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Abstract A graph-controlled insertion–deletion system is a regulated extension of an
insertion–deletion system. It has several components and each component contains some
insertion–deletion rules. These components are the vertices of a directed control graph. A
transition is performed by any applicable rule in the current component on a string and the
resultant string is thenmoved to the target component specified in the rule. This also describes
the arcs of the control graph. Starting from an axiom in the initial component, strings thus
move through the control graph. The language of the system is the set of all terminal strings
collected in the final component. In this paper, we investigate a variant of themain question in
this area: which combinations of size parameters (the maximum number of components, the
maximal length of the insertion string, the maximal length of the left context for insertion, the
maximal length of the right context for insertion; plus three similar restrictions with respect
to deletion) are sufficient to maintain computational completeness of such restricted systems
under the additional restriction that the (undirected) control graph is a path? Notice that these
results also bear consequences for the domain of insertion–deletion P systems, improving
on a number of previous results from the literature, concerning in particular the number of
components (membranes) that are necessary for computational completeness results.
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36 H. Fernau et al.

1 Introduction

The motivation for insertion–deletion system comes from both linguistics [26] (see [29] as
a textbook on this topic) and also from biology, more specifically from DNA processing
and RNA editing. In particular, in the theoretical process of mismatched annealing of DNA
sequences, certain segments of the strands are either inserted or deleted [31]. Likewise, in
RNA editing, some fragments ofmessenger RNA are inserted or deleted [3,4]. Anothermath-
ematical motivation for insertion operations can be seen in [15], where this operation and its
iterated variant were introduced as a generalization of concatenation and Kleene’s closure.
The deletion operation was first studied in [18] from a formal language perspective, where
the deletion is defined as a quotient-like operation that does not necessarily happen at the
right end of the string. Insertion and deletion operations together were introduced in a for-
mal language theoretic fashion in [20]. The corresponding grammatical mechanism is called
insertion–deletion system (abbreviated as ins–del system). Informally, if a string η is inserted
between two parts w1 and w2 of a string w1w2 to get w1ηw2, we call the operation insertion,
whereas if a substring δ is deleted from a string w1δw2 to get w1w2, we call the opera-
tion deletion. Several variants of ins–del systems have been considered in the literature, like
ins–del P systems [2,23], tissue P systems with ins–del rules [25], context-free ins–del sys-
tems [27], matrix ins–del systems [10,24,32], random context and semi-conditional ins–del
systems [17], etc. All the mentioned papers (as well as [19,33]) characterized the recursively
enumerable languages (i.e., they show computational completeness) using ins–del systems.
We refer to the survey article [34] for details of variants of ins–del systems; this survey also
discusses some proof techniques for showing computationally completeness results.

One of the important variants of ins–del systems is graph-controlled ins–del systems
(abbreviated as GCID systems), introduced in [13] and further studied in [16]. In such a
system, the concept of components is introduced, which are associated with insertion or
deletion rules. The transition is performed by choosing any applicable rule from the set of
rules of the current component and by moving the resultant string to the target component
specified in the rule in order to continue processing it.

If the underlying graph of a GCID system establishes a path structure (loops, multiple
edges and directions are ignored), then such a GCID system can be seen as a special form of
a P system, namely, an ins–del P system. As P systems (a model for membrane computing)
draw their origins frommodeling computations of biological systems, considering insertions
and deletions in this context is particularly meaningful. There is one small technical issue,
namely, in a P system, usually there is no specific initial membrane where the computation
begins, since the membranes evolve in a so-called maximally parallel way. However, if the
collection of axioms in eachmembrane, except one membrane is empty, then this exceptional
membrane can be viewed as an initial membrane to begin with, so that such a system works
in the same way as a GCID system where the membranes of a P system correspond to the
components of a GCID system. For more details, see [30].

The mentioned connections motivate to study GCID systems. Much research has then be
devoted to restricting the computational resources as far as possible while still maintaining
computational completeness. To be more concrete, typical questions are: To what extent can
we limit the length of contexts and/or the insertion or deletion strings in a rule? How many
components are needed with the limited size? Are there kind of trade-offs between these
questions? All this is formalized in the following.

In this paper, our objective is to find the sizes (k; n, i ′, i ′′; m, j ′, j ′′) with which GCID
systems can (still) describe the recursively enumerable languages, with the control graphs of
the systems being paths so that these results will correspond to computational completeness
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On path-controlled insertion–deletion systems 37

results of particular ins–del P sytems, as noted above. The descriptional complexity of a
GCID system is measured by its size (k; n, i ′, i ′′; m, j ′, j ′′) where the parameters from left
to right denote (i) number of components, (ii) the maximal length of the insertion string,
(iii) the maximal length of the left context used in insertion rules, (iv) the maximal length
of the right context used in insertion rules and the last three parameters follow a similar
representation as (ii), (iii), (iv) with respect to deletion instead of insertion. The generative
power of GCID systems for insertion/deletion lengths satisfying n + m ∈ {2, 3} has also
been studied in [11,12,16]. However, the control graph is not a path for many cases, so that
they cannot be also viewed as ins–del P systems.

The main objective of this paper is to characterize recursively enumerable languages
(denoted as RE) by size-bounded GCID systems, whose underlying (undirected) control
graph is a path. This objective can be seen as a sort of syntactic restriction on GCID systems,
on top of the usually considered numerical values limiting the descriptional complexity. We
are interested in the question which type of resources of path-structured GCID (as well as
of membrane computing, i.e., P) systems are sufficient to characterize RE. We prove that
GCID system of sizes (k; n, i ′, i ′′; 1, j ′, j ′′) with i ′, i ′′, j ′, j ′′ ∈ {0, 1}, and (i) k = 3, n =
1, i ′ + i ′′ = 1, j ′ + j ′′ = 2, (ii) k = 3, n = 2, i ′ + i ′′ = 1, j ′ + j ′′ = 1, (iii)
k = 4, n = 2, i ′ + i ′′ = 0, j ′ + j ′′ = 1, (iv) k = 4, n = 1, i ′ + i ′′ = 1, j ′ + j ′′ = 1,
all characterize RE with a path as a control graph. Previously, such results were only known
for GCID systems with arbitrary control graphs [11]. Our results may also revive interest
in the conjecture of Ivanov and Verlan [16] which states that RE �= GCID(s) if k = 2 in
s = (k; 1, i ′, i ′′; 1, j ′, j ′′), with i ′, i ′′, j ′, j ′′ ∈ {0, 1} and i ′ + i ′′ + j ′ + j ′′ ≤ 3. In the same
situation, this statement is known to be true if k = 1. If the conjecture were true, then our
results for k = 3 would be optimal. We will make this and other open problems explicit
throughout the paper. Also, at the end of this paper, the reader can find tables summarizing
the state-of-the-art in this area.

This study could also raise interest in considering other forms of syntactic restrictions,
for instance, cycles (somehow reminiscent of time-variant control [5]) or stars and similar
special trees, or variants of our notion of paths.

A preliminary version of this paper appeared in [8]; this version not only contains all proof
details but also some new results.

2 Preliminaries

We assume that the readers are familiar with the standard notations used in formal language
theory. Here, we recall a few notations for the understanding of the paper. Let N denote the
set of positive integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}. Given an alphabet (finite set) Σ ,
Σ∗ denotes the free monoid generated byΣ . The elements ofΣ∗ are called strings or words;
λ denotes the empty string. For a string w ∈ Σ∗, |w| is the length of w and wR denotes the
reversal (mirror image) of w. L R and LR are also understood for languages L and language
families L, collecting all reversals of words from L and all reversals of languages from L,
respectively. We also make use of the shuffle operation �� to describe the effect of insertions
at a random position in the string.1 For the computational completeness results, we are using

1 The shuffle operation, denoted by ��, is defined recursively by

(au �� bv) = a(u �� bv) ∪ b(au �� v)

and (u �� λ) = (λ �� u) = {u}, where u, v ∈ Σ∗ and a, b ∈ Σ .
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38 H. Fernau et al.

as our main tool the fact that type-0 grammars2 in Special Geffert Normal Form (SGNF) are
known to characterize the recursively enumerable languages.

Definition 1 A type-0 grammar G = (N , T, P, S) is said to be in SGNF if

• N decomposes as N = N ′ ∪ N ′′, where N ′′ = {A1, B1, A2, B2} and N ′ contains at least
the two nonterminals S and S′;

• the only non-context-free rules in P are AB → λ, where AB ∈ {A1B1, A2B2};
• the context-free rules are of the form (i) S′ → λ, or (ii) X → Y1Y2, where X ∈ N ′ and

Y1Y2 ∈ ((N ′\{X})(T ∪ N ′′)) ∪ ((T ∪ N ′′)(N ′\{X})).
The way the normal form is constructed is described in [13], based on [14]. We assume,

without loss of generality, in this paper that the context-free rules r : X → Y1Y2 either satisfy
Y1 ∈ {A1, A2} and Y2 ∈ N ′, or Y1 ∈ N ′ and Y2 ∈ {B1, B2} ∪ T . This also means that the
derivation in G undergoes two phases: in phase I, only context-free rules are applied. This
phase ends with applying the context-free deletion rule S′ → λ. Then, only non-context-free
deletion rules are applied in phase II. Notice that the symbol from N ′, as long as present,
separates A1 and A2 from B1 and B2; this prevents a premature start of phase II. We write
⇒r to denote a single derivation step using rule r , and ⇒G (or ⇒ if no confusion arises)
denotes a single derivation step using any rule of G. Then, L(G) = {w ∈ T ∗ | S ⇒∗ w},
where ⇒∗ is the reflexive transitive closure of ⇒.

2.1 Graph-controlled insertion–deletion systems

Definition 2 A graph-controlled insertion–deletion system (GCID for short) with k compo-
nents is a construct Π = (k, V, T, A, H, i0, i f , R), where,

– k is the number of components,
– V is an alphabet,
– T ⊆ V is the terminal alphabet,
– A ⊂ V ∗ is a finite set of axioms,
– H is a set of labels associated (in a one-to-one manner) to the rules in R,
– i0 ∈ [1 . . . k] is the initial component,
– i f ∈ [1 . . . k] is the final component, and
– R is a finite set of rules of the form l : (i, r, j), where l is the label of the rule, r is

an insertion rule of the form (u, η, v)I or a deletion rule of the form (u, δ, v)D , where
(u, v) ∈ V ∗ × V ∗, η, δ ∈ V + and i, j ∈ [1 . . . k].

If the initial component itself is the final component, then we call the system returning.
The pair (u, v) is called the context, η is called the insertion string, δ is called the deletion
string and x ∈ A is called an axiom. If one of the u or v is λ for all the insertion (deletion)
contexts, thenwe call the insertion (deletion) as one-sided. If both u, v = λ for every insertion
(deletion) rule, then it means that the corresponding insertion (deletion) can be done freely
anywhere in the string and is called context-free insertion (context-free deletion). We write
rules in R in the form l : (i, r, j), where l ∈ H is the label associated to the rule. Often, the
component is part of the label name. This will also (implicitly) define H . We shall omit the
label l of the rule wherever it is not necessary for the discussion.

