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Abstract Weak distribution bisimilarity is an equivalence notion on probabilistic automata,
originally proposed for Markov automata. It has gained some popularity as the coarsest
behavioral equivalence enjoying valuable properties like preservation of trace distribution
equivalence and compositionality. This holds in the classical context of arbitrary schedulers,
but it has been argued that this class of schedulers is unrealistically powerful. This paper
studies a strictly coarser notion of bisimilarity, which still enjoys these properties in the
context of realistic subclasses of schedulers: Trace distribution equivalence is implied for
partial information schedulers, and compositionality is preserved by distributed schedulers.
The intersection of the two scheduler classes thus spans a coarser and still reasonable com-
positional theory of behavioral semantics.

1 Introduction

Compositional theories have been an important technique to dealwith complex stochastic sys-
tems effectively. Their potential ranges from compositional minimization [4,7] approaches
to component based verification [27,32]. Due to their expressiveness, Markov automata have
attracted many attentions [17,25,39], since they were introduced [15]. Markov automata are
a compositional behavioral model for continuous time stochastic and non-deterministic sys-
tems [14,15] subsuming interactiveMarkov chains [29] and probabilistic automata (PAs) [37]
(and hence also Markov decision processes and Markov chains).
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On Markov automata, weak probabilistic bisimilarity has been introduced as a powerful
way for abstracting from internal computation cascades, and this is obtained by relating sub-
probability distributions instead of states. In the sequel we call this relationweak distribution
bisimulation, and focus on probabilistic automata, arguably the most widespread subclass of
Markov automata.

On probabilistic automata, weak distribution bisimilarity is strictly coarser than weak
bisimilarity, and is the coarsest congruence preserving trace distribution equivalence [9].
More precisely, it is the coarsest reduction-closed barbed congruence [31] with respect to
parallel composition. Decision algorithms for weak distribution bisimilarity have also been
proposed [18,35].

Weak distribution bisimilarity enables us to equate automata such as the ones on the
left in Fig. 1, both of which exhibit the execution of action α followed by states r1 and r2
with probability 1

2 each for an external observer. Specifically, the internal transition of the
automaton on the left remains fully transparent. Standard bisimulation notions fail to equate
these automata. On the other hand, the automata on the right are not bisimilar even though
the situation seems to be identical for an external observer.

The automata on the right of Fig. 1 are to be distinguished, because otherwise compo-
sitionality with respect to parallel composition would be broken. However, as observed in
[23,37], the general scheduler in the parallel composition is too powerful: the decision of
one component may depend on the history of other components; in Fig. 1, whether s4 or
s5 is visited may influence a scheduler decision regarding some other component. This is
especially not desired for partially observable systems, such as multi-agent systems or dis-
tributed systems [3,38]. In distributed systems, where components only share the information
they gain through explicit communication via observable actions, this behavior is unrealistic.
Thus, for practically relevant models, weak distribution bisimilarity is still too fine. The need
to distinguish the two automata on the right of Fig. 1 is in fact an unrealistic artifact, and this
will motivate our definition of a coarser bisimulation, under which they are equivalent.

In this paper, we present a novel notion of weak bisimilarity on PAs, called late dis-
tribution bisimilarity, which is coarser than the existing notions of weak bisimilarity. It
equates, for instance, all automata in Fig. 1. As weak distribution bisimilarity is the coars-
est notion of equivalence that preserves observable behavior and is closed under parallel
composition [9], late distribution bisimilarity cannot satisfy these properties in their entirety.
However, as we will show, for a natural class of schedulers, late distribution bisimilarity pre-
serves observable behavior, in the sense that trace distribution equivalence (i) is implied by
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Fig. 1 Distinguishing probabilistic automata
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late distribution bisimilarity, and (ii) is preserved in the context of parallel composition. This
for instance implies that time-bounded reachability properties are preserved with respect to
parallel composition. The class of schedulers under which these properties are satisfied is the
intersection of two well-known scheduler classes, namely partial information schedulers [8]
and distributed schedulers [23]. Both classes have been coined as principal means to exclude
undesired or unrealistically powerful schedulers.We provide a co-inductive definition for late
distribution bisimilarity which echoes these considerations on the automaton level, thereby
resulting in a very coarse, yet reasonable, notion of equality.

Related workMany variants of bisimulations have been studied for different stochastic mod-
els, for instance Markov chains [1], interactive Markov chains [29], probabilistic automata
[2,33,37], and alternating automata [12]. These equivalence relations are state-based, as
they relate states of the corresponding models. Depending on how internal actions are han-
dled, bisimulation relations can usually be categorized into strong bisimulations and weak
bisimulations. The later is our main focus in this paper.

Markov automata arise as a combination of probabilistic automata and interactiveMarkov
chains. In [15], a novel distribution-based weak bisimulation has been proposed: it is weaker
than the state-based weak bisimulation in [37], and if restricted to continuous-time Markov
chains, generates an equivalence established in the Petri net community [17]. Later, another
weak bisimulation has been investigated in [9], which is essentially the same as [15]. In this
paper, we propose a weaker bisimulation relation – late distribution bisimulation, which is
coarser than both of them.

Interestingly, after the distribution-based weak bisimulations being introduced in [15],
several distribution-based strong bisimulations have been proposed. In [28], it is shown that,
the strong version of the relation in [15] coincides with the lifting of the classical state-
based strong bisimulations. Recently, three different distribution-based strong bisimulations
have been defined: paper [21] defines bisimulation relations and metrics which extend the
well-known language equivalence [13] of labelled Markov chains; another definition in [30]
applies to discrete systems as well as to systems with uncountable state and action spaces.
The latter have been investigated in more detail in [41]. In [38], for multi-agent systems, a
decentralized strong bisimulation relation is proposed which is shown to be compositional
with respect to partial information and distributed schedulers. All these relations enjoy some
interesting properties, and they are incomparable to each other: we refer to [38] for a detailed
discussion. The current paper extends the decentralized strong bisimulation in [38] to the
weak case. The extension is not trivial, as internal transitions need to be handled carefully,
particularly when lifting transition relations to distributions. We show that our novel weak
bisimulation is weaker than that in [15], and as in [38], we show that it is compositional with
respect to partial information and distributed schedulers.

Organization of the paper In the next sectionwe illustrate our approach by a running example.
Section 3 recalls some notations used in the paper. Late distribution bisimulation is proposed
and discussed in Sect. 4, and its properties are established in Sect. 5 under realistic schedulers.
Section 6 concludes the paper. A discussion why all results established in this paper directly
carry over to Markov automata can be found in [19].

2 A running example

As discussed in the introduction, the automata on the right of Fig. 1 should be distinguished.
We illustrate this with the following example, inspired by [23,37], which considers the

123



464 L. Zhang et al.

Tossing 1 Tossing 2

print(“I am going to toss.”);
r = rand();
if r ≥ 1

2 then
print(“Heads is up.”);

else
print(“Tails is up.”);

end

r = rand();
if r ≥ 1

2 then
print(“I am going to toss.”);
print(“Heads is up.”);

else
print(“I am going to toss”);
print(“Tails is up.”);

end

Fig. 2 Two algorithms simulating a coin toss

automata of Fig. 1 in the intuitive context of a guessing game. The discussion will reveal that
the requirement to distinguish them is in fact an unrealistic artifact, and this will motivate
our definition of a coarser bisimulation, under which they are equivalent.

Example 1 Figure 2 shows two different algorithms that simulate a coin toss by means of
a random number generator. We assume that only the print statement is observable by the
environment, while all other statements are internal. In both algorithms, first the initialization
message “I am going to toss.” will appear on the screen, and then the result of the coin toss,
which is either “Heads is up.” or “Tails is up.”

In algorithm “Tossing 1”, the initialization message is printed before the result of the
coin throw is determined by a random number r drawn uniformly from (0, 1). Then, with
probability 1

2 , “Heads is up” is printed and otherwise “Tails is up.” In algorithm “Tossing 2”
first r is determined and only afterwards, the initialization message and the result of the coin
throw are printed. Intuitively, these two algorithms should not be distinguishable from the
outside, as the same messages are printed with the same probability.1

Figure 3a, b, respectively, show the algorithms modeled as PAs, where i denotes the
printing of the initialization message, while h and t denote the result messages “Heads
is up.” and “Tails is up.”, respectively. Internal computations are modeled by the internal
action τ . In Fig. 3c a guesser is modeled. While the tossing is announced (action i), he
non-deterministically guesses the outcome, which he announces with the action h or t .

The complete system is obtained by a parallel composition of the coin tosser automaton and
the guesser automaton. We use a CSP-style parallel composition. Throughout our example,
synchronization is enforced for the actions in the set A = {i, h, t}. These actions synchronize
with corresponding actions of the coin tosser. Thus, if the guess was right, the guesser finally
performs the action Suc to announce that he successfully guessed the outcome. ��

In the example, the probability to see head or tail after a (fake) coin toss is one half each,
both for tosser (a) and (b). One would expect that hence the chance to guess correct is one
half for both tossers. However, s0 ‖A r0 and s′

0 ‖A r0 are not weakly bisimilar. We will now
show that the executions that distinguish the two systems are actually caused by unrealistic
schedulers, which cannot appear in real world applications. Suppose we have a scheduler of
s′
0 ‖A r0, which chooses the left transition of r0 when at s5 ‖A r0 and the right one when

at s6 ‖A r0, then almost surely
Suc−−→ will be seen eventually. In contrast, the probability that

Suc−−→ is executed in s0 ‖A r0 is at most 0.5, for every scheduler.
The intuitive reason why the scheduler for s′

0 ‖A r0 is too powerful to be realistic is
that it can base its decision which transition to choose in state r0 on the state the tosser has

1 We assume that timing differences in the execution are not observable.
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Fig. 3 s0 and s′0 represent different ways of tossing a coin and r0 denotes the guesser

reached by performing his internal probabilistic decision, namely either state s5 or s6. If we
consider the tosser and the guesser to be independently running processes, this is not a realistic
scheduler, as then the guesser would need to see the internal state of the tosser. However, no
communication between guesser and tosser has happened at this point in time, by which this
information could have been conveyed. Thus, in distributed systems, where components only
share the information they gain through explicit communication via observable actions, this
behavior is unrealistic. Thus, for practically relevant models, weak distribution bisimilarity
is still too fine.

