program P , we
consider the time required to execute StepQ(i) to be constant.12

One loop iteration then consists of a constant number c1 of steps in case Q did not terminate
on input gQ(i) in the current simulation step. Such an iteration therefore contributes c1/2x

to the expected runtime of P . In case Q did terminate, a loop iteration takes a constant
number c2 of steps plus 2x additional “cheering” steps. Such an iteration therefore contributes
c2+2x/2x = c2/2x + 1 > 1 to the expected runtime. Overall, the expected runtime EP,σ (↓)

roughly resembles a geometric series with exponentially decreasing summands. However,
for each time the program Q terminates on an input, a summand of the form c2/2x +1 appears
in this series. There are now two cases:

(1) Q ∈ UH, so there exists some valid input σ with minimal i such that gQ(i) = σ

on which Q does not terminate. In that case, summands of the form c2/2x + 1 appear only
i − 1 times in the series and therefore, the series converges—the expected runtime is finite,
so (P, σ ) ∈ PAST .

(2) Q /∈ UH, so Q terminates on every input. In that case, summands of the form c2/2x +1
appear infinitely often in the series and therefore, the series diverges—the expected runtime
is infinite, so (P, σ ) /∈ PAST . ��

We are now in a position to present the missing part of the proof of Theorem 7: We show
that deciding FEXP , i.e. the question whether a preexpectation computed by a probabilistic
program for a given input is finite, is Σ0

2 -hard by reduction from the positive almost-sure
termination problem.

Lemma 1 FEXP is Σ0
2 -hard.

Proof We use a reduction function r : PAST ≤m FEXP that is given by r(P, σ ) =
(P ′, σ ′, v), where σ ′ is an arbitrary valid input for P ′ and P ′ is the probabilistic program

c := 1; k := 0;

while (c �= 0){
k := k + 1;

11 The program P cheers as it was able to prove the termination of Q on input gQ(i).
12 The runtime of a program corresponds to the number of execution steps in our operational semantics of
pGCL (Definition 3). If more fine-grained runtime models are considered that take, for instance, the size
of numbers into account, a single program step can be simulated in at most polynomial time on a Turing
machine. To this end, we first translate pGCL programs to programs on a random access machine and translate
the resulting program to Turing machines (cf. [37, Theorem 2.5]). In particular, our reduction remains valid
for such more fine-grained runtime models.

123



274 B. L. Kaminski et al.

{c := 0} [1/2] {c := 1}
}

v := 0;
TP(k) ,

where TP(k) is an ordinary program that computes

Pr(“P terminates after exactly k steps on input σ”) · k · 2k (†)

and stores this value in variable v.
Correctness of the reduction: Regardless of its input σ ′, the while loop of pro-

gram P ′ establishes a geometric distribution on variable k such that the probability that
k = i is given by 1/2i . This while loop terminates almost-surely. Thereafter, the pro-
gram computes (†). Due to the geometric distribution on k, the program in effect stores
Pr(“P terminates after exactly i steps on input σ”) · i · 2i in variable v with probability 1/2i .
The expected value of variable v is thus given by

EP,σ (v) =
∞∑

i

Pr(“P terminates after exactly i steps on input σ”) · i · 2i
2i

=
∞∑

i

Pr(“P terminates after exactly i steps on input σ”) · i

= EP,σ (↓) .

We see that the expected value of v after executing P ′ on an arbitrary input equals exactly the
expected runtime of P on input σ and this expected value is infinite if and only if the expected
runtime is infinite. Thus, we have (P, σ ) ∈ PAST iff r(P, σ ) = (P ′, σ ′, v) ∈ FEXP and
hence r : PAST ≤m FEXP . ��
It is noteworthy that we cannot just annotate the given program with a runtime counter
and determine the expected value of that runtime counter. In order to see that, consider the
program while (true) {skip} and its annotated version

counter := 0;
while (true){

counter := counter + 1;
skip

} .

The expected value of variable counter is 0, since the program terminates with probability
0 and there is no probability mass whatsoever that could contribute to the expected value of
counter. On the other hand, the expected runtime of while (true) {skip} is clearly ∞. The
expected value of the runtime counter is thus unequal to the expected runtime and therefore
we need the more involved construction presented in the proof of Lemma 1.