2 A type-0 grammar G is usually specified by a quadruple (N , T, P, S) consisting of a nonterminal alphabet
N , a terminal alphabet T , a finite set of (production) rules P and a start symbol S ∈ N . Rules are written in the
form α → β, α, β ∈ (N ∪ T )∗. This defines a rewrite relation ⇒G⊆ (N ∪ T )∗ × (N ∪ T )∗, with u ⇒G v if
v is obtained from u by replacing the subword α by β, for some α → β ∈ P . The reflexive transitive closure
⇒∗

G can be used to define the semantics of G—the language of G—collecting all w ∈ T ∗ with S ⇒∗
G w.
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On path-controlled insertion–deletion systems 39

We now describe how GCID systems work. Applying an insertion rule of the form
(u, η, v)I means that the string η is inserted between u and v; this corresponds to the rewrit-
ing rule uv → uηv. Similarly, applying a deletion rule of the form (u, δ, v)D means that
the string δ is deleted between u and v; this corresponds to the rewriting rule uδv → uv. A
configuration of Π is represented by (w)i , where i ∈ [1 . . . k] is the number of the current
component and w ∈ V ∗ is the current string. In that case, we also say that w has entered
component Ci . We write (w)i ⇒l (w′) j or (w′) j ⇐l (w)i if there is a rule l : (i, r, j) in
R, and w′ is obtained by applying the insertion or deletion rule r to w. By (w)i

⇒l⇐l′ (w
′) j ,

we mean that (w′) j is derivable from (w)i using rule l and (w)i is derivable from (w′) j

using rule l ′. For brevity, we write (w)i ⇒ (w′) j if there is some rule l in R such that
(w)i ⇒l (w′) j . To avoid confusion with traditional grammars, we write ⇒∗ for the tran-
sitive reflexive closure of ⇒ between configurations. The language L(Π) generated by Π

is defined as {w ∈ T ∗ | (x)i0 ⇒∗ (w)i f for some x ∈ A}. For returning GCID systems Π

with initial component C1, we also write (w)1 ⇒′ (w′)1, meaning that there is a sequence of
derivation steps (w)1 ⇒ (w1)c1 ⇒ · · · ⇒ (wk)ck ⇒ (w′)1 such that, for all i ∈ {1, . . . , k},
ci �= 1.

The underlying control graph of a graph-controlled insertion–deletion system Π with k
components is defined to be a graph with k nodes labelled C1 through Ck and there exists
a directed edge from a node Ci to node C j if there exists a rule of the form (i, r, j) in
R of Π . We also associate a simple undirected graph on k nodes to a GCID system of
k components as follows: there is an undirected edge from a node Ci to C j (i �= j) if
there exists a rule of the form (i, r1, j) or ( j, r2, i) in R of Π (hence, loops and multi-
edges are excluded). We call a returning GCID system with k components path-structured if
its underlying undirected control graph has the edge set {{Ci, C(i + 1)} | i ∈ [1 . . . k − 1]}.
Incidentally, when the underlying control graph forms a path or tree structure, this system can
be interpreted as an insertion–deletion P system [23], where several membranes (possibly,
with nestingmembrane structures) contain objects (in our case, strings) and based on the rules
available in the membrane, they evolve (in parallel) and are sent to adjacent membranes, as
specified in the rule as its target membrane. For more details, see [30]. We also mention the
paper [1] on length P systems, where a linear membrane structure with multiset objects in
the form of vectors/numbers is considered.

Let us mention one technicality with our definition: a GCID on three components
C1, C2, C3 with (un)directed arcs between C1 and C2, as well as between C2 and C3,
would qualify as path-structured if it is returning with respect to any initial (and at the same
time, final) component, while when starting with C2, the whole computation looks star-like
rather than path-like. This observation might motivate further studies on returning path-
structured GCID systems with initial component C1. Some but not all of our simulations
provide simulations by path-structured GCID systems following this more restricted notion.

The descriptional complexity of a GCID system is measured by its size s =
(k; n, i ′, i ′′; m, j ′, j ′′), where the parameters represent resource bounds as given in Table 1.
Slightly abusing notation, the language class generated by GCID systems of size s is denoted
by GCID(s) and the class of languages describable by path-structured GCID systems of size
s is denoted by GCIDP (s).

A first thought might be that the path-structure is not restricting the power of GCID
systems at all. For instance, assume that we have a rule (3, (a, x, b)I , 1) (from C3 directly
going to C1 without going via C2) that breaches some otherwise path-structured GCID
system. Adding a new symbol A, one might try to substitute this rule by the three rules
(3, (a, A, b)I , 2), (2, (A, x, b)I , 1) and (1, (a, A, x)D, 1). However, there are at least two
major concerns against this strategy:
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40 H. Fernau et al.

Table 1 Size (k; n, i ′, i ′′; m, j ′, j ′′) of a GCID system

k = the number of components

n = max{|η| : (i, (u, η, v)I , j) ∈ R} m = max{|δ| : (i, (u, δ, v)D, j) ∈ R}
i ′ = max{|u| : (i, (u, η, v)I , j) ∈ R} j ′ = max{|u| : (i, (u, δ, v)D , j) ∈ R}
i ′′ = max{|v| : (i, (u, η, v)I , j) ∈ R} j ′′ = max{|v| : (i, (u, δ, v)D, j) ∈ R}

– In all interesting situations considered in this paper, we did not allow both left and right
contexts for insertion and deletion strings. In other words, we did not consider the size
(n, 1, 1; m, 1, 1) in this paper.Note that ins–del systemwith this size (n, m ≥ 1) describes
RE.

– Especially when trying to do the same simulation with less contexts, there is a danger
that, instead of following the three rules in order (as intended), the derivation might be
interrupted by applying other rules. These unintended derivations might be malicious, in
the sense of producing terminal words that do not belong to the language of the simulated
grammar. Of course, this problem depends on the concrete GCID system, but it shows
the difficulties of this approach in general.

In fact, the danger of having malicious derivations in certain simulations will be the
main concern in the proofs that follow. As such derivations must be ruled out, quite detailed
induction proofs are given in the next section that compiles the main results of this paper.

3 Computational completeness

In this section, we will demonstrate our computational completeness claims by explaining
simulations of type-0 grammars in SGNF, as done in previously published constructions.
One of the main techniques will be the introduction of specific symbols called markers,
associated to each rule that is to be simulated, so that we can argue that a certain sequence
of rule applications have to be followed by the simulating GCID system, plus taking care of
the positions where the rule applications take place.

Let us look at a simple example first, taken from a more involved construction discussed
below. In order to simulate the context-sensitive deletion rule f1 : A1B1 → λ from the
given SGNF grammar, Table 2 suggests to have rule f11.1 : (1, (λ, f1, λ)I , 2) in the first
component. Here we can also see some conventions that we follow to label the simulating
rules: f11.1 is the first rule of component C1 that is responsible for simulating the original
rule f1. This rule f11.1 inserts the rule marker f1 anywhere in the current string, which is
then moved to C2. If now f12.2 is applied (i.e., the second rule of component C2 that is
responsible for simulating f1), then the rule marker f1 is deleted, so this operation would
simply undo the previous insertion operation. To see progress, f12.1 should be applied. The
corresponding insertion rule ( f1, A1, B1)D is deleting some A1 left to some B1, but notice
that after a successful application of this rule, f1 will be situated left of B1, which is exactly the
situation expected when moving the string into C3; the rule ( f1, B1, λ)D is only applicable
when, in the original string f1 was placed immediately to the left of the substring A1B1,
which has now been deleted (or, in a sense, replaced by f1). We also say that the applications
of rules f12.1 and f13.1 are guarded by the occurrence of the rule marker f1. Notice that
after successfully deleting A1B1 in the simulation, we can now either delete f1 from the
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On path-controlled insertion–deletion systems 41

Table 2 Path-structured GCID systems of size (3; 1, 1, 0; 1, 1, 1) simulating type-0 grammars G in SGNF

Component C1 Component C2 Component C3

r1.1 : (1, (X, r, λ)I , 2) r2.1 : (2, (λ, X, r)D, 1) r3.1 : (3, (r ′, Y1, λ)I , 2)

r1.2 : (1, (r, r ′, λ)I , 2) r2.2 : (2, (λ, r, r ′)D, 1)

r1.3 : (1, (r ′, Δ, λ)I , 1) r2.3.c : (2, (Y2, Δ, c)D, 3)

r1.4 : (1, (r ′, Y2, λ)I , 2) r2.4.c′ : (2, (c′, r ′, Y1)D, 1)

f 1.1 : (1, (λ, f, λ)I , 2) f 2.1 : (2, ( f, A, B)D, 3) f 3.1 : (3, ( f, B, λ)D , 2)

f 2.2 : (2, (λ, f, λ)D, 1)

h1.1 : (1, (λ, S′, λ)D , 1)

κ1.1 : (1, (λ, κ, λ)D, 1)

κ ′1.1 : (1, (λ, κ ′, λ)D, 1)

In the table, c′ ∈ N ′′ ∪ T ∪ {κ ′}, c ∈ N ′′ ∪ T ∪ {κ}, f, r are rule markers, while Δ is a dummy symbol that
was not part of the alphabet of G

string and move it back to C1 in order to finish the simulation, or simply re-start by applying
f12.1 if this is possible.
To simplify the presentation and proofs of our further results, the following observations

from [11] are used.

Proposition 1 [11] Let k, n, i ′, i ′′, m, j, j ′′ be non-negative integers. The following state-
ments are true.

1. GCIDP (k; n, i ′, i ′′; m, j ′, j ′′) = [GCIDP (k; n, i ′′, i ′; m, j ′′, j ′)]R;
2. RE = GCIDP (k; n, i ′, i ′′; m, j ′, j ′′) iff RE = GCIDP (k; n, i ′′, i ′; m, j ′′, j ′).

3.1 GCID systems with insertion and deletion length one

In [33], it has been proved that ins–del systems with size (1,1,1;1,1,1) characterize RE. If we
desire to have one-sided context for insertion/deletion, then it is proved in [21,28] that ins–
del systems of size (1, 1, 1; 1, 1, 0) or (1, 1, 0; 1, 1, 1) cannot characterize RE. It is therefore
obvious that we need at least 2 components in a graph-controlled ins–del system of sizes
(1, 1, 1; 1, 1, 0) and (1, 1, 0; 1, 1, 1) to characterize RE. In [11], we characterized RE by
path-structured GCID systems of size (3; 1, 1, 1; 1, 1, 0). Also, in [16], it was shown that
GCIDP (3; 1, 2, 0; 1, 1, 0) = RE andGCIDP (3; 1, 1, 0; 1, 2, 0) = RE.We now complement
these results.

Theorem 1 RE = GCIDP (3; 1, 1, 0; 1, 1, 1) = GCIDP (3; 1, 0, 1; 1, 1, 1).