Therefore, we present a novel notion of weak bisimilarity on PAs, called late distribution
bisimilarity, that is coarser than the existing notions of weak bisimilarity. It equates, for
instance, the two automata of Example 1, and the three in Fig. 1. As weak distribution
bisimilarity is the coarsest notion of equivalence that preserves observable behavior and
is closed under parallel composition [9], late distribution bisimilarity cannot satisfy these
properties in their entirety. However, as we will show, for a natural class of schedulers, late
distribution bisimilarity preserves observable behavior, in the sense that trace distribution
equivalence (i) is implied by late distribution bisimilarity, and (ii) is preserved in the context
of parallel composition. This for instance implies that time-bounded reachability properties
are preserved with respect to parallel composition. The class of schedulers under which
these properties are satisfied is the intersection of two well-known scheduler classes, namely
partial information schedulers [8] and distributed schedulers [23]. Both these classes have
been coined as principal means to exclude undesired or unrealistically powerful schedulers.
We provide a co-inductive definition for late distribution bisimilarity which echoes these
considerations on the automaton level, thereby resulting in a very coarse, yet reasonable,
notion of equality.

3 Preliminaries

Let S be a finite set of states ranged over by r, s, . . .A distribution is a functionμ : S → [0, 1]
satisfyingμ(S) = ∑

s∈S μ(s) = 1. LetDist(S) denote the set of all distributions. Ifμ(s) = 1
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for some s ∈ S, thenμ is called aDirac distribution, written as δs . Similarly, a subdistribution
is a function μ : S → [0, 1] satisfying μ(S) = ∑

s∈S μ(s) ≤ 1. Let SubDist(S) denote the
set of all subdistributions, ranged over by μ, ν, γ, . . .. Define Supp(μ) = {s | μ(s) > 0} as
the support set of μ. Let |μ| = μ(S) denote the size of the subdistribution μ. Given a real
number x , x · μ is the subdistribution such that (x · μ)(s) = x · μ(s) for each s ∈ Supp(μ) if
x · |μ| ≤ 1, whileμ−s is the subdistribution such that (μ−s)(s) = 0 and (μ−s)(r) = μ(r)
for all r 	= s. Moreover, μ = μ1 + μ2 whenever μ(s) = μ1(s) + μ2(s) for each s ∈ S and
|μ| ≤ 1. We often write {s : μ(s) | s ∈ Supp(μ)} alternatively for a subdistribution μ. For
instance, {s1 : 0.4, s2 : 0.6} denotes a distribution μ with μ(s1) = 0.4 and μ(s2) = 0.6.

3.1 Probabilistic automata

Initially introduced in [37], probabilistic automata (PAs) have been popular models for
systems with both non-deterministic choices and probabilistic dynamics. Below we give
their formal definition.

Definition 2 A PA P is a tuple (S,Actτ ,−→, s̄) where

– S is a finite set of states,
– Actτ = Act

.∪ {τ } is a finite set of actions including the internal or invisible action τ ,
– −→ ⊂ S × Actτ × Dist(S) is a finite set of probabilistic transitions, and
– s̄ ∈ S is the initial state.

In our paper, we assume that in aPA, every state has at least one transition. Let α, β, γ, . . .

range over the actions in Actτ . We write s
α−→ μ if (s, α, μ) ∈ −→. A path is a finite or infinite

strictly alternating sequence π = s0, α0, s1, α1, s2 . . . of states and actions, such that for each

i ≥ 0 there exists a distributionμwith si
αi−→ μ andμ(si+1) > 0. Some notations are defined

as follows: |π | denotes the length of π , i.e., the number of states on π , while π↓ is the last
state of π , provided π is finite; π [i] = si with i ≥ 0 is the (i + 1)-th state of π if it exists;
π[0..i] = s0, α0, s1, α1, . . . , si is the prefix of π ending at state π[i].

Let Pathsω(P) ⊆ S × (Actτ × S)ω and Paths∗(P) ⊆ S × (Actτ × S)∗ denote the sets
containing all infinite and finite paths of P , respectively. Let Paths(P) = Pathsω(P) ∪
Paths∗(P). We will omit P if it is clear from the context. We also let Paths(s) be the set
containing all paths starting from s ∈ S, similarly for Paths∗(s) and Pathsω(s).

Due to the non-deterministic choices in PAs, a probability measure over Paths(P) cannot
be defined directly. As usual, we shall introduce the definition of schedulers to resolve the
non-determinism. Intuitively, a scheduler will decide which transition to choose at each step,
based on the execution history. Formally,

Definition 3 A scheduler is a function

ξ : Paths∗ → Dist(Actτ × Dist(S))

such that ξ(π)(α, μ) > 0 implies π↓ α−→ μ. A scheduler ξ is deterministic if it returns only
Dirac distributions, that is, for each π there is a pair (α, μ) such that ξ(π)(α, μ) = 1. ξ is
memoryless if π↓ = π ′↓ implies ξ(π) = ξ(π ′) for any π, π ′ ∈ Paths∗, namely, the decision
of ξ only depends on the last state of a path.

Let π ≤ π ′ iff π is a prefix of π ′. Let Cπ denote the cone of a finite path π , which is the
set of infinite paths having π as their prefix, i.e.,

Cπ = {π ′ ∈ Pathsω | π ≤ π ′}.
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Given a starting state s, a scheduler ξ , and a finite pathπ = s0, α0, s1, α1, . . . , sk , themeasure
Prsξ of a cone Cπ is defined inductively as:

– Prsξ (Cπ ) = 0 if s 	= s0;
– Prsξ (Cπ ) = 1 if s = s0 and k = 0;
– otherwise Prsξ (Cπ ) =

Prsξ (Cπ [0..k−1]) ·
∑

sk−1

αk−1−−→μ

ξ(π[0..k − 1])(αk−1, μ) · μ(sk).

LetB be the smallestσ -algebra that contains all the cones. By standardmeasure theory [26,
34], Prsξ can be extended to a unique measure on B.

Large systems are usually built from small components. This is done by using the parallel
operator of PAs [37].

Definition 4 (Parallel Operator) LetP1 = (S1,Actτ ,−→1, s̄1) andP2 = (S2,Actτ ,−→2, s̄2)
be two PAs and A ⊆ Act. We define P1 ‖A P2 = (S,Actτ ,−→, s̄) where

– S = {s1 ‖A s2 | (s1, s2) ∈ S1 × S2},
– s1 ‖A s2

α−→ μ1 ‖A μ2 iff

– either α ∈ A and ∀i ∈ {1, 2}.si α−→i μi ,
– or α /∈ A and ∃i ∈ {1, 2}.(si α−→i μi and μ3−i = δs3−i ).

– s̄ = s̄1 ‖A s̄2,

where μ1 ‖A μ2 is a distribution such that (μ1 ‖A μ2)(s1 ‖A s2) = μ1(s1) · μ2(s2).

Example 5 In Fig. 4,we build the parallel compositions s0 ‖A r0 and s′
0 ‖A r0 of the automata

of our running example in Fig. 3.

3.2 Trace distribution equivalence

In this subsection we introduce the notion of trace distribution equivalence [36] adapted to
our setting with internal actions. Let ς ∈ Act∗ denote a finite trace of a PA P , which is an
ordered sequence of visible actions. Each trace ς induces a cylinder Cς which is defined as
follows:

Cς =
⋃

{Cπ | π ∈ Paths∗ ∧ trace(π) = ς}
where trace(π) = ε denotes an empty trace if |π | ≤ 1, and

trace(π) =
{
trace(π ′), if π = π ′ ◦ (τ, s′)
trace(π ′)α, if π = π ′ ◦ (α, s′) and α 	= τ

.

Since Cς is a countable set of cylinders, it is measurable. Below we define trace distribution
equivalences, each of which is parametrized by a certain class of schedulers.

Definition 6 (Trace Distribution Equivalence ≡) Let s1 and s2 be two states of a PA, and
S a set of schedulers. Then, s1 ≡S s2 iff for each scheduler ξ1 ∈ S there exists a scheduler
ξ2 ∈ S, such that Prs1ξ1(Cς ) = Prs2ξ2(Cς ) for each finite trace ς and vice versa. If S is the set
of all schedulers, we simply write ≡.
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Fig. 4 Parallel compositions s0 ‖A r0 and s′0 ‖A r0 (A is omitted from ‖A in the pictures)

In contrast to [36,38], we abstract from internal transitions when defining traces of a
path. Therefore, the definition above is also a weaker version of the corresponding definition
in [36,38].

