
Acta Informatica (2018) 55:575–611
https://doi.org/10.1007/s00236-017-0310-9

ORIGINAL ARTICLE

Bounded choice-free Petri net synthesis:
algorithmic issues

Eike Best1 · Raymond Devillers2 · Uli Schlachter1

Received: 13 February 2017 / Accepted: 9 November 2017 / Published online: 20 November 2017
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract This paper describes a synthesis procedure dedicated to the construction of choice-
free Petri nets from finite persistent transition systems, whenever possible. Taking advantage
of the properties of choice-free Petri nets, a two-step approach is proposed. A pre-synthesis
step checks necessary structural properties of the transition system and constructs some data
structures needed for the second step. Then, a minimised set of simplified systems of linear
inequalities is distilled from a general region-theoretic approach. This leads to a substantial
narrowing of the sets of states for which linear inequalities must be solved, and allows an
early detection of failures, supported by constructive error messages. The performance of the
resulting algorithm is measured and compared numerically with existing synthesis tools.

Contents

1 Introduction . 576
1.1 Context of the paper . 576
1.2 Goal of the paper . 577
1.3 Structure of the paper . 577

2 Basic definitions . 578
3 Necessary properties of bounded choice-free Petri nets . 580
4 Structure of cycles and paths in bounded choice-free nets . 583

Supported by DFG (German Research Foundation) through Grant Be 1267/15-1 ARS (Algorithms for
Reengineering and Synthesis).

B Uli Schlachter
uli.schlachter@informatik.uni-oldenburg.de

Eike Best
eike.best@informatik.uni-oldenburg.de

Raymond Devillers
rdevil@ulb.ac.be

1 Department of Computing Science, Carl von Ossietzky Universität, 26111 Oldenburg, Germany

2 Université Libre de Bruxelles, Boulevard du Triomphe, C.P. 212, 1050 Bruxelles, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-017-0310-9&domain=pdf
http://orcid.org/0000-0002-5063-025X

576 E. Best et al.

4.1 The cyclic structure of bounded choice-free Petri nets . 583
4.2 The path structure of bounded choice-free Petri nets . 584

5 Pre-synthesis of bounded choice-free nets . 586
6 Synthesis of bounded choice-free nets . 591

6.1 Analysis of choice-free synthesis obligations . 591
6.1.1 Ensuring that cycles are preserved . 592
6.1.2 Characterising the various markings . 593
6.1.3 Ensuring that the markings on p do not prevent enabled transitions 593
6.1.4 Ensuring that place p solves an event/state separation problem 595

6.2 Algorithm and proof of its correctness . 596
7 Some remarks on the synthesis algorithm . 597

7.1 Structure-based sets . 597
7.2 Four examples . 598
7.3 Some special cases . 599
7.4 Complexity considerations . 600

8 Experimental evaluation . 601
8.1 Connected bit nets . 603
8.2 Circles . 604
8.3 Pre-cube nets . 605
8.4 Philosophers nets . 605
8.5 A closer look at NEW . 606

9 Concluding remarks . 606
A Keller’s theorem . 607
B Proof of Proposition 4 . 608
References . 609

1 Introduction

1.1 Context of the paper

In synthesis, the task is to construct—preferably automatically, when possible—an imple-
menting system from a given behavioural specification. A successfully synthesised system
is correct by design. There is no need to re-examine its behavioural properties, because they
are known to hold by construction. If synthesis is impossible for an input specification, then
it is desirable to delineate—when possible—the reasons of the failure. This paves the way
for adjustments of the given behaviour, allowing for a more successful subsequent synthesis.

In this paper, we consider the synthesis of Petri nets from labelled transition systems, as
pioneered by Ehrenfeucht and Rozenberg [29] and comprehensively presented by Badouel,
Bernardinello and Darondeau in [1]. In this approach, a system is presumed to be specified by
a labelled transition system TS, and an implementation of it is sought in the shape of an unla-
belled Petri net N with a reachability graph isomorphic to TS. The basic synthesis algorithm
described in [1] works by associating a large number of linear-algebraic inequality systems
to any given transition system. If all of them are solvable, a Petri net is then constructed from
their solutions.

Petri net synthesis is interesting for several reasons. For instance, it is used in a variety
of application areas, such as data mining [26] and digital design [22,24,34]. In the latter
context, it is particularly desirable to synthesise choice-free Petri nets.1 Moreover, a Petri net
implementation tends to be much smaller than the transition system it originates from. It can
also display useful information about the concurrency and the distributability inherent in a

1 Where a net will be called choice-free if every place has at most one outgoing transition (not to be confused
with free-choice nets [27]).

123

Bounded choice-free Petri net synthesis: algorithmic issues 577

system [5,37]. As it happens, choice-free Petri nets are precisely the class of nets allowing
an arbitrarily distributed implementation [7].

1.2 Goal of the paper

We investigate the case that Petri net synthesis is targeted towards the class of choice-free Petri
nets. A naive (brute-force) approach, extending the classic algorithm described in [1], would
be to add a separate layer of linear constraints describing—as much as possible—the class
in question. However, such an approach is likely to create heavier and slower procedures.
We shall argue that, on the contrary, very efficient synthesis procedures can be obtained
by exploiting the structural properties of choice-free nets in a sophisticated way, aiming to
reduce substantially (rather than to enlarge) the size and number of inequality systems that
need to be solved. As sketched in Fig. 1, we therefore propose to prepend a pre-synthesis
stage in front of the proper synthesis stage. Pre-synthesis serves to check some structural
properties which are known (from Petri net structure theory) to hold for choice-free nets
[6,35,40].

Any transition system rejected during pre-synthesis can obviously not be synthesised into
a choice-free net. Since a characterisation of choice-free Petri net state spaces does not exist,
it is too optimistic to assume that this will filter out exactly all unsolvable inputs. Instead, a
surviving transition system may already, or may still not, be solvable by a choice-free net.
However, knowing that our inputs now satisfy a set of restrictive properties, we can expect
(and will indeed show) that fewer inequalities need to be solved than if the inputs were not
restricted, making the resulting procedure competitive in terms of efficiency. Apart from
this, pre-synthesis has additional benefits: first, in many cases, inputs for which synthesis is
not possible may be detected at an early stage, leading to run-time savings in failing cases;
secondly, meaningful error messages may then be issued; thirdly, data structures facilitating
the subsequent synthesis may already be built during pre-synthesis.

1.3 Structure of the paper

After the basic notations used in this paper, and some examples, in Sect. 2, we turn our
attention to the two-stage method proposed in Fig. 1. It involves at least three intricate
problems:

• Choosing the properties to be checked during pre-synthesis.
A proposal will be made in Sect. 3 below.

• Checking the chosen properties optimally.

Fig. 1 Splitting synthesis into two separate stages

123

578 E. Best et al.

This problem has been addressed in [15], the results of which will be recapitulated
(without proofs) in Sect. 4 below. In Sect. 5, a pre-synthesis algorithm based on these
results will then be described and proved correct.

• Reducing the number of linear inequalities to be solved during synthesis.
This may involve judicious (mathematical) reasoning, as spelt out in [13]. Section 6
describes a synthesis algorithm which is based on this reasoning, as well as its proof of
correctness.

In Sect. 7, we sketch various special cases and algorithmic characteristics of the combined
algorithm. Experimental results are presented and analysed in Sects. 8, and 9 concludes.
Some of the more technical proofs can be found in Sects. A and B of “Appendix” section.

2 Basic definitions

Definition 1 (Labelled transition systems) A labelled transition system with initial state, lts
for short, is a quadruple TS = (S, T,→, ı) where S is a set of states, T is a set of labels,
→ ⊆ (S × T × S) is the transition relation, and ı ∈ S is an initial state. TS is finite if S and
T (hence also →) are finite sets.

A label t is enabled at s ∈ S, written formally as s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈ →, and
backward enabled at s, written as [t〉s, if ∃s′ ∈ S : (s′, t, s) ∈ →. For t ∈ T , s[t〉s′ if
(s, t, s′) ∈ →, meaning that s′ is reachable from s through the execution of t . For sequences
σ ∈ T ∗, s[ε〉 and s[ε〉s are always true; and s[σ t〉 (s[σ t〉s′) if there is some s′′ with s[σ 〉s′′
and s′′[t〉 (s′′[t〉s′, respectively). A state s′ is reachable from state s if ∃σ ∈ T ∗ : s[σ 〉s′. The
set of states reachable from s is denoted by [s〉. A sequence s[σ 〉s′ is called a cycle, or more
precisely a cycle at (or around) state s, if s = s′.

The language of TS is the set L(TS) = {σ ∈ T ∗ | ı[σ 〉}. Two lts with the same label set
TS = (S, T,→, ı) and TS′ = (S′, T,→′, ı ′) are language-equivalent if L(TS) = L(TS′),
and isomorphic if there is a bijection ζ : S → S′ with ζ(ı) = ı ′ and (r, t, s) ∈ → ⇔
(ζ(r), t, ζ(s)) ∈ →′, for all r, s ∈ S and t ∈ T .
�
Definition 2 (Petri nets) A (finite, initially marked, place-transition, arc-weighted) Petri net
is a tuple N =(P, T, F, M0) such that P is a finite set of places, T is a finite set of transitions,
with P ∩ T = ∅, F is a flow function F : ((P × T) ∪ (T × P)) → N, M0 is the initial
marking (where a marking is a mapping M : P → N, indicating the number of tokens in
each place).

N is plain if no arc weight exceeds 1; pure if ∀p ∈ P : (p•∩• p) = ∅, where p• =
{t ∈ T | F(p, t)>0} and • p = {t ∈ T | F(t, p)>0}; choice-free [25,40] or place-output-
nonbranching [10] if ∀p ∈ P : |p•| ≤ 1; a marked graph [20] if N is plain and |p•| = 1 and
|• p| = 1 for all places p ∈ P; and a T-system [27] if N is plain and |p•| ≤ 1 and |• p| ≤ 1
for all places p ∈ P .

A transition t ∈ T is enabled by a marking M , denoted by M[t〉, if for all places p ∈ P ,
M(p) ≥ F(p, t). If t is enabled at M , then t can occur (or fire) in M , leading to the
marking M ′ defined by M ′(p) = M(p) − F(p, t) + F(t, p) (denoted by M[t〉M ′). A
marking M ′ is reachable from M if there is a sequence of firings leading from M to M ′. The
set of markings reachable from M is denoted by [M〉. The reachability graph of N is the
labelled transition systemRG(N)with the set of vertices [M0〉, initial stateM0 and transitions
{(M, t, M ′) | M, M ′ ∈ [M0〉∧M[t〉M ′}. A Petri net N = (P, T, F, M0) is bounded if [M0〉
is finite, i.e., the number of tokens in each place is bounded. Moreover, all notions defined
for labelled transition systems apply to Petri nets through their reachability graphs.
�

123

Bounded choice-free Petri net synthesis: algorithmic issues 579

Fig. 2 N1 solves TS1 choice-freely. N
′
1 also solves TS1 (but not choice-freely). N2 solves TS2 choice-freely,

and N3 solves TS3 choice-freely. No plain solution of TS2 exists, and no pure solution of TS3 exists (we shall
not prove this in the present paper. It is not difficult to verify)

The next definition connects the previous two. It delineates the class of transition systems
which are (isomorphic to) Petri net reachability graphs.

Definition 3 (Solvable transition systems) If an lts TS is isomorphic to the reachability graph
of a Petri net N , we say that N solves TS or that TS is synthesisable into N .
�

The examples shown in Fig. 2 illustrate various basic properties of the structures we
consider: solvability; plainness; and pureness. Note that we only consider unlabelled Petri
nets, so that we do not have silent transitions; nor two different transitions with the same
label; nor transition carrying a sequence of labels. This requirement is a basic assumption
in [1] as well as in this paper.2 It supports the precise analysis of physical distributability
[5,7,31,41]. For instance, the transition system TS1 may be synthesised into N1 or into N ′

1,
also shown in this figure (or into other nets, not shown here). N1 is choice-free, and a and b are
independent of each other so that they can be executed concurrently (and also be distributed
physically) in order to generate TS1. By contrast, N ′

1 is not choice-free, and its structure does
not reveal any explicit concurrency or distributivity information. TS2 can be solved by the
Petri net N2; the latter is not plain, since it contains an arc having weight greater than 1 from
p3 to c. Similarly, TS3 can be solved by N3, which is not pure, because it contains (twice) a
transition and a place which are connected in both directions by arcs.

Definition 4 (Parikh vectors) Let TS be a labelled transition system TS = (S, T,→, ı). A
T -vector is a function Φ : T → N, and its support is supp(Φ) = {t ∈ T | Φ(t) > 0}.
For a T -vector Φ : T → N, the greatest common divisor gcd(Φ) is defined as gcd(Φ) =
2 Which could be relaxed in different contexts [22] tolerating label splitting [17].

123

580 E. Best et al.

gcd{Φ(t) | t ∈ T }. Two T -vectors Φ1, Φ2 : T → N are label-disjoint if their supports are
disjoint. The Parikh vector of a sequence σ ∈ T ∗, denoted Ψ (σ), is the T -vector counting
for each label t ∈ T the number of occurrences of t in σ . The support of a sequence σ is
defined as supp(σ) = supp(Ψ (σ)), the greatest common divisor as gcd(σ) = gcd(Ψ (σ)).
Two sequences σ1, σ2 ∈ T ∗ are label-disjoint if Ψ (σ1) are Ψ (σ2) are label-disjoint, and
Parikh-equivalent if they have the same Parikh vector, i.e., if Ψ (σ1) = Ψ (σ2).
�

3 Necessary properties of bounded choice-free Petri nets

We first define some properties which an lts must satisfy in order to be solvable by a bounded
Petri net (Definitions 5, 6 and Theorem 1). Then, a set of properties which an lts must
additionally satisfy in order to be solvable by a bounded choice-freePetri net will be described
(Definitions 7–9 and Theorem 2). The section ends with some remarks about checking these
properties.