Before giving the full proof, we sketch some basic features of the construction, as displayed
in Table 2. (i) We make use of a dummy symbol Δ to rectify a control graph structure that
might be otherwise not a path, as if r1.3 is not available, then, r2.3.c could be replaced by
r1.4 : (1, (r ′, Y2, λ)I , 3), directly moving to C3. (Here, symbols r and r ′ serve as markers,
specific to the simulation of the rule labeled r .) (ii) We use explicit left-end and right-end
markers κ ′ and κ , respectively, to rule out some premature rule applications in C2. (iii) We
return to C1 several times when simulating the application of a context-free rule r . This
makes the proof that no malicious derivations are possible rather delicate, as many cases
have to be considered.
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42 H. Fernau et al.

At a first glance, the reader might wonder that the simulation should be straightforward
(as initially thought by the authors themselves, as there are that many resources available).
However, this is not the case. The problem is that any rule of a component could be applied
whenever a string enters that component. Since insertion is only left-context-sensitive, the
insertion string can be adjoined any number of times on the right of this context, similar to
context-free insertion. This issue is handled by inserting some markers and then inserting Y1

and Y2 (from rule X → Y1Y2) after themarkers.We have to be careful, since a back-and-forth
transition may insert many Y1’s and/or Y2’s after the marker.

Proof Consider a type-0 grammar G = (N , T, P, S) in SGNF as in Def. 1. The rules of
P are assumed to be labelled bijectively with labels from the set [1 . . . |P|]. We construct
a graph-controlled insertion–deletion system Π as follows such that L(Π) = L(G): Π =
(3, V, T, {κ ′Sκ}, H, 1, 1, R). The alphabet of Π is V ⊂ N ∪ T ∪ {r, r ′ : r ∈ [1 . . . |P|]} ∪
{κ ′, κ}. The simulation rules for different cases are specified in Table 2, which completes the
description of R and V . This table should be read as follows.

– If G contains a context-free rule of the form r = X → Y1Y2 (with the special linearity
properties derived from G being in SGNF), then r is simulated by the rules whose labels
are prefixed with r .

– Similarly, the two genuinely context-sensitive rules A1B1 → λ and A2B2 → λ are
simulated as described by the GCID rules prefixed with f .

– h.1.1 takes care of simulating the only context-free deletion rule, and κ1.1 and κ ′1.1 take
care of the boundary markers.

Clearly,Π has size (3; 1, 1, 0; 1, 1, 1). With the rules of Table 2, we prove L(G) ⊆ L(Π) by
showing how the different types of rules are simulated. Let us look into the context-free rules
first. The simulation of the deletion rule h is obvious and hence omitted. Applying some rule
r : X → Y1Y2, with X ∈ N ′, to w = αXβ, where α, β ∈ (N ′′ ∪ T )∗, yields w′ = αY1Y2β

in G. We assume that α′c′ = κ ′α and cβ ′ = βκ where α′κ, κ ′cκ, κ ′c′κ, κ ′β ′ ∈ {κ ′}(N ′′ ∪
T )∗{κ}. The stated equality is important in the following sense: if κ ′α = κ ′α1α2 . . . αn then
we set α′ = κ ′α1α2 . . . αn−1 and c′ = αn . If α = λ, then c′ = κ ′. Hence c′ ∈ N ′′ ∪ T ∪ {κ ′}.
Similarly, when βκ = β1β2 . . . βmκ , we set β ′ = β2β3 . . . βmκ and c = β1. If β = λ, then
c = κ . So c ∈ N ′′ ∪ T ∪ {κ}. The main aim to assume the equality is to single out the last
symbol of κ ′α and the first symbol of βκ and use the singled out symbol as left or right
context in the rules r2.3.c or r2.4.c′; see Table 2.

In Π , we can find the following simulation:

(κ ′wκ)1 ⇒r1.1 (α′c′ Xrcβ ′)2 ⇒r2.1 (α′c′rcβ ′)1 ⇒r1.2 (α′c′rr ′cβ ′)2
⇒r2.2 (α′c′r ′cβ ′)1 ⇒r1.3 (α′c′r ′Δcβ ′)1 ⇒r1.4 (α′c′r ′Y2Δcβ ′)2
⇒r2.3.c (α′c′r ′Y2cβ ′)3 ⇒r3.1 (α′c′r ′Y1Y2cβ ′)2 ⇒r2.4.c′ (α′c′Y1Y2cβ ′)1
= (κ ′αY1Y2βκ)1 = (κ ′w′κ)1 .

For the non-context-free case, the simulation of f : AB → λ is straightforward; hence,
details are omitted. By induction, this proves that whenever S ⇒∗ w in G, then there is a
derivation (κ ′Sκ)1 ⇒′∗ (κ ′wκ)1 in Π , and finally (κ ′wκ)1 ⇒′ (w)1 is possible.

We now show L(Π) ⊆ L(G); this is crucial since it proves that Π not only produces
intended strings but neither produces any unintended ones.

Conversely, consider a configuration (w)1, with (κ ′Sκ)1 ⇒′∗ (w)1. We assume now that
w starts with κ ′ and ends with κ , and that these are the only occurrences of these special
letters in w. As no rules ever introduce these letters, there cannot be any other occurrences
of these letters in w. If w contains no occurrence of κ or κ ′, still further derivations might be
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possible, as the only purpose of these two special letters is to allow for tests as in rules r2.3
and r2.4. The only danger is that such derivations might get stuck when starting with strings
w that do not contain κ or κ ′, but this causes no problems, as there is always the possibility
to circumvent this blocking by keeping κ and κ ′ in until the very end.

We nowdiscuss five situations forw and prove in each case that, whenever (w)1 ⇒′ (w′)1,
then w′ satisfies one of these five situations, or from (w′)1 no final configuration can be
reached. Inductively, the claim follows.

As S ∈ N ′, the base case κ ′Sκ is covered in case (iii) presented below.
(i) Assume that w contains one occurrence of r ′ (the primed marker of some context-free
rule r ), but no occurrence of unprimed markers of context-free rules, and no occurrence of
any nonterminal from N ′, neither an occurrence of Δ. Hence, w = κ ′αr ′βκ for appropriate
strings α, β ∈ (N ′′ ∪ T )∗.

Then, the rules (i.a) r1.3, (i.b) r1.4, as well as the simulation initiation rules like (i.c)
f 1.1 are applicable. Let us discuss these possibilities now.
Subcase (i.c): If f 1.1 is applied, then, say, f is introduced to the right of some occurrence
of A. In C2, one can then try to apply (i.c.1) f 2.1, (i.c.2) f 2, 2, or (i.c.3) r2.4.c′ for an
appropriate c′. However, as we are still simulating phase I of G, B cannot be to the right of
A, so that Subcase (i.c.1) cannot occur.
Subcase (i.c.2) simply undoes the effect of previously applying f 1.1, so that we can ignore
its discussion. In Subcase (i.c.3), we are back in C1 with a string that contains no symbols
from N ′, nor any variants of context-free rule markers, nor any Δ, but one non-context-free
rule marker. We will discuss this in Case (v) below, proving that such a derivation cannot
terminate.
Subcase (i.b): If we apply r1.4 to w immediately, we are trapped in C2.
Subcase (i.a): we apply r1.3 first once. Now, we are in a very similar situation as before,
but one Δ is added to the right of r ′. This means that continuing with f 1.1 will get stuck
again in C2. In order to make progress, we should finally apply r1.4. Now, we are in the
configuration (κ ′αr ′Y2Δ

nβκ)2 for some n ≥ 1. As Y1 �= Y2, r2.4.c′ is not applicable for
any c′, so the derivation is stuck in C2. If we apply r.2.3.c, then we can only proceed if
n = 1, which means that we applied r1.3 exactly once before. Hence, (κ ′αr ′Y2Δβκ)2 ⇒
(κ ′αr ′Y2βκ)3 ⇒ (κ ′αr ′Y1Y2βκ)2 ⇒ (κ ′αY1Y2βκ)1 is enforced. This corresponds to the
intended derivation; the assumed occurrence of r ′ in the string was replaced by Y1Y2; this
corresponds to the situation of Case (iii).
(ii) Assume that w contains one occurrence of r (the unprimed marker of some context-free
rule r ), but no occurrence of primed markers of context-free rules, and no occurrence of
any nonterminal from N ′, neither an occurrence of Δ. Hence, w = κ ′αrβκ for appropriate
strings α, β ∈ (N ′′ ∪ T )∗.
Similarly as discussed in Case (i), trying to start a simulation of some non-context-free rule
gets stuck in C2, in particular, as we are simulating phase I of G and there is no nonterminal
from N ′ in the current string. Hence, we are now forced to apply r1.2. This means that in
C2, we have to apply r2.2, leading us to (w′)1 with w′ = αr ′β, a situation already discussed
in Case (i).
(iii) Assume that w contains one occurrence X ∈ N ′, but no occurrence of unprimed or
primed markers of context-free rules, and no occurrence of Δ. Hence, w = κ ′αXβκ for
appropriate strings α, β ∈ (N ′′ ∪ T )∗.
As we are still simulating phase I of G, we are now forced to apply r1.1 or simulate the
context-free deletion rule (which gives a trivial discussion that is omitted; the important point
is that this switches to phase II of the simulation of G). This means that in C2, we have to
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C2C1 C3

(a)

C2C1 C3 C4

(b)

Fig. 1 Control graphs underlying the GCID systems (characterizing RE) in this paper. a Control graph of
Theorems 1, 5, 6, b control graph of Theorems 2, 3

apply r2.1, leading us to (w′)1 with w′ = κ ′αrβκ for some context-free rule r : X → Y1Y2,
a situation already pondered in Case (ii).
(iv) Assume that w ∈ {κ ′}(N ′′ ∪ T )∗{κ}. Now, it is straightforward to analyze that we have
to follow the simulation of one of the non-context-free deletion rules, or finally apply the
rule deleting the special symbols κ, κ ′.
(v) Assume that w contains no primed or unprimed markers of context-free rules, nor a
symbol from N ′, nor anyΔ but contains a non-context-free rule marker. This means we have
to apply some rule f 1.1, but although this might successfully simulate a non-context-free
deletion rule, it will bring us back to C1 with a non-context-free rule marker in the string.
Hence, we are back in Case (v), so that this type of derivation can never terminate.

The second claim follows by Proposition 1. The underlying graph of the simulation is
shown in Fig. 1a. The corresponding undirected graph is a path and hence the presented
GCID system is path-structured. ��

In [13], itwas shown thatGCIDsystemsof sizes (4; 1, 1, 0; 1, 1, 0) and (4; 1, 1, 0; 1, 0, 1)
describe RE, with the underlying control graph not being a path. In [11], the number of com-
ponents was reduced from 4 to 3, however, with the underlying graph still not being a path.
In the next two theorems we characterize RE by path-structured GCID systems of sizes
(4; 1, 1, 0; 1, 1, 0) and (4; 1, 1, 0; 1, 0, 1). The former result also complements an earlier
result of [16], which stated that GCIDP (3; 1, 2, 0; 1, 1, 0) = GCIDP (3; 1, 1, 0; 1, 2, 0) =
RE. We trade-off the number of components against the length of the left context of the
insertion/deletion.