Below follow examples (and counterexamples) of trace distribution equivalent states:

Example 7 Let s0 and s′
0 be the two states in Fig. 3, then we have s0 ≡ s′

0, since the only
trace distribution of s0 and s′

0 is {ih : 1
2 , i t : 1

2 }. In contrast, s0 and s1 in Fig. 5 are not trace
distribution equivalent, since there are two possible trace distributions for s0: {β : 1} and
{α : 1}, but for s1 there are four trace distributions: {α : 1}, {β : 1}, {α : 1

3 , β : 2
3 }, and

{β : 1
3 , α : 2

3 }. ��

3.3 Partial information and distributed schedulers

In this subsection, we are refining the very liberal Definition 3, where the set of all schedulers
was introduced. As discussed, this class can be considered too powerful, since it includes
unrealistic schedulers.We define two prominent sub-classes of schedulerswith limited power.
We first introduce some notations. Let EA : S �→ 2Act such that

EA(s) = {α ∈ Act | ∃μ ∈ Dist(S).s
α�⇒ μ},
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that is, the functionEA returns the set of visible actions that a state is able to perform, possibly
after some internal transitions. In this definition, we use the weak transition

α�⇒; we will give
its formal definition in Sect. 4. We generalize this function to paths as follows: EA(π) =

=
⎧
⎨

⎩

EA(s) π = s (1)

EA(π ′) π = π ′ ◦ (τ, s) ∧ EA(π ′↓) = EA(s) (2)

EA(π ′)αEA(s) π = π ′ ◦ (α, s) ∧ (α 	= τ ∨ EA(π ′↓) 	= EA(s)) (3)

where Case (2) takes care of a special situation such that internal actions do not change
enabled actions. In this case EA will not see the difference. Intuitively, EA(π) abstracts
concrete states on π to their corresponding enabled actions. Whenever an invisible action
does not change the enabled actions, it will simply be omitted. In other words, EA(s) can be
seen as the interface of s, which is observable by other components. Other components can
observe the execution of s, as long as either it performs a visible action α 	= τ , or its interface
has been changed (EA(π ′↓) 	= EA(s)). This is similar to the way branching bisimulation
disregards τ transitions as far as they do not change the branching structure [24,40]. We are
now ready to define the partial information schedulers [8] as follows:

Definition 8 (Partial Information Schedulers) A scheduler ξ is a partial information sched-
uler of s if for any π1, π2 ∈ Paths∗(s), EA(π1) = EA(π2) implies

– either ξ(πi , τ ) = 1 for some i ∈ {1, 2},
– or on π1 and π2, the scheduler ξ has the same conditional probability to do any visible

action α given the condition that a visible action will be done, i.e. for any α, β ∈ Act,
ξ(π1, α)ξ(π2, β) = ξ(π1, β)ξ(π2, α), where

ξ(π, α) :=
∑

π↓ α→μ

ξ(π)(α, μ).

ξ is a partial information scheduler of aPAP iff it is a partial information scheduler for every
state of P .

We denote the set of all partial information schedulers by SP . Intuitively a partial infor-
mation scheduler can only distinguish histories containing different enabled visible action
sequences. A scheduler cannot choose different transitions of states only because they have
different state identities. This fits very well to a behavior-oriented rather than state-oriented
view, as it is typical for process calculi. Consequently, for two different paths π1 and π2 with
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EA(π1) = EA(π2), a partial information scheduler either chooses a transition labelled with
τ action for πi (i = 1, 2), or it chooses transitions labelled with the same visible actions for
both π1 and π2. Partial information schedulers do not impose any restriction on the execution
of τ transitions, instead they can be performed independently.

When composing parallel systems, general schedulers defined in Definition 3 allow one
component to make decisions based on full information of other components. Giro and
D’Argenio [23] argues that this is unrealistically powerful and introduces another important
sub-class of schedulers called distributed schedulers. The main idea is to assume that all
parallel components run autonomously andmake their local scheduling decisions in isolation.
In other words, each component can use only that information about other components that
has been conveyed to it explicitly. For instance the guesser in Fig. 3 cannot base its local
scheduling decision on the tossing outcome at the moment when his guess is to be scheduled.

Below we recall the formal definition of distributed schedulers [23,38].2 To formalize this
locality idea, we first need to define the projection of a path to the path of its components.
Let s = �

A{si | 0 ≤ i ≤ n} be a state which is composed from n + 1 processes in parallel
such that all the processes synchronize on actions in A. Let π be a path starting from s, then
the i-projection of π denoted by [π ]i is defined as follows: [π]i = [s]i if π = s, otherwise
if π = π ′ ◦ (α, s′),

[π]i =
{

[π ′]i ◦ (α, [s′]i ) α ∈ A ∨ (α /∈ A ∧ [π ′↓]i α−→ [s′]i )
[π ′]i α /∈ A ∧ (∃ j 	= i.[π ′↓] j α−→ [s′] j )

where [s]i = si with 0 ≤ i ≤ n. Intuitively, given a path π of a state s, the i-projection
of π is the path that only keeps track of the execution of the i-th component of s during its
execution. Also note any scheduler ξ of s can be decomposed into n + 2 functions: a global
scheduler ξg : Paths∗ × {0, . . . , n} �→ {0, 1} and n + 1 local schedulers {ξi }0≤i≤n such that
for any π with π↓ = �

A{si | 0 ≤ i ≤ n}, and
ξ(π)(α,

�

A
{μi }0≤i≤n) =

∏

0≤i≤n

[
ξg(π, i) · ξi (π)(α, μi ) + (1 − ξg(π, i)) · Eq(δsi , μi )

]
,

where Eq(δsi , μi ) returns 1 if δsi = μi and 0 otherwise. Intuitively, the global scheduler ξg
chooses processes which will participate in the next transition, while ξi guides the execution
of si in case the i-th process is chosen by ξg . In case the i-th process is not chosen by the
global scheduler, it will not change its state. Below we define the distributed schedulers:

Definition 9 (Distributed Schedulers) A scheduler ξ is distributed for s = �
A{si | 0 ≤

i ≤ n} iff its corresponding global scheduler ξg and local schedulers {ξi }0≤i≤n satisfy: for
any π, π ′ ∈ Paths∗(s) and 0 ≤ i ≤ n, [π ]i = [π ′]i implies ξg(π, i) = ξg(π

′, i) and
ξi (π) = ξi (π

′). A distributed scheduler for a PA P is a scheduler distributed for all states in
P .

We denote the set of all distributed schedulers by SD . In case n = 0, distributed sched-
ulers degenerate to ordinary schedulers defined in Definition 3. According to Definition 9, a
scheduler ξ is distributed, if ξ cannot distinguish different paths starting from s, provided the
projections of these paths to each of its parallel component coincide. Note that the lower PA
in Fig. 4 allows a scheduler that guesses correctly with probability 1: the scheduler would

choose the transitions s5 ‖A r0
i−→ s1 ‖A r1 and s6 ‖A r0

i−→ s2 ‖A r2, but this scheduler
is not distributed, since the decision of r0 depends on the execution history of s′

0, i.e., the

2 In [38], they are called decentralized schedulers in the context of probabilistic multi-agent systems.
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choice of ξ2(π) depends on whether [π ]1 = s5 or s6. By restricting to the set of distributed
schedulers, we can avoid this unrealistic scheduler of s′

0 ‖A r0.

4 Weak bisimilarities for probabilistic automata

In this section, we first introduce weak distribution bisimulation, which is a variant of weak
bisimulation defined in [9], and then define late distribution bisimulation, which is strictly
coarser than weak distribution bisimulation.

4.1 Lifting of a transition relation

In the following, let μ
α−→ μ′ iff there exists a transition s

α−→ μs for each s ∈ Supp(μ) such
that μ′ = ∑

s∈Supp(μ) μ(s) · μs . We generalize this as in [9] to the lifting of other relations:

Definition 10 Let S be a nonempty finite set and � ⊆ S × SubDist(S) be a (transition)
relation. Then �c ⊆ SubDist(S) × SubDist(S) is the smallest relation that satisfies:

1. s � μ implies δs �c μ;
2. If μi �c νi for i = 1, 2, . . . , n, then

∑n
i=1 piμi �c

∑n
i=1 piνi for any pi ∈ [0, 1] with∑n

i=1 pi = 1.

The lifting of a relation has many good properties [9]. We list those we need:

Lemma 11 Let � ⊆ S × SubDist(S) be a relation. Then its lifting relation �c has the
following properties:

1. �c is left-decomposable, i.e.
∑n

i=0 piμi �c ν implies that ν can be written as ν =∑n
i=0 piνi such that μi �c νi for every i , where pi ∈ [0, 1] with ∑n

i=0 pi = 1.
2. μ �c ν iff ν can be written as ν = ∑

s∈Supp(μ) μ(s)νs , where νs can be written as
νs = ∑n

i=0 piνs,i such that s � νs,i for each i , where pi ∈ [0, 1] with ∑n
i=0 pi = 1.

3. �c is σ -linear, i.e. μi �c νi for every i ≥ 0 implies that
∑

i≥0 piμi �c
∑

i≥0 piνi ,
where pi ∈ [0, 1] with ∑

i≥0 pi = 1.

4.2 Weak distribution bisimulation

As usual, a standard weak transition relation is needed in the definitions of bisimulation that
allows one to abstract from internal actions. Intuitively, s

α�⇒ μ denotes that a distribution μ

is reached from s by an α-transition, which may be preceded and followed by an arbitrary
sequence of internal transitions. We define them as derivatives [10] for PAs. Formally s

τ�⇒ μ

iff there exists an infinite sequence

δs = μ→
0 + μ×

0 ,

μ→
0

τ−→ μ→
1 + μ×

1 ,

μ→
1

τ−→ μ→
2 + μ×

2 ,

. . .

where μ = ∑
i≥0 μ×

i . We write s
α�⇒ μ iff there exists s

τ�⇒ α−→ τ�⇒ μ, and μ
α�⇒ μ′ iff for

s ∈ supp(μ) there exists s
α�⇒ μs , s.t. μ′ = ∑

s∈supp(μ) μ(s)μs . It is worth noting that the

relation
τ�⇒ is transitive (See [9, Thm. A.4]), i.e. μ

τ�⇒ μ′ and μ′ τ�⇒ μ′′ imply μ
τ�⇒ μ′′, and

it is easy to see that
τ�⇒c is also transitive.
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In [11,20], compactness and continuity are characterized. We say a sequence of subdistri-
butions μi converges to μ, denoted by limi→∞ μi = μ, if for any A ⊆ S, limi→∞ μi (A) =
μ(A). The following lemma, derived from [20, Lemma 7.5], shows that finite systems are
compact and the weak transition relation

α�⇒c is continuous.

Lemma 12 1. For any s ∈ S and α ∈ Actτ , the set {μ | s α�⇒c μ} is compact.
2. The relation

α�⇒c is continuous, i.e. ifμi
α�⇒c νi with limi→∞ μi = μ and limi→∞ νi = ν,

then μ
α�⇒c ν.

Note the weak transitions in [16,20] are defined via trees, whereas our definitions are
based on derivatives. The underlying idea is similar, and it is shown in [5] that they agree
with each other for systems with finite states. We note also that the proof in [20] can be
adapted to a direct proof of the above lemma.