Coming back to termination problems, the last problem we study is universal positive
almost-sure termination. In contrast to the non-positive version, we do have a complexity
leap when moving from non-universal to universal positive almost-sure termination. We will
establish that UPAST is Π0

3 -complete and thus strictly harder to decide than UAST . We do
this by a reduction from COF , the complement of the cofiniteness problem (see Theorem 3):
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Theorem 11 UPAST is Π0
3 -complete.

Proof By Theorem 10, there exists a decidable relation R, such that

(P, σ ) ∈ PAST iff ∃ y1 ∀ y2 : (y1, y2, P, σ ) ∈ R .

Therefore UPAST is definable by

P ∈ UPAST iff ∀ σ ∈ SP ∃ y1 ∀ y2 : (y1, y2, P, σ ) ∈ R ,

which is a Π0
3 -formula and therefore UPAST ∈ Π0

3 .
It remains to show that UPAST is Π0

3 -hard. For that we reduce the Π0
3 -complete com-

plement of the cofiniteness problem to UPAST using the following function f : f takes an
ordinary program Q as its input and computes the probabilistic program P given by

c := 1; i := max{�i�, 0}; x := 0; term := 0;
InitQ(i);

while (c �= 0){
StepQ(i);

if (term = 1){
Cheer(x);
i := i + 1; term := 0;
InitQ(i)

} else {skip};

x := x + 1;
{c := 0} [1/2] {c := 1}

},

where InitQ(i) is an ordinary program that initializes a simulation of the program Q on input
gQ(i) (recall the enumeration gQ from Theorem 5), StepQ(i) is an ordinary program that
does one single (further) step of that simulation and sets term to 1 if that step has led to
termination of Q, and Cheer(x) is an ordinary program that executes 2x many effectless
computation steps.

Note that program P is the sameprogramas in the proof of Theorem10with one exception:
The variable i is not initialized with 0, but rounded up to the next natural number, say �, of
the initial value of i in a given program state.13 Thus, for every input σ , the program P skips
all inputs (in the order given by gQ) up to the �-th input, where � = max{�σ(i)�, 0}. After
that, program P simulates Q on all remaining inputs starting with input gQ

(
�
)
.

This ability to skip any number of inputs for some input stateσ is crucial for the correctness
of the reduction. Intuitively, program P terminates in finite expected time on all input states,
i.e. P ∈ UPAST , if it is impossible to find an input stateσ (and thus a value � ∈ N determined
by σ(i)) such that executing P on σ skips all input states on which Q does not terminate.
Otherwise, P (when executed on such an input state σ ) keeps simulating terminating runs of
Q and thus “cheers” infinitely often. In this case, the expected runtime of P on input state σ

becomes infinite, i.e. P /∈ UPAST .

13 Rounding up the value of i to a natural number, i.e. computing max{�i�, 0}, is a technical necessity: We
assume that variable valuations range over Q but the domain of gQ is N.
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Correctness of the reduction: The problem COF can alternatively be defined as

Q ∈ COF iff
{
σ ∈ SQ | (Q, σ ) ∈ H} is infinite.

There are now two cases:
(1) Q /∈ COF . Then there are only finitely many inputs on which Q does not terminate.

Say � ∈ N is a minimal value such that Q does not terminate on input gQ(�), i.e. the program
Q terminates on all input states gQ( j)with j > �. Now, consider the execution of program P
on some input σ with σ(i) > �. Then the “cheering” steps in the if-branch of the while-loop
of P are executed infinitely often. Consequently, the runtime of P on that input σ is infinite
(analogously to the proof of Theorem 10). Hence, P /∈ UPAST .

