
Acta Informatica (2018) 55:17–56
https://doi.org/10.1007/s00236-016-0282-1

ORIGINAL ARTICLE

Conjunctive query containment over trees using schema
information

Henrik Björklund1 · Wim Martens2 ·
Thomas Schwentick3

Received: 7 December 2015 / Accepted: 11 October 2016 / Published online: 18 October 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We study the containment, satisfiability, and validity problems for conjunctive
queries over trees with respect to a schema. We show that conjunctive query containment
and validity are 2EXPTIME-complete with respect to a schema, in both cases where the
schema is given as a DTD or as a tree automaton. Furthermore, we show that satisfiability for
conjunctive queries with respect to a schema can be decided in NP . The problem is NP-hard
already for queries using only one kind of axis. Finally, we consider conjunctive queries
that can test for equalities and inequalities of data values. Here, satisfiability and validity are
decidable, but containment is undecidable, even without schema information. On the other
hand, containment with respect to a schema becomes decidable again if the “larger” query
is not allowed to use both equalities and inequalities.

1 Introduction

In the context of relational databases, select-project-join queries are the most commonly
used in practice. These queries are also known in database theory as conjunctive queries. The
containment problem for conjunctive queries P and Q asks whether Q returns (at least) all
answers of P . Ever since the seminal paper of Chandra and Merlin [14], conjunctive query
containment has been a pivotal research topic; it is the most intensely researched form of
query optimization in database theory.Moreover, the conjunctive query containment problem

A preliminary version of this work was presented at the 33rd International Symposium on Mathematical
Foundations of Computer Science.

B Wim Martens
wim.martens@uni-bayreuth.de

1 Department of Computing Science, Umeå University, Umeå, Sweden

2 Institut für Informatik, Universität Bayreuth, Bayreuth, Germany

3 Department of Computer Science, Technische Universität Dortmund, Dortmund, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-016-0282-1&domain=pdf

18 H. Björklund et al.

is essentially the same as the conjunctive query evaluation problem [14], and the Constraint
Satisfaction Problem (CSP) in Artificial Intelligence [31].

The rise of semi-structured data andXML initiated the investigation of conjunctive queries
over trees [28]. As in the relational case, conjunctive queries over trees provide a very clean
and natural querying formalism. XPath and (non-recursive) XQuery queries can both be
naturally translated into conjunctive queries. However, as pointed out by Gottlob et al. [28],
their applications are not at all limited to XML; they are also used for Web information
extraction, as queries in computational linguistics, dominance constraints, and in higher-
order unification.

For conjunctive queries over trees, in contrast to the relational setting, evaluation is not
the same problem as containment. In relational databases, containment P ⊆ Q holds if an
only if there is a homomorphism from the canonical database of Q to the canonical database
of P . Over trees, the existence of such a homomorphism is a sufficient, but not a necessary
condition for containment [7].

Conjunctive query containment over trees is therefore investigated directly in [7], but was
also treated more implicitly in the form of XPath 2.0 static analysis in, e.g., [29,32,44].
We elaborate on the relation with these papers later. In a nutshell, XPath 2.0 puts syntactic
constraints on conjunctive queries which sometimes limit them. The results in [7] were
encouraging, as the complexities (compared with acyclic queries) did not increase too much:
they remained inside Π P

2 .
The present paper extends our previous work [7] in the sense that we now take schema

information into account and that we consider queries that can test for equality and inequality
of data values. In this framework, we study the complexities of the validity, satisfiability, and
containment problems. Whereas our previous work outlined a quite complete picture of
conjunctive query containment without schemas, one has to admit that, in practice, schema
information is highly relevant. In XML, schema information is available for most documents
and the chances of being able to optimize queries are much better when it is taken into
account. On the other hand, as we will see in this paper, there is also a tradeoff: the worst
case complexity of conjunctive query containment over trees is much higher with schema
information than without.

Our work can be summarized as follows. First, we study conjunctive queries that cannot
compare data values. Our main technical result here is that the practically most relevant
problem, conjunctive query containment with respect to a DTD, is already 2EXPTIME-hard
for queries using only the Child and Child+ axes. We even strengthen this result to show that
the validity problem of a conjunctive, positive fragment of XPath 2.0 queries with respect to a
DTD is 2EXPTIME-hard. This result is quite surprising when one compares it to the known
results for XPath 1.0 containment. For XPath 1.0, adding DTD information to the problem
usually “only” increases the complexity from coNP[38] to (at most) EXPTIME[8,37,40].
Here, however, the complexity immediately jumps from Π P

2 to 2EXPTIMEwhen DTDs are
taken into consideration. In particular, the problem can provably not be solved in polynomial
space in general. On the other hand, it remains in 2EXPTIMEeven when conjunctive queries
can use all axes and the much more expressive Relax NG schemas are considered.

The picture again changes dramatically when we consider satisfiability instead of con-
tainment. Even for the most general conjunctive queries with respect to Relax NG schemas,
the satisfiability problem is in NP . Unfortunately it is also NP-hard already for very simple
cases using only DTD information.

Finally, we turn to the containment problem for queries that can compare data values for
equality (∼) and inequality (�). When data values are involved, static analysis problems
are generally known to become undecidable very quickly. We show that conjunctive query

123

Conjunctive query containment over trees using schema. . . 19

containment is no exception: alreadywithout schema information, it is undecidable.However,
the good news is that even very slight restrictions of this most general case become decidable,
even without increasing the complexity over the setting without data values.

Boolean versus n-ary queries The conjunctive queries in our paper are boolean queries,
i.e., they evaluate either to true or false on a tree. Our complexity results also carry over to
containment for conjunctive queries that return an n-ary relation when evaluated on a tree;
see Sect. 7.