Theorem 2 RE = GCIDP (4; 1, 1, 0; 1, 1, 0) = GCIDP (4; 1, 0, 1; 1, 0, 1).

Proof Consider a type-0 grammar G = (N , T, P, S) in SGNF as in Def. 1. The rules of
P are assumed to be labelled bijectively with labels from the set [1 . . . |P|]. We construct a
graph-controlled ins–del systemΠ as follows such that L(Π) = L(G). The alphabet ofΠ is
V ⊂ N ∪ T ∪ {p, p′, p′′, p′′′ : p ∈ [1 . . . |P|]} ∪ {κ}. The set of rules R (of Π) is defined as
shown in Table 3. The four columns of Table 3 correspond to the four components of Π . The
rows correspond to the simulation of r : X → Y1Y2, f : AB → λ and of the context-free
deletion rule h : S′ → λ. The last row deletes the left-end marker κ introduced in the axiom.

Clearly, Π has size (4; 1, 1, 0; 1, 1, 0). We now prove that L(G) ⊆ L(Π). To this end,
we show that if w ⇒ w′ in G, with w,w′ ∈ (N ∪ T )∗, then (κw)1 ⇒′ (κw′)1 according
to Π . From this fact, the claim follows by a simple induction argument, because finally the
left-end marker κ can be removed. As the claim is evident for rule h, we only need to discuss
w ⇒ w′ due to using a context-free rule (Case CF) or due to using a non-context-free rule
(Case CF).
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Table 3 GCID rules of size (4; 1, 1, 0; 1, 1, 0) with axiom κS and c ∈ N ′′ ∪ T ∪ {κ}
Component C1 Component C2 Component C3 Component C4

r1.1 : (1, (λ, r, λ)I , 2) r2.1 : (2, (X, r ′, λ)I , 3) r3.1 : (3, (r, X, λ)D , 4) r4.1 : (4, (r ′, r ′′, λ)I , 3)

r2.2 : (2, (r, r ′, λ)D, 2) r3.2 : (3, (r ′′, r ′′′, λ)I , 2) r4.2 : (4, (λ, r, λ)D , 3)

r2.3 : (2, (r, r ′′, λ)D , 3) r3.3 : (3, (r ′′′, Y2, λ)I , 4)

r2.4.c : (2, (c, r ′′′, λ)D, 1) r3.4 : (3, (r ′′′, Y1, λ)I , 2)

f 1.1 : (1, (λ, f, λ)I , 2) f 2.1 : (2, (A, f ′, λ)I , 3) f 3.1 : (3, ( f ′, B, λ)D , 4) f 4.1 : (4, ( f, A, λ)D, 3)

f 2.2 : (2, (λ, f, λ)D , 1) f 3.2 : (3, ( f, f ′, λ)D , 2)

h1.1 : (1, (λ, S′, λ)D , 1)

κ1.1 : (1, (λ, κ, λ)D, 1)

Case CF: The intended simulation works as follows:

(καXβ)1 ⇒r1.1 (καr Xβ)2 ⇒r2.1 (καr Xr ′β)3 ⇒r3.1 (καrr ′β)4
⇒r4.1 (καrr ′r ′′β)3 ⇒r3.2 (καrr ′r ′′r ′′′β)2 ⇒r2.2 (καrr ′′r ′′′β)2
⇒r2.3 (καrr ′′′β)3 ⇒r3.3 (καrr ′′′Y2β)4 ⇒r4.2 (καr ′′′Y2β)3
⇒r3.4 (καr ′′′Y1Y2β)2 ⇒r2.4.c (καY1Y2β)1.

Here, c is the last symbol of κα, possibly κ .
Case CF: Let us consider f : AB → λ. This means that w = αABβ and w′ = αβ for some
α, β ∈ (N ∪ T )∗. Within Π , this can be simulated as follows.

(κw)1 = (καABβ)1 ⇒ f 1.1 (κα f ABβ)2 ⇒ f 2.1 (κα f A f ′ Bβ)3
⇒ f 3.1 (κα f A f ′β)4 ⇒ f 4.1 (κα f f ′β)3 ⇒ f 3.2 (κα fβ)2
⇒ f 2.2 (κw′)1.

The converse inclusion L(Π) ⊆ L(G) is following an inductive argument as in the
previous theorem. Let us consider a configuration (w)1. As κ1.1 can be applied at any time
in such a configuration, but as the only purpose of having this new symbol κ is to make sure
that there is always a symbol to the left of the current deletion position, we can assume from
now on that w starts with κ , and as no rule will ever introduce κ , we can also assume that
this is the only place where κ occurs in w. Hence, we will not discuss κ1.1 any further from
now on.

We will now discuss (w)1 ⇒′ (w′)1 for different cases for w, proving that, whenever the
derivation may lead to some final configuration, then w′ is falling into one of the cases that
we discussed, which proves the validity of the overall discussion by induction.
(i) If w contains no occurrence of any symbol from N ′ and no (variants of) rule markers, i.e.,
w ∈ {κ}(N ′′ ∪ T )∗, then applying r1.1 to w for any applicable context-free rule r will see
no continuation of the derivation in C2. Therefore, we have to use rule f 1.1. Due to the fact
that all rules are guarded in C2, (w)1 ⇒ f 1.1 (w1)2 ⇒ (w2)s either means that s = 1 and
w2 = w (by applying f 2.2), which means that we observe no progress, or we used f 2.1 so
that s = 3. In the latter case, we can continue with f 3.1 only in C3, and in C4, we have
to pick f 4.1. By doing so, we have verified the following selections on inserting f and f ′
into w before: (a) f has been inserted to the left of an occurrence of A; (b) f ′ has been
inserted in between an occurrence of A and an occurrence of B. Upon returning to C3, we
are in a configuration (ŵ)3 where, in comparison to w, ŵ is obtained by applying the two
rewriting rules A → f and B → f ′. We could now either apply f 3.1 (i.b.1) or f 3.2 (i.b.2).
In the former case (i.b.1), we actually perform a loop that, generalizing what we said above,
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leads to deleting a subword An to the right of f , as well as a subword Bn to the right of f ′,
upon re-entering C3. If now f 3.2 is applied, then this verifies that in fact a subword of the
form An Bn for some n ≥ 1 was deleted from w. Notice that this also captures Case (i.b.2).
Now, we return to C1 with a string that satisfies the conditions of string w1 discussed at the
beginning of Case (i), so that we now either return to C1 with a string w′ that was obtained
from w by deleting the subword An Bn , or we restart the derivation as discussed with (w2)3
above.
(ii) and (iii): If w contains exactly on occurrence of a symbol from N ′, i.e., w ∈ {κ}(N ′′ ∪
T )∗N ′(N ′′ ∪ T )∗, then again we have the opportunity to apply some rule r1.1, belonging to
some context-free rule r (Case (ii)), or to apply some rule designed to start the simulation of
a non-context-free rule, say, of f (Case (iii)).

In Case (ii), it might be that the context-free deletion rule is directly simulated, i.e., S′ ∈ N ′
is deleted. In that case, (w)1 ⇒ (w′)1 directly corresponds to some rule application of G, i.e.,
w ⇒ w′ in G is true. Otherwise, (w)1 ⇒ (w1)2, and a rule marker r is randomly inserted
into w, i.e., w1 ∈ r ��w. This potential source of nondeterministic development is clarified
within C2 and C3. As all rules are guarded, we can continue only if some X ∈ N ′ occurs in
w that is the left-hand side of some context-free rule r̂ . So, for some α ∈ {κ}(N ′′ ∪ T )∗ and
β ∈ (N ′′ ∪ T )∗, w = αXβ, and if (w1)2 ⇒ (w2)3, then w2 ∈ r ��αXr̂ ′β. Again, checking
all rules inC3 reveals that only r3.1 can be applicable, i.e., we now know thatw2 = αr Xr̂ ′β,
and if we apply r3.1, then the resultant string w3 = αrr̂ ′β moves to C4. If we now applied
r4.2, then the derivation is stuck in C3, as no rule in that component can deal with a primed
marker of a context-free rule. Hence, we have to apply r̂4.1. Hence, w4 = αrr̂ ′r̂ ′′β moves
back to C3. Only one rule is applicable here, the one that can handle double-primed markers,
so that (w4)3 ⇒ (w5)2 means we have applied r̂3.2. Hence, w5 = αrr̂ ′r̂ ′′r̂ ′′′β. In particular
as r̂ ′′ is immediately to the left of r̂ ′′′, rule r̂2.4.c is not applicable for any c. So, the only
applicable rule is r2.2, assuming that r̂ = r . (The case r̂ �= r has no continuation.) Hence,
w5 = αrr ′r ′′r ′′′β, and (w5)2 ⇒ (w6)2 ⇒ (w7)3 with w6 = αrr ′′r ′′′β and w7 = αrr ′′′β
is the only possible continuation. Now, assume that r : X → Y1Y2 is the context-free rule
whose markers occur in w7. Only r3.3 is applicable now, followed by r4.2 and r3.4. This
means we observe (w7)3 ⇒ (w8)4 ⇒ (w9)3 ⇒ (w10)2, with w10 = αr ′′′Y1Y2β. Thus,
(w10)2 ⇒ (w′)1 such that w ⇒ w′ in G by applying r .

In Case (iii), we can follow a similar reasoning as in Case (i), which means that we would
faithfully simulate applications of context-sensitive deletion rules, except for one possible
deviation: upon reaching C2, we might now apply r2.1 for some suitable context-free rule
r . This can happen each time when we arrive at C2, so we have to separately discuss these
possibilities. The first such opportunity is given if we start with, say, f 1.1 and if we apply
r2.1 next for some context-free rule r : X → Y1Y2, where X ∈ N ′ is occurring in w.
This results in (w)1 ⇒ (w1)2 ⇒ (w2)3, where w2 ∈ f ��αXr ′β, assuming w = αXβ.
It is easy to check that this derivation gets stuck in C3. The second possibility to deviate
from (i) is when we return to C2 later. As discussed in Case (i), the effect of a derivation
using f -simulation rules only, ending up in C2 and starting in configuration (w)1 amounts
in replacing some subword An Bn , for any n ≥ 0, by the rule marker f . Notice that the case
n = 0 corresponds to a random insertion of f , a case that was already discussed above. This
derivation gets stuck in C3 for each n when trying to apply r2.1 instead of f 2.1 or f 2.2.