(2) Q ∈ COF . Then there are infinitely many inputs on which Q does not terminate. For
every input state σ of P (and thus regardless of the number of skipped input states of Q,
i.e. the value � = max{�σ(i)�, 0} ∈ N that is initially assigned to variable i), the variable
i will eventually be incremented to some value j > � such that Q does not terminate on
input gQ( j). From this point on, the “cheering” steps in the if-branch of the while-loop of
P are not executed anymore. Consequently, for every input state σ , the expected time until
termination of P in input state σ is finite. Hence, P ∈ UPAST . ��
This concludes our study of the computational hardness of analyzing probabilistic termina-
tion. We have seen that there is a complexity leap when moving from positive almost-sure
termination to universal positive almost-sure termination, namely from Σ0

2 -complete (i.e.
∃ ∀ · · · ) to Π0

3 -complete (i.e. ∀ ∃ ∀ · · · ).
Considering the quantifier ordering and the type of objects that are quantified, we believe

that the problem of (universal) positive almost-sure termination ismaybe amore natural prob-
abilistic analog to the (universal) halting problem for ordinary programs: For ordinary pro-
grams, we can define the halting problem by ∃-quantifying over a witness computation length
and then running the (unique) computation of at most that length on a given input. For the
universal halting problem,we additionally prepend a∀-quantification over all possible inputs.

Somewhat analogously, for probabilistic programs, we can define the problem of positive
almost-sure termination by ∃-quantifying over a witness expected computation length and
then running all computations (captured by a ∀-quantifier) of at most that expected length on
a given input. For the universal version of the problem, we additionally prepend a ∀-quantifier
over all possible inputs.

Another argument stems more from a user perspective. For a user, the expected runtime of
an algorithm might be more relevant than its termination probability, because an algorithm
whose runtime can at least be estimated to some finite value is probably more useful in
practice than an algorithm for which one has to expect to wait forever until the algorithm
finishes its computation (even if it does so with probability 1). Along this line of thought, the
expected runtime of an algorithm is also a key notion in defining probabilistic complexity
classes such as ZPP—the class of decision problems that can be decided by a probabilistic
program that always gives the correct answer within expected polynomial time [16].

5 Hardness of approximating (Co)variances

The last group of analysis problems we study concerns the approximation of variances and
covariances.More precisely, we are given a probabilistic program P , an initial state σ and two
expectations, i.e. random variables, f, g ∈ E. Furthermore, let μ denote the final distribution
of program states that is generated by running P on input σ . What is then the covariance of
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f and g (the variance of f or the variance of g) under the final distribution μ? Having the
operator EP,σ ( · ) for obtaining preexpectations, i.e. expected values of random variables,
readily available, the textbook definition of variances and covariances of expectations is as
follows (cf. [2, Definition 4.10.10, Lemma 4.10.6] or [27, Definition 5.1]):

Definition 12 Let P ∈ Prog, σ ∈ SP , and f, g ∈ E. Then

1. the covariance of f and g after executing P on σ is given by

CovP,σ ( f, g) = EP,σ

((
f − EP,σ ( f )

) · (
g − EP,σ (g)

))

= EP,σ ( f · g) − EP,σ ( f ) · EP,σ (g) .

if EP,σ ( f ) ,EP,σ (g) and EP,σ ( f · g) are finite; otherwise it is undefined,
2. the variance of f after executing P on σ is given by

VarP,σ ( f ) = EP,σ

(
f 2

) − (
EP,σ ( f )

)2

if EP,σ ( f ) is finite; otherwise it is undefined. In particular, if EP,σ

(
f 2

)
is also finite,

then VarP,σ ( f ) = CovP,σ ( f, f ).

�
Since definedness of covariances is not always guaranteed, we first address the question
whether a covariance is defined. According to Definition 12, the covariance CovP,σ ( f, g) is
defined if and only if

EP,σ ( f ) < ∞ and EP,σ (g) < ∞ and EP,σ ( f · g) < ∞.

Hence, we are concerned with the following problem set:

Definition 13 The problem set DCOVAR ⊂ Prog × S × E × E is defined as

(P, σ, f, g) ∈ DCOVAR iff σ ∈ SP and EP,σ ( f ) < ∞ and EP,σ (g) < ∞

and EP,σ ( f · g) < ∞. (�)

Apart from the usual condition that σ is a valid input state for P , each of these conditions
can be reduced to the question whether the expected value of a random variable is finite.
As a consequence of Definition 13 and Theorem 7, we obtain the following theorem on the
hardness of deciding definedness of covariances:

Theorem 12 DCOVAR is Σ0
2 -complete.