Definition 13 R ⊆ Dist(S)×Dist(S) is a weak distribution bisimulation iff μ R ν implies:

1. whenever μ
α−→c μ′, there exists a ν

α�⇒c ν′ such that μ′ R ν′;
2. whenever μ = ∑

0≤i≤n pi ·μi , there exists a ν
τ�⇒c

∑
0≤i≤n pi · νi such that μi R νi for

each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;
3. symmetrically for ν.

We say that μ and ν are weak distribution bisimilar, written as μ •≈ ν, iff there exists a weak
distribution bisimulation R such that μ R ν. Moreover s •≈ r iff δs

•≈ δr .

Sometimes we need to consider relations between subdistributions, and for a relation
R ⊆ Dist(S) × Dist(S), we can extend it to a relation on SubDist(S) (still denoted by R)
naturally as follows: μ R ν iff μ = ν = 0 or μ(S) = ν(S) and μ/μ(S) R ν/ν(S).

The following lemma states that the weak distribution bisimilarity relation •≈ is linear
and σ -linear. This is natural from the σ -linearity of

α−→c and
α�⇒c. We omit its proof.

Lemma 14 The weak distribution bisimilarity relation •≈ is linear and σ -linear.

In Definition 13, clause 1 is standard. clause 2 says that no matter how we split μ, there
always exists a splitting of ν (possibly after internal transitions) to simulate the splitting
of μ. Definition 13 is slightly different from Def. 5 in [9], where clause 2 is missing and
clause 1 is replaced by: whenever μ

α�⇒c
∑

0≤i≤n pi · μi , there exists ν
α�⇒c

∑
0≤i≤n pi · νi

such that μi R νi for each 0 ≤ i ≤ n. Essentially, this condition subsumes clause 2, since
μ = ∑

0≤i≤n pi · μi implies μ
τ�⇒c

∑
0≤i≤n pi · μi . As we prove in the following lemma,

both definitions induce the same equivalence relation on PAs.

Lemma 15 LetP = (S,Actτ ,−→, s̄) be aPA. A relationR ⊆ Dist(S)×Dist(S) is the weak
distribution bisimilarity relation iff it is the largest relation satisfying: μ R ν implies:

1. whenever μ
α�⇒c μ′ with μ′ ∈ Dist(S), there exists ν

α�⇒c ν′ such that μ′ R ν′,
2. whenever μ = ∑

0≤i≤n pi · μi , there exists ν
τ�⇒c

∑
0≤i≤n pi · νi such that μi R νi for

each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1,
3. symmetrically for ν.

Proof Since μ
α−→c μ′ implies μ

α�⇒c μ′,R is a weak distribution bisimulation, andR ⊆ •≈.
For the other direction, we need to show that •≈ satisfies the conditions in Lemma 15, and
we only need to check the first clause.
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Assume α = τ . According to the definition of derivatives, μ
τ�⇒c μ′ iff there exists

μ = μ→
0 + μ×

0 ,

μ→
0

τ−→c μ→
1 + μ×

1 ,

μ→
1

τ−→c μ→
2 + μ×

2 ,

...

such that μ′ = ∑
i≥0 μ×

i . By Definition 13, ν can simulate such a derivation at each step,
namely, there exists

ν
τ�⇒c ν→

0 + ν×
0 ,

ν→
0

τ�⇒c ν→
1 + ν×

1 ,

ν→
1

τ�⇒c ν→
2 + ν×

2 ,

...

such that μ→
i

•≈ ν→
i and μ×

i
•≈ ν×

i for each i ≥ 0. Since •≈ is σ -linear, (
∑

i≥0 μ×
i ) •≈

(
∑

i≥0 ν×
i ). From the transitivity of

τ�⇒c, we have ν
τ�⇒c

∑n
i=0 ν×

i + ν→
n . Since μ′ is a

distribution, so is
∑

i≥0 ν×
i , and we have ν→

n converges to 0. By the continuity of
τ�⇒c, we

have ν
τ�⇒c

∑
i≥0 ν×

i .

In case μ
α�⇒c μ′ with α 	= τ , we have μ

τ�⇒c μ′
1

α−→c μ′
2

τ�⇒c μ′. As shown above, there

exists ν
τ�⇒c ν′

1 such that μ′
1 R ν′

1, which indicates that there exists ν′
1

α�⇒c ν′
2 such that

μ′
2 R ν′

2 by Definition 13, which indicates that there exists ν′
2

τ�⇒c ν′ such that μ′ R ν′. This
completes the proof. ��

The above lemma implies the transitivity of weak distribution bisimulation. On the other
hand,we can restrict−→c to−→ inDefinition 13without changingweak distribution similarity:

Lemma 16 LetP = (S,Actτ ,−→, s̄) be aPA. A relationR ⊆ Dist(S)×Dist(S) is the weak
distribution bisimilarity relation iff it is the largest relation satisfying: μ R ν implies:

1. whenever μ
α−→ μ′, there exists ν

α�⇒c ν′ such that μ′ R ν′,
2. whenever μ = ∑

0≤i≤n pi · μi , there exists ν
τ�⇒c

∑
0≤i≤n pi · νi such that μi R νi for

each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1,
3. symmetrically for ν.

Proof Since μ
α−→ μ′ implies μ

α−→c μ′, •≈ ⊆ R. For the other direction, we only need to
show that R is a bisimulation relation.

First it is easy to see that R is linear. Let μ R ν. If μ
α−→c μ′, then by Lemma 11,

μ′ = ∑
s∈Supp( u) μ(s)μs , such that μs = ∑n

i=1 piμs,i , where s
α−→ μs,i and

∑n
i=1 pi = 1.

That is to say, there exists μ = ∑m
i=1 wiμi , where

∑m
i=1 wi = 1, such that μi

α−→ μ′
i and∑m

i=1 wiμ
′
i = μ′. By the second clause, there exist ν

τ�⇒c
∑m

i=1 wiνi , such that μi R νi .

Then there exists νi
α�⇒c ν′

i , such that μ′
i R ν′

i . Then we have ν
α�⇒c

∑m
i=1 wiν

′
i . From the

linearity of R, we get μ′ R ∑m
i=1 wiν

′
i . ��
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4.3 Late weak bisimulation

Clause 2 in Definition 13 allows arbitrary splittings, which is essentially the main reason that
weak distribution bisimulation is unrealistically strong. In order to establish a bisimulation
relation, all possible splittings of μ must be matched by ν (possibly after some internal tran-
sitions). As splittings into Dirac distributions are also considered, the individual behaviors of
each single state in Supp(μ) must be matched too. However, our bisimulation is distribution-
based, thus the behaviors of distributions should be matched rather than those of states. We
are about to propose a novel definition of late distribution bisimulation. Before that, we still
need some notations. The following definition of transition consistency is derived from [22].

Definition 17 A distributionμ is transition consistent,written as−→μ , if for any s ∈ Supp(μ)

and α 	= τ , s
α�⇒ γ for some γ implies μ

α�⇒c γ ′ for some γ ′.

For a distribution being transition consistent, all states in the support of the distribution
should have the same set of enabled visible actions. One of the key properties of transition
consistent distributions is that μ

α�⇒ whenever s
α�⇒ for some state s ∈ Supp(μ). In contrast,

when a distribution μ is not transition consistent, there must be a weak α transition of some
state in Supp(μ) being blocked. In the sequel, wewill adapt the lifting of the transition relation
to avoid that a difference in

τ−→ transitions leads to blocked
α�⇒ transitions.

We now introduce ↪−→, an alternative lifting of transitions of states to transitions of distri-
butions that differs from the standard definition used in [9,15]. There, a distribution is able
to perform a transition labelled with α if and only if all the states in its support can perform
transitions with the very same label. In contrast, the transition relation ↪−→ behaves like a
weak transition, where every state in the support of μ may perform an invisible transition
independently from other states.

Definition 18 μ
α

↪−→ μ′ iff

1. either for each s ∈ Supp(μ) there exists s
α−→ μs such that

μ′ =
∑

s∈Supp(μ)

μ(s) · μs,

2. or α = τ and there exists s ∈ Supp(μ) and s
τ−→ μs such that

μ′ = (μ − s) + μ(s) · μs .

In the definition of late distribution bisimulation, this extension will be used to prevent τ
transitions of states from being blocked. Below follows an example:

Example 19 Let μ = {s1 : 0.4, s2 : 0.6} such that s1
τ−→ δs′1

α−→ μ1, s1
β−→ μ2, s2

α−→ μ3,

and s2
β−→ μ4, where α 	= β are visible actions. According to clause 1 of Definition 18, we

will have μ
β

↪−→ (0.4 · μ2 + 0.6 · μ4). Without clause 2, this would be the only transition of
μ, since the τ transition of s1 and the α transition of s2 will be blocked, as s1 and s2 cannot
perform transitions with labels τ and α at the same time.

Note that the α transition is blocked by the τ transition of s1, so according to clause 2 of
Definition 18, we in addition have

μ
τ

↪−→ (0.4 · δs′1 + 0.6 · δs2)
α

↪−→ (0.4 · μ1 + 0.6 · μ3). ��
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Fig. 6 Using −→ instead of ↪−→
will lead to a finer relation

s0

s1 s2

r0

r1

τ β β

α

α, β β

α

β

Note that in clause 1 of Definition 13, −→ can be replaced by ↪−→ without changing the
resulting equivalence relation, as the same effect can be obtained by a suitable splitting in
clause 2. In the example, we could have split μ into 0.4 · δs1 +0.6 · δs2 , such that no transition
is blocked in the resulting distributions.

With this lifting transition relation
α

↪−→, we now propose the notion of late distribution
bisimulation as follows:

Definition 20 R ⊆ Dist(S) × Dist(S) is a late distribution bisimulation iff μ R ν implies:

1. whenever μ
α

↪−→c μ′, there exists a ν
α�⇒c ν′ such that μ′ R ν′;

2. if not −→μ , then there exists μ = ∑
0≤i≤n pi · μi and ν

τ�⇒c
∑

0≤i≤n pi · νi such that −→μi

and μi R νi for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;
3. symmetrically for ν.