Definition 5 (Total reachability, weak and full determinism) A labelled transition system
(S, T,→, ı) is called

• totally reachable if [ı〉 = S (i.e., every state is reachable from ı);
• (weakly forward) deterministic if, for all states s, s′, s′′ ∈ S, and for any label t ∈ T ,

s[t〉s′ and s[t〉s′′ imply s′ = s′′ (i.e., an executable label uniquely determines the successor
state);

• (weakly) backward deterministic if, for all states s, s′, s′′ ∈ S, and for any label t ∈ T ,
s′[t〉s and s′′[t〉s imply s′ = s′′;

• fully forward deterministic if, for all states s, s′, s′′ ∈ S and for all sequences α, α′ ∈ T ∗,
(s[α〉s′∧s[α′〉s′′∧Ψ (α) = Ψ (α′)) entails s′ = s′′ (i.e., the Parikh vector of an executable
sequence uniquely determines the target state);

• fully backward deterministic if, for all states s, s′, s′′ ∈ S and sequences α, α′ ∈ T ∗,
(s′[α〉s ∧ s′′[α′〉s ∧ Ψ (α) = Ψ (α′)) entails s′ = s′′.
�
Clearly, full forward (backward) determinism implies weak forward (backward, respec-

tively) determinism, but not conversely.

Definition 6 (Weak periodicity) A labelled transition system (S, T,→, ı) is called weakly
periodic if for every s1 ∈ S, label sequence σ ∈ T ∗, and infinite sequence s1[σ 〉s2[σ 〉s3[σ 〉
s4[σ 〉 · · · , either si = s j for all i, j ≥ 1, or si �= s j for all i, j ≥ 1 with i �= j .
�

In a finite and weakly periodic lts, the second condition (si �= s j) in the definition can-
not hold. Thus, a finite lts (S, T,→, ı) is weakly periodic iff, for every infinite sequence
s1[σ 〉s2[σ 〉s3[σ 〉 · · ·, si = s j for all i, j ≥ 1.

For example, in Fig. 3,TS4 is fully deterministic in both directions, but not weakly periodic
(for instance, ı[aaa . . .〉, and not all visited states are equal or different). By contrast, TS5 is
not just fully deterministic but also weakly periodic (for instance, from ı , the only possible
periods are σ = aabbcc or its multiples, and they always lead back to ı).

Theorem 1 (Petri net reachability graphs) The reachability graph RG(N) of a Petri net N is
totally reachable, fully forward and backward deterministic, and weakly periodic. Moreover,
it is finite iff N is bounded.

123

Bounded choice-free Petri net synthesis: algorithmic issues 581

Fig. 3 TS4 is fully deterministic, but not weakly periodic. TS5 is fully deterministic as well as weakly periodic

Proof Easy, as well as basic, in Petri net theory. Total reachability arises by the definition
of RG(N). All forms of determinism, as well as weak periodicity, follow directly from the
Petri net state equation [36,38]. Finiteness is immediate from the definition of Petri net
boundedness.
�
Definition 7 (Persistence) A labelled transition system T S = (S, T,→, ı) is called persis-
tent [35] if for all states s, s′, s′′ ∈ S, and labels t �= u, if s[t〉s′ and s[u〉s′′, then there is
some state r ∈ S such that both s′[u〉r and s′′[t〉r (i.e., once two different labels are both
enabled, neither can disable the other, and this leads to the same state, forming a characteristic
diamond shape).
�
Definition 8 (Small and prime cycles)

Let TS be a labelled transition system TS = (S, T,→, ı).

• A cycle s[σ 〉s is nontrivial if σ �= ε.
• A cycle s[σ 〉s is small if it is nontrivial and there is no nontrivial cycle s′[σ ′〉s′ with

s′ ∈ S andΨ (σ ′) � Ψ (σ) (where, by definition,� equals (≤ ∩ �=), and≤ is understood
componentwise).

• A cycle s[σ 〉s is prime if gcd(σ) = 1.

TS has the prime cycle property if all of its small cycles are prime.
�
For example, TS1, TS2 and TS3 (cf. Fig. 2) are persistent and satisfy the prime cycle

property. TS4 and TS5 (Fig. 3) are persistent but do not satisfy the prime cycle property.
In TS4, there are non-prime small cycles ı[aa〉ı and ı[bb〉ı around state ı . TS5 contains a
non-prime small cycle ı[aabbcc〉ı .3

Definition 9 (Short paths, Parikh-minimal paths, cycle-reduction) Let TS be a labelled tran-
sition system TS = (S, T,→, ı).

A path r [σ 〉s (for r, s ∈ S and σ ∈ T ∗) is

• short (or short from r to s, to be precise), if no path r [σ ′〉s satisfies |σ ′|<|σ |;
• Parikh-minimal if no path r [σ ′〉s satisfies Ψ (σ ′) � Ψ (σ);
• cycle-reduced if there is no s′ ∈ S and small cycle s′[α〉s′ with Ψ (α) ≤ Ψ (σ).

TS has the cycle-reduction property if for any pair r, s ∈ S of states with s ∈ [r〉, there is a
cycle-reduced path r [σ 〉s.
�
3 We stress that small cycles are different from elementary cycles in graph theory, i.e., cycles which visit every
state at most once. While every small cycle is also elementary, the converse is not true. In fact, there exist
finite, totally reachable, deterministic, persistent, transition systems in which every small cycle has a prime
Parikh vector, and which contain non-prime elementary cycles.

123

582 E. Best et al.

Fig. 4 TS6 contains a Parikh-minimal but non-short path ı[ab〉s.TS7 contains small cycleswith Parikh vectors
(0 1 1 0 0) and (0 0 0 1 1) (for the label ordering (a b c d e))

Clearly, every short path is Parikh-minimal. TS6, depicted on the left-hand side of Fig. 4,
shows that the converse implication does not hold in general. If r ∈ S and s ∈ [r〉, there is
always a short path (hence also a Parikh-minimal one) from r to s; however, it may happen
that there is no cycle-reduced path from r to s. For instance, in TS7, depicted on the right-hand
side of Fig. 4, the paths ı[bac〉s and ı[dae〉s are both short and Parikh-minimal. However, they
are not cycle-reduced, since, for instance, there is a small cycle s[bc〉s whose Parikh vector is
dominated by the Parikh vector of the path ı[bac〉s, i.e., satisfiesΨ (bc) ≤ Ψ (bac). Similarly,
there is a small cycle s[de〉s with Ψ (de) ≤ Ψ (dae). Moreover, there is no cycle-reduced
path from ı to s, so that TS7 does not have the cycle-reduction property.

Theorem 2 (Bounded choice-free Petri net reachability graphs) The reachability graph of
a choice-free Petri net is persistent. If the net is bounded, it also satisfies the prime cycle
property and the cycle-reduction property.

Proof Choice-free nets are readily seen to be structurally persistent, i.e., persistent for any
initial marking. For a proof of the prime cycle property, see Lemma 3.6 of [13]. The cycle-
reduction property arises from Lemma 16 in [40], which implies that if s[σ 〉s′ with Ψ (σ) ≥
Ψ (α) and s′′[α〉s′′, then σ may be rearranged in such a way that s[σ ′〉s′[σ ′′〉s′ with Ψ (σ) =
Ψ (σ ′) + Ψ (σ ′′) and Ψ (σ ′′) = Ψ (α).
�

The scheme shown in Fig. 1 stipulates that a pre-synthesis phase for bounded and choice-
free Petri nets should ideally check all properties specified inTheorems1 and2.TS5 is rejected
by such a test because it does not enjoy the prime cycle property, andTS7 is eliminated because
it does not satisfy the cycle-reduction property. In TS4, choice-free synthesis fails for at least
two reasons: it is not weakly periodic; and it has a non-prime cycle.

Checking the properties ought to be organised in an efficient manner. For example, total
reachability is easy to check, by visiting each edge once. Checking weak determinism is also
easy, since it is a “local” property, referring only to the immediate surroundings of states. For
persistence, each pair of enabled labels has to be checked in every state, which is quadratic
in the number of labels; but we may expect the number of labels to be a lot smaller than
the number of states, so that we could get an approximately linear complexity in the size of
the lts. By contrast, checking weak periodicity or full determinism is more expensive, since
these are “global” properties pertaining to pairs (or triples) of states, and (possibly long)
paths between them. It is therefore desirable that a bunch of local (or at least, not too difficult
to check) properties implies one or more global ones mathematically, because checking the
latter can then be skipped if the former are true. For a start, we have the following result,
whose proof can be found in Appendix A.

123

Bounded choice-free Petri net synthesis: algorithmic issues 583

Fig. 5 An lts which satisfies all properties defined so far but is not Petri net solvable

Proposition 1 (Deriving full forward determinism) Let TS = (S, T,→, ı) be a determinis-
tic, persistent lts. Then TS is fully forward deterministic.
�

Theorems 1 and 2 cannot be reversed, as shown by the example in Fig. 5. Indeed, TS8
survives all of the above pre-synthesis tests, since all properties are satisfied. It will not
survive proper synthesis, however; for its non-solvability, the reader is referred to a more
general analysis of 2-label lts (e.g., [8]).

4 Structure of cycles and paths in bounded choice-free nets

Throughout this section, we shall concentrate our investigation on labelled transition systems
which are

finite, totally reachable, deterministic, persistent (1)

Finiteness is usually guaranteed by theway the lts is given. Total reachability and determinism
are mandatory for Petri net solvability in general, and persistence is mandatory for choice-
free solvability. In Sects. 4.1 and 4.2, we continue to investigate the structure of the cycles
and paths of bounded choice-free Petri net reachability graphs, obtaining further necessary
conditions.

4.1 The cyclic structure of bounded choice-free Petri nets

Observe that the transition system TS4 shown above has four small cycles, ı[aa〉ı , ı[ab〉ı ,
ı[ba〉ı , and ı[bb〉ı , whose Parikh vectors partially overlap. The next definition forbids this.

Definition 10 (Disjoint small cycles property P{Υ1, . . . , Υn}) A labelled transition system
TS = (S, T,→, ı) has the disjoint small cycles property if there exist an integer n ≤ |T | and
a finite set of mutually label-disjoint T -vectors Υ1, . . . , Υn : T → N such that

{Ψ (β) | TS contains a state s and a small cycle s[β〉s } = {Υ1, . . . , Υn }
If this property is satisfied, we shall abbreviate it by P{Υ1, . . . , Υn} (for disjoint Parikh
vectors of small cycles).
�

In particular, this implies that the Parikh vectors of small cycles are either equal or disjoint.
For example, in Fig. 4, TS7 satisfies P{Ψ (bc), Ψ (de)}.

It is shown in [6] that the reachability graph of every bounded choice-free Petri net satisfies
the disjoint small cycles property. However, not every lts satisfying (1) does so; for instance,
TS4 does not. Nevertheless, P{Υ1, . . . , Υn} is implied with a single additional premise, as
shown by the next two theorems.

Theorem 3 (ObtainingP{Υ1, . . . , Υn}usingweak periodicity [6,15])Let TS = (S, T,→, ı)
be finite, totally reachable, deterministic, and persistent. Also, assume that TS is weakly
periodic. Then TS satisfies P{Υ1, . . . , Υn} for some set {Υ1, . . . , Υn}.
�

123

584 E. Best et al.

Theorem 4 (Obtaining P{Υ1, . . . , Υn} using prime cycles [15]) Let TS = (S, T,→, ı) be
finite, totally reachable, deterministic, and persistent. Also, assume that TS satisfies the prime
cycle property. Then TS satisfies P{Υ1, . . . , Υn} for some set {Υ1, . . . , Υn}.

We state a corollary, which can be proved using home states.

Definition 11 (Home states) Let TS = (S, T,→, ı) be a labelled transition system. A state
s̃ ∈ S is a home state if ∀s ∈ S : s̃ ∈ [s〉 (i.e., s̃ is reachable from any state).
�

It is not hard to prove [6] that in a finite, totally reachable, deterministic, and persistent
lts, home states always exist.

Lemma 1 (Parikh-equivalent cycle transportation along a path) Let TS = (S, T,→, ı) be
a deterministic and persistent lts. Suppose that r[κ〉r and r [α〉s. Then there is a sequence
s[κ ′〉s with Ψ (κ ′) = Ψ (κ).
�

By Lemma 1 (the proof of which can be found in Appendix A), every cycle has a Parikh-
equivalent counterpart around every home state. Using this, it is also easy to prove that, once
P{Υ1, . . . , Υn} is established, the Parikh vector of any cycle is a linear combination of the
Υ ′
i s:

Corollary 1 (Cycle decomposition (Theorem 2 in [6])) Let TS = (S, T,→, ı) be finite,
totally reachable, deterministic and persistent. Suppose it also satisfies P{Υ1, . . . , Υn}. Then
the Parikh vector of any cycle s[ρ〉s satisfies Ψ (ρ) = ∑n

i=1 ki · Ψ (Υi) with some (unique)
ki ∈ N.
�

Due to Theorems 3 and 4, the last premise can also be replaced by weak periodicity or
by the prime cycle property. By Lemma 1, the decomposition given by Corollary 1 can be
realised by the Parikh vectors of small cycles around any home state s.

4.2 The path structure of bounded choice-free Petri nets

Even if a labelled transition system satisfies (1) and enjoys, in addition, weak periodicity,
the prime cycle property, and the disjoint small cycles property, its path structure may still
prevent it from being choice-freely Petri net synthesisable. This is the case for TS7 (shown in
Fig. 4) where the missing cycle-reduction property is instrumental in preventing choice-free
solvability. We shall base our investigations on the notions of modulo vectors and distances
between states (Definition 13 below).