Hence, in each of the cases (i), (ii), (iii), whenever (w)1 ⇒ (w′)1, then w ⇒∗ w′ in G.
Also, if we start with a string w satisfying one of the conditions described in these cases,
thenw′ satisfies one of these cases, as well. As Case (ii) corresponds to the start situation, we
can conclude by induction that, whenever (κS)1 ⇒∗ (v)1 for some v ∈ T ∗, then S ⇒∗ w
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Table 4 GCID rules of size (4; 1, 1, 0; 1, 0, 1) simulating a type-0 grammar in SGNF

Component C1 Component C2 Component C3 Component C4

r1.1 : (1, (X, r, λ)I , 2) r2.1 : (2, (λ, X, r)D, 1) r3.1 : (3, (λ, r ′′, Y2)D, 4) r4.1 : (4, (r ′, r ′′′, λ)I , 3)

r1.2 : (1, (r, r ′, λ)I , 2) r2.2 : (2, (λ, r, r ′)D, 1) r3.2 : (3, (r ′′′, Y1, λ)I , 2)

r1.3 : (1, (r ′, r ′′, λ)I , 2) r2.3 : (2, (r ′′, Y2, λ)I , 3)

r2.4 : (2, (λ, r ′′′, Y1)D, 2)

r2.5 : (2, (λ, r ′, Y1)D, 1)

f 1.1 : (1, (λ, f, λ)I , 2) f 2.1 : (2, (A, f ′, λ)I , 3) f 3.1 : (3, (λ, A, f ′)D, 4) f 4.1 : (4, (λ, B, f )D, 3)

f 2.2 : (2, (λ, f, λ)D, 1) f 3.2 : (3, (λ, f ′, f )D, 2)

h1.1 : (1, (λ, S′, λ)D , 1)

in G. The second claim follows by Proposition 1. The underlying graph of the simulation is
shown in Fig. 1b. ��
Theorem 3 RE = GCIDP (4; 1, 1, 0; 1, 0, 1) = GCIDP (4; 1, 0, 1; 1, 1, 0).
Proof Consider a type-0 grammar G = (N , T, P, S) in SGNF. The rules of P are assumed to
be labelled bijectivelywith labels from the set [1 . . . |P|].Weconstruct a graph-controlled ins–
del system Π such that L(Π) = L(G), with Π = (4, V, T, {S}, H, 1, 1, R). The alphabet
V of Π satisfies V ⊂ N ∪ T ∪ {p, p′, p′′, p′′′ : p ∈ [1 . . . |P|]}. The set of rules R (of
Π) is defined as shown in Table 4. Π has the claimed size. The intended simulation of a
context-free rule is as follows.

(αXβ)1 ⇒r1.1 (αXrβ)2 ⇒r2.1 (αrβ)1 ⇒r1.2 (αrr ′β)2
⇒r2.2 (αr ′β)1 ⇒r1.3 (αr ′r ′′β)2 ⇒r2.3 (αr ′r ′′Y2β)3
⇒r3.1 (αr ′Y2β)4 ⇒r4.1 (αr ′r ′′′Y2β)3 ⇒r3.2 (αr ′r ′′′Y1Y2β)2
⇒r2.4 (αr ′Y1Y2β)2 ⇒r2.5 (αY1Y2β)1.

The intended simulation of a non-context-free rule is as follows.

(αABβ)1 ⇒ f 1.1 (αAB fβ)2 ⇒ f 2.1 (αA f ′ B fβ)3 ⇒ f 3.1 (α f ′ B fβ)4
⇒r4.1 (α f ′ fβ)3 ⇒r3.2 (α fβ)2 ⇒r2.2 (αβ)1.

This shows that L(G) ⊆ L(Π). The main complication for the correctness proof is the fact
that we may return to C1 with strings containing rule markers. This brings along a detailed
discussion of four different situations for w when considering (S)1 ⇒′∗ (w)1 ⇒′ (w′)1
according to Π .

Consider some derivation (S)1 ⇒′∗ (w)1 inΠ . Clearly, we can decompose this derivation
into (wi )1 ⇒′ (wi+1)1, such that S = w0,w = wm , and the chosen derivation moves exactly
the strings w0, …, wm into component C1. Note that markers are attached when applying
rules in C1, except the (only) context-free deletion rule. The rule markers introduced in the
(non-)context-free rules avoid the interference of the rules among themselves. All rules in
each component are guarded bymarkers and hence a rule can be applied only if the derivations
comes with the appropriate marker. Let us make this more precise. Consider a configuration
(w)1 such that (S)1 ⇒′∗ (w)1 in Π . Again, we will discuss several cases for a derivation
(w)1 ⇒′ (w′)1 showing that w′ falls under one of these cases whenever the whole discussed
derivation may lead to a final configuration. An easy induction argument then shows that this
case distinction is complete.

123



48 H. Fernau et al.

(i) If w contains no symbols from N ′ nor unprimed or primed markers of context-free rules,
then only f 1.1 is possibly applicable. As all rules in C2 and C3 are guarded, a successful
complete simulation of f : AB → λ is enforced. Observe that also w′ contains no symbols
from N ′ nor unprimed or primed markers of context-free rules, but if w had contained
an occurrence of a marker of non-context-free rules, then w′ would also contain such an
occurrence.
(ii) If w contains one occurrence of a primed marker of a context-free rule r , but no symbols
from N ′, nor unprimed markers of context-free rules, then r1.3 or f 1.1 are possibly applica-
ble. On applying p1.3, we arrive at (w1)2 with r ′r ′′ as a substring of w1, i.e., w1 = αr ′r ′′β
for some α, β ∈ (N ′′ ∪ T )∗. Observe that r2.5 is not applicable to this configuration. By
the use of rule markers, the rules r2.3, r3.1, r4.1, r3.2, r2.4, r2.5 must be applied in this
order, leading to (w)1 ⇒′ (w′)1 such thatw′ is obtained fromw by applying the context-free
rule r as intended. Alternatively, we could start (w)1 ⇒ (w1)2 by applying, say, f 1.1. If
we now apply f 2.1, there is no alternative but applying f 3.1 in C3, which would mean
that we end up (on applying f 2.1 and f 3.1) simulating a rule application of AB → λ.
As the resulting string w′

1 enjoys the same properties as w1 in C2, let us explore further
alternatives for w1, containing both an occurrence of r ′ and an occurrence of, say, f . In fact,
now r2.5 could be applicable, which would yield (w)1 ⇒′ (w′)1, where w′ now contains
no occurrences of symbols from N ′ nor unprimed or primed markers of context-free rules,
but one occurrence of a marker of non-context-free rules. Inductively, to such configurations,
the reasoning of case (i) would apply, which means that such derivations can never lead to
terminal strings, as whenever (w′)1 ⇒′∗ (w′′)1, then w′′ also contains an occurrence of a
marker of non-context-free rules.
(iii) If w contains one occurrence of an unprimed marker of a context-free rule r , but no
symbols from N ′ nor primed markers of context-free rules, then r1.2 or f 1.1 are possibly
applicable. On applying, say, f 1.1, we are now enforced to (correctly) simulate applications
of the rule r : AB → λ as described in item (i), as in particular no rules inC2 orC3 can work
with the marker r without r ′ or a fitting nonterminal from N ′. As such simulations lead to
configurations in C2 that are similar to the ones under current study, we need to explore only
(w)1 ⇒ (w1)2 due to applying r1.2. As w1 contains no occurrence of a nonterminal from
N ′, r2.2must be applied, leading to (w′)1, wherew′ is obtained fromw by replacing the only
occurrence of themarker r by themarker r ′. Additionally,w′ inherits fromw the properties of
not containing further markers of context-free rules nor symbols from N ′. Hence, a possible
further discussion would continue as in Case (ii).
(iv) Ifw contains no occurrences of primed or unprimed rulemarkers but one symbol X ∈ N ′,
then r1.1 or f 1.1 are possibly applicable, for some context-free rule r including the context-
free deletion rule. Hence, w = αXβ with α, β ∈ (N ′′ ∪ T )∗. If (w)1 ⇒ (w′)1 due to
applying h1.1, thenw′ = αβ, and we have to continue the derivation as discussed in Case (i).
Otherwise,wemight apply f 1.1. In that case,we have to follow a (correct) simulation of some
non-context-free rule f (possibly a number of times) in the arising derivation (w)1 ⇒ (w′)1,
as there are no rules in C2 or C3 that can deal with nonterminals from N ′ without referring
to a fitting context-free rule marker (or double- or triple-primed variants thereof). Therefore,
we are left with discussing the application of a rule r1.1, which starts the simulation of a
context-free rule r with left-hand side X . In that case, (w)1 ⇒ (w1)2 withw1 = αXrβ. Now,
due to the use of rule markers, the application of r2.1 is enforced, leading to the configuration
(w′)1 with w′ = αrβ, i.e., w′ was obtained from w by replacing X by r . Now, the discussion
continues as in Case (iii).

The observations above on the non-interference of context-free and non-context-free rule
simulations shows that no malicious derivations are possible. Hence, L(Π) ⊆ L(G).
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Table 5 GCID rules of size (4; 2, 0, 0; 1, 1, 0) simulating a type-0 grammar in SGNF

Component C1 Component C2 Component C3 Component C4

r1.1 : (1, (λ, rr ′, λ)I , 2) r2.1 : (2, (λ, Y1r ′′, λ)I , 3) r3.1 : (3, (r ′′, X, λ)D, 4) r4.1 : (4, (r ′′, r, λ)D, 3)

r2.2 : (2, (λ, Y2r ′′′, λ)I , 3) r3.2 : (3, (r ′′, r ′, λ)D, 2)

r2.3 : (2, (λ, r ′′′, λ)D, 1) r3.3 : (3, (r ′′′, r ′′, λ)D, 2)

f 1.1 : (1, (λ, f, λ)I , 2) f 2.1 : (2, (λ, f ′, λ)I , 3) f 3.1 : (3, ( f ′, A, λ)D , 4) f 4.1 : (4, ( f ′, B, λ)D, 3)

f 2.2 : (2, (λ, f, λ)D , 1) f 3.2 : (3, (λ, f ′, λ)D, 2)

h1.1 : (1, (λ, S′, λ)D , 1)

The second claim follows by Proposition 1. The underlying graph of the simulation is
shown in Fig. 1b; obviously, it is a path.

3.2 GCID systems with insertion length two

In [13], it is shown that GCID(4; 2, 0, 0; 1, 1, 0) = RE with the underlying control graph
not even being a tree. In this subsection, we show that, even if we restrict the control graph to
be a path, GCIDP (4; 2, 0, 0; 1, 1, 0) systems will still characterize RE. Further, if we allow
a context (either left or right) for insertion, then we can still describe RE while decreasing
the number of components from 4 to 3, yet obtaining path-structured GCID systems.

Notice that we do need some context somewhere, as it is known that a language as simple
as {anb | n ≥ 1} cannot be described by any GCIDP system of size (k; 2, 0, 0; 2, 0, 0) for
any k; see [22, Thm. 17].

Theorem 4 RE = GCIDP (4; 2, 0, 0; 1, 1, 0) = GCIDP (4; 2, 0, 0; 1, 0, 1).
Proof Consider a type-0 grammar G = (N , T, P, S) in SGNF. The rules of P are
assumed to be labelled bijectively with labels from the set [1 . . . |P|]. We construct a
graph-controlled insertion–deletion system Π as follows such that L(Π) = L(G) :
Π = (4, V, T, {S}, H, 1, 1, R). The alphabet of Π is V ⊂ N ∪ T ∪ H where H =
{r, r ′, r ′′, r ′′′ : r ∈ [1 . . . |P|]}. The set of rules R (of Π) is given in Table 5.
The intended derivation of a context-free rule r : X → Y1Y2 is as follows.