We say that μ and ν are late distribution bisimilar, written as μ ≈• ν, iff there exists a late
distribution bisimulation R such that μ R ν. Moreover s ≈• r iff δs ≈• δr .

In clause 1, this definition differs fromDefinition 13 by the use of ↪−→. It is straightforward
to show that ↪−→ can also be used in Definition 13 without changing the resulting bisimilarity.
However, in Definition 20, using −→ instead of ↪−→ will lead to a finer relation.

Example 21 We consider the model in Fig. 6. If we use −→ in defining weak distribution
bisimulation, then it is easy to check that 0.5δs0 +0.5δr0 and δr0 would be bisimilar. However,
according to our definition (where we use ↪−→), they are not bisimilar. We show this by

contradiction. Notice that 0.5δs0 + 0.5δr0
τ

↪−→ 0.5δs1 + 0.5δr0
β

↪−→ 0.5δs1 + 0.5δr1 can only

be simulated by δr0
τ�⇒c δr0

β�⇒c δr1 , so 0.5δs1 + 0.5δr1 and δr1 must be bisimilar. However,
0.5δs1 + 0.5δr1 is not transition consistent, so it can be written as

∑n
i=1 piμi such that every

μi is transition consistent. It is easy to see here every μi must be a Dirac distribution, and
δs1 must appear, but piδr1 and piδs1 can never be bisimilar.

The key difference between Definitions 13 and 20, however, is in clause 2. As we men-
tioned, in Definition 13, every split of μ should be matched by a corresponding split of ν,
while in Definition 20, we only require that at least one transition consistent split of μ is
matched. We do not need to require that νi is transition consistent, as we will show later that−→μi and μi R νi implies −→νi . According to Definition 17, splittings to transition consistent
distributions ensure that all possible transitions will be considered eventually, as no transi-
tion of an individual state is blocked. Therefore, clause 1 suffices to capture every visible
behavior.

By introducing transition consistent distributions, we try to group states with the same set
of enabled visible actions together and do not distinguish them in a distribution. This idea
is mainly motivated by the work in [8], where all states with the same enabled actions are
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non-distinguishable from the outside. Under this assumption, a model checking algorithm
was proposed. By avoiding splitting transition consistent distributions, we essentially delay
the probabilistic transitions until transition consistency is broken. This explains the name
“late distribution bisimulation”. Further, if restricting to models without internal action τ ,
our notion of late distribution bisimulation agrees with decentralized bisimulation in [38].

Example 22 We will show that in Fig. 3, s0 ≈• s′
0. Let

R = {(δs0 , δs′0), (δs0 , {s5 : 0.5, s6 : 0.5})} ∪ Δ

where Δ is the identity relation. It is easy to show that R is a late distribution bisimulation.
The only non-trivial case is when δs′0

τ−→ {s5 : 0.5, s6 : 0.5}. But then δs0 can simulate it

without performing any transition, i.e., δs0
τ�⇒ δs0 . Since δs0 R {s5 : 0.5, s6 : 0.5}, clause 1 of

Definition 20 is satisfied. Moreover both δs0 and {s5 : 0.5, s6 : 0.5} are transition consistent,
thus we do not need to split them any further. Conversely, we can show thatR is not a weak
distribution bisimulation. According to clause 1 of Definition 13, we require that for any split
of {s5 : 0.5, s6 : 0.5}, there must exist a matching split of δs0 , which cannot be established.
For instance the split {s5 : 0.5, s6 : 0.5} ≡ 0.5 · δs5 + 0.5 · δs6 cannot be matched by any split
of δs0 . ��

The following example shows that the transition consistency condition of Definition 20
is necessary to not equate states which should be distinguished.

Example 23 Suppose there are two states s0 and r0 such that s0
τ−→ s1 and r0

τ−→ {r1 :
0.5, r2 : 0.5} where all of s1, r1, and r2 have a transition to themselves with labels τ , in
addition, r1

α−→ r1 where α 	= τ . Let

R = {(δs0 , δr0), (δs1 , {r1 : 0.5, r2 : 0.5})}.
If we dropped the transition consistency condition from Definition 20, we could show that
R is a late distribution bisimulation, and therefore s0 ≈• r0. Because the distribution {r1 :
0.5, r2 : 0.5} can only perform a τ transition to itself, while the α transition of r1 would
then be blocked. However, s0 and r0 should be distinguished, because r0 can reach r1 with
positive probability, which is a state able to perform a transition with visible label α. Note
that as {r1 : 0.5, r2 : 0.5} is not transition consistent, we should split it further according to
Definition 20. Thus we can prove thatR is not a late distribution bisimulation, i.e., s0 	≈• r0.��

The following lemma states that μ and ν must be transition consistent or not at the same
time, if they are late distribution bisimilar.

Lemma 24 μ ≈• ν and −→μ imply −→ν .

Proof By contradiction. Assume μ ≈• ν and −→μ , but not −→ν . Since μ ≈• ν, there exists a late
distribution bisimulationR such thatμ R ν. Moreover,μ

α�⇒ implies ν
α�⇒ and vice versa for

any α. Therefore, EA(μ) = EA(ν), where EA(μ) = {α | ∃μ′.μ α�⇒ μ′}, similarly for EA(ν).
Since ν is not transition consistent, there exists s ∈ Supp(ν) such that s

α�⇒ with α /∈ EA(ν),
i.e., some transitions of states in Supp(ν) with label α are blocked. This implies that there
exists a non-trivial ν = ∑

i∈I pi · νi with
−→νi for each i ∈ I such that ν j

α�⇒ for some j ∈ I .

Since −→μ and α /∈ EA(μ), there does not exist μ
τ�⇒ ∑

i∈I pi · μi such that μi
α�⇒ for some

i ∈ I . This contradicts the assumption that μ ≈• ν. ��
The following lemma shows that the late distribution bisimilarity relation ≈• is linear.

123



Probabilistic bisimulation for realistic schedulers 477

Lemma 25 The late distribution bisimilarity relation ≈• is linear.

Proof By contradiction we assume ≈• is not linear. We consider the smallest linear relation
containing ≈• (i.e. the intersection of all linear relations containing ≈•, which is still linear
and strictly larger than ≈•) and denote it by ≈′. We show that ≈′ is a late distribution
bisimulation. Letμ ≈′ ν. Ifμ ≈• ν, naturally the conditions in Definition 20 hold. Ifμ 	≈• ν,
then μ ≈′ ν because of linearity, so there exist μi ≈• νi for 0 ≤ i ≤ n s.t. μ = ∑n

i=0 piμi

and ν = ∑n
i=0 piνi . From the linearity of

α
↪−→c and

α�⇒c, the first clause in Definition 20
holds. For the second clause, if μ is not transition consistent, then for those μi which are not
transition consistent, there exists νi

τ�⇒ ν′
i , s.t. μi ≈• ν′

i , and naturally we get a split of μ by
combining all splits of μi and corresponding weak transition of ν. Then from the linearity
of

τ�⇒c, we can see the second clause holds. Therefore, ≈′ is a late distribution bisimulation.
However, ≈• is the largest late distribution bisimulation, which is a contradiction! ��

In Definition 20, we can split μ in the coarsest way when μ is not transition consistent.
Basically we split μ as

μ =
∑

A⊆Act

μA where μA =
∑

E A(s)=A

μ(s)δs . (4)

It is obvious that the split given in (4) is the coarsest one that makes every component μA

in the split transition consistent. By using this coarsest split, we can get the same relation as
that in Definition 20, as is stated in the following lemma:

Lemma 26 A relation R ⊆ Dist(S) × Dist(S) is the late distribution bisimilarity relation
iff it is the largest relation satisfying: μ R ν implies:

1. whenever μ
α

↪−→c μ′, there exists a ν
α�⇒c ν′ such that μ′ R ν′;

2. if not −→μ , then for the coarsest split μ = ∑
A μA, there exists ν

τ�⇒c ν′ such that
ν′ = ∑

A ν′
A and μA R ν′

A for each A ⊆ Act;
3. symmetrically for ν.

Proof LetR be a relation satisfying the conditions in the lemma, then it is a late distribution
bisimulation and naturally R ⊆ ≈•. For the other direction, we show that ≈• satisfies the
conditions in the lemma so that ≈• ⊆ R. We only need to check the second clause. If μ is
not transition consistent, then there exists a split μ = ∑n

i=0 piμi and ν
τ�⇒c

∑n
i=0 piνi , s.t.

μi ≈• νi . This split is finer than μ = ∑
A μA, and we can combine some components to this

coarsest split. From the linearity of ≈•, we can see the second clause holds. ��
From Lemma 26, we can know that ≈• is σ -linear.

Lemma 27 The late distribution bisimilarity relation ≈• is σ -linear.

Basically we adopt a similar proof as Lemma 25, replacing n with∞. The only difference
is that, when we check the second clause, we need Lemma 26 to do the split of every μi so
that the resulting combined split is still finite and we can simulate it from the linearity of ≈•.
We omit this proof.

The lemma below resembles Lemma 15, which can be proved similarly as Lemma 15.

Lemma 28 Let P = (S,Actτ ,−→, s̄) be a PA. A relationR ⊆ Dist(S) ×Dist(S) is the late
distribution bisimilarity relation iff it is the largest relation satisfying: μ R ν implies:

1. whenever μ
α�⇒c μ′ with μ′ ∈ Dist(S), there exists ν

α�⇒c ν′ such that μ′ R ν′,
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2. if not −→μ , then there exists μ = ∑
0≤i≤n pi · μi and ν

τ�⇒c
∑

0≤i≤n pi · νi such that −→μi

and μi R νi for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;
3. symmetrically for ν.