Definition 12 (Modulo vectors) Suppose that TS = (S, T,→, ı) satisfies (1) and P{Υ1,

. . . , Υn}. For a T -vector Ψ : T → N, its modulo vector Ψ mod {Υ1, . . . , Υn} is the smallest,
non-negative vector Ψ − ∑

i∈{1,...,n} ki · Υi for k1, . . . , kn ∈ N. Since the Υi ’s are mutually
label-disjoint, this minimal vector is well-defined.

For example, TS7 satisfies P{Υ1, Υ2}where Υ1 = Ψ (bc) and Υ2 = Ψ (de). For the two paths
ı[bac〉s and ı[dae〉s, we get

Ψ (bac)mod {Υ1, Υ2} = Ψ (a) as well as Ψ (dae)mod {Υ1, Υ2} = Ψ (a)

subtracting Υ1 in the first case and Υ2 in the second case.
For Parikh vectors of paths between two given states, the modulo vector is an invariant,

as shown in Proposition 18 of [15]:

123

Bounded choice-free Petri net synthesis: algorithmic issues 585

Proposition 2 (Modulo vectors are independent of paths [15]) Let TS = (S, T,→, ı) be
finite, totally reachable, deterministic, andpersistent. Suppose it also satisfiesP{Υ1, . . . , Υn}.

Let r [σ 〉s and r [σ ′〉s be two paths between the same states r, s ∈ S.
Then Ψ (σ)mod {Υ1, . . . , Υn} = Ψ (σ ′)mod {Υ1, . . . , Υn}.
�
Proposition 2 ensures that the next definition is sound.

Definition 13 (Distances) Let TS = (S, T,→, ı) be finite, totally reachable, deterministic,
and persistent. Suppose it also satisfies P{Υ1, . . . , Υn}.

Let r, s ∈ S, and let r [α〉s be a path of TS. Then �r,s = Ψ (α)mod {Υ1, . . . , Υn} is called
the distance from r to s.4 For the sake of brevity, we shall denote �ı,s by �s .
�

In TS7 (shown in Fig. 4), for instance, there are two Parikh-incomparable short paths
ı[bac〉s and ı[dae〉s. Yet the distance�s is uniquely defined as the Parikh vector�s = Ψ (a).

From Definition 13 and Proposition 2, one immediately gets:

Corollary 2 (Distance addition and equivalent distances) Let TS = (S, T,→, ı) be finite,
totally reachable, weakly forward deterministic and persistent. Suppose it also satisfies
P{Υ1, . . . , Υn}. For any states s, s′, s′′ ∈ S, if s′ ∈ [s〉 and s′′ ∈ [s′〉, then �s,s′′ =
(�s,s′ + �s′,s′′)mod {Υ1, . . . , Υn}.

Moreover,

�s0,s1 = �s0,s2 ⇐⇒ �s1,s3 = �s2,s3

for all states s0, s1, s2, s3 ∈ S with s1, s2 ∈ [s0〉 and s3 ∈ [s1〉 ∩ [s2〉.
�
Even though, in TS7, the distance from ı to s is defined as Ψ (a), there is no path from

ı to s which actually realises this distance, i.e., has Parikh vector Ψ (a). The next definition
expresses that each distance is realised.

Definition 14 (Distance paths, and distance-path property) Let TS = (S, T,→, ı) be finite,
totally reachable, deterministic, and persistent. Suppose it also satisfies P{Υ1, . . . , Υn}.

If there is a path r [σ 〉s between r and s such thatΨ (σ) = �r,s , we shall say it is a distance-
path. TS satisfies the distance-path property if there is a distance-path r [σ 〉s between any
pair of states r, s ∈ S with s ∈ [r〉.
�

If r [σ 〉s is a path from r to s and for no Θ ∈ {Υ1, . . . , Υn}, Θ ≤ Ψ (σ), then r [σ 〉s is
necessarily a distance-path. The converse is also true; i.e.:

Proposition 3 (Distance paths are cycle-reduced paths) Let TS = (S, T,→, ı) be finite,
totally reachable, deterministic, and persistent. Suppose it also satisfies P{Υ1, . . . , Υn}.

For r, s ∈ S and σ ∈ T ∗, r [σ 〉s is a distance-path if it is a cycle-reduced path.

Proof

r [σ 〉s is a distance-path ⇐⇒ Ψ (σ) = �r,s

⇐⇒ ¬∃Θ ∈ {Υ1, . . . , Υn} : Ψ (σ) ≥ Θ

⇐⇒ r [σ 〉s is cycle-reduced
where the central equivalence comes from the definition of �.
�
4 Note that, contrary to what happens in metric spaces where distances are usually scalar and symmetric, in
(labelled) oriented graphs like here we may have (vectorial) non-symmetric distances.

123

586 E. Best et al.

Hence the structure of an arbitrary path in the class of transition systems under consider-
ation can be understood as follows.

Corollary 3 (“Lasso structure” of the Parikh vectors of paths) Let TS = (S, T,→, ı)
be finite, totally reachable, deterministic, and persistent. Suppose that it also satisfies
P{Υ1, . . . , Υn}. Suppose that r, s ∈ S with s ∈ [r〉. Every path r [σ 〉s satisfies Ψ (σ) =
�r,s +Ψ (κ), where Ψ (κ) is cyclic (i.e., there is some s′ ∈ S with s′[κ〉s′). If, in addition, the
distance-path property holds, then �r,s can be realised by a short, cycle-reduced path from
r to s.

Proof The first claim follows directly from the well-definedness of distances (Proposition 2).
The second claim follows from the definition of the distance-path property, together with
Proposition 3.
�

Thus, in transition systems which are boundedly and choice-freely solvable, all Parikh
vectors of paths are composed of some Parikh vector of a small (as well as Parikh-minimal
and cycle-reduced) path, plus that of a cycle. In TS7, such a structure is absent. For example,
the path ı[bac〉s satisfies Ψ (bac) = Ψ (a) + Ψ (bc), and while there is a cycle with Parikh
vector Ψ (bc), there is no small path from ı to s with Parikh vector Ψ (a).

Next,we show that not all paths between pairs of states need to be checked in order to verify
the distance-path property; the ones starting from ı are enough. This allows the distance-path
property (thus, equivalently, by Proposition 3, also the cycle-reduction property) to be tested
efficiently.

Proposition 4 (An efficient test for the distance-path property) Let TS = (S, T,→, ı) be
finite, totally reachable, deterministic, and persistent. Suppose it also satisfiesP{Υ1, . . . , Υn}.
Then TS satisfies the distance-path property iff for all s ∈ S, there is a path ı[α〉s such that
Ψ (α) = �s .

Proof See Appendix B.
�

Finally in this section, we cite a result showing that, in the given context, the prime cycles
and distance-path properties are strong enough to imply other global properties.

Theorem 5 (Power of prime cycle and distance-path properties [15]) Let TS = (S, T,→, ı)
be finite, totally reachable, deterministic, and persistent. Suppose that it also satisfies the
prime cycle property and the distance-path property. Then TS is fully forward and backward
deterministic as well as weakly periodic.
�

5 Pre-synthesis of bounded choice-free nets

This section describes an algorithmwhich can be used in order to check, at once, the properties
mentioned previously. Indeed, Corollary 3 and Theorem 5 reveal that, for finite, totally
reachable, deterministic, and persistent transition systems, testing prime cyclicity and the
existence of distance-paths through Proposition 4—or equivalently, by Proposition 3, the
cycle-reduction property—obliterates the need to test full forward/backward determinism
and weak periodicity. Henceforth, in this section, we will assume that a given transition
system TS is

123

Bounded choice-free Petri net synthesis: algorithmic issues 587

Fig. 6 An algorithm checking the remaining preconditions (apart from finiteness, weak forward determinism,
and persistence). Weak backward determinism might also be assumed. However, this is not essential for the
rest of the algorithm, and it will be guaranteed by the rest of the checks by Theorem 5; but checking this
property beforehand is easy, may speed up the pre-synthesis, and allows to produce a more specific error
message in case of failure

finite, deterministic, persistent

since all three properties are necessary for the synthesis. As noticed earlier (in Sect. 4), they
are also easy to test. Finiteness is not an issue if TS is given directly, by listing its states and
labelled arcs. Weak forward determinism, as well as persistence, are local properties, hence
not too difficult to assert or refute; then, if the check is passed, by Proposition 1, full forward
determinism is also ascertained.

All other properties are checked by the algorithm shown in Fig. 6.

123

588 E. Best et al.

Effectively, this algorithm consists of three successive loops. In the first loop, a spanning
tree is constructed, and for every state s, the Parikh vector �s of a small path from ı to s is
saved.5

The second loop scans all edges which are not in the spanning tree. By these edges, a
cycle is created back to some state s′ which has already been seen before. In the regular
(choice-freely synthesisable) case, the saved short Parikh vector �s′ is the vector of a short
path, of which all others are extensions by Corollary 3. Hence in this case, the test around
1 must succeed, and if it does not, then we can already stop with an error message.
The third loop tests all �s for cycle-reduction, because in the regular case, these are the

true distances from ı to s andP contains the Parikh vectors of small cycles. The failure of any
such test leads to an error exit 2 , which is sound by Proposition 4. The auxiliary procedure
updateP examines a newly obtained (candidate for a) cycle and adapts the members of
P accordingly, preserving their primeness and mutual disjointness. A member of P may
disappear at a further stage; but in the regular case, P eventually contains the small cycle
Parikh vectors Υ1, . . . , Υn .

In case the algorithm produces errors by means of exits 1 or 2 , the underlying reasons
can already be narrowed down, because it is known at which states and paths the failure
occurs. Further analysis might, however, be necessary in order to detect the true reason (or
reasons) for the failure.

A full, detailed explanation of the algorithm will be given in the proof of the following
theorem.

Theorem 6 (The algorithm shown in Fig. 6 is correct)When applied to a finite, deterministic,
persistent lts, the algorithm succeeds iff it is totally reachable and satisfies the prime cycle
property as well as the cycle-reduction property. At the end, the lts satisfies P{Υ1, . . . , Υn},
and the computation yields P = {Υ1, . . . , Υn}, as well as �s for all s ∈ S.

Proof Clearly, during the first while loop, L1 yields the set of states reachable from ı with
exactly no arcs, then one arc, then two arcs, ..., and L2 constructs the next such set; whenever
some �s is initialised, it yields the Parikh vector of some path with minimal length; at the
end R gathers all the reachable states, and A gathers the arcs not explored to construct R.
This amounts in fact to constructing a spanning tree of the lts rooted in ı .

(⇐): We assume that the given lts is finite, deterministic, persistent, totally reachable,
and satisfies the prime cycle property and the cycle-reduction property. We show that the
algorithm succeeds and computes a suitable set {Υ1, . . . , Υn} of Parikh vectors of mutually
label-disjoint small cycles as well as all proper distances �s .

From Proposition 1, we know that the lts is fully forward deterministic. From Theorem 4,
the lts satisfies P{Υ1, . . . , Υn} for some mutually disjoint prime T -vectors Υ1, . . . , Υn . From
Proposition 2, the distance notion is well defined, and from Propositions 3 and 4 we have the
distance-path property.

Since the lts is totally reachable, at the end of the first while loop,R = S and the algorithm
successfully passes the first check. Moreover, at that point, since the lts has the distance-path
property and we constructed short paths from ı , each �s equals the distance from ı to s.

We shall now show that, whenever one examines a remaining arc,P is composed of linear
combinations of the Υi ’s, these members are prime and have disjoint supports, and each
nontrivial cycle already discovered has a Parikh vector which is a linear combination of these

5 It would have been possible to incorporate the tests for determinism and persistence in this loop, instead of
doing them beforehand; but doing these tests separately is cheap, so that the gain seems negligible. See also
Table 1 in Sect. 8.

123

Bounded choice-free Petri net synthesis: algorithmic issues 589

members. Trivially, this is true at the beginning since P is initialised empty and no nontrivial
cycle has been discovered yet.

When one examines a remaining arc, the states s and s′ have already been visited. Then,
�s + δt is the Parikh vector of some path from ı to s′, and it must be greater or equal to �s′
since the latter is the distance from ı to s′; hence the next checks succeed. From the proof
of Proposition 2 in [13], the Parikh vector of (�s + δt) − �s′ is a linear combination of the
Υi ’s, and we do not lose anything if we only consider it modulo P: let us call it v. After
refining P by v, P remains composed of prime linear combinations of the Υi ’s with disjoint
supports, such that v is a linear combination of the members of the new P , and each cycle
formed by the arcs considered up to now has a Parikh vector which is a linear combination
of the members of the new P .

To see this, we may first observe that, if supp(v) � ∪Θ∈Psupp(Θ), the restriction v′ of v

(or its version before taking themodulo) to supp(v)\∪Θ∈P supp(Θ) is a linear combination of
some of the Υi ’s not occurring inP , and if we add to the latter the prime version (v′/ gcd(v′))
of v′, we have a prime vector disjoint from the other members of P , and from the primality
of the Υi ’s this vector still is a linear combination of the Υi ’s occurring in v′.

Now, let us assume v intersects the support of some member Θ of P . We have both
v = ∑

i ki · Υi and Θ = ∑

i hi · Υi , for some integer coefficients ki and hi . If u ∈ supp(Υi)

with ki �= 0 �= hi , ki · Υi is proportional to hi · Υi ; as a consequence, by the way v′′ is built
in the ancillary procedure, it is composed of Υi ’s with a same proportionality factor, and the
various prime versions of all those v′′s satisfy the needed properties.

Finally, if a cycle has just been closed (the previous cycles have already been considered,
and since the old members of P are linear combinations of the new ones, the Parikh vectors
of those cycles remain linear combinations of the new members), it is not guaranteed that we
shall consider two paths of the form ı[α〉s and ı[α〉s[τ 〉s before applying updateP because
other paths may have been considered for the intermediate state, but then, by construction,
the Parikh vectors of the residues are divisible by the present members ofP , so that the Parikh
vector of τ is also divisible by those present members.