Proof By Theorem 7 there is a decidable relation F such that

(P, σ, f ) ∈ FEXP iff EP,σ ( f ) < ∞ iff ∃ y1 ∀ y2 : (y1, y2, P, σ, f ) ∈ F

By the above we have the following:

(P, σ, f, g) ∈ DCOVAR
⇐⇒ σ ∈ SP ∧ EP,σ ( f ) < ∞ ∧ EP,σ (g) < ∞ ∧ EP,σ ( f · g) < ∞
⇐⇒ σ ∈ SP ∧ ∃ y1 ∀ y2 : (y1, y2, P, σ, f ) ∈ F

∧ ∃ y′
1 ∀ y′

2 : (y′
1, y′

2, P, σ, g) ∈ F ∧ ∃ y′′
1 ∀ y′′

2 : (y′′
1 , y′′

2 , P, σ, f · g) ∈ F
�⇒ DCOVAR ∈ Σ0

2
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It remains to show thatDCOVAR is Σ0
2 -hard. For that, we reduce the Σ0

2 -complete problem
FEXP to DCOVAR by r(P, σ, f ) = (P, σ, f, 0).

Correctness of the reduction: Consider the following:

(P, σ, f ) ∈ FEXP
⇐⇒ EP,σ ( f ) < ∞
⇐⇒ EP,σ ( f ) < ∞ ∧ 0 < ∞ ∧ 0 < ∞
⇐⇒ EP,σ ( f ) < ∞ ∧ EP,σ (0) < ∞ ∧ EP,σ (0) < ∞
⇐⇒ EP,σ ( f ) < ∞ ∧ EP,σ (0) < ∞ ∧ EP,σ ( f · 0) < ∞
⇐⇒ (P, σ, f, 0) ∈ DCOVAR

Thus, we have that (P, σ, f ) ∈ FEXP if and only if r(P, σ, f ) ∈ DCOVAR and hence
r : FEXP ≤m DCOVAR. ��
We now turn towards the hardness of approximating covariances. Analogously to our studies
on the hardness of approximating preexpectations, we define three problem sets: one for
lower bounds, one for upper bounds, and one for the exact value of CovP,σ ( f, g).

Definition 14 (Approximation Problems for Covariances) The problem sets LCOVAR,

RCOVAR, COVAR ⊂ Prog × S × E × E × Q are defined as

(P, σ, f, g, q) ∈ LCOVAR
iff σ ∈ SP and (P, σ, f, g) ∈ DCOVAR and q < CovP,σ ( f, g) ,

(P, σ, f, g, q) ∈ RCOVAR
iff σ ∈ SP and (P, σ, f, g) ∈ DCOVAR and q > CovP,σ ( f, g) ,

(P, σ, f, g, q) ∈ COVAR
iff σ ∈ SP and (P, σ, f, g) ∈ DCOVAR and q = CovP,σ ( f, g) .

The first fact we establish on computational hardness of approximating covariances is that
approximating lower bounds of covariances is Σ0

2 -complete:

Theorem 13 LCOVAR is Σ0
2 -complete.

Proof For proving the membership LCOVAR ∈ Σ0
2 , consider the following:

(P, σ, f, g, q) ∈ LCOVAR
⇐⇒ σ ∈ SP ∧ (P, σ, f, g) ∈ DCOVAR ∧ q < CovP,σ ( f, g) (Definition 14)

By Theorem 12 (DCOVAR is in Σ0
2 ), there is a decidable relation D such that

(P, σ, f, g, q) ∈ LCOVAR
⇐⇒ σ ∈ SP ∧ ∃y1 ∀ y2 : (P, σ, f, g) ∈ D ∧ q < CovP,σ ( f, g)

⇐⇒ σ ∈ SP ∧ ∃y1 ∀ y2 : (P, σ, f, g) ∈ D (Definition 12)

∧ q < EP,σ ( f · g) − EP,σ ( f ) · EP,σ (g)

⇐⇒ σ ∈ SP ∧ ∃y1 ∀ y2 : (P, σ, f, g) ∈ D (Definition 7)

∧ q <

∞∑

k=0

Ek
P,σ ( f · g) −

∞∑

k=0

Ek
P,σ ( f ) ·

∞∑

k=0

Ek
P,σ (g)