Proof It suffices to check that ≈• satisfies the first clause in Lemma 28. We assume μ ≈• ν.
If μ

τ�⇒c μ′, then there exists

μ = μ→
0 + μ×

0 ,

μ→
0

τ−→c μ→
1 + μ×

1 ,

μ→
1

τ−→c μ→
2 + μ×

2 ,

...

such thatμ′ = ∑
i≥0 μ×

i . Thenwehaveμ
τ

↪−→c μ→
1 +μ×

0 +μ×
1

τ
↪−→c μ→

2 +μ×
0 +μ×

1 +μ×
2

τ
↪−→c

· · · . Then there exists ν
τ�⇒c νn , such that μ→

n +∑n
i=1 μ×

i ≈• νn , for each n ∈ N. Since {μn}
is a bounded sequence in R

S , there exists a converging subsequence, which we still denote
by {νn}. Let ν′ = limn→∞ νn . From the continuity of

τ�⇒c, we get ν
τ�⇒c ν′.

If μ
α�⇒c μ′ with α 	= τ , we have μ

τ�⇒c μ′
1

α−→c μ′
2

τ�⇒c μ′. As shown above, there exists

ν
τ�⇒c ν′

1 such that μ′
1 R ν′

1, which indicates that there exists ν′
1

α�⇒c ν′
2 such that μ′

2 R ν′
2,

which indicates that there exists ν′
2

τ�⇒c ν′ such that μ′ R ν′. This completes the proof. ��
Similarly, we have the following result, which can be proved analogously to Lemma 16.

Lemma 29 Let P = (S,Actτ ,−→, s̄) be a PA. A relationR ⊆ Dist(S) ×Dist(S) is the late
distribution bisimilarity relation iff it is the largest relation satisfying: μ R ν implies:

1. whenever μ
α

↪−→ μ′, there exists ν
α�⇒c ν′ such that μ′ R ν′,

2. if not −→μ , then there exists μ = ∑
0≤i≤n pi · μi and ν

τ�⇒c
∑

0≤i≤n pi · νi such that −→μi

and μi R νi for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;
3. symmetrically for ν.

The following theorem shows that ≈• is an equivalence relation and ≈• is strictly coarser
than •≈.

Theorem 30

1. •≈ ⊂ ≈•;
2. ≈• is an equivalence relation.

Proof Thefirst clause •≈ ⊂ ≈• is easy to establish, since the second condition ofDefinition 13
implies the second condition of Definition 20. The PA in Fig. 1 shows that the inclusion is
strict.

Now we prove that ≈• is an equivalence relation. We prove transitivity (other parts are
easy). For any μ, ν, and γ , assume μ ≈• ν and ν ≈• γ , we prove that μ ≈• γ . We shall
prove:

1. Whenever μ
α�⇒c μ′, there exists γ

α�⇒c γ ′ such that μ′ R γ ′. This is achieved by
applying Lemma 28.
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2. If not −→μ , then for the coarsest split μ = ∑
A μA, there exists ν

τ�⇒c ν′, s.t. ν′ = ∑
A ν′

A

and μA ≈• ν′
A. Because ν ≈• γ , there exists γ

τ�⇒c γ ′, s.t. ν′ ≈• γ ′. From Lemma 24,
ν′ is not transition consistent, and by adopting Lemma 26 again we know there exists
γ ′ τ�⇒c γ ′′, s.t. γ ′′ = ∑

A γ ′′
A and ν′

A ≈• γ ′′
A . SinceμA, ν′

A, γ
′′
A are all transition consistent,

we have μA ≈• γ ′′
A . From the transitivity of

τ�⇒c, we know that γ
τ�⇒c

∑
A γ ′′

A .

This completes our proof. ��

5 Properties of late distribution bisimilarity

In this section we show that results established in [38] can be extended to the setting where
internal transitions are abstracted away.

We concentrate on two properties of late distribution bisimulation: compositionality and
preservationof trace distributions.Whengeneral schedulers are considered, the twoproperties
do not hold, hence we will restrict ourselves to partial information distributed schedulers.
We mention that both partial information and distributed schedulers were proposed to rule
out unrealistic behaviors of general schedulers; see [8,23] for more details.

We first define some notations. In the following, we restrict ourselves to schedulers sat-
isfying the following condition: For any π ∈ Paths∗, ξ(π)(α, μ) > 0 and ξ(π)(β, ν) > 0
imply α = β. In other words, ξ always chooses transitions with the same label at each step.
This class of schedulers suffices for our purpose. To distinguish between scheduler classes,
we parameterize transition relations with schedulers explicitly. A transition from s to μ with
label α is induced by a scheduler ξ , written as s

α−→ξ μ, iff μ ≡ ∑
μ′∈Dist(S) ξ(s)(α, μ′) · μ′.

As before, such a transition relation can be lifted to distributions: μ
α−→ξ ν to denote that

μ can evolve into ν by performing a transition with label α under the guidance of ξ , where
s

α−→ξ νs for each s ∈ Supp(μ) and ν ≡ ∑
s∈Supp(μ) μ(s) · νs . Since no a priori information

is available, given a distribution μ, for each s ∈ Supp(μ), we simply use s as the history
information for ξ to guide the execution, which corresponds to a memoryless scheduler and
suffices for the purpose of defining bisimulation.

We can also define μ
α

↪−→ξ μ′ analogously to Definition 18. Moreover, weak transitions

s
α�⇒ξ μ and their lifting to distributions can be defined similarly.
Below we give an alternative to Definition 20, where schedulers are considered explicitly.

Definition 31 LetS be afixed class of schedulers.R ⊆ Dist(S)×Dist(S) is a late distribution
bisimulation with respect to S iff μ R ν implies:

1. wheneverμ
α

↪−→ξ1 μ′ for some ξ1 ∈ S, there exist ξ2 ∈ S and ν
α�⇒ξ2 ν′ such thatμ′ R ν′;

2. if not −→μ , then there exist ξ ∈ S and μ = ∑
0≤i≤n pi · μi and ν

τ�⇒ξ

∑
0≤i≤n pi · νi such

that −→μi and μi R νi for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;
3. symmetrically for ν.

We write μ ≈•
S ν iff there exists a late distribution bisimulation R with respect to S such

that μ R ν, and we write s ≈•
S r iff δs ≈•

S δr .

In contrast to Definition 20, in Definition 31, every transition is induced by a scheduler
in S. Obviously, when S is the set of all schedulers, these two definitions coincide. Thus,
s1 ≈• s2 ⇐⇒ s1 ≈•

SD
s2, provided s1 and s2 contain no parallel operators, as in this case SD

is the set of all schedulers.
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Fig. 7 Late distribution
bisimulation cannot imply trace
distribution equivalence

s1 r1

s0 r0

α α

τ

α α

The lemma below shows that distribution bisimulation and partial information schedulers
are closely related. It shows that partial information schedulers are enough to discriminate
late distribution bisimilarity with respect to arbitrary schedulers.

Lemma 32 For any states s1 and s2, s1 ≈• s2 iff s1 ≈•
SP

s2.

Proof This equivalence is straightforward from Definition 20, since we always group states
with the same enable visible actions together and let them either perform transitions with
the same visible action at the same time, or an internal transition independently, which never
breaks the conditions of partial information schedulers. In other words, all transitions we
consider in Definition 20 are induced by some scheduler in SP . ��

In the following we investigate the implication between late distribution bisimulation and
trace distribution equivalence. In the classical setting, weak bisimulation and trace equiva-
lence are incomparable, and divergence sensitivity is added to guarentee the implication. It is
the same for our probabilistic setting. The following example shows that only late distribution
bisimulation cannot imply trace distribution equivalence.

Example 33 Our model is shown in Fig. 7. It is obvious that s0 ≈• r0. Let the scheduler
ξ1(s0) = (τ, δs0). Then Prs0ξ1(Cα) = 0. However, for any scheduler ξ2, ξ2(r0) = (α, δr1), so

Prr0ξ2(Cα) = 1. Therefore, s0 and r0 are not trace distribution equivalent with respect to any
set of schedulers containing ξ1.

Definition 34 Given a relationR ⊆ Dist(S)×Dist(S), we say μ ∈ Dist(S) isR-divergent,
if there exists an infinite sequence μ

τ−→ μ1
τ−→ μ2

τ−→ · · · , such that μ R μi for each i ≥ 1.
We say s ∈ S is R-divergent, if δs is R-divergent.

Definition 35 We say a relation R ⊆ Dist(S) × Dist(S) is divergence-sensitive, if μ R ν

implies that μ and ν are both or neither R-divergent.

Now we add divergence sensitivity to late distribution bisimulation as follows:

Definition 36 A relation R ⊆ Dist(S) × Dist(S) is a divergence-sensitive late distribution
bisimulation, iff R is divergence-sensitive and a late distribution bisimulation. We write
μ ≈•div ν iff there exists a divergence-sensitive late distribution bisimulation R such that
μ R ν. Moreover s ≈•div r iff δs ≈•div δr .

The following result shows that divergence-sensitive late distribution bisimulation implies
trace distribution equivalence.

Theorem 37 For any states s1 and s2, s1 ≈•div s2 implies s1 ≡SP s2.
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Proof (Sketch, see the appendix for details) We assume given states s1 ≈•div s2, a partial
information scheduler ξ1, and a trace ς starting with EA(s1) = EA(s2). Basically we need to
construct a partial information scheduler ξ2 that ensures Pr

s1
ξ1

(Cς ) = Prs2ξ2(Cς ).

Since s1 ≈•div s2, for π ∈ Paths∗(s1) and α ∈ Actτ with ξ1(π, α) > 0, there exists

a sequence of transitions s1
α1

↪−→c μ1
α2

↪−→c · · · αn
↪−→c μn , which can be simulated by some

sequence s2
α1�⇒c ν1

α1�⇒c · · · αn�⇒c νn . From Definition 20, μi and νi can be splitted into
subdistributions which are transition consistent and they keep the bisimilarity relation. We
put strong transitions in s2

α1�⇒c ν1
α2�⇒c . . .