Hence, when a small cycle is closed, its Parikh vector (which is one of the Υk’s) is a
linear combination of the members of P , which are themselves linear combinations of the
Υk’s, and that is only possible if Υk is itself a member of P . As a consequence, at the end,
P = {Υ1, . . . , Υn}.

But then the last checks also succeed since a distance may not be greater than any Υi .
(⇒):Weassume that the given lts is finite, deterministic, persistent, and that the algorithm

succeeds. We show that the lts is totally reachable and satisfies the prime cycle property as
well as the cycle-reduction property, and that, moreover, the results it computes are correct.

Since, at the end of the first while loop, R is the set of reachable states, the lts is totally
reachable iff the first check succeeds.

During the first loop, one discovers short paths from the initial state to the various states;
for any state s′, if we discover another short path to it during the second loop, since the
second check succeeds, that means that all the short paths from the initial state to some
state have the same Parikh vector, and that those are the unique Parikh-minimal paths to
s.

Let us consider an arc s[t〉s′. If it is discovered during the first loop,we have�s′ = �s+δt ;
otherwise, from the way it is handled, if the second checks succeeds, �s + δt − �s′ =
∑

Θ∈P kΘ · Θ for some natural numbers kΘ , and this remains true after each refinement.
Adding those relations for all the arcs of any loop, all the δt will cancel out, and we shall
end with the fact that the Parikh vector of the loop is a linear combination of members of
(the present) P . Similarly, if s[σ 〉s′ for some s, s′ ∈ S and some σ ∈ T ∗ and we add those

123

590 E. Best et al.

Fig. 7 Neither TSaa.ts nor TS10 can be solved by a Petri net

relations for all the arcs of σ , we shall get that �s +Ψ (σ) = �s′ +∑

Θ∈P kΘ ·Θ , for some
natural numbers kΘ .

Let us now assume that s[σ 〉s′ for some s, s′ ∈ S and some σ ∈ T ∗ such that Ψ (σ) =
∑

Θ∈P kΘ · Θ . From the previous remark, since the check in the third loop always succeeds
and all the members of P have disjoint supports, �s′ = �s′ modP = �s modP = �s , and
since this is the Parikh vector of any short path from ı to s and to s′, respectively, and the
lts is fully forward deterministic, we have s = s′. The same is true if Ψ (σ) is proportional
to a linear combination of the members of P since, due to the primality and disjointness of
the latter,6 the same argument as the one used in the proof of Proposition 2 shows that a
vector proportional to such a linear combination is a linear combination itself. Then, since
any cycle has a Parikh vector which is a linear combination of the members of P and the
latter are prime, from the persistence of the system, we get the disjoint small cycles property
P{Υ1, . . . , Υn} from Theorem 4.

Let us now show that P is exactly the set of the Parikh vectors of all the small cycles of
the lts. We have to prove that the Parikh vector of each small cycle is a member of P , and
that each member of P is the Parikh vector of a small cycle.

First, let us consider any small cycle. Since the relation ≤ is a partial order on T -vectors,
let us choose among the states of the considered small cycle one with a maximal�: let us call
it s and let s[t〉s′[α〉s be that cycle. At the end of the while loop, Ψ (tα) = ∑

τ∈P kτ · τ , for
some integers kτ ; now,Θ(t) > 0 for some uniqueΘ ∈ P since themembers ofP are disjoint,
so that kΘ > 0. We have �s′ = (�s + δt)modP = �s + δt − Θ since by construction s′
may not be at a higher distance from ı than s and we may not subtract members of P from
�s : as a consequence we may only subtract Θ to cancel out δt , and �s + δt − Θ ≤ �s so
that (�s + δt − Θ)modP = �s + δt − Θ . Hence, since �s and �s′ are the Parikh vectors
of paths from ı to s and s′, respectively, and since �′

s = �s + δt − Θ ≤ �s , by Keller’s
theorem (Appendix A), there are a path s′[β〉s with Parikh vector Ψ (β) = Θ − δt and a
cycle s[tβ〉s with Parikh vector Θ . This cannot be a smaller nontrivial cycle than the small
one tα, leading to kΘ = 1 and all the other kτ being zero. Hence the claimed property.

Now, to prove that any Θ ∈ P is the Parikh vector of some small cycle, we may observe
that, from the construction of P and the disjoint small cycle property shown in the previous
paragraph (since each small cycle has its Parikh vector in P and the latter is only composed
of disjoint prime vectors), there is an integer k > 0 and integer coefficients hi such that
k · Θ = ∑

i hi · Υi . Since we have shown that each Υi is equal to some element of P and
P is composed of disjoint vectors, this is only possible if for some i we have Θ = Υi . As a
consequence, we have the prime cycle property.

By construction, if all the tests are passed, we have distance-paths from ı to any reachable
state. We may then use Proposition 4 to infer that we have the distance-path property, and
Proposition 3 to infer that we have the cycle-reduction property.
�

With this pre-synthesis algorithm, both TS9 and TS10, as depicted in Fig. 7, fail at exit
2 . TS9 fails because in the first loop, a short, non-cyclic path with Parikh vector �s =
6 Seen as in the other part of the proof.

123

Bounded choice-free Petri net synthesis: algorithmic issues 591

Ψ (a) is computed. Then, in the second loop, a cycle with Parikh vector Ψ (aa) is detected,
which by updateP becomes a T -vector Θ = Ψ (a) which must, in the regular (choice-freely
synthesisable) case, belong to a small cycle with Parikh vector Ψ (a). Then, in the third loop,
Θ ≤ �s holds, and 2 is executed; in the regular case, this would indicate the existence of
a small path which, in this case, is also non-cycle-reduced. TS10 fails similarly. The distance
�s2 = Ψ (ab) is computed, and then also the Parikh vector Θ = Ψ (a) of a small cycle.
This yields Θ < �s2 , and 2 is entered in the third loop. By contrast, TS4 (depicted in

Fig. 3) already fails at 1 in our implementation. This is because, at first, �ı = Ψ (ε) and
�s = Ψ (b) are computed due to the short paths ı[ε〉ı and ı[b〉s. Then, the chord s[a〉ı is
detected, yielding δa = Ψ (a), and also leading to ¬(�s ≤ �ı + δa), and subsequently to
error 1 .

6 Synthesis of bounded choice-free nets

In this section, we turn our attention to the synthesis of bounded choice-free Petri nets. Thus,
let a labelled transition system TS = (S, T,→, ı) be given. We are looking for a bounded
choice-free net N = (P, T, F, M0) with a reachability graph isomorphic to TS. First of all,
we shall assume that TS is

finite, totally reachable, fully deterministic, persistent, weakly periodic (2)

As we have seen, transition systems not satisfying these properties can be rejected straight
away.

The properties in (2) have been chosen because they are a small set of premises under
which our synthesis algorithm can be shown to work correctly (possibly with a negative
answer). Thus, any pre-synthesis method guaranteeing at least these properties cooperates
correctly with the synthesis algorithm to be described in the present section. Note that by the
previous theory (in particular, Theorem 5), the pre-synthesis algorithm described in Sect. 5
guarantees Properties (2) for any surviving transition system. Observe, however, that this
algorithm establishes a much stronger set of properties.

In Sect. 6.1, we shall describe in which way the special structure of places in a choice-free
Petri net allows to reduce the linear-algebraic burden of synthesis. In Sect. 6.2, we shall
derive a concrete synthesis algorithm and prove its correctness.

6.1 Analysis of choice-free synthesis obligations

In general synthesis, two kinds of separation problems need—and suffice—to be solved, state
separation problems and event/state separation problems [1]. We shall see in due course
that state separation problems play no role in bounded choice-free synthesis. However, pre-
synthesis is not capable of obliterating all event/state separation problems.

By Theorem 3, Properties (2) imply the small cycles property, i.e., the existence of a set of
mutually label-disjoint Parikh vectors Υ1, . . . , Υn such that P{Υ1, . . . , Υn} holds. Actually,
such a set is readily constructed for TS if it survives the pre-synthesis procedure explained in
Sect. 5. Note also that if pre-synthesis works as described there, we shall additionally have
the prime cycle property and the distance-path property, even if Properties (2) are not strong
enough to imply them, as shown by TS5 and TS7.7

7 For any alternative pre-synthesis guaranteeing the properties in (2) but not necessarily the prime cycle
property and the distance-path property, any lts not satisfying the latter will be rejected during synthesis.

123

592 E. Best et al.

Fig. 8 A general pure (h = 0) or non-pure (h > 0) choice-free place p with initial marking μ0. Place
p has at most one outgoing transition named x . The set {a1, . . . , am } comprises all other transitions, i.e.,
T = {x, a1, . . . , am }, and k j denotes the weight of the arc from a j to p (which could be zero). For every a j ,
there is exactly one i such that a j ∈ Ti , and � is defined as the unique index such that x ∈ T�

Without loss of generality, we may assume that no label is superfluous in TS. Indeed, if t
does not occur in→, then TS is (choice-freely) PN-solvable if and only if (S, T \{t},→, ı) is.
Further, the assumptions about TS imply P{Υ1, . . . , Υn}; let the small cyclic Parikh vectors
{Υ1, . . . , Υn} be fixed from now on. The following notation provides a shorthand for the
supports of Υi and the remaining transitions.

Notation 7 (The sets T0 and T1, . . . , Tn) Ti is the support ofΥi , and T0 is the set T \(T1∪
. . . ∪ Tn).
�

Asa consequence ofP{Υ1, . . . , Υn}, and by the definition of T0, alln+1 sets T0, T1, . . . , Tn
are mutually disjoint. Since live transitions occur in some cycle, T0 is precisely the set of
non-live transitions. E.g., in TS2 (Fig. 2), we have T0 = ∅ and T1 = {a, b, c}. In TS3, we
have T0 = {a, d}, T1 = {b}, and T2 = {c}.

In our impending analysis, we will exploit the structure of the hoped-for Petri net N =
(P, T, F, M0), namely, that every target place has atmost one outgoing transition. Thismeans
that a place p ∈ P has the general form shown in Fig. 8, with x ∈ T as its only outgoing
transition, and {a1, . . . , am} = T \{x}. The arc weight parameters k, h, k1, k2, . . . , km and
the initial marking μ0 of p are the unknowns of the synthesis. They are required to be
semipositive, which could include zero, e.g. μ0 = 0 if p has no tokens initially, or ki = 0 if
there is no arc from ai to x .

Let p and its only output transition x , in the context of Fig. 8, be fixed for the rest of
this section. We shall analyse which constraints such a place p must satisfy if it is newly
introduced, and the conditions under which it has to be introduced for synthesis to succeed.

For 0 ≤ i ≤ n, we denote by Ii = { j | a j ∈ Ti } the indices of transitions a j for
which Υi (a j) > 0. We shall also denote by � the unique index such that x ∈ T�, so that
{a j | j ∈ I�} = T�\{x}, while for i �= � we have {a j | j ∈ Ii } = Ti .

6.1.1 Ensuring that cycles are preserved

Since the net effect of firing x on p is −k = (−(k+h)+h) and all Parikh vectors in
{Υ1, . . . , Υn} correspond to cycles, we must have

∀i ∈ {1, . . . , n} :
∑

j∈Ii
k j · Υi (a j) = k · Υi (x) (3)

ensuring that if every transition t is fired Υi (t) times, the marking on p is reproduced. Note
that this implies k ≥ 0, and even k > 0 unless all the k j ’s for j ∈ Ii are null.

123

Bounded choice-free Petri net synthesis: algorithmic issues 593

If x ∈ T0, i.e., � = 0, all the right-hand sides of (3) are null, so that all k j for j /∈ I0
must be null too; in other words, if p• ⊆ T0, then • p ⊆ T0. Thus, if x is non-live, then all
transitions in • p are also non-live. If x ∈ T� for � ∈ {1, . . . , n}, the right-hand sides of (3)
are null when i ∈ {1, . . . , n}\{�}, so that all k j for j /∈ I0 ∪ I� must be null too; in other
words, if p• ⊆ T�, then • p ⊆ T0 ∪ T�. Thus, if x is live, hence part of some small cycle, then
all transitions in • p are either non-live, or live and part of the same small cycle.

6.1.2 Characterising the various markings

Let ı[α〉r be any path to r ∈ S (the lts is totally reachable). By the shape of the place shown
in Fig. 8, by • p ⊆ T0 ∪ T�, and by the firing rule, the marking Mr (p) of place p at (the
marking corresponding to) an arbitrary state r ∈ [ı〉 is

Mr (p) = μ0 +
∑

j∈I0∪I�

k j ·Ψ (α)(a j) − k·Ψ (α)(x)

From the assumed properties of the system and Proposition 2, the distance notion is valid,
and from Corollaries 1 and 3, Ψ (α) = �r + ∑

Φ∈P cΦ · Φ for some natural numbers cΦ .
Hence, from Eq. (3) we get

Mr (p) = μ0 +
∑

j∈I0∪I�

k j ·�r (a j) − k·�r (x) (4)

which is independent of the specific path considered to reach r , as expected. We may in fact
consider 3 distinct subcases of this formula:

• if � = 0, I� collapses with I0 and we get

Mr (p) = μ0 +
∑

j∈I0
k j ·�r (a j) − k·�r (x) (5)

• if � > 0 but T� is a singleton, this corresponds to loops s[x〉s, I� is empty, k = 0 [see
Eq. (3)] and x never occurs in �r , so that we get

Mr (p) = μ0 +
∑

j∈I0
k j ·�r (a j) (6)

• otherwise (if � > 0 and |T�| > 1), using Eq. (3), we may eliminate k and get

Mr (p) = μ0 +
∑

j∈I0
k j ·�r (a j) +

∑

j∈I�
k j ·

[

�r (a j) − Υ�(a j)

Υ�(x)
�r (x)

]

(7)

(note that some coefficients may be rational, and not natural, if Ψ�(x) > 1).