⇐⇒ σ ∈ SP ∧ ∃y1 ∀ y2 : (P, σ, f, g) ∈ D
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1
2 10

EP ,σ (1)

1
4

0

EP ,σ (1) − EP ,σ (1)2

Fig. 2 Plot of the termination probability of a program P ′ on input σ against the resulting variance. The curve
is the one of the polynomial x − x2

∧ ∃ z1 : q <

z1∑

k=0

Ek
P,σ ( f · g) −

∞∑

k=0

Ek
P,σ ( f ) ·

∞∑

k=0

Ek
P,σ (g)

⇐⇒ σ ∈ SP ∧ ∃y1 ∀ y2 : (P, σ, f, g) ∈ D

∧ ∃ z1∀ z2 : q <

z1∑

k=0

Ek
P,σ ( f · g) −

z2∑

k=0

Ek
P,σ ( f ) ·

z2∑

k=0

Ek
P,σ (g)

⇐⇒ σ ∈ SP ∧ ∃y1∃ z1 ∀ y2∀ z2 : (P, σ, f, g) ∈ D

∧ q <

z1∑

k=0

Ek
P,σ ( f · g) −

z2∑

k=0

Ek
P,σ ( f ) ·

z2∑

k=0

Ek
P,σ (g)

�⇒ LCOVAR ∈ Σ0
2 (the above is a Σ0

2 -formula)

For proving the Σ0
2 -hardness of LCOVAR we reduce AST to LCOVAR. Consider the

reduction function r : AST ≤m LCOVAR with r(P, σ ) = (P ′, σ, 1, 1, 0), where P ′ is
given by

{skip} [1/2] {P} .

Correctness of the reduction First observe that expected value EP ′,σ (1) ranges from 0
to 1. In particular, this means that the expected values of 1 as well as 12 are finite, i.e. the
covariance CovP ′,σ (1, 1) is defined. Then

CovP ′,σ (1, 1) = EP ′,σ
(
12

) − EP ′,σ (1)2 (Definition 12)

= EP ′,σ (1) − EP ′,σ (1)2 .

Note that EP ′,σ (1) is exactly the probability of P ′ terminating on input σ . A plot of this
termination probability against the resulting variance is given in Fig. 2. We observe that
CovP ′,σ (1, 1) = EP ′,σ (1)−EP ′,σ (1)2 > 0 holds iff P ′ terminates neitherwith probability 0
norwith probability 1. Since, however, P ′ terminates by construction at leastwith probability
1/2, we obtain that CovP ′,σ (1, 1) > 0 iff P ′ terminates with probability less than 1, which
is the case iff P terminates with probability less than 1. Thus r(P, σ ) = (P ′, σ, 1, 1, 0) ∈
LCOVAR iff (P, σ ) ∈ AST and therefore r : AST ≤m LCOVAR. Since AST is Σ0

2 -
complete, if follows that LCOVAR is Σ0

2 -hard. ��
Next, we show that approximating upper bounds for covariances is exactly as hard as

approximating lower bounds, namely Σ0
2 -complete:

Theorem 14 RCOVAR is Σ0
2 -complete.

123



280 B. L. Kaminski et al.

Proof For proving membership RCOVAR ∈ Σ0
2 , consider the following:

(P, σ, f, g, q) ∈ RCOVAR
⇐⇒ σ ∈ SP ∧ (P, σ, f, g) ∈ DCOVAR ∧ q > CovP,σ ( f, g) (Definition 14)

Now, by Theorem 12 (DCOVAR is in Σ0
2 ) there is a decidable relation D such that

(P, σ, f, g, q) ∈ RCOVAR
⇐⇒ σ ∈ SP ∧ ∃ y1∀ y2 : (P, σ, f, g) ∈ D ∧ q > CovP,σ ( f, g)

⇐⇒ σ ∈ SP ∧ ∃ y1∀ y2 : (P, σ, f, g) ∈ D ∧ ∃ δ > 0 : q − δ > CovP,σ ( f, g)

⇐⇒ σ ∈ SP ∧ ∃ y1∀ y2 : (P, σ, f, g) ∈ D (Definition 12)

∧ ∃ δ > 0 : q − δ > EP,σ ( f · g) − EP,σ ( f ) · EP,σ (g)