(αXβ)1 ⇒r1.1 (αXrr ′β)2 ⇒r2.1 (αY1r ′′ Xrr ′β)3 ⇒r3.1 (αY1r ′′rr ′β)4
⇒r4.1 (αY1r ′′r ′β)3 ⇒r3.2 (αY1r ′′β)2 ⇒r2.2 (αY1Y2r ′′′r ′′β)3
⇒r3.3 (αY1Y2r ′′′β)2 ⇒r2.3 (αY1Y2β)1.

The intended derivation of a non-context-free deletion rule is as follows.

(αABβ)1 ⇒ f 1.1 (α f ABβ)2 ⇒ f 2.1 (α f f ′ ABβ)3 ⇒ f 3.1 (α f f ′ Bβ)4
⇒ f 4.1 (α f f ′β)3 ⇒ f 3.2 (α fβ)2 ⇒ f 2.2 (αβ)1.

This show that L(G) ⊆ L(Π). Conversely, consider some derivation (S)1 ⇒′∗ (w)1 ⇒′
(w′)1 in Π . By induction, assume that w contains at most one symbol from N ′ and no
(unprimed or primed variants of) rule markers. In the following, let r : X → Y1Y2, s : X ′ →
Y ′
1Y ′

2 and t : X ′′ → Y ′′
1 Y ′′

2 be three (not necessarily distinct) context-free rules, with the
corresponding markers r , s and t , while f : AB → λ is a non-context-free deletion rule.
Notice (*) that whenever we discuss a configuration (u)2, we could (in principle) always
paste in a (correct) simulation of some non-context-free deletion rule f , leading to (u′)2 with
u ⇒ f u′.
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First scenario: (w)1 ⇒r1.1 (w1)2 ⇒s2.1 (w2)3. Hence, first rr ′ and then Y ′
1s′′ have been

introduced into w to obtain w2. The only rule in C3 that is potentially applicable is s3.1,
which deletes the only occurrence from N ′ from w2 (which hence also checks that there
is exactly one such occurrence in w, as otherwise no rule in C3 is applicable, because w

contains no primed rule markers), so that the configuration (w3)4 can be described as being
obtained from w = αX ′β by inserting rr ′ into αY ′

1s′′β. Now in C4, it is checked if r = s,
as only in that case and if the previous insertions were carried out in the right places, be can
arrive at (w4)3 with w4 = αY1r ′′r ′β. As r ′′r ′ is a substring of w4, the only applicable rule
in C3 would be r3.2. This enforces the subsequent configuration (w5)2 with w5 = αY1r ′′β.

According to (*), we could now digress and paste in several (correct) simulations of
applications of non-context-free deletion rules, which does not interfere with the flow of the
argument. In particular, observe that if (w5)2 ⇒ f 2.1 (x)3, then (x)3 ⇒ f 3.1 (y)4 is enforced,
ignoring the back-loop (x)3 ⇒ f 3.2 (w5)2.

Notice that we also might try to start some new simulation of a context-free rule t by
(w5)2 ⇒t2.1 (x)3. In order to continue, we must have Y1 = X ′′, leading to (y)4 with
y = αt ′′r ′′β, allowing no further continuation.

So, we are left with discussing an application of r2.2, leading to (w6)3 with w6 =
αY1Y2r ′′′r ′′β, where the correct position of the insertion is tested in C3, as otherwise rule is
applicable there. This also enforces (w6)3 ⇒r3.3 (w7)2, with w7 = αY1Y2r ′′′β.

Clearly, by applying r2.3, we could now arrive at (w8)1 with w ⇒r w8 as desired,
where w8 contains no (primed) rule markers and only one occurrence of a symbol from N ′,
concluding the induction step for this case.

Also, according to (*), we could paste in several (correct) simulations of applications
of non-context-free deletion rules, which does not interfere with the overall argument, as
completed such simulations are enforced, as discussed above.

Finally, restarting some new simulation of a context-free rule would again get stuck in C3
or in C4, as described above.
Second scenario: (w)1 ⇒r1.1 (w1)2 ⇒s2.2 (w2)3. It is easy to check that now the derivation
is stuck in C3.
Third scenario: (w)1 ⇒r1.1 (w1)2 ⇒ f 2.1 (w2)3. As noted in (*), we can paste in several
correct simulations of non-context-free deletion rules, not changing the main argument of
this proof. Notice that no other rules are applicable in C3 but f 3.1 (or f 3.2, but this makes
no progress), and similarly in C4.
Fourth scenario: (w)1 ⇒ f 1.1 (w1)2 ⇒r2.1 (w2)3. Now, the only possible continuation is via
(w2)3 ⇒r3.1 (w3)4, but then the derivation is stuck in C4, as w3 neither contains f ′ nor a
double-primed rule marker left to an unprimed one of the same rule.
Fifth scenario: (w)1 ⇒ f 1.1 (w1)2 ⇒r2.2 (w2)3. This attempted derivation is immediately
stuck in C3.
Sixth scenario: (w)1 ⇒ f 1.1 (w1)2 ⇒ f 2.1 (w2)3. As described above, this may now start
an intended simulation of a non-context-free deletion rule. Any attempts to intercalate other
rules will get stuck, apart from those un-doing the previous step, which can be ignored.
Seventh scenario: (w)1 ⇒ f 1.1 (w1)2 ⇒ f 2.2 (w2)1. Asw2 = w, this scenario can be ignored.

As the reader can easily check, these are all possibilities of derivations, starting with (w)1.
This proves that whenever (w)1 ⇒′ (w′)1, thenw ⇒+ w′ in G, which shows L(Π) ⊆ L(G)

by induction.
The claimed path structure which can be easily seen by inspection is depicted in Fig. 1b

without the loop overC2. Proposition 1 shows that GCIDP systems of size (4; 2, 0, 0; 1, 0, 1)
are computationally complete. ��
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Table 6 GCID rules of size (3; 2, 1, 0; 1, 0, 1) simulating a type-0 grammar in SGNF

Component C1 Component C2 Component C3

r1.1 : (1, (X, r, λ)I , 2) r2.1 : (2, (λ, X, r)D, 3) r3.1 : (3, (r, Y1Y2, λ)I , 2)

r2.2 : (2, (λ, r, λ)D, 1)

f 1.1 : (1, (B, f, λ)I , 2) f 2.1 : (2, (λ, B, f )D, 3) f 3.1 : (3, (λ, A, f )D, 2)

f 2.2 : (2, (λ, f, λ)D, 1)

h1.1 : (1, (λ, S′, λ)D , 1)

Theorem 5 RE = GCIDP (3; 2, 1, 0; 1, 0, 1) = GCIDP (3; 2, 0, 1; 1, 1, 0).
Proof Consider a type-0 grammar G = (N , T, P, S) in SGNF as inDef. 1. The rules of P are
assumed to be labelled bijectively with labels from [1 . . . |P|]. We construct a GCIDP system
Π = (3, V, T, {S}, H, 1, 1, R)of size (3; 2, 1, 0; 1, 0, 1) as follows such that L(Π) = L(G).
Here, let V ⊂ N ∪ T ∪ [1 . . . |P|] contain in particular those rule labels used in the rules
listed in Table 6. The three columns of the table correspond to the three components of Π .
The rows correspond to the rules simulating r : X → Y1Y2, f : AB → λ and h : S′ → λ.
Π is of size (3; 2, 1, 0; 1, 0, 1). We now prove that L(G) ⊆ L(Π). As the claim is evident
for h : S′ → λ, we show that if w ⇒ w′ in G, then (w)1 ⇒′ (w′)1 according to Π in two
more cases.
Case CF: Here, w = αXβ and w′ = αY1Y2β for some α, β ∈ (N ′′ ∪ T )∗. The simulation of
r : X → Y1Y2 performs as follows:

(αXβ)1
⇐r2.2⇒r1.1

(αXrβ)2 ⇒r2.1 (αrβ)3 ⇒r3.1 (αrY1Y2β)2 ⇒r2.2 (αY1Y2β)1 .

Note the role of the right context r in the deletion rule r2.1. If the marker r is not present for
the deletion, then after applying r3.1, when we come back to C2, we can apply r2.1 again
and could end-up with a malicious derivation.
Case CF: Here w = αABβ and w′ = αβ for some α, β ∈ (N ∪ T )∗. The rules f : AB → λ

can be simulated as follows.

(αABβ)1
⇐ f 2.2⇒ f 1.1(αAB fβ)2 ⇒ f 2.1 (αA fβ)3 ⇒ f 3.1 (α fβ)2 ⇒ f 2.2 (αβ)1 .

We now prove the converse L(Π) ⊆ L(G). Consider some derivation (S)1 ⇒′∗ (w)1 in Π .
We claim that then S ⇒∗ w in G; in particular, w ∈ (N ′′ ∪ T )∗(N ′ ∪ {λ})(N ′′ ∪ T )∗. This
trivially holds for w = S. So, suppose we have some w ∈ (N ′′ ∪ T )∗(N ′ ∪ {λ})(N ′′ ∪ T )∗
for which (S)1 ⇒′∗ (w)1 in Π , as well as S ⇒∗ w in G by induction hypothesis. Let
(w)1 ⇒′ (w′)1 in Π , so that (S)1 ⇒′∗ (w′)1 in Π . As (w)1 ⇒′ (w′)1, inspecting the rules
tells us that there are various ways in which w = w′ is possible. Clearly, then w′ enjoys the
same properties asw. So, assumew′ �= w from now on. The derivation (w)1 ⇒′ (w′)1 has to
start like (w)1 ⇒ (w1) j in Π . If j = 1, then rule h1.1 was applied, so in fact w1 = w′, and
the effect is just the same as applying S′ → λ in G, so that w′ satisfies the claim. Otherwise,
j = 2. Here, there are two different ways to continue, which we are going to discuss next.