6.1.3 Ensuring that the markings on p do not prevent enabled transitions

Each marking, hence each Mr (p) as given by Eq. (4), [or by Eqs. (5), (6) and (7)], must be
nonnegative. Moreover, p may never prevent any enabled x .

Let us define X (x) = {r ∈ S|r [x〉} and consider an edge r [x〉r ′ for r ∈ X (x). Then the
marking Mr (p) has to be at least k+h, and Mr ′(p) is at least h. More generally, if l > 0 and
r [xl〉r ′, then we must have Mr (p) ≥ l · k + h, or equivalently, Mr ′(p) ≥ h. For this reason,
when considering the marking of p at a state r with r [x〉, we first try to follow x-chains in
forward direction as long as possible. If r0[x〉r1[x〉rr [x〉 . . . [x〉rl with r = r0 �= r1, then, by

123

594 E. Best et al.

weak periodicity, for any l ≥ 1, rl must be different from the previous ri ’s; as a consequence,
each x-chain starting with two different states can never hit an x-cycle, nor an x-branch (by
determinism), and necessarily has a unique last state. We may have infinite x-paths, but only
in case r [x〉r (like those for b or for c in TS3 shown in Fig. 2, see also Case 2 above), where
state r can never be left by an x-edge.

Thus, we are interested in the following subset of states:

XNX(x) =
{

{r ∈ S | [x〉r ∧ ¬r [x〉} if � = 0 or � > 0 but |T�| > 1

X (x) if � > 0 and T� = {x}
which either are produced by x but do not enable x , or have an x-loop. The above consider-
ations amount to a proof of the following corollary:

Corollary 4 (XNX and enabling condition)
(∀r ∈ X (x) : Mr (p) ≥ k + h

) ⇐⇒ (∀r ∈
XNX(x) : Mr (p) ≥ h

)
�
In other words, we only need to require Mr (p) ≥ h for states r ∈ XNX(x) in order to

guarantee that place p allows x whenever it is enabled. But we can do more.
For two states r and r ′, we can compare their distances �r and �r ′ from the initial state.

This allows us to derive relations between their numbers of tokens for any place pwith output
x , as follows:

Definition 15 (Marking order w.r.t. some label) We shall first denote by r ≡x r ′ the fact that
• if � = 0, �r (x) = �r ′(x) and ∀ j ∈ I0 : �r (a j) = �r ′(a j),
• if � > 0 but T� is a singleton, ∀ j ∈ I0 : �r (a j) = �r ′(a j),
• otherwise (if � > 0 and |T�| > 1), ∀ j ∈ I0 : �r (a j) = �r ′(a j) and ∀ j ∈ I� :

�r (a j) − Ψ�(a j)

Ψ�(x)
�r (x) = �r ′(a j) − Ψ�(a j)

Ψ�(x)
�r ′(x);

by r ≤x r ′ the fact that
• if � = 0, �r (x) ≥ �r ′(x) and ∀ j ∈ I0 : �r (a j) ≤ �r ′(a j),
• if � > 0 but T� is a singleton, ∀ j ∈ I0 : �r (a j) ≤ �r ′(a j),
• otherwise (if � > 0 and |T�| > 1), ∀ j ∈ I0 : �r (a j) ≤ �r ′(a j) and ∀ j ∈ I� :

�r (a j) − Ψ�(a j)

Ψ�(x)
�r (x) ≤ �r ′(a j) − Ψ�(a j)

Ψ�(x)
�r ′(x);

and by r �x r ′ the fact that (r ≤x r ′) ∧ (r �≡x r ′).
�
It should be clear that ≡x = ≤x ∩ ≥x is an equivalence, ≤x is a weak order, and �x is

a strict order. Moreover, from the Eqs. (5), (6) and (7), r ≡x r ′ implies Mr (p) = Mr ′(p),
r ≤x r ′ implies Mr (p) ≤ Mr ′(p), and r �x r ′ implies Mr (p) ≤ Mr ′(p) (it may happen that
Mr (p) = Mr ′(p), if some k j ’s are null).

Let us now define

MXNX(x) = {

r ∈ XNX(x)
∣

∣ �r ′ ∈ XNX(x) : r ′
�x r

}

i.e., we only consider states in XNX(x) which are not “dominated” by other ones (in terms
of the constraint on Mr (p)). This set may contain many ≡x -equivalent states, but we need
only keep one of them. Let us therefore choose some set

mXNX(x) ⊆ MXNX(x)
with a single representative of each ≡x -equivalent class in it

These considerations amount to a proof of

123

Bounded choice-free Petri net synthesis: algorithmic issues 595

Corollary 5 (mXNX and enabling condition)
(∀r ∈ S : r [x〉 ⇒ Mr (p) ≥ k + h

) ⇐⇒
(∀r ∈ mXNX(x) : Mr (p) ≥ h

)
�
In other words, we only need to require Mr (p) ≥ h for states r ∈ mXNX(x) in order

to guarantee that place p allows x whenever it is enabled. Combining Corollary 5 with the
formula (4) relating any Mr (p) to μ0 yields the following set of constraints:

∀r ∈ mXNX(x) : μ0 ≥ k · �r (x) −
∑

j∈I0∪I�

k j · �r (a j) + h (8)

Let us now re-examine the constraint that ∀r ∈ [ı〉 : Mr (p) ≥ 0. By r ∈ [ı〉, there is a
path ı[α〉r . If α contains an x , let s be the visited state before the last x ; from the previous
constraints,Ms(p) ≥ k+h andMr (p) ≥ h ≥ 0. If α contains no x , then it has a semipositive
effect on p and thus, μ0 ≤ Mr (p). It is then enough to impose μ0 ≥ 0 to get the desired
property Mr (p) ≥ 0. However, μ0 ≥ 0 can always be ensured by adding, if necessary, an
adequate shift to all markings of p, as well as to h.

To summarise the discussion, requiring the non-negative solvability of (8) suffices in order
to find parameters k, h, k1, . . . , km, μ0 in such a way that the corresponding place allows all
the paths that are possible in TS.

6.1.4 Ensuring that place p solves an event/state separation problem

For each state s not enabling x , there should be a place p which does not have enough tokens
to allow to perform x when reaching the state corresponding to s. That is, in addition to the
constraints derived above, p should satisfy Ms(p) < k + h, i.e., using (4) with r = s:

μ0 < k + h + k · �s(x) −
∑

j∈I0∪I�

k j · �s(a j) (9)

However, it may happen that the same place works for many such states, i.e., it is possible
to reduce the number of such inequalities.

Let N X (x) = {s ∈ S|¬s[x〉}. Since s �x s′ implies Ms(p) ≤ Ms′(p), if Ms′(p) prevents
x at s′, the same will be true for s. I.e., if (9) is ascertained for s′, it is no longer necessary to
bother about s. Hence, it makes sense to define

MNX(x) = {s ∈ N X (x) | �s′ ∈ N X (x) : s �x s′}
and

mNX(x) ⊆ MNX(x)
with a single representative of each ≡�-equivalent class in it

i.e., we consider states not allowing x such that no less favourable state already precludes to
do it

Hence, for every s ∈ mNX(x), we need to find a place satisfying (8) and (9).
Combining the constraints (8) and (9) allows to eliminate both μ0 and h:

∀r∈mXNX(x) :
0 < k · [

1 + �s(x) − �r (x)
] + ∑

j∈I0∪I�

k j · [

�r (a j) − �s(a j)
]

(10)

If the system (10) is solvable in the domain of natural numbers (with k j = 0 if j /∈ I0 ∪ I�),
let us define μ = max{k · �r (x) − ∑

j∈I0∪I� k j · �r (a j) | r ∈ mXNX(x)}. If μ ≥ 0, by

123

596 E. Best et al.

Fig. 9 An algorithm checking choice-free solvability and constructing a solution

choosing h = 0 and μ0 = μ we shall get a solution to the systems (8) and (9), with μ0 ≥ 0.
If μ < 0, it is not possible to create a suitable pure place from this solution, but we may
choose h = −μ and μ0 = 0 (realising the “adequate shift” referred to above), and we shall
again get a solution to the systems (8) and (9), with μ0 ≥ 0.

If x /∈ T0, the constraints (3) need to be fulfilled as well. Combining (3) and (10), we get
(here keeping integer coefficients)

∀r ∈ mXNX(x) :
0 <

∑

j∈I0∪I�

k j ·
[

Υ�(a j)·(1+�s(x)−�r (x))−Υ�(x)·(�s(a j)−�r (a j))
]

(11)

If the system (11) is solvable in the domain N, it is also possible to find a natural solution to
both (3) and (10), by choosing a suitable value for k using (3), and, if necessary, multiplying
the solution found by a common factor. Then we may choose h and μ0 as described above.

6.2 Algorithm and proof of its correctness

Figure 9 summarises the resulting algorithm, where by “system (10/11)” we mean “system
(10)” if x ∈ T0 and “system (11)” if x ∈ T� for 1 ≤ � ≤ n.

Theorem 8 (Correctness of the synthesis algorithm) Let TS = (S, T,→, ı) be finite, totally
reachable, deterministic, weakly periodic, and persistent. Also suppose that TS satisfies
P{Υ1, . . . , Υn}.
If, for some x ∈ T and s ∈ mNX(x), the corresponding system (10/11) is not solvable, then
TS has no choice-free solution. Otherwise, the constructed net is a choice-free solution of
TS.

Proof If the system (10/11) associated with some x ∈ T and s ∈ mNX(x) is not solvable,
then from the analysis conducted in Sect. 6.1, there is no place of a choice-free net both
allowing all valid evolutions and precluding the invalid transition x from s.

Let us thus assume all those systems are solvable and let us consider the net constructed
as above. We have seen that for any s ∈ S, if s[x〉, there is a state r ∈ mXNX(x) such that
Ms(p) ≥ Mr (p) ≥ h if the synthesis succeeds. As a consequence, place p allows all valid

123

Bounded choice-free Petri net synthesis: algorithmic issues 597

evolutions specified by the lts. If ¬s′[x〉, we know there is some s ∈ mNX(x) such that
Ms′(p) ≤ Ms(p). From the choice of M0(p) for the corresponding place p, and from (10),
we have (9) whatever h, which precludes to perform x from s as well as from s′.

Therefore, the solvability of all systems (10/11) implies that all event/state separation
problems [1] can be solved and from the general theory [1], the (choice-free) net thus obtained
has the same language as TS.

The only way to have non-isomorphism is that some state separation problem cannot
be solved, i.e., that two states s1 and s2 correspond to the same marking. In that case, let
s1[β〉q1 be a path to a home state q1 of TS. Since s1 and s2 correspond to the same marking
and L(N) = L(TS), s2[β〉q2 for some state q2 corresponding to the same marking as q1.
Since q1 is a home state, there is a path q2[α〉q1. Since the language is the same and q1, q2
correspond to the same marking, we have q2[α〉q1[α〉q3[α〉q4 . . ., and from finiteness and
weak periodicity, we must have q1 = q2. But then, by weak backward determinism, we also
have s1 = s2.

As a consequence of this and the general theory [1], the constructed choice-free net solves
the given lts TS.
�

7 Some remarks on the synthesis algorithm

In Sect. 7.1, we examine the implementability of various sets of states identified in the
previous analysis. Section 7.2 describes applications of the synthesis algorithm to some
concrete transition systems defined in earlier parts of this paper. In Sect. 7.3, various special
cases (and relationships to published literature) will be described. Finally, some complexity
considerations can be found in Sect. 7.4.

7.1 Structure-based sets

It may be observed that, for each x ∈ T , the definition of the set mXNX(x) is essentially
computational, since it is based on arithmetic formulas about the distances. But any set M
with mXNX(x) ⊆ M ⊆ XNX(x) may be used instead in formula (8) to guarantee that no
existing x-labelled arc is prevented. In particular we shall here consider a more structural
definition, thus easing the reasoning about those notions, using another equivalence relation
between states of S, based on the class of transitions x belongs to (let us recall that we
assumed x ∈ T�):

q ≡� q ′ ⇐⇒ ∃β, β ′ ∈ (T \(T0 ∪ T�))
∗ : q[β〉q ′ and q ′[β ′〉q

The equivalence classes w.r.t. ≡� thus corresponds to the reachability classes of the system
when arcs labelled in T0 and T� are ignored. These classes can be computed quickly, for
example with the well-known Tarjan algorithm. Since the cycle s[ββ ′〉s satisfies Ψ (ββ ′) =
∑

i ki · Υi , labels in T0 cannot occur in it, and the fact that there is no label from T� is the
same as saying there is no x in the cycle.

This leads to the following definitions (where the “s” means “structural”)

MXNXs(x) = {r ∈ XNX(x) | �r ′ ∈ XNX(x) : r ′ �≡� r
and r ′[α〉r with α ∈ (T \{x})+}

mXNXs(x) ⊆ MXNXs(x)
with a single representative of each ≡�-equivalent class in it

123

598 E. Best et al.

i.e., we only consider states in XNX(x) which do not lie x-freely after another (non-≡�-
equivalent) one, and we keep a single representative of each class. To see that

MXNX(x) ⊆ MXNXs(x) ⊆ XNX(x) and mXNX(x) ⊆ mXNXs(x) ⊆ XNX(x)

we may observe that, if r [β〉r ′, �r ′ = (�r + Ψ (β))mod {Υ1, . . . , Υn}; as a consequence, if
no label from T0 ∪ T� occurs in β, then �r ′ and �r may only differ on {Ti |0 < i �= �} and,
from the definition of ≡x , r ≡� r ′ ⇒ r ≡x r ′ (or ≡�⊆≡x). Similarly, if no x occurs in β,
�r ′(y) ≥ �r (y) for y ∈ T0, and �r ′(x) = �r (x) for x ∈ T0; if x ∈ T� with � > 0 and
|T�| > 1, wemay have�r ′ = �r +Ψ (β)−k ·Υ� for some k ≥ 0, but sinceΨ (β)(x) = 0, we
may deduce from the previous definitions that r ≤x r ′. The claimed inclusions immediately
result.