⇐⇒ σ ∈ SP ∧ ∃ y1∀ y2 : (P, σ, f, g) ∈ D (Definition 7)

∧ ∃ δ > 0 : q − δ >

∞∑

k=0

Ek
P,σ ( f · g) −

∞∑

k=0

Ek
P,σ ( f ) ·

∞∑

k=0

Ek
P,σ (g)

⇐⇒ σ ∈ SP ∧ ∃ y1∀ y2 : (P, σ, f, g) ∈ D

∧ ∃ δ > 0∃z2 : q − δ >

∞∑

k=0

Ek
P,σ ( f · g) −

z2∑

k=0

Ek
P,σ ( f ) ·

z2∑

k=0

Ek
P,σ (g)

⇐⇒ σ ∈ SP ∧ ∃ y1∀ y2 : (P, σ, f, g) ∈ D

∧ ∃ δ > 0 ∃ z2∀ z1 : q − δ >

z1∑

k=0

Ek
P,σ ( f · g) −

z2∑

k=0

Ek
P,σ ( f ) ·

z2∑

k=0

Ek
P,σ (g)

⇐⇒ σ ∈ SP ∧ ∃ y1∃ δ > 0 ∃ z2∀ y2∀ z1 : (P, σ, f, g) ∈ D

∧ q − δ >

z1∑

k=0

Ek
P,σ ( f · g) −

z2∑

k=0

Ek
P,σ ( f ) ·

z2∑

k=0

Ek
P,σ (g)

�⇒ RCOVAR ∈ Σ0
2 (the above is a Σ0

2 -formula)

For proving the Σ0
2 -hardness of RCOVAR, we reduce the Σ0

2 -complete AST to
RCOVAR. Let (P, σ ) be an instance of AST . Consider the reduction function r(P, σ ) =(
P ′, σ, 1, 1, 1/4

)
, with P ′ being the program

{diverge} [1/2] {P} .

Analogously to the proof of Theorem 13, CovP ′,σ (1, 1) is defined and we have

CovP ′,σ (1, 1) = EP ′,σ (1) − EP ′,σ (1)2 .

Recall that EP ′,σ (1) is exactly the probability of P ′ terminating on input σ . By reconsidering
Fig. 2, we can see that CovP ′,σ (1, 1) = EP ′,σ (1) − EP ′,σ (1)2 < 1/4 holds iff P ′ does not
terminate with probability 1/2. Since by construction P ′ terminates with a probability of at
most 1/2, it follows that CovP ′,σ (v, v) < 1/4 holds iff P ′ terminates with probability less
than 1/2, which is the case iff P terminates with probability less than 1. Thus r(P, σ ) =(
P ′, σ, 1, 1, 1/4

) ∈ RCOVAR iff (P, σ ) ∈ AST and therefore we have r : AST ≤m

RCOVAR. Since AST is Σ0
2 -complete, if follows that RCOVAR is Σ0

2 -hard. ��
Regarding the hardness of deciding whether a given rational is equal to the covariance we
establish COVAR can be solved inΔ0

3 = Σ0
3 ∩Π0

3 , COVAR isΠ0
2 -hard, and COVAR isΣ0

2 -
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hard. COVAR is therefore at least as hard as deciding whether a non-probabilistic program
terminates on all inputs or deciding whether a probabilistic program terminates positively
almost-surely.

Theorem 15 COVAR is in Δ0
3.

Proof To prove COVAR ∈ Δ0
3 = Σ0

3 ∩ Π0
3 , consider that (P, σ, f, g, q) ∈ COVAR if and

only if

σ ∈ SP ∧ (P, σ, f, g) ∈ DCOVAR
∧ (P, σ, f, g, q) /∈ LCOVAR ∧ (P, σ, f, g, q) /∈ RCOVAR.