αn�⇒c νn to ξ2 to form this scheduler. Because all
paths in ξ2 are simulated through ξ1, given any path in ξ2, we can always find a path in ξ1 that
has the same trace of enabled actions. Therefore its probability of choosing transitions with
a specific visible action can be chosen to be equal to ξ1; this also ensures that the scheduler
ξ2 is a partial information scheduler.

Now we need to show that, for any finite trace ς , Prs1ξ1(Cς ) = Prs2ξ2(Cς ). It is not difficult
to see this. We first prove that the two schedulers have the same distribution on traces with
length at most n which share the same prefix ς , which is natural through the construction
of ξ2. With divergence sensitivity, distribution equivalence on finite traces suffices for trace
distribution equivalence. This completes the proof. ��

Theorem 37 does not hold if we consider general schedulers:

Example 38 Let s0 and s1 be two states in Fig. 5. In Example 7 we have shown that s0 	≡ s1.
It is also not hard to check that s0 ≈• s1. But we also notice that the schedulers giving rise to
the trace distributions {α : 1

3 , β : 2
3 } and {β : 1

3 , α : 2
3 } are not partial information schedulers.

Since at states s2 and s3 with the same enabled visible actions, the schedulers can choose
transitions with different labels. By restricting to partial information schedulers we exclude
these two distributions and can indeed show that s0 ≡SP s1. ��

If looking at the effect of parallel composition, we can establish compositionality if dis-
tributed schedulers are considered:

Theorem 39 For any states s1, s2, and s3,

s1 ≈•
SD

s2 implies s1 ‖A s3 ≈•
SD

s2 ‖A s3.

Proof 1. In case that s1 and s2 contain no parallel operators, all schedulers of s1 and s2 are
distributed schedulers according to Definition 9. Therefore s1 ≈• s2 implies s1 ≈•

SD
s2

and vice versa.
2. Let R = {(μ1 ‖A μ3, μ2 ‖A μ3) | μ1 ≈•

SD
μ2}. It suffices to prove that R is a

late distribution bisimulation with respect to SD . Let (μ1 ‖A μ3) R (μ2 ‖A μ3) and
μ1 ‖A μ3

α−→ξ1 ν for some ξ1 ∈ SD . We have to show that there exists μ2 ‖A μ3
α�⇒ξ2 ν′

for some ξ2 ∈ SD such that ν R ν′. We distinguish several cases:

(a) α ∈ Act\A:
Since ξ1 is a distributed scheduler, we have either (i) μ1

α−→ξ1 ν1 such that ν ≡ ν1 ‖A

μ3, or (i i) μ3
α−→ξ1 ν3 such that ν ≡ μ1 ‖A ν3. We first consider case (i). Since

μ1 ≈•
SD

μ2, there exists μ2
α�⇒ξ2 ν2 for some ξ2 ∈ SD such that ν1 ≈•

SD
ν2, therefore

there exists μ2 ‖A μ3
α�⇒ξ2 ν2 ‖A μ3. According to the definition of R, we have

ν ≡ (ν1 ‖A μ3) R (ν2 ‖A μ3) ≡ ν′ as desired. The proof of case (i i) is similar and
omitted here.
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(b) α ∈ A:
As before ξ1 is a distributed scheduler, according to the definition of parallel operator,
it must be the case that μ1

α−→ξ1 ν1 and μ3
α−→ξ1 ν3 such that ν ≡ ν1 ‖A ν3.

Since μ1 ≈•
SD

μ2, there exists μ2
α�⇒ξ2 ν2 with ν1 ≈•

SD
ν2. Hence there exists

μ2 ‖A μ3
α�⇒ξ2 ν2 ‖A ν3 such that

ν ≡ (ν1 ‖A ν3) R (ν2 ‖A ν3) ≡ ν′.

��
This is demonstrated by the following two examples:

Example 40 Let s′
0 ‖A r0 be a state as in Example 1, whose execution is depicted in Fig. 4b.

Additionally, let r be a sequential state whose execution is same as s′
0 ‖A r0, such sequential

state always exists (simply introducing a state for each node in Fig. 4b). By construction, we
have s′

0 ‖A r0 ≈• r . However, if restricted to schedulers in SD , s′
0 ‖A r0 ≈•

SD
r does not hold.

Since the scheduler inducing the execution of s′
0 ‖A r0 with probability 1 guessing correctly

in Fig. 4b is not distributed, while the scheduler inducing the corresponding execution of r is
distributed. Essentially, every possible scheduler of r is distributed because r is sequential.��
Example 41 Let s0, s′

0, and r0 be the states in Fig. 3. We have shown in Example 22 that
s0 ≈• s′

0, but we have s0 ‖A r0 	≈• s′
0 ‖A r0 if general schedulers are considered: The

composed PA of s′
0 ‖A r0, depicted in Fig. 4 allows a (non-distributed) scheduler that guesses

correctly with probability 1, but this behaviour cannot be simulated by s0 ‖A r0, no matter
how we schedule the transitions of s0 ‖A r0. For instance the maximal probability to reach
states in the set {s3 ‖A r3, s4 ‖A r4} from s′

0 ‖A r0 is 1, while the probability to reach this set
from s0 ‖A r0 is always 0.5.

However, when restricting to distributed schedulers, we can show that both s0 ‖A r0 and
s′
0 ‖A r0 reach this state set with probability 0.5, since schedulers of s′

0 ‖A r0 that guess
correctly with a different probability are not distributed. The reason is that at states s5 ‖A r0
and s6 ‖A r0, r0 makes different decisions by looking at s5 and s6, which should not happen
in a distributed scheduler. ��

As in the strong setting [38], by restricting to the set of schedulers inSP ∩SD , late distribu-
tion bisimulation is compositional and preserves trace distribution equivalence. Furthermore,
late distribution bisimulation is the coarsest congruence satisfying the two properties with
respect to schedulers in SP ∩ SD .

Theorem 42 Let S = SP ∩ SD. s1 ≈•
S s2 iff s1 ≡cgr

S s2 for any s1 and s2, where s1 ≡cgr
S s2

iff s1 ≡S s2 and s1 ‖A s3 ≡S s2 ‖A s3 for any s1, s2, s3, and A.

We mention that schedulers in SP ∩ SD arise very natural in practice, for instance in
decentralized multi-agent systems [3], where all agents are autonomous (corresponding to
distributed schedulers) and states are partially observable (corresponding to partial informa-
tion schedulers).

In [30] an algorithm was proposed to compute distribution-based bisimulation relations.
We show briefly how the algorithm can be adapted to compute late distribution bisimulation.
First observe that the relation ≈• is linear, namely, μ1 ≈• ν1 and μ2 ≈• ν2 imply (p · μ1 +
(1− p) ·μ2) ≈• (p · ν1 + (1− p) · ν2) for any p ∈ [0, 1]. By fixing an arbitrary order on the
state space of a given PA, each distribution can be viewed as a vector in [0, 1]n with n being
the number of states. Then for any s and α, it is easy to see that {μ | s α−→c μ} constitutes
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a convex set. According to [6, Props. 3 and 4], every such convex set has a finite number of
extreme points, which can be enumerated by restricting to Dirac memoryless schedulers. For
deciding ≈•, it suffices to restrict to these finitely many extreme distributions. By doing so,
all weak transitions can be handled in the same way as non-deterministic strong transitions
in [30]. Not surprisingly, this will cause an exponential blow-up. We refer readers to [30] for
more details of the remaining procedure.

6 Conclusion and future work

In this paper, we have proposed the notion of late distribution bisimilarity for PAs, which
enjoys some interesting properties if restricted to two well-known subclasses of sched-
ulers: partial information schedulers and distributed schedulers. Under partial information
schedulers, late distribution bisimulation implies trace distribution equivalence, while under
distributed schedulers, compositionality can be derived. Furthermore, if restricted to partial
information distributed schedulers, late distribution bisimulation has been shown to be the
coarsest relation which is compositional and preserves trace distribution equivalence.

As future work we intend to study reduction barbed congruences [9] under subclasses of
schedulers, in order to pinpoint the characteristics of late distribution bisimilarity. The axiom
system and logical characterization of ≈• would be also interesting. The algorithm in [30]
is exponential in the worst case. We will work out whether or not more efficient algorithms
exist.
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A Proofs

Theorem 37 For any states s1 and s2, s1 ≈•div s2 implies s1 ≡SP s2.

Proof s1 ≈• s2 �⇒ s1 ≡SP s2: let μ and ν be two distributions such that Supp(μ) = {si }i∈I
and Supp(ν) = {r j } j∈J where I and J are two finite sets of indexes. Let {πi }i∈I and {π j } j∈J

be two sets of finite paths such that πi↓ = si and π j↓ = r j for each i ∈ I and j ∈ J . We
prove a more general result: μ ≈• ν implies for each partial information scheduler ξ1, there
exists a partial information scheduler ξ2 such that

Prμ
ξ1

(Cς , {πi }i∈I ) = Prνξ2(Cς , {π j } j∈J )

for each finite trace ς , provided the following conditions hold:

1. EA(si1) = EA(si2) implies EA(πi1) = EA(πi2) for each i1, i2 ∈ I ,
2. EA(r j1) = EA(r j2) implies EA(π j1) = EA(π j2) for each j1, j2 ∈ J ,
3. EA(si ) = EA(r j ) implies EA(πi ) = EA(π j ) for each i ∈ I and j ∈ J .