Analogously, the set mNX(x) is essentially computational, since it is based on arithmetic
formulas about the distances, but again, in formula (11) we may use any set betweenmNX(x)
andNX(x). In particular wemay exploit the relation≡�, and this leads to the following (more
structural and more local) definitions:

MNXs(x) = {s ∈ S | ¬s[x〉 and ∀s[a〉r : (s ≡� r) ∨ r [x〉}
mNXs(x) ⊆ MNXs(x)
with a single representative of each ≡�-equivalent class in it

i.e., we consider states not allowing x such that no non-equivalent successor also precludes
performing x , andwe keep one representative of each class. From the relationshipswe derived
above between ≡x and ≡�, as well as between ≤x and x-free paths, we get as expected the
inclusions: MNX(x) ⊆ MNXs(x) ⊆ NX(x) and mNX(x) ⊆ mNXs(x) ⊆ NX(x).

Finally, it may be observed that a naive application of the definitions of MNX(x) and
mNX(x) is essentially quadratic in the size of S. However, a direct computation of mNX(x)
may be rendered more efficient, as illustrated by the following algorithm:

input an lts TS = (S, T,→, ı) and a label x ∈ T ;
mNX (x) := ∅;
for every s ∈ S do
if ¬s[x〉 continue;
for every s′ ∈ mNX (x) do
if s ≤x s′ then continue the for loop on s ;
if s′ ≤x s then drop s′ from mNX (x);

add s to mNX (x);

7.2 Four examples

We illustrate the constructions of Sect. 6 on four examples, TS3, TS7, TS8, and TS9, shown,
respectively, in Figs. 2, 4, 5, and 7. Note that TS3 has a choice-free solution while TS7 does
not, and that TS8 and TS9 have no solution at all.

• Consider TS3. For x = a, we get x ∈ T0 = {a, d}, I� = I0 = {1} if a1 = d ,mXNXs(a) =
{s1}, mNXs(a) = {s2} and Eq. (10) reduces to

0 < k · [1 + 1 − 1] + k1 · [0 − 1]
which leads to the solution k = 1, k1 = 0, μ0 = 1 and h = 0, corresponding to place p1
in N3. For x = b, we get x ∈ T1 = {b}, T0 = {a, d}, I0 = {1, 2} if a1 = a and a2 = d ,

123

Bounded choice-free Petri net synthesis: algorithmic issues 599

I1 = ∅, mXNXs(b) = {s1}, mNXs(b) = {ı} and Eq. (11) reduces to

0 < k1 · [0 − 1 · (0 − 1)] + k2 · [0 − 1 · (0 − 0)]
which leads to the solution k1 = 1, k = k2 = 0, μ0 = 0 and h = 1, corresponding to
place p2 in N3. The treatments of c and d are similar.

• Consider now TS7. For x = a, we get x ∈ T0 = {a}, I� = I0 = ∅, MXNXs(a) =
{s4, s5, s6} (that is, all states are ≡0-equivalent), MNXs(a) = {ı, s4, s5, s6, s}, and, for
example, mXNXs(a) = {s4} and mNXs(a) = {ı, s}. For x = ı , Eq. (10) reduces to

0 < k · [1 + 0 − 1] + 0

which is unsolvable.
Note that TS7 would be rejected by a pre-synthesis algorithm testing for the distance-
path property, before this failure occurs. This shows that our proper synthesis algorithm
is stable, in the sense that it needs only the premises listed at the beginning of Sect. 6. The
other constraints, like the distance-path property, are not necessary to apply the proper
synthesis procedure, at the price of less informative and later failures.

• As a third example, let us consider TS8, a non-synthesisable transition system which
survives our pre-synthesis algorithm. Here we have T = T0 = {a, b}. For x = a, we
get XN Xs(a) = {s1, s5} = MXNXs(a) = mXN Xs(a) and MNXs(a) = {s2, s5} =
mNXs(a), since ≡0 is the identity. Equation (11) yield the set of constraints k − k1 > 0
and −k + k1 > 0, which is unsolvable.

• Finally, consider TS9. TS9 satisfies all properties required in (2), except weak periodicity;
it can therefore be used in order to explain the role of weak periodicity. The set XNX(a) is
empty in this case, since neither terminating backward a-chains nor a-loops exist in TS9,
and so are all other derived sets. When applied to TS9, the synthesis algorithm terminates
and produces a single transition a with no surrounding places. The reachability graph of
this very simple net is language-equivalent, but not isomorphic, to TS9. In a nutshell, we
can use the synthesis algorithm even without requiring weak periodicity, but we will get
language-equivalent (not necessarily exact) solutions.

7.3 Some special cases

Let us consider what happens to the general procedure if TS satisfies some additional prop-
erties. Since computational sets (mXNX , …) are less easy to characterise in general than
structural ones (mXNXs, …), we shall use the latter here. This will also make it more easy to
compare our techniques to previous papers on the subject.

• All transitions are live. Then T0 = ∅ ; ≡0 is identity; and any a j ∈ • p corresponds to
the same small cycle as x ∈ p•. If synthesis succeeds, the resulting choice-free net is a
disjoint composition of n individual choice-free nets, each one connected by itself and
corresponding to one of the Parikh vectors Υi (for 1 ≤ i ≤ n). In essence, therefore, this
reduces to the next case.

• All transitions are live and there is a single small cyclic Parikh vector [12]. Then both
≡0 and ≡1 reduce to identity. All sets mXNXs(x) and mNXs(x) are unique and can be
simplified as follows:

XNXs(x) = {s ∈ S | [x〉s ∧ ¬s[x〉}
mXNXs(x)= {s ∈ XNXs(x) | �s′ ∈ XNXs(x) : s′[α〉s with α∈(T \{x})+}
mNXs(x) = {s ∈ S | ¬s[x〉 ∧ ∀s′ ∈ S, a ∈ T : s[a〉s′ ⇒ s′[x〉}

123

600 E. Best et al.

Such transition systems are “almost reversible” (i.e., they consist of an initial acyclic
part, followed by a single strongly connected component, such as TS2 in Fig. 2).

• Reversibility. TS is reversible, i.e., ı is a home state [9,10]. All previous simplifications
hold and, additionally, if there is a choice-free solution, then there is also a pure solution;
indeed, in the discussion after Corollary 5, reversibility implies that, for any r ∈ S and
x ∈ T , when x indeed occurs on some arc, there is always a path ı[α〉r containing an x and
it is not necessary to add the constraintμ0 ≥ 0: it is automatically satisfied. Nevertheless
(despite the simpler setting), it is possible to construct reversible persistent transition
systems which can be solved by a plain and pure Petri net, but not by a choice-free net
[10].

• Themarked graph case. TS belongs to a marked graph or to a T-system. Such transition
systems have full characterisations for bounded as well as for unbounded Petri nets
[11,14].

• Acyclicity. TS is acyclic, so that T = T0. In that case, for each label x ∈ T ,mXNXs(x) =
MXNXs(x), mNXs(x) = MNXs(x), and we only have to solve for each x and s ∈
mNXs(x), the systems

∀r∈mXNXs(x) : 0 < k · [1 + �s(x) − �r (x)] +
∑

j∈I0
k j · [�r (a j) − �s(a j)]

It is not known how this could be avoided completely, but better solvability conditions
are known in special cases [8,30].

7.4 Complexity considerations

In the algorithm shown in Fig. 9, we have to solve, for each label x ∈ T , |mNX(x)| systems,
each with |mXNX(x)| inequalities (or |mNXs(x)| systems with |mXNXs(x)| inequalities in
the variant described in Sect. 7.1), and we should estimate the sizes of those two sets in
order to quantify the complexity of the synthesis. In general, those sets are expected to have
a moderate size, but they may in some circumstances be linear in the size of the lts.

Since solving linear inequality systems is possible in polynomial time [33], this already
shows that our algorithm has polynomial time complexity. This is also the case for Petri
net synthesis not targeted to a specific class [2], while other targeted classes might even be
NP-complete [3]. In the remainder of this section, we estimate the complexity bounds of our
algorithm more precisely.

Let us consider an arc s[a〉s′ with s �= s′: we shall show that s and s′ may not both belong
to mNX(x) nor to mXNX(x).

If a = x , by definition, s may not belong to NX(x) nor to XNX(x). Let us now assume
a �= x . If s ≡� s′ (hence s ≡x s′), since only one representative is kept in MNX(x) to get
mNX(x), and inMXNX(x) to getmXNX(x), we may not have both s and s′ inmNX(x) nor in
mXNX(x). Otherwise, if s ∈ mNX(x) ⊆ MNXs(x), s′[x〉 and s′ does not belong toMNX(x).
And if s ∈ mXNX(x) ⊆ mXNXs(x), there is an x-free path (of length 1) from s to s′, and s′
may not belong to MXNXs(x), hence to mXNX(x).

As a consequence, in any case, we may not have two successive members in mNX(x)
(or mNXs(x)), nor two successive members in mXNX(x) (or mXNXs(x)), and the sizes of
those sets are bounded by �|S|/2�. To see that this bound may be reached, let us consider
for example the solution of a word (ab)n for any n ∈ N and a �= b, as illustrated in Fig. 10.
The corresponding transition system has 2 · n + 1 states, 2 · n arcs, and 2 alternating labels.
Then, mNXs(a) = {s2·n} ∪ {s2·i−1|i = 1, . . . , n − 1}, mXNXs(a) = {s2·i−1|i = 1, . . . , n},

123

Bounded choice-free Petri net synthesis: algorithmic issues 601

Fig. 10 Labelled transition system for a word (ab)n

mNXs(b) = {s2·i |i = 0, . . . , n} andmXNXs(b) = {s2·i |i = 1, . . . , n}. As a consequence, the
sizes of those sets are either n (= �|S|/2�) or n + 1 (=�|S|/2�).

If we neglect the numbers of labels and arcs, we thus have in theworst case O(|S|) systems
of O(|S|) inequalities to be solved. Since computing the solution of each such system has
a complexity of O(|S|3) (see [33]), this leads to a complexity in O(|S|4) for our algorithm,
to be compared to a complexity of about O(|S|6) for the general algorithm in [1] (the exact
complexity of this algorithm is hard to obtain but its authors estimated it between O(|S|5)
and O(|S|6)). However, in practice and in particular in our experiments, some of which are
presented in the next section, the number and size of the inequality systems to be solved are
usually rather small and most of the execution time is spent in the construction of the sets
mNXs(x) and mXNXs(x) (see Table 1), which is at most quadratic. When the pre-synthesis
yields a negative result, we only have to consider the complexity of the latter since there is
no proper synthesis. Again, in the worst case the complexity is then quadratic, but it may
be much better if the culprit is found rapidly, hence it highly depends on the order in which
checks are performed.

8 Experimental evaluation

The proposed algorithm was implemented and its performance was compared with existing
implementations. Several classes of Petri nets were used. The reachability graph of such a
Petri net was calculated and re-synthesised into a—possibly different—Petri net. The running
time of the synthesis step was measured.

This section first introduces the Petri nets and the synthesis implementations that partici-
pated in the evaluation. Then, the results are presented and interpreted.

The size of a Petri net is controlled by a parameter n (and a parameter k for the marking
on circles). The reader is referred to Fig. 11 for some examples.

• Connected bit nets: A bit can be in one of two states, set and unset. Initially, all bits are
unset. A connected n-bit net has n such bits put next to each other. The lowest bit has a
transition to set it. The highest bit has a transition to unset it. For all other bits, there is a
transition unsetting bit i and simultaneously setting bit i + 1 for 1 ≤ i < n. Such a Petri
net is a connected marked graph and its reachability graph has 2n reachable states (it is
one of the many possible implementations of an n-bit buffer).

• Circles: A circle of size n has n places and n transitions forming a circle in which
tokens are transported. An arbitrary place contains k tokens. It is a connected marked
graph, hence also a choice-free net. Each distribution of the k tokens on the n places
is a reachable marking, thus by standard combinatorics there are

(n+k−1
k

) = (n+k−1)!
(n−1)! k!

reachable markings. Since k will be fixed, this is in O(nk).
• Pre-cubes: A (hyper-)cube of dimension n has n transitions ti (i = 1, . . . , n) that are

concurrently enabled (once). In an n-dimensional pre-cube (inspired from Figure 16 in
[4]), there is another transition tr which gets enabled after at least n − 1 transitions ti
fire. When all these n + 1 transitions fired, the initial marking is reached again. This
kind of lts cannot be solved by a marked-graph, because the initial state is not backward

123

602 E. Best et al.

Fig. 11 Instances of the net classes. In the philosophers net, transitions l and r describe the taking of a left
fork and of a right fork, respectively, while b describes putting two forks back simultaneously

persistent [14]. There are 2n + n reachable markings: the n-dimensional cube produces
2n markings and there are n additional markings reachable via tr when one of the n
transitions ti has not fired yet.
A possible choice-free Petri net generating this behaviour has n + 1 places, one for each
transition. Each transition consumes n tokens from its place and produces one token on
every other place. The places for transitions ti each initially have n tokens, so they are
enabled, while the place for transition tr has one token initially, so needs n − 1 of the ti
to fire before enabling tr .

• Philosophers net: This is Dijkstra’s dining philosophers example [28] modelled as a Petri
net. Each philosopher can be in one of three states: Thinking, waiting, or eating. When
transiting to the waiting state, a philosopher grabs his left fork. To reach the eating state,
he also needs his right fork. These forks are shared resources which each philosopher
competes for with his neighbours. In the lts this leads to non-persistence, meaning that
this behaviour cannot be generated by a choice-free Petri net (cf. Theorem 2). It also
can deadlock. The state space has between 2n and 3n reachable markings. For the upper
bound, assume that each philosopher can freely transition to one of his three states.
For the lower bound, each philosopher can be either thinking or waiting and all such
combinations are reachable.