Now, by Theorems 12, 13, and 14 there exist decidable relations D, L, R such that

(P, σ, f, g, q) ∈ COVAR
⇐⇒ σ ∈ SP ∧ ∃x1 ∀ x2 : (P, σ, f, g) ∈ D

∧ ¬∃ y1∀ y2 : (P, σ, f, g, q) ∈ L ∧ ¬∃ z1∀ z2 : (P, σ, f, g, q) ∈ R
⇐⇒ σ ∈ SP ∧ ∃x1 ∀ x2 : (P, σ, f, g) ∈ D

∧ ∀ y1∃ y2 : (P, σ, f, g, q) /∈ L ∧ ∀ z1∃ z2 : (P, σ, f, g, q) /∈ R
⇐⇒ σ ∈ SP ∧ ∃x1 ∀ x2∀ y1∀ z1∃ y2∃ z2 : (P, σ, f, g) ∈ D (this is a Σ0

3 -formula)

∧ (P, σ, f, g, q) /∈ L ∧ (P, σ, f, g, q) /∈ R
⇐⇒ σ ∈ SP ∧ ∀ y1∀ z1∃ y2∃ z2∃ x1∀ x2 : (P, σ, f, g) ∈ D (this is a Π0

3 -formula)

∧ (P, σ, f, g, q) /∈ L ∧ (P, σ, f, g, q) /∈ R

Hence, there exists a Σ0
3 -formula and a Π0

3 -formula both defining COVAR and therefore
COVAR ∈ Σ0

3 ∩ Π0
3 = Δ0

3. ��
Theorem 16 COVAR is Π0

2 -hard.

Proof We reduce the Π0
2 -complete AST to COVAR. Let (P, σ ) be an instance of AST .

Consider the reduction function r(P, σ ) = (
P ′, σ, 1, 1, 1/4

)
, with P ′ being the program

{diverge} [1/2] {P} .

Again, the covariance CovP ′,σ (1, 1) is defined and we have

CovP ′,σ (1, 1) = EP ′,σ (1) − EP ′,σ (1)2

of which the plot is depicted in Fig. 2. Recall that EP ′,σ (1) is exactly the probability of
P ′ terminating on input σ . We can see that CovP ′,σ (1, 1) = EP ′,σ (1) − EP ′,σ (1)2 = 1

4
iff P ′ terminates with probability 1/2. Since P ′ terminates at most with probability 1/2, we
obtain that CovP ′,σ (1, 1) = 1

4 iff P ′ terminates with probability 1/2, which is the case iff P
terminates almost-surely. Thus r(P, σ ) = (

P ′, σ, 1, 1, 1
4

) ∈ COVAR iff (P, σ ) ∈ AST
and therefore r : AST ≤m COVAR. Since AST is Π0

2 -complete, we obtain that COVAR
is Π0

2 -hard. ��
Theorem 17 COVAR is Σ0

2 -hard.

Proof We reduce the Σ0
2 -complete FEXP to COVAR. For that, consider the reduction

function r(P, σ, f ) = (P, σ, f, 0, 0).
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Σ0
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1

Δ0
1
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2 Π0
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Δ0
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COVAR
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not
semi–decidable;
even with
access to
H–oracle

not
semi–decidable;
even with
access to
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AST

EXP
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Fig. 3 The complexity landscape of analysis problems for probabilistic programs. All analysis problems-
except from the Σ0

2 -hard and Π0
2 -hard problem COVAR-are complete for the respective level in the

arithmetical hierarchy

Correctness of the reduction: The covariance of f and 0 is defined if and only if the
expected value of f is finite, the expected value of 0 is finite (which is trivially satisfied), and
the expected value of f · 0 = 0 is finite (which is again trivially satisfied). In case that this
covariance is defined, it is equal to 0 by definition of the covariance of any random variable
f and 0. Thus, the covariance is defined and its value is 0 if and only if the expected value
of f after executing P on input σ is finite. Hence, r : FEXP ≤m COVAR. ��

Remark 1 (The Hardness of Approximating Variances)Variance approximation is not easier
than covariance approximation, i.e. the same hardness results as in Theorems 13 through 16
hold for analogous variance approximation problems. In fact, we have always reduced to
approximating a variance—the variance of termination—for obtaining our hardness results
on covariances. The only exception is Theorem 17, where two different expectations are
used.