Applying r1.1 to obtain w1 from w, for some r : X → Y1Y2. Hence, w contains an
occurrence of X , and this is also the only place where any symbol from N ′ can appear by
assumption. So, w = αXβ for some α, β ∈ (N ′′ ∪ T )∗ and w1 = αXrβ is transferred to
C2. All rules in C2 are guarded by a rule marker. Hence, the only rules applicable now are
r2.1 and r2.2, yielding a string w2. On applying the latter rule, w2 = w is returned to C1,
so that w′ = w, a case ruled out before. Hence, w2 = αrβ is moved to component C3.
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Table 7 GCID rules of size (3; 2, 1, 0; 1, 1, 0) simulating a type-0 grammar in SGNF

Component C1 Component C2 Component C3

r1.1 : (1, (λ, r, λ)I , 2) r2.1 : (2, (r, X, λ)D, 3) r3.1 : (3, (r, Y1Y2, λ)I , 2)

r2.2 : (2, (λ, r, λ)D, 1)

f 1.1 : (1, (λ, f, λ)I , 2) f 2.1 : (2, ( f, A, λ)D, 3) f 3.1 : (3, ( f, B, λ)D, 2)

f 2.2 : (2, (λ, f, λ)D , 1)

h1.1 : (1, (λ, S′, λ)D , 1)

Again, all rules in C3 are guarded by rule markers, so that the only applicable rule is r3.1.
The resulting string w3 = αrY1Y2β moves to C2. The rule r2.1 cannot be applied due to
an inappropriate position of r and the only nonterminal of w3 is after r , however the rule
r2.1 demands the nonterminal to be on the left of r . Hence, r2.2 has to be applied to w3,
yielding w4 = αY1Y2β which moves to C1, i.e., w′ = w4. Obviously, w ⇒ w′ using rule
r : X → Y1Y2 of G. Also, w′ ∈ (N ′′ ∪ T )∗(N ′ ∪ {λ})(N ′′ ∪ T )∗.
Applying f 1.1 to obtain w1 from w, for f : AB → λ. Hence, w contains some occurrence
of B, i.e., w = αBβ, which is the occurrence checked when inserting f , i.e., w1 = αB fβ
is the string moved to C2. Applying f 2.2 now would mean that w′ = w, contradicting
our assumptions. Hence, f 2.1 is applied, so that the resulting string w2 = α fβ moves to
C3. Due to the use of rule markers, the only potentially applicable rule is f 3.1. As the
derivation is continued (by assumption of the existence of w′), α = α′ A holds. Hence,
w3 = α′ fβ moves to C2. Now, if f 2.2 is applied, w4 = α′β moves to C1, i.e., w′ = w4. As
w = αBβ = α′ ABβ, w′ can be obtained from w by applying AB → λ, which shows the
claim in this case. Recall that w′ was obtained by first inserting f into w and then applying
the rules f 2.1, f 3.1, and f 2.2 in this order. So, if we would choose to apply f 2.1 to w4

(instead of f 2.2), this means that α′ = α′′ B, and w4 = α′′ fβ. But then,

(w3)2 = (α′ fβ)2 ⇒ f 2.2 (α′β)1 = (α′′ Bβ)1 ⇒ f 1.1 (α′′ B fβ)2 ⇒ f 2.1 (w4)3

is also possible, so we can arrive at the same situation by first finishing the simulation of
one application of AB → λ and then starting another such application. Therefore, using the
rule sequence f 1.1, followed by ( f 2.1, f 3.1)m , and finalized by f 2.2, in order to obtain w′
from w in C1, simulates an m-fold application of f : AB → λ. Hence, w ⇒m w′ in G and
w′ satisfies the required properties.

This concludes that proof that L(G) = L(Π). Proposition 1 shows that alsoGCID systems
of size (3; 2, 0, 1; 1, 1, 0) are computationally complete. Figure 1a depicts the control graph
of the simulation. ��
Theorem 6 RE = GCIDP (3; 2, 1, 0; 1, 1, 0) = GCIDP (3; 2, 0, 1; 1, 0, 1).
Proof Consider a type-0 grammar G = (N , T, P, S) in SGNF as inDef. 1. The rules of P are
assumed to be labelled bijectively with labels from [1 . . . |P|]. We construct a GCID system
Π = (3, V, T, {S}, H, 1, 1, R)of size (3; 2, 1, 0; 1, 1, 0) as follows such that L(Π) = L(G).
V again contains rule markers, apart from the symbols of G. We refer to Fig. 7 for the rules
of Π . The control graph is shown in Fig. 1a. The three columns of the table correspond to
the three components of Π . The rows correspond to the rules simulating r : X → Y1Y2,
f : AB → λ and h : S′ → λ.
We now prove that L(G) ⊆ L(Π) as follows. We show that if w ⇒ w′ in G, then

(w)1 ⇒′ (w′)1 according to Π . From this fact, the claim follows by a simple induction
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argument.w ⇒ w′ could be due to different rule types, as discussed above. As the correctness
is evident for h : S′ → λ, it remains to discuss twomore cases.We first discuss the simulation
of context-free rules and then of non-context-free rules.
Context-free rules r : X → Y1Y2. Here, w = αXβ and w′ = αbYβ for some α, β ∈
(N ′′ ∪ T )∗. The simulation performs as follows:

(αXβ)1
⇐r2.2⇒r1.1

(αr Xβ)2 ⇒r2.1 (αrβ)3 ⇒r3.1 (αrY1Y2β)2 ⇒r2.2 (αY1Y2β)1 .

Non-context-free rules f : AB → λ. This means that w = αABβ and w′ = αβ for some
α, β ∈ (N ∪ T )∗. Within Π , this can be simulated as follows.

(αABβ)1
⇐ f 2.2⇒ f 1.1(α f ABβ)2 ⇒ f 2.1 (α f Bβ)3 ⇒ f 3.1 (α fβ)2 ⇒ f 2.2 (αβ)1 .

Conversely, a derivation (w)1 ⇒′ (w′)1 has to start like (w)1 ⇒ (w1) j in Π . If j = 1, the
applied rule is h1.1, then S′ is deleted from w to obtain w′, and this exactly corresponds to
an application of the context-free rule S′ → λ. More precisely, in the assumed derivation
(w)1 ⇒′ (w′)1, if some rule from C1 (other than h1.1) is applied to w, the rule will insert a
rule marker into the string w and branch to C2. The introduction of rule markers in C1 will
take care of the non-interference among the non-context-free and context-free rules. We now
discuss the possibilities in detail. For (w)1 ⇒′ (w′)1, inspecting the rules tells us that there
are various ways in which w = w′ is possible. Clearly, then w′ enjoys the same properties
as w. So, assume w′ �= w from now on.

Applying r1.1 to w1 = (αXβ)1 for α, β ∈ (N ′′ ∪ T )∗ and X ∈ N ′, the only nonterminal
from N ′, will insert a marker r randomly into the string w = αXβ yielding (w1)2. In C2,
all rules are guarded by markers and the only applicable rules are r2.1 and r2.2 yielding
a string w2. If the rule r2.2 is applied, then w2 = w is returned to C1, so that w′ = w,
a ruled out case. Hence on applying r2.1, w2 = αrβ is moved to C3. Again all rules are
guarded by a marker and the only applicable rule is r3.1 which inserts Y1Y2 into w2 to yield
w3 = αrY1Y2β and moves back to C2. At this point, the rule r2.1 is not applicable since
Y1 �= X by SGNF. The only other applicable rule to w3 is r2.2 which deletes the marker r in
w3 and yields αY1Y2β = w′ and moves to C1. Also, w ⇒ w′ using the rule r : X → Y1Y2

of G. Note that w′ ∈ (N ′′ ∪ T )∗N ′(N ′′ ∪ T )∗.
Applying f 1.1 to w = αABβ, we obtain a string w1 by inserting f anywhere within w.

w1 is transferred to component C2. If now f 2.2 is applied, a string w2 would be moved back
to C1 that can be described as undoing the insertion of f and this leads to our starting point,
ruled out before. So, we can assume that f 2.1 is applied. To make it applicable,w1 should be
of the form α f Aβ ′ to produce a string w2 = α fβ ′ that is moved to C3. Notice that possible
strings w2 can be described as being obtained from w by replacing some occurrence of A
in w by f . Now at C3, to make the rule f 3.1 applicable to w2 = α fβ ′, w2 should be of the
form α f Bβ to produce a string w3 = α fβ that is moved back to C2. Notice that w3 can be
described as being obtained from w by replacing some occurrence of AB in w by f . If f 2.2
is applied to w3, then the marker f is deleted and the resultant string w4 = αβ is moved
back to C1. This means that (w)1 ⇒′ (w′)1 implies w ⇒ w′ in G as required. Recall that
w′ was obtained by first inserting f into w and then applying the rules f 2.1, f 3.1, and f 2.2
in this order. So, if we would choose to apply f 2.1 to w3 (instead of f 2.2), this means that
β = ABβ ′′, and w4 = α fβ ′′. But then,

(w3)2 = (α fβ)2 = (α f ABβ ′′)2 ⇒ f 2.1 (α f Bβ ′′)3 ⇒ f 3.1 (α fβ ′′)2 = (w4)2

is also possible, so we can arrive at the same situation by first finishing the simulation of one
application of AB → λ and then starting another such application simulation. Therefore,
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using the rule sequence f 1.1, followed by ( f 2.1 f 3.1)m , and finalized by f 2.2, in order to
obtain w′ from w in C1, simulates an m-fold application of f : AB → λ. Hence, w ⇒m w′
in G and w′ satisfies the required properties.

In particular, once a marker r or f is introduced in C1, no rule in C2 can be applied if the
appropriate marker is not present, because all rules are guarded. This also shows that, once
the context-free rule simulation has started, it cannot continue with C2-rules stemming from
the non-context-free rule simulation, nor vice versa. This shows that no malicious derivations
are possible, so that each derivation (sub)sequence of (wi )1 ⇒′ (wi+1)1 corresponds either
to a non-context-free or to a context-free rule application.

The claimed size of Π can be verified by inspecting Fig. 7. Proposition 1 shows that
path-structured GCID systems of size (3; 2, 1, 0; 1, 1, 0) are computationally complete. The
underlying graph of the simulation can be seen in Fig. 1a and is hence a path.

3.3 Consequences in ins–del P systems

Graph-controlled insertion–deletion systems whose underlying control graph is a path are
equivalent to insertion–deletion P systems. The components in the former system corre-
spond to the membranes in the latter and the path structure in the former correspond to
the balancedness of the parenthesis (that represent membranes) in the latter. The family of
languages generated by ins–del P system with k membranes and size (n, i ′, i ′′, m, j ′, j ′′),
where the size parameters have the same meaning as in GCID system is represented by

ELSPk(INS
i ′,i ′′
n DEL j ′, j ′′

m ). This notation was used in [16], based on [30]. The results of
Theorems 1 to 6 are summarized in the following corollary using the notation of [16,30].

Corollary 1 For i ′, i ′′, j ′, j ′′ ∈ {0, 1} with i ′ + i ′′ = j ′ + j ′′ = 1, the following ins–del P
systems are computationally complete.

1. (Thms 1) RE = ELSP3(INS
i ′,i ′′
1 DEL1,1

1 ).

2. (Thms 2, 3) RE = ELSP4(INS
i ′,i ′′
1 DEL j ′, j ′′

1 ).

3. (Thms 4) RE = ELSP4(INS
0,0
2 DEL j ′, j ′′

1 ).

4. (Thms 5, 6) RE = ELSP3(INS
i ′,i ′′
2 DEL j ′, j ′′

1 ). ��
How the above results improve on or complement the existing results in the domain of ins–del
P system or path-structured GCID system is shown in Table 8. It is however open, to dis-
cuss one example only, if ELSP3(INS

0,0
2 DEL1,0

1 ) equals RE or how ELSP4(INS
0,0
2 DEL1,0

1 )

and ELSP3(INS
1,0
1 DEL0,0

2 ) relate to each other. Similar questions can be destilled from the
subsequent tables, too.