Several algorithms for Petri net synthesis were considered in this benchmark.

• NEW: The algorithm introduced in the present paper, combining a pre-synthesis based
on the algorithm in Fig. 6 and a proper synthesis based on the algorithm in Fig. 9, with the
changes outlined in Sect. 7.1, because they lead to an overall faster algorithm in various
experiments. Inequality systems are solved via the SMTInterpol library [21].

• Pre-synthesis: The runtime for the pre-synthesis algorithm in Fig. 6 was measured sepa-
rately, so that its runtime can be compared with the full NEW algorithm.

• APT-CF: APT is a general toolbox for analysing Petri nets and transition systems [39]. It
contains several Petri net synthesis implementations and tries to choose the best one for
a given problem. APT-CF is based on a generic algorithm for the synthesis of P/T nets

123

Bounded choice-free Petri net synthesis: algorithmic issues 603

from [1] with additional linear inequality systems to provide choice-free solutions. No
optimisations are employed for the target class, contrary to NEW.

• APT-MG: The characterisation from [14] allows to synthesise connected marked graph
Petri nets efficiently. This algorithm is implemented in APT. Every marked graph Petri
net is also choice-free, so this is a more specialised algorithm compared to the algorithm
introduced in the present paper.

• Synet [16] is a Petri net synthesis tool. For this paper, synet was always used with
parameter -r telling it to use its improved algorithm. Synet synthesises optimised (in
terms of size) general P/T Petri nets by default.

• Synet-CF: Synet supports locations on labels [5]. By giving each label a distinct location,
a choice-free solution can be requested. Since this works as an extra layer on Synet, we
may not expect better performances, but it compares more faithfully to NEW when a
choice-free net is definitely sought for.

• Petrify [22–24] synthesises 1-bounded Petri nets, i.e., Petri nets where no place ever has
more than one token on it. In case no 1-bounded solution exists, label splitting [17] is
applied. This means that for inputs that are not solvable by 1-bounded Petri nets, Petrify
actually solves a slightly different problem than the other tools in this benchmark. Petrify
was always given the -uc parameter. This asks for a unique-choice [23] solution. In the
presented examples, Petrify never becomes slower when this option is given. Also, this is
the strongest restriction on choices that Petrify supports,which allows a better comparison
with choice-free Petri nets.

• Genet [18,19] is a general tool supporting the synthesis of bounded Petri nets. Its algo-
rithm is a generalisation of the Petrify approach that will produce a solution with the
lowest possible bound. The algorithm is based on multisets of states that are used to
compute places.

Only the NEW, APT-CF and Synet-CF implementations actually guarantee that a choice-free
solution is produced whenever possible (and APT-MG, when a marked graph solution, which
is also choice-free, is available). The other implementations compute general place-transition
nets, or elementary nets in the case of Petrify. This means that we are comparing tools that
target different classes of nets. The hope is to show that targeted synthesis, particularly the
NEW algorithm for choice-free synthesis, is more efficient than general synthesis. Note,
however, that, even if there is a choice-free (or marked graph) solution, non-targeted tools
may produce completely different solutions.

The benchmarkswere performed in Java. For the interactionwith tools provided as external
programs, a new process was spawned when needed. The NEW, APT-MG, and APT-CF
implementations are written in Java and can be called directly. This means that for Synet,
Synet-CF, Petrify, and Genet, (a small) additional overhead was incurred compared to the
other implementations.

Figures 12, 13, 14, 15 and 16 show experimental results using semi-logarithmic plots.

8.1 Connected bit nets

Figure 12 presents the results for n-connected bit nets. It can be seen that the synet tool
performs a lot worse than the other implementations. The proposedNEWalgorithm performs
better than all other implementations, except for the marked graph algorithm, which wins
this benchmark (which is not too surprising since the latter is tailored for this case). However,
for larger values the NEW algorithm is the fastest implementation, and it is about 20 times
faster than the triple Genet/Petrify/APT-CF.

123

604 E. Best et al.

Fig. 12 Runtime for the synthesis of connected bit net with n bits

Fig. 13 Runtime for the synthesis of circles of size n with two tokens

Fig. 14 Runtime for the synthesis of circles of size n with ten tokens

A closer examination of the behaviour of the NEW algorithm indicates that the pre-
synthesis phase takes about half of the total execution time, but this number varies from 20%
to 70% across the graph. This shows that even when this does not allow to stop the process
before the proper-synthesis, the overhead is rather small (it can even be a lot smaller: see
Table 1). Anyway, let us recall it computes the distances needed by the proper-synthesis.

8.2 Circles

The runtime for the synthesis of circle Petri nets with k = 2 tokens is shown in Figs. 13,
and 14 shows the results for k = 10 tokens. Circles with k = 1 were not measured, because

123

Bounded choice-free Petri net synthesis: algorithmic issues 605

Fig. 15 Runtime for the synthesis of pre-cubes of size n

the time for their synthesis is dominated by input and output operations and not by the actual
synthesis algorithm. This is less so for k > 1.

Petrify becomes slower with larger k, which is not surprising since Petrify specialises
on 1-bounded Petri nets. Synet loses this benchmark by showing poor performance, but its
performance comes closer to the other algorithms for larger k. The NEW synthesis shows
a surprisingly non-monotonic behaviour for which we have no explanation for the moment.
This behaviour is reproducible and seems not to be caused bymeasurement errors. Its runtime
is smaller than the times of Genet andAPT-CF. For k = 2, themarked graph algorithm clearly
wins this benchmark. For k = 10, the NEW synthesis comes very close to it.

We can see that the pre-synthesis is very fast on this benchmark and only takes a fraction
of the time of the complete NEW synthesis. In fact, for k = 2 pre-synthesis takes about 20%
of the runtime of the NEW algorithm, but this value goes down to about 5% for larger values
of n. For k = 10, pre-synthesis is initially responsible for about 80% of the time, but this
goes down to about 15% for n = 12.

8.3 Pre-cube nets

Figure 15 shows the runtime for synthesising the pre-cube example. As already mentioned,
APT-MG is not applicable on this example. We can see that all other implementations are
slower than the NEW algorithm, which again shows some non-monotonic behaviour. The
closest contester is APT-CF, which is however an order of magnitude slower most of the
time. Also pre-synthesis is again very fast and is another order of magnitude faster than the
complete NEW synthesis algorithm.

8.4 Philosophers nets

The philosophers nets produce the results from Fig. 16. Because each philosophers example
produces a non-persistent reachability graph, by Theorem 2 this behaviour cannot be gener-
ated by a choice-free Petri net. This means that only implementations limited to choice-free
Petri nets can fairly be compared, since otherwise we would compare the time until a failure
is returned for a choice-free synthesis with the time for a successful general synthesis, which
is unfair.

The graph shows that the proposed algorithm, which first checks determinism and persis-
tence during the pre-synthesis and returns a negative result, is a lot faster (by about a factor
1000) than the existing algorithms, which actually attempt synthesis. Note however that it is

123

606 E. Best et al.

Fig. 16 Runtime for the (failing) synthesis of n philosophers

Table 1 Profiling the NEW synthesis of a connected bit net of size n = 15 and of a 2-token circle of size
n = 100

Activity Bit net (%) Circle (%)

Reading the input 22.1 0.3

Checking determinism and persistence 3.5 0.0

Performing pre-synthesis 16.1 0.2

Computing the sets mXNXs etc. 54.7 98.9

Solving the remaining (indispensable) inequalities 2.1 0.5

difficult to grasp the performance for a failing synthesis, since this highly relies on the order
in which the inequality systems or pre-conditions are considered.

8.5 A closer look at NEW

Finally, we profiled the NEW algorithm on a connected bit net of size n = 15 and a circle
of size n = 100 containing two tokens. Table 1 shows the results. The bottleneck is clearly
the computation of sets such as mXNXs, this being the price for reducing the number and
size of linear systems to consider in the proper synthesis. Since this computation involves a
lot of accesses to the data structures, there might be more potential in optimising the latter.
However, this is beyond the scope of the present paper.

9 Concluding remarks

In this paper (which substantially extends [13] and complements [15]), we have described
an efficient procedure for the synthesis of bounded, choice-free Petri nets from labelled
transition systems. Its key properties and benefits are as follows.

• Structural knowledge about the target systems is embodied in an essential way in the
algorithm.

• Splitting synthesis into two stages allows not only the application of such knowledge, but
also the early pruning of unsuitable inputs, accompanied by meaningful error messages.

123

Bounded choice-free Petri net synthesis: algorithmic issues 607

• Experiments show that the algorithm embodied in our new procedure is substantially
faster than known ones.

The structural, two-phase,methodwepropose seems tobegeneralisable. For some subclasses,
viz. for T-systems and marked graphs, we have a full state space characterisation, which
means that a solution can be built during pre-synthesis, rendering a separate synthesis phase
unnecessary. For other classes, Petri net theory offers a plenitude of necessary conditions for
synthesisability, affording partial state space characterisations. All such necessary conditions
are suitable candidates for being incorporated in pre-synthesis. It may be noted that exact
state space characterisations are presently out of reach, even for the solvability of (linearly
ordered) acyclic persistent labelled transition systems.

Our experimental evaluation, in fact, demonstrates that specialised Petri net synthesis
algorithms can be a lot faster than general algorithms. Stronger restrictions on the Petri
nets tend to allow more efficient algorithms, as is evident from the marked graph algorithm
APT-MGwinning on all benchmarks when there is a MG solution, followed by the proposed
choice-free synthesis algorithmNEW. Besides the presented benchmarks, we also performed
many other ones. Some of these examples were not solvable by marked graphs; then APT-
MG was not applicable and the NEW algorithm from this paper was consistently faster than
all other implementations. In the cases in which APT-MG was applicable, it was always the
fastest implementation, closely followed by the NEW algorithm. Genet and APT-CF both
came next. It was also shown that the pre-synthesis presented here allows to see very quickly
that a full synthesis procedure will fail, in a fraction of the time needed by a full synthesis
algorithm.

In future work, it would be interesting

• to refine the worst case complexity analysis of the algorithm described in this paper,8

and to also consider the average case complexity, theoretically and/or experimentally;
• to explore whether the slack between the relatively small set of properties (2), needed for

synthesis, and the full set of additional properties yielded by the pre-synthesis algorithm,
can be exploited in order to further optimise its run-time;

• to investigate extensions of the method described in this paper to other target classes, as
well as to other (not linear-algebra based) synthesis algorithms;

• to generalise the method to unbounded Petri nets, i.e., to infinite transition systems which
may have been specified indirectly, e.g., by giving a Petri net for which we search for
an equivalent (with an isomorphic reachability graph) choice-free net, or by giving a
grammar for the language of the desired net;

• and to investigate other equivalences besides graph isomorphism, for example bisimilarity
or language equivalence.

Acknowledgements We are indebted to the reviewers for valuable comments.

A Keller’s theorem

The notion of a residual sequence, defined next, captures the subtraction of one sequence
from another one “as much as possible”.

8 Note that this is likely to be very difficult; not even for the basic algorithm [1], the exact complexity seems
to be fully investigated.

123

608 E. Best et al.

Definition 16 (Residues) Suppose that τ, σ ∈ T ∗. The (left) residue of τ with respect to σ ,
denoted by τ−• σ , arises from cancelling successively in τ the leftmost occurrences of all
symbols fromσ , read from left to right. Inductively: τ−•ε = τ ; τ−•t = τ if t /∈ supp(τ); τ−•t =
the sequence obtained by erasing the leftmost t in τ if t ∈ supp(τ); and τ−•(tσ) = (τ−• t)−•σ .
For example, acbcacbc−• abbcb = cacc and abbcb−• acbcacbc = b. In terms of Parikh
vectors, Definition 16 directly yields the following consequence (where function min is
extended componentwise to vectors):

Corollary 6 (Parikh vectors of residues) For τ, σ ∈ T ∗, Ψ (σ) − Ψ (σ−• τ) = Ψ (τ) −
Ψ (τ−• σ) = min(Ψ (σ), Ψ (τ)).

E.g.,Ψ (acbcacbc)−Ψ (acbcacbc−•abbcb)=Ψ (abbcb)−Ψ (abbcb−•acbcacbc)=Ψ (abbc).

Theorem 9 (Keller [32]) Let (S, T,→, ı) be a deterministic, persistent lts. Let τ and σ be
two label sequences enabled at some state s. Then τ(σ−• τ) and σ(τ−• σ) are also enabled
at s. Furthermore, the state reached after τ(σ−• τ) equals the state reached after σ(τ−• σ).

Two nice little applications of this result are the following proofs.

Proof (of Proposition 1) Let s, s′, s′′ ∈ S and s[α〉s′ ∧ s[α′〉s′′ ∧ Ψ (α)=Ψ (α′); we need to
prove s′ = s′′ (see Definition 5). Theorem 9 (applicable by determinism and persistence)
yields s[α〉s′[α′−• α〉q ∧ s[α′〉s′′[α−• α′〉q . By Ψ (α)=Ψ (α′), both α−• α′ and α′−• α equal the
empty sequence ε, entailing s′ = q = s′′.
�
Proof (of Lemma 1) By the premise, we have r [κα〉s and r [α〉s. Theorem 9 yields both
s[α−• (κα)〉q and s[(κα)−• α〉q , for some state q . By Ψ (α) ≤ Ψ (κα), the sequence α−• (κα)

is empty, and thus, s = q . Therefore, defining κ ′ = (κα)−• α, we get s[κ ′〉s. Clearly,
Ψ (κ ′) = Ψ (κ), ending the proof.
�

B Proof of Proposition 4

(⇒): Obvious since the distance-path property requires that we have distance-paths for any
pair of states s′ ∈ [s〉, hence also for s′ ∈ [ı〉.