It can furthermore be seen that variance approximation is not harder than covariance
approximation The proofs are analogous to the corresponding proofs for covariances pre-
sented in this section. The main difference is that we additionally have to consider the case
that EP,σ

(
f 2

)
is infinite (otherwise, we have VarP,σ ( f ) = CovP,σ ( f, f )). In this case

it suffices to drop the finiteness check for EP,σ

(
f 2

)
from DCOVAR when approximating

lower bounds of variances. This does not change the complexity, because we still have to
check that the expected value of f is finite. When approximating upper bounds no change
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is required: If EP,σ

(
f 2

)
is infinite, so is the variance and no a priori fixed constant q is an

upper bound of the variance. For computing exact variances, we proceed as in Theorem 15.
�

As an immediate consequence of Theorems 13 and 14, computing both upper and lower
bounds for covariances are equally difficult. This is contrary to the case for expected values:
While computing upper bounds for expected values is Σ0

2 -complete, we have seen that com-
puting lower bounds is “only”Σ0

1 -complete, thus lower bounds are computably enumerable.
By this, we can even computably enumerate an ascending sequence that monotonically con-
verges to the sought-after expected value. By Theorems 13 and 14 this is not possible for a
covariance as Σ0

2 -sets are in general not computably enumerable.
For deciding whether the covariance equals a given rational, we have that this is properly

in Δ0
3 (see Theorem 15) since this problem is both Σ0

2 -hard (Theorem 17) and Π0
2 -hard

(Theorem 16). Since there exist no complete problems inΔ0
n , for n ≥ 2 (in the sense of many-

one-reducibility) [40, Exercise 14–14, p. 332], it is impossible to establish a completeness
result similar to our other hardness results for COVAR.

Our hardness results rule out techniques based on finite loop-unrollings as complete
approaches for reasoning about the covariances of values of probabilistic programs. An
invariant-based approach to overcome this problem is outlined in [22]. This approach also
extends to reasoning on runtime variances.

6 Conclusion and discussion

Wehave studied the computational complexity of solving a variety of natural problemswhich
appear in the analysis of probabilistic programs: Approximating lower bounds, upper bounds,
and exact preexpectations (LEXP , REXP , and EXP), deciding whether a preexpectation
is finite (FEXP), deciding non-universal and universal almost-sure termination (AST and
UAST ), deciding non-universal and universal positive almost-sure termination (PAST and
UPAST ), and approximating lower bounds, upper bounds, and exact covariances (LCOVAR,
RCOVAR, and COVAR). Our complexity results are summarized in Fig. 3. Lower bounds
of preexpectations are computably enumerable. All other problems are strictly more difficult.
Each of the examined problems—except for COVAR—is complete for their respective level
of the arithmetical hierarchy. For COVARwehave established that it is bothΣ0

2 - andΠ0
2 -hard

but in Δ0
3.

An interesting issue that is raised by our results is the following: We see that uni-
versal positive almost-sure termination (UPAST ) is computationally strictly harder to
decide than universal almost-sure termination (UAST ), namely Π0

3 -complete as opposed
to Π0

2 -complete. Yet for UPAST there exist several complete approaches based on super-
martingales [7,24]. These approaches seem to work quite well in practice [8] and moreover,
they are conceptually quite easy. Techniques for proving UAST , on the other hand, seem
much more involved [32]. So while UPAST is harder to verify than UAST in theory, it
appears to be more approachable in practice.

This issue is not new to us: While UPAST requires proving an upper bound on the
expected runtime, UAST requires proving a (non-strict) lower bound (namely 1) on the
termination probability. We have encountered a very similar phenomenon in [24]: While
proving upper bounds on the expected runtime is conceptually easy, proving lower bounds
is much more involved. The same discrepancy seems to apply to lower and upper bounds
of expected values: Proving upper bounds is conceptually easier than proving lower bounds,
whereas in theory proving upper bounds should be computationally harder.
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While we have no solution to this “paradox”, we do believe that the issue is worth investi-
gating. An interesting direction could be to perform for instance for bothUPAST andUAST
a smoothed analysis of the problem14 [4] and see whether this gives valuable insights on this
paradox.

Another direction for future research is to investigate the interplay of nondeterministic
and probabilistic behavior. We conjecture that for demonic nondeterminism, all our results
remain valid. For angelic nondetermism, there is evidence that the problems might become
harder, i.e. the complexity classes may change [9].
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