4 Further corollaries and summary

4.1 Consequences in GCID systems

Theorem 7 (i) GCID(4; 1, 0, 1; 1, 0, 1) = RE; (ii) GCID(4; 1, 0, 1; 1, 1, 0) = RE; (iii);
GCID(4; 2, 0, 0; 1, 0, 1) = RE; (iv) GCIDP (4; 1, 0, 1; 2, 0, 0) = RE.

Proof In [13], itwasproved thatGCIDsystemsof sizes (4; 1, 1, 0; 1, 1, 0), (4; 1, 1, 0; 1, 0, 1),
(4; 2, 0, 0; 1, 1, 0) and (4; 1, 1, 0; 2, 0, 0) equal RE where the control graph of the system
with the last size alone is a path. The theorem follows by Proposition 1. ��
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Table 8 Results in insertion–deletion P systems

Results of [22] Results of this paper Reference

1. ELSP5(INS
1,0
1 DEL1,01 ) ELSP4(INS

1,0
1 DEL1,01 ) Thm 2

2. ELSP5(INS
1,0
1 DEL0,11 ) ELSP4(INS

1,0
1 DEL0,11 ) Thm 3

3. ELSP5(INS
1,0
1 DEL0,02 ) ELSP4(INS

1,0
1 DEL0,02 ) [13]

4. ELSP5(INS
0,1
1 DEL0,02 ) ELSP4(INS

0,1
1 DEL0,02 ) Thm 7

5. ELSP5(INS
0,0
2 DEL1,01 ) ELSP4(INS

0,0
2 DEL1,01 ) Thm 4

ELSP3(INS
0,1
2 DEL1,01 ) Thm 5

ELSP3(INS
1,0
2 DEL1,01 ) Thm 6

6. ELSP5(INS
0,0
2 DEL0,11 ) ELSP4(INS

0,0
2 DEL0,11 ) Thm 4

ELSP3(INS
1,0
2 DEL0,11 ) Thm 5

ELSP3(INS
0,1
2 DEL0,11 ) Thm 6

Corollary 2 The following consequences are trivial.

1. [11] RE = GCID(3; 1, 1, 0; 1, 1, 0) = GCID(3; 1, 0, 1; 1, 0, 1) implies

(a) RE = GCID(3; 2, 1, 0; 1, 1, 0) = GCID(3; 2, 0, 1; 1, 0, 1)
(b) RE = GCID(3; 1, 1, 0; 2, 1, 0) = GCID(3; 1, 0, 1; 2, 0, 1)

2. [11] RE = GCID(3; 1, 1, 0; 1, 0, 1) = GCID(3; 1, 0, 1; 1, 1, 0) implies

(a) RE = GCID(3; 2, 1, 0; 1, 0, 1) = GCID(3; 2, 0, 1; 1, 1, 0)
(b) RE = GCID(3; 1, 1, 0; 2, 0, 1) = GCID(3; 1, 0, 1; 2, 1, 0)

3. [11] RE = GCIDP (5; 1, 1, 1; 1, 0, 0) = GCIDP (5; 1, 0, 0; 1, 1, 1) implies

(a) RE = GCIDP (5; 2, 1, 1; 1, 0, 0) = GCIDP (5; 1, 0, 0; 2, 1, 1)
4. [11] RE = GCIDP (3; 1, 1, 1; 1, 1, 0) = GCIDP (3; 1, 1, 1; 1, 0, 1) implies

(a) RE = GCIDP (3; 2, 1, 1; 1, 1, 0) = GCIDP (3; 2, 1, 1; 1, 0, 1)
5. (Thm. 1)RE = GCIDP (3; 1, 1, 0; 1, 1, 1) = GCIDP (3; 1, 0, 1; 1, 1, 1) implies

(a) RE = GCIDP (3; 1, 1, 0; 2, 1, 1) = GCIDP (3; 1, 0, 1; 2, 1, 1)
6. (Thm. 2) RE = GCIDP (4; 1, 1, 0; 1, 1, 0) = GCIDP (4; 1, 0, 1; 1, 0, 1) implies

(a) RE = GCIDP (4; 1, 1, 0; 2, 1, 0) = GCIDP (4; 1, 0, 1; 2, 0, 1)
7. (Thm. 3) RE = GCIDP (4; 1, 1, 0; 1, 0, 1) = GCIDP (4; 1, 0, 1; 1, 1, 0) implies

(a) RE = GCIDP (4; 1, 1, 0; 2, 0, 1) = GCIDP (4; 1, 0, 1; 2, 1, 0)

5 Summary and open problems

In this paper, we focused on examining the computational power of graph-controlled ins–del
systems with paths as control graphs, which naturally correspond to a variant of P systems.
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Table 9 Analysis of the generative power of GCID system of sizes (k; 1, i ′, i ′′; 1, j ′, j ′′)

No. Size of the system (k; 1, i ′, i ′′; 1, j ′, j ′′) Value of k Control graph type Reference

1. (k; 1, 0, 0; 1, 1, 1) or (k; 1, 1, 1; 1, 0, 0) 5 Path [11]

2. (k; 1, 1, 0; 1, 1, 0) or (k; 1, 0, 1; 1, 0, 1) 3 Non-tree [11]

4 Non-tree [13], Thm. 7

4 Path Thm. 2

3. (k; 1, 1, 0; 1, 0, 1) or (k; 1, 0, 1; 1, 1, 0) 3 Non-tree [11]

4 Non-tree [13], Thm. 7

4 Path Thm. 3

4. (k; 1, 1, 0; 1, 1, 1) or (k; 1, 0, 1; 1, 1, 1) 3 Path Thm. 1

5. (k; 1, 1, 1; 1, 1, 0) or (k; 1, 1, 1; 1, 0, 1) 3 Path [11]

6. (k; 1, 1, 1; 1, 1, 1) 1 Null [33]

Table 10 Analysis of the generative power of GCID system for n = 1 and m = 2

No. Size of the system (k; 1, i ′, i ′′; 2, j ′, j ′′) Value of k Control graph type Reference

1. (k; 1, 0, 0; 2, 1, 1) 5 Path Cor. 2, 3a

2. (k; 1, 1, 0; 2, 0, 0) or (k; 1, 0, 1; 2, 0, 0) 3 Non-tree [12]

4 Path [13], Thm. 7

3. (k; 1, 1, 0; 2, 1, 0) or (k; 1, 0, 1; 2, 0, 1) 3 Non-tree Cor. 2, 1b

4 Path Cor. 2, 6a

4. (k; 1, 1, 0; 2, 0, 1) or (k; 1, 0, 1; 2, 1, 0) 3 Non-tree Cor. 2, 2b

4 Path Cor. 2, 7a

5. (k; 1, 1, 0; 2, 1, 1) or (k; 1, 0, 1; 2, 1, 1) 3 Path Cor. 2, 5a

6. (k; 1, 1, 1; 2, 0, 0) or (k; 1, 1, 1; 2, 1, 0) 1 Null [31]

or (k; 1, 1, 1; 2, 0, 1)
7. (k; 1, 1, 1; 2, 1, 1) 1 Null [33]

We lowered the resource requirements to describe all recursively enumerable languages. On
fixing the parameters n, i ′, i ′′, m, j ′, j ′′ in a GCID size (k; n, i ′, i ′′; m, j ′, j ′′), we present
in Tables 9, 10 and 11, the number of components k and the type of control graph, with
which GCID(k; n, i ′, i ′′; m, j ′, j ′′) describe RE, as our main focus of study was to reduce
the number of components required for computational completeness results while keeping
the ID size fixed. However, it is open whether these resource bounds are optimal.

Here we considered the underlying graph of GCID systems to be path-structured only.
One may also consider also tree structure, which may give additional power, especially to
ins–del P systems. The resources used in the results of ins–del P systems need not be optimal
since in ins–del P systems, each membrane can have initial strings and they all evolve in
parallel which may reduce the size.

The reader may have noticed that we discussed in detail the case of insertion strings of
length two, but a similar discussion for the case of deletion strings of length two is missing.
We can trivially inherit some computational completeness results from the case when both
insertion and deletion strings have length one only. However, it is open whether
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Table 11 Analysis of the generative power of GCID system for n = 2 and m = 1

No. Size of the system (k; 2, i ′, i ′′; 1, j ′, j ′′) Value of k Control graph type Reference

1. (k; 2, 1, 1; 1, 0, 0) 5 Path Cor. 2, 3a

2. (k; 2, 0, 0; 1, 1, 0) or (k; 2, 0, 0; 1, 0, 1) 3 Non-tree [12]

4 Non-tree [13], Thm. 7

4 Path Thm. 4

3. (k; 2, 1, 0; 1, 1, 0) or (k; 2, 0, 1; 1, 0, 1) 3 Non-tree Cor. 2, 1a

3 Path Thm. 6

4. (k; 2, 1, 0; 1, 0, 1) or (k; 2, 0, 1; 1, 1, 0) 3 Non-tree Cor. 2, 2a

3 Path Thm. 5

5. (k; 2, 1, 1; 1, 1, 0) or (k; 2, 1, 1; 1, 0, 1) 3 Path Cor. 2, 4a

6. (k; 2, 0, 0; 1, 1, 1) or (k; 2, 1, 0; 1, 1, 1) 1 Null [21]

or (k; 2, 0, 1; 1, 1, 1)
7. (k; 2, 1, 1; 1, 1, 1) 1 Null [33]

RE = GCIDP (3; 1, 1, 0; 2, 1, 0) = GCIDP (3; 1, 1, 0; 2, 0, 1),
to state one concrete question in that direction. It is also interesting to observe that we never
used the possibility to introduce finite sets of axioms in our simulations ; we only used
singleton sets as sets of axioms. Also, only in two simulations (in this paper) we made use of
the possibility to have strings of length greater than one as axioms. Is it always the case that
these seemingly small modifications in the definition of GCID systems make no difference
for the described language class?

In view of the connections with P systems, it would be also interesting to study Parikh
images of (restricted) graph-controlled ins–del systems, as started out for matrix-controlled
ins–del systems in [7]. This also relates to the macroset GCID systems considered in [6].

Furthermore, as it seems to be quite difficult to achieve computational completeness results
for the remaining open cases, attention has now turned to the question of what kinds of known
grammatical mechanism could be simulated with such weaker forms of (regulated) ins–del
systems. We refer the readers to [9,12] for first results in this direction in connection with
graph control.
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29. Păun,Gh:MarcusContextualGrammars, Studies inLinguistics andPhilosophy, vol. 67.KluwerAcademic
Publishers, Dordrecht (1997)
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31. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Berlin
(1998)

32. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theor. Comput. Sci. 456, 80–88 (2012)
33. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion systems. Natl. Comput.

2(4), 321–336 (2003)
34. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J. Moldova 18(2), 210–245

(2010)

123


	On path-controlled insertion–deletion systems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph-controlled insertion–deletion systems

	3 Computational completeness
	3.1 GCID systems with insertion and deletion length one
	3.2 GCID systems with insertion length two
	3.3 Consequences in ins–del P systems

	4 Further corollaries and summary
	4.1 Consequences in GCID systems

	5 Summary and open problems
	Acknowledgements
	References