Intuitively, Prμ
ξ1

(Cς , {πi }i∈I ) denotes the probability of Cς starting from μ given execution
history πi for each si ∈ Supp(μ) under the guidance of scheduler ξ1.
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Since EA(πi1) = EA(πi2) if EA(si1) = EA(si2) for any i1, i2 ∈ I . If −→μ and ξ1 is a partial
information scheduler,

Prμξ1(Cς , {πi }i∈I ) = Prμξ1(Cς ,EA(πi ))

for any i ∈ I . Fix a πi in the sequel. Let p = Prμ
ξ1

(Cς ,EA(πi ), n) with n ≥ 0 and −→μ be
defined as follows, where all transitions are induced by ξ1:

1. If |ς | > 0 and n = 0, p = 0,
2. else if |ς | = 0, p = 1,

3. else if μ
τ

↪−→c
∑

k∈K pk · μk such that
−→μk for each k ∈ K , then

p =
∑

k∈K
pk · Prμk

ξ1
(Cς ,EA(πi ◦ (τ, sk)), n − 1)

for any sk ∈ Supp(μk),

4. else if ς = ας ′ and μ
α

↪−→c
∑

k∈K pk · μk such that
−→μk for each k ∈ K , then

p =
∑

k∈K
pk · Prμk

ξ1
(Cς ′ ,EA(πi ◦ (α, sk)), n − 1)

for any sk ∈ Supp(μk),
5. otherwise p = 0.

If ¬−→μ and μ ≡ ∑
k∈K μk such that −→μk for each k ∈ K , then

Prμ
ξ1

(Cς , {πi }i∈I , n) =
∑

k∈K
pk · Prμk

ξ1
(Cς ,EA(πk), n)

where πk = πi for some si ∈ Supp(μk).
Nowwe prove by induction on n that for each partial information scheduler ξ1, there exists

a partial information scheduler ξ2, such that

Prμξ1(Cς , {πi }i∈I , n) ≤ Prν
ξ2

(Cς , {π j } j∈J )

for any n ≥ 0 and ς .
First we assume that μ is transition consistent, which indicates −→ν by Lemma 24. It is

equivalent to show that for some i ∈ I and j ∈ J ,

Prμ
ξ1

(Cς ,EA(πi ), n) ≤ Prνξ2(Cς ,EA(π j )).

We distinguish the following cases:

1. n = 0 or |ς | = 0. Trivial.

2. n > 0, |ς | > 0, and there exists μ
τ

↪−→c μ′ = ∑
k∈K pk ·μk such that

−→μk for each k ∈ K ,
and

Prμξ1(Cς ,EA(πi ), n) =
∑

k∈K
pk · Prμk

ξ1
(Cς ,EA(πi ◦ (τ, sk)), n − 1)

for some sk ∈ Supp(μk). Since μ ≈• ν, there exists

ν
τ�⇒c ν′ =

∑

k∈K
pk · νk

such thatμk ≈• νk , thus
−→νk by Lemma 24 for each k ∈ K . Moreover, EA(μk) = EA(νk).

Let ξ2 be a scheduler mimicking the transition ν
τ�⇒c ν′. According to Definition 8 such
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partial information scheduler ξ2 always exists, since only τ transitions are involved. Since
μk ≈• νk ,

Prνkξ2 (Cς ,EA(πi ◦ (τ, rk))) ≥ Prμk
ξ1

(Cς ,EA(πi ◦ (τ, sk)), n − 1)

by induction hypothesis, where rk ∈ Supp(νk) for each k ∈ K . Therefore

Prν
ξ2

(Cς ,EA(πi )) ≥ Prμ
ξ1

(Cς ,EA(πi ), n).

3. n > 0, ς = ας ′, and there exists μ
α

↪−→c μ′ = ∑
k∈K pk · μk such that −→μk for each

k ∈ K , and

Prμξ1(Cς ,EA(πi ), n) =
∑

k∈K
pk · Prμk

ξ1
(Cς ′ ,EA(πi ◦ (α, sk)), n − 1)

for any i ∈ I and sk ∈ Supp(μk). Since μ ≈• ν, there exists ν
α�⇒c

∑
k∈K pk · νk such

thatμk ≈• νk for each k ∈ K . Let ξ2 be the scheduler which mimic the weak transition of
ν. The ξ2 is guaranteed to be a partial information scheduler, since all states will perform
a transition with label α. By induction we have:

Prνkξ2 (Cς ′ ,EA(πi ◦ (α, rk))) ≥ Prμk
ξ1

(Cς ′ ,EA(πi ◦ (α, sk)), n − 1)

where rk ∈ Supp(νk) for each k ∈ K . Therefore

Prν
ξ2

(Cς ,EA(πi )) ≥ Prμ
ξ1

(Cς ,EA(πi ), n).

In case ς = βς ′ such that β 	= α, it is trivial, since Prμ
ξ1

(Cς ,EA(πi ), n) = 0.

Secondly, if ¬−→μ and μ = ∑
k∈K μk such that −→μk for each k ∈ K , then

Prμξ1(Cς , {πi }i∈I , n) =
∑

k∈K
pk · Prμk

ξ1
(Cς ,EA(πk), n)

where πk = πi for any si ∈ Supp(μk). Since μ ≈• ν, there exists ν
τ�⇒c

∑
k∈K pk · νk such

that μk ≈• νk for each k ∈ K . Since −→μk and we have proved that there exists ξ2 such that

Prνkξ2 (Cς ,EA(π ′
k)) ≥ Prμk

ξ1
(Cς ,EA(πk), n)

for each k ∈ K . Again let ξ2 mimic the transition of ν in a stepwise manner, we get

Prνξ2(Cς , {π ′
i }i∈J ) ≥ Prμ

ξ1
(Cς , {πi }i∈I , n)

as desired. Such ξ2 is a partial information scheduler by construction, since only τ actions
are involved.

Note that

Prμξ1(Cς , {πi }i∈I ) = lim
n→∞Prμξ1(Cς , {πi }i∈I , n).

If every trace has infinite many visible actions, then it is straightforward to see trace distri-
bution equivalence. For those traces which only have finite visible actions, then there must
exist an infinite sequence μ′ τ−→ μ1

τ−→ μ2 · · · . Because of divergence sensitivity, ξ2 can also
simulate such infinite τ -transitions. So the distribution on finite traces are the same, and then
it is easy to see trace distribution equivalence. ��

In order to prove Theorem 42, we shall first introduce the following lemma:

Lemma 43 Let S = SP ∩ SD, then μ1 ≈•S μ2 implies
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1. μ1 ≡S μ2;
2. μ1 ‖A μ3 ≈•S μ2 ‖A μ3 for any μ3.

Proof 1. Refer to the proof of Theorem 37.
2. The proof is similar as the proof of clause 2 of Theorem 39.

��
Theorem 42 Let S = SP ∩ SD. s1 ≈•

S s2 iff s1 ≡cgr
S s2 for any s1 and s2, where s1 ≡cgr

S s2
iff s1 ≡S s2 and s1 ‖A s3 ≡S s2 ‖A s3 for any s1, s2, s3, and A.

Proof – ≈•S ⇒ ≡cgr
S :

μ1 ≈•S μ2
Lemma 43−−−−−−→ μ1 ≡S μ2 and μ1 ‖A μ3 ≈•S μ2 ‖A μ3

Definition of ≡cgr
S−−−−−−−−−→ μ1 ≡cgr

S μ2

– ≡cgr
S ⇒ ≈•S :

Let R = {(μ1, μ2) | μ1 ≡cgr
S μ2}, we show that R is a late distribution bisimulation

with respect to S. Let μ1 R μ2. We first assume that −→μ1 and μ1
α−→ξ1 μ′

1 for some

α and ξ1 ∈ S. We need to prove that there exists μ2
α�⇒ξ2 μ′

2 for some ξ2 ∈ S such
that μ′

1 R μ′
2. By contraposition. Assume μ′

1 	R μ′
2, i.e., μ′

1 	≡cgr
S μ′

2 for all μ′
2. We

distinguish two cases as follows, where the main idea is to construct a distribution μ3

with a proper set A such that μ1 ‖A μ3 	≡S μ2 ‖A μ3, i.e., μ1 	R μ2.

1. μ′
1 	≡S μ′

2:
Given a set of actions A, we let s′ = A.s′ denote a state which can only perform self
loop transitions with labels in A. We can see that for any distribution μ such that−→μ , μ ‖A δs′ induces the same trace distribution as μ, where A contains all possible
actions which can be performed by states in Supp(μ) and their successors.
Now let A contains all actions which can be performed by states in Supp(μ1) and
Supp(μ2) and their successors. Let s = α.s′ where s′ is defined as above. Then for
each ξ2 ∈ S, there exists ξ1 ∈ S such that

Prξ1μ1‖A′ δs (Cας ) = Prξ2
μ′
1‖A′ δs′

(Cς ) = Prξ2
μ′
1
(Cς ),

for each ς and vice versa, where A′ = A ∪ {α}, similarly for μ2 ‖A′ δs . Since
μ′
1 	≡S μ′

2, we conclude that μ1 ‖A′ δs 	≡S μ2 ‖A′ δs , which contradicts the
assumption that μ1 ≡cgr

S μ2 (by letting μ3 = δs).
2. μ′

1 ≡S μ′
2, but there exists μ′

3 and A such that μ′
1 ‖A μ′

3 	≡S μ′
2 ‖A μ′

3:

Let si be a state such that the only transition of si is si
α−→ μ′

i with α /∈ A a novel
action and i ∈ {1, 2, 3}. It is easy to see that μ1 ≡cgr

S μ2 implies δs1 ≡cgr
S δs2 .

By construction, for each ξ1 ∈ S, there exists ξ2 ∈ S such that Prξ1
μ′
1‖Aμ′

3
(Cς ) =

Prξ2δs1‖A′ δs3
(Cας ) for each ς and vice versa, where A′ = A ∪ {α}, similarly for

μ′
2 ‖A μ′

3 and δs1 ‖A δs3 . Therefore, δs1 ‖A′ δs3 	≡S δs2 ‖A′ δs3 . Contradiction.
3. The cases when α = τ can be proved in a similar way.

For now we have only considered case when μ1 and μ2 are transition consistent. Since
all schedulers in S are partial information schedulers, in case that μ1 is not transition
consistent, we can always find a split μ1 ≡ ∑

i∈I pi · νi such that
∑

i∈I pi = 1 and −→νi
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for each i ∈ I . Moreover there exists μ2
τ�⇒ ∑

i∈I pi · ν′
i such that νi ≡cgr

S ν′
i for each

i ∈ I . Then we can apply the same arguments as when μ1 is transition consistent.
��
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