(⇐): We assume that for all s ∈ S, there is a path ı[α〉s such that Ψ (α) = �s , and we
need to show that we have distance-paths for any pair of states s′ ∈ [s〉, and not only when
s = ı .

Let P = {Υ1, . . . , Υn}. We shall proceed by contradiction and assume that there are two
states s, s′ ∈ S such that s′ ∈ [s〉 and the distance between them is not realised. By s′ ∈ [s〉,
there is a short path s[γ 〉s′, and because this path does not realise the distance, Ψ (γ) ≥ Θ

for at least one Parikh vector Θ ∈ P . We consider such a counterexample with the smallest
possible γ over the entire lts (see Fig. 17).

Since a subpath of a short path is itself short, without loss of generality we may assume
that for some labels u, v ∈ T , γ = uδv withΨ (γ)(u) = Θ(u),Ψ (γ)(v) = Θ(v) and, for no
Θ ′ ∈ P , Ψ (γ) ≥ Θ + Θ ′ (otherwise, we can find a smaller counterexample by suppressing
a prefix and/or a suffix).

We may assume that ı[α〉s with �s = Ψ (α) and ı[β〉s′ with �s′ = Ψ (β), and we know
that Φ � �s and Φ � �s′ for all Φ ∈ P , as well as that

�s′ = Ψ (αγ)modP = �s + Ψ (γ) − Θ −
∑

Φ∈P
kΦ · Φ (12)

123

Bounded choice-free Petri net synthesis: algorithmic issues 609

Fig. 17 We may have neither �s′ � �s (l.h.s.) nor �s′ ≤ �s (r.h.s.)

for some natural numbers kΦ . By �s = Ψ (α) and �s′ = Ψ (β), and by Corollary 6, this
yields Ψ (β−• α) = Ψ (α−• β) + Ψ (γ) − Θ − ∑

Φ∈P kΦ · Φ.
If �s′ � �s , by Keller’s theorem we have s[β−• α〉s̃ for some state s̃ ∈ S, β−• α being

nonempty. Since Ψ (β) ≤ Ψ (α) + Ψ (γ), we have that Ψ (β−• α) ≤ Ψ (γ) and, by Keller’s
theorem again, s̃[γ−• (β−• α)〉s′, where Ψ ((β−• α)(γ−• (β−• α))) = Ψ (γ), so that the path
s[β−• α〉s̃[γ−• (β−• α)〉s′ is as short as γ , but it starts with labels from β not needed to get
Θ , since Ψ (γ−• (β−• α)) = Ψ (γ) − Ψ (β−• α) ≥ Θ . As a consequence, we can construct a
shorter counterexample by dropping β−• α in front of γ−• (β−• α) [see Fig. 17(l.h.s.)].

Thus we may assume that�s′ ≤ �s , and still by Keller’s theorem we have that s′[α−•β〉s.
Now, let us consider the path s[uδ〉s′′[v〉s′. There is a path ı[τ 〉s′′ with

Ψ (τ) = �s′′ = Ψ (αuδ)modP = �s′ + Θ − Ψ (v) ≥ �s

The first and second equality come from the fact that τ realises the distance between ı and
s′′. The third equality is justified by first observing [from (12) by subtracting Ψ (v) on both
sides] that

Ψ (αuδ) = Ψ (β) + Θ +
∑

Φ∈P
kΦ · Φ − Ψ (v)

and then taking the modulo on both sides. Moreover, �s′ = Ψ (τv)modP ≤ �s′′ + Ψ (v).
Hence, with Keller again, there is a path s′[ν〉s′′ with Ψ (ν) = Θ − Ψ (v), so that there is a
loop around s′ with Parikh vectorΘ . Now, since loops can be transported Parikh-equivalently
by Lemma 1, there is a loop around s[μ〉s with Parikh vector Θ too. And again by Keller’s
theorem, there is a path from s[γ−•μ〉s′ from s to s′ withParikhvectorΨ (γ)−Θ , contradicting
the shortness of γ [see Fig. 17(r.h.s.)].

We can thus conclude that there is no counterexample to our claim, that each short path is
a distance-path and that the distance-path property is valid for any pair of reachable states.

References

1. Badouel, É., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theoretical Computer Science,
p. 339. Springer, Berlin (2015). ISBN 978-3-662-47967-4

2. Badouel, É., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets.
In: Mosses, P., Nielsen, M., Schwartzbach, M. (eds.) TAPSOFT 1995, Aarhus (Denmark). Lecture Notes
in Computer Science, vol. 915, pp. 364–378. Springer, Berlin (1995)

3. Badouel, É., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary net systems is
NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997)

123

610 E. Best et al.

4. Badouel, É., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets
I: Basic Models. Lecture Notes in Computer Science, vol. 1491, pp. 529–586. Springer, Berlin (1999)

5. Badouel, É., Caillaud, B., Darondeau, P.: Distributing finite automata through Petri net synthesis. J. Form.
Asp. Comput. 13, 447–470 (2002)

6. Best, E., Darondeau, P.: A decomposition theorem for finite persistent transition systems. Acta Inf. 46,
237–254 (2009)

7. Best, E., Darondeau, P.: Petri net distributability. In: Virbitskaite, I., Voronkov, A. (eds.) PSI’11, Novosi-
birsk, LNCS, vol. 7162, pp. 1–18. Springer, Berlin (2011)

8. Best, E., Erofeev, E., Schlachter, U., Wimmel, H.: Characterising Petri net solvable binary words. In:
Moldt, D., Kordon, F. (eds.) Proc. 37th International Conference on Applications and Theory of Petri Nets
and Concurrency, Toruń (Poland), Lecture Notes in Computer Science, vol. 9698, pp. 39–58. Springer,
Berlin (2016)

9. Best, E., Devillers, R.: Synthesis of persistent systems. In: 35th International Conference on Application
and Theory of Petri Nets and Concurrency (ICATPN 2014), pp. 111–129 (2014)

10. Best, E., Devillers, R.: Synthesis and reengineering of persistent systems. Acta Inf. 52(1), 35–60 (2015)
11. Best, E., Devillers, R.: State space axioms for T-systems. Acta Inf. 52(2–3), 133–152 (2015)
12. Best, E., Devillers, R.: Synthesis of live and bounded persistent systems. Fund. Inf. 140, 39–59 (2015)
13. Best, E., Devillers, R.: Synthesis of bounded choice-free Petri nets. In: Aceto, L., Frutos Escrig, D.

(eds.) Proc. 26th International Conference on Concurrency Theory (CONCUR 2015), LIPICS, pp.
128–141. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl. https://doi.org/10.4230/LIPIcs.
CONCUR.2015.128 (2015)

14. Best, E., Devillers, R.: Characterisation of the state spaces of marked graph Petri nets. Inf. Comput.
253(Pt. 3), 399–410 (2017)

15. Best, E., Devillers, R.: Petri net pre-synthesis based on prime cycles and distance paths. To appear in
Science of Computer Programming (2018). Also: Informatik-Bericht Nr. 3/16, Univ. Oldenburg, 26 pages
(2016)

16. Caillaud, B.: Synet: un outil de synthèse de résaux de Petri bornés, applications. Research Report RR
3155, INRIA (1997). See also: https://hal.inria.fr/inria-00073534. http://www.irisa.fr/s4/tools/synet/

17. Carmona, J.: The label splitting problem. In: Jensen, K., Aalst, W.M.V.D., Ajmone-Marsan, M., Frances-
chinis, G., Kleijn, J., Kristensen, L.M. (eds.) Transactions on Petri Nets and OtherModels of Concurrency
VI, Lecture Notes in Computer Science, vol. 7400, pp. 1–23. Springer, Berlin (2012)

18. Carmona, J., Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A symbolic
algorithm for the synthesis of bounded Petri nets. In: van Hee, K., Valk, R. (eds.) Applications and
Theory of Petri Nets 2008, LNCS, vol. 5062, pp. 92–111. Springer, Berlin (2008)

19. Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving bounded Petri
nets. IEEE Trans. Comput. 59(3), 371–384 (2010)

20. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked directed graphs. J. Comput. Syst. Sci. 5(5),
511–523 (1971)

21. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver. In: Donaldson, A., Parker,
D. (eds.) Proc. of Model Checking Software, Oxford, LNCS, vol. 7385, pp. 248–254. Springer, Berlin
(2012). See also: https://ultimate.informatik.uni-freiburg.de/smtinterpol/

22. Cortadella, J., Kishinevsky,M.,Kondratyev,A., Lavagno, L., Yakovlev,A.: Petrify: a tool formanipulating
concurrent specifications and synthesis of asynchronous controllers. IEICE Trans. Inf. Syst. E80–D(3),
315–325 (1997)

23. Cortadella, J., Kishinevsky,M., Lavagno, L., Yakovlev,A.: Deriving Petri nets for finite transition systems.
IEEE Trans. Comput. 47(8), 859–882 (1998)

24. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Logic Synthesis for Asyn-
chronous Controllers and Interfaces, Volume 8 of Advanced Microelectronics. Springer Science &
Business Media, Berlin (2012)

25. Crespi-Reghizzi, S., Mandrioli, D.: A decidability theorem for a class of vector-addition systems. Inf.
Process. Lett. 3(3), 78–80 (1975)

26. de San Pedro, J., Cortadella, J.: Mining structured Petri nets for the visualization of process behavior. In:
31st ACM Symposium on Applied Computing, pp. 839–846, Pisa (2016)

27. Desel, J., Esparza, J.: Free Choice Petri Nets, vol. 40, p. 242. Cambridge Tracts in Theoretical Computer
Science, Cambridge (1995)

28. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Inf. 1(2), 115–138 (1971)
29. Ehrenfeucht, A., Rozenberg, G.: Partial 2-structures, part I: basic notions and the representation problem,

and part II: state spaces of concurrent systems. Acta Inf. 27(4), 315–368 (1990)

123

https://doi.org/10.4230/LIPIcs.CONCUR.2015.128
https://doi.org/10.4230/LIPIcs.CONCUR.2015.128
https://hal.inria.fr/inria-00073534
http://www.irisa.fr/s4/tools/synet/
https://ultimate.informatik.uni-freiburg.de/smtinterpol/

Bounded choice-free Petri net synthesis: algorithmic issues 611

30. Erofeev, E., Barylska, K., Mikulski, Ł., Piątkowski, M.: Generating all minimal Petri net unsolvable
binary words. In: Proceedings of the Prague Stringology Conference, pp. 33–46 (2016). See http://www.
stringology.org/event/

31. Hopkins, R.P.: Distributable nets. Applications and theory of Petri nets 1990. In: Rozenberg, G. (ed.)
Advances of Petri Nets 1991, LNCS, vol. 524, pp. 161–187. Springer, Berlin (1991)

32. Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In: Parallel Processing,
LNCS, vol. 24, pp. 102–112. Springer, Berlin (1975)

33. Khachiyan, L.: Selected works. Moscow Center for Mathematical Continuous Education. ISBN 978-5-
94057-509-2, 519 pages (2009) (in Russian)

34. Kondratyev, A., Cortadella, J., Kishinevsky,M., Pastor, E., Roig, O., Yakovlev, A.: Checking signal transi-
tion graph implementability by symbolic BDD traversal. In: Proc. European Design and Test Conference,
pp. 325–332, Paris (1995)

35. Landweber, L.H., Robertson, E.L.: Properties of conflict-free and persistent Petri nets. JACM 25(3),
352–364 (1978)

36. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77, 541–580 (1989)
37. Petri, C.A.: Concurrency. In: Brauer, W. (ed.) Proc. of the Advanced Course on General Net Theory of

Processes and Systems, Hamburg, LNCS, vol. 84, pp. 251–260. Springer, Berlin (1980)
38. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science, vol. 4. Springer, Berlin

(1985)
39. Schlachter, U. et al.: https://github.com/CvO-Theory/apt (2013–2017)
40. Teruel, E., Colom, J.M., Silva, M.: Choice-free Petri nets: a model for deterministic concurrent systems

with bulk services and arrivals. IEEE Trans. Syst. Man Cybern. Part A 27–1, 73–83 (1997)
41. van Glabbeek, R.J., Goltz, U., Schicke-Uffmann, J.-W.: On distributability of Petri nets—(extended

abstract). In: Birkedal, L. (ed.) Proc. FoSSaCS 2012 (Held as Part of ETAPS), LNCS, vol. 7213, pp.
331–345. Springer, Berlin (2012)

123

http://www.stringology.org/event/
http://www.stringology.org/event/
https://github.com/CvO-Theory/apt

	Bounded choice-free Petri net synthesis: algorithmic issues
	Abstract
	1 Introduction
	1.1 Context of the paper
	1.2 Goal of the paper
	1.3 Structure of the paper

	2 Basic definitions
	3 Necessary properties of bounded choice-free Petri nets
	4 Structure of cycles and paths in bounded choice-free nets
	4.1 The cyclic structure of bounded choice-free Petri nets
	4.2 The path structure of bounded choice-free Petri nets

	5 Pre-synthesis of bounded choice-free nets
	6 Synthesis of bounded choice-free nets
	6.1 Analysis of choice-free synthesis obligations
	6.1.1 Ensuring that cycles are preserved
	6.1.2 Characterising the various markings
	6.1.3 Ensuring that the markings on p do not prevent enabled transitions
	6.1.4 Ensuring that place p solves an event/state separation problem

	6.2 Algorithm and proof of its correctness

	7 Some remarks on the synthesis algorithm
	7.1 Structure-based sets
	7.2 Four examples
	7.3 Some special cases
	7.4 Complexity considerations

	8 Experimental evaluation
	8.1 Connected bit nets
	8.2 Circles
	8.3 Pre-cube nets
	8.4 Philosophers nets
	8.5 A closer look at NEW

	9 Concluding remarks
	Acknowledgements
	A Keller's theorem
	B Proof of Proposition 4
	References