The remainder of the article is structured as follows. After introducing the basic material
that will be used throughout the paper (Sect. 2), we prove that validity and containment of
conjunctive queries over trees is 2EXPTIME-complete with respect to schemas in Sect. 3.
We make a brief excursion to satisfiability of conjunctive queries over trees with respect
to schema information in Sect. 4 and conclude the technical part of the paper by a study of
containment of queries with data value comparisons in Sect. 5. In Sect. 6 we relate our results
with XPath with path intersection. Section 7 explains how all our results carry over from
boolean queries to higher-arity queries. We end by a discussion on related work, a remark on
a result of Lakhsmanan (Sect. 8) and then move to the conclusions (Sect. 9).

2 Preliminaries

We consider rooted, ordered, finite, labeled, unranked trees, which are directed from the
root downwards. That is, we consider finite trees in which nodes can have arbitrarily many
children, which are ordered from left to right. We assume some infinite set of labels that
contains all labels throughout the paper, but in most scenarios there is some finite alphabetΣ
fromwhich the labels of a tree or a query are chosen. We view a tree t as a relational structure
with unary labeling relations a(·), and binary relationsChild (·, ·) andNextSibling (·, ·). Here,
a(u) expresses that u is a nodewith label a, andChild (u, v) (respectively,NextSibling (u, v))
expresses that v is a child (respectively, the right sibling) of u. We assume that each node
carries exactly one label and write lab t (u) for the unique label a such that a(u) holds in the
tree t . We often omit t from this notation when t is clear from the context.

In addition toChild andNextSibling , we use their transitive closures (denotedChild+ and
NextSibling+) and their transitive and reflexive closures (denotedChild ∗ andNextSibling ∗).
We further consider a binary relation Following , corresponding to the Followingaxis of
XPath, which can be defined given the other relations by the formula

Following (z1, z2) = ∃x∃y : Child ∗(x, z1) ∧ NextSibling+(x, y) ∧ Child ∗(y, z2).

We refer to the binary relations above as axes. We denote the set of nodes of a tree t by
Nodes (t). By root (t) we denote the root node of t .

2.1 Conjunctive queries over trees

Let X = {x, y, z, . . . } be a set of variables. A conjunctive query (CQ) over an alphabet
Σ is a positive existential first-order formula without disjunction over a finite set of unary
predicates a(x) with a ∈ Σ , and the binary predicates Child , Child+, Child ∗, NextSibling ,
NextSibling+, NextSibling ∗, and Following.1 In this paper, we will mainly focus on Boolean
satisfaction of conjunctive queries. We will therefore consider conjunctive queries without

1 We do not require CQs to be in prenex normal form. However, all formulas that we construct in the paper
can be put in prenex normal form by simply renaming the variables and moving the quantifiers.

123

20 H. Björklund et al.

free variables, and we also consider the constants true and false to be conjunctive queries.
As our conjunctive queries do not contain free variables, we sometimes omit the existential
quantifiers to simplify notation. For a conjunctive query Q, we denote the set of variables
appearing in Q by Var (Q). We use CQ(R1, . . . , Rk) or CQ(R) (where R = {R1, . . . , Rk})
to denote the fragment of CQs that uses only the unary alphabet predicates and the binary
predicates R1, . . . , Rk . We use the terminology on valuations of a query from Gottlob et
al. [28]. That is, let Q be a CQ, and t a tree. A valuation of Q on t is a total function
θ : Var (Q) → Nodes (t). A valuation is a satisfaction if it satisfies the query, that is, if every
atom of Q is satisfied by the assignment. A tree t models Q (t |	 Q) if there is a satisfaction
of Q on t . The language L(Q) of Q is the set of all trees that model Q.2 We denote the
complement of L(Q) by L(Q).

As usual, we refer by UCQ to the class of disjunctions (or: unions) of conjunctive queries
with the same conventions regarding parameters as for CQ.

2.2 Schemas

We abstract from Document Type Definitions (DTDs) as follows:

Definition 1 A Document Type Definition (DTD) over an alphabet Σ is a triple D =
(Alpha (D),Rules (D), start (D)) where Alpha (D) = Σ , start (D) ∈ Σ is the start symbol
and Rules (D) is a set of rules of the form a → R, where a ∈ Σ and R is a regular expression
over Σ . Here, no two rules have the same left-hand-side.

A tree t satisfies D if (i) lab t (root (t)) = start (D) and, (i i) for every u ∈ Nodes (t) with
label a and n children u1, . . . , un from left to right, there is a rule a → R in Rules (D) such
that lab t (u1) . . . lab t (un) ∈ L(R). By L(D) we denote the set of trees satisfying D.

We abstract from Relax NG schemas [16] by unranked tree automata, which are formally
defined as follows:

Definition 2 A nondeterministic (unranked) tree automaton (NTA) over an alphabet Σ is
a quadruple A = (States (A),Alpha (A),Rules (A),Final(A)), where Alpha (A) = Σ ,
States (A) is a finite set of states, Final(A) ⊆ States (A) is the set of final states, and Rules (A)

is a set of transition rules of the form (q, a) → R, where q ∈ States (A), a ∈ Alpha (A), and
R is a regular expression over States (A).

DTDs are strictly less expressive thanRelaxNGschemas. For instance, RelaxNGschemas
are powerful enough to require that two a-labeled nodes have differently labeled children,
whereas DTDs cannot express this. For more precise characterizations on the expressiveness
of DTDs, Relax NG schemas, and XML Schema (for which the expressiveness lies between
DTD and Relax NG) we refer to [36].

For simplicity, we denote the regular languages R in DTD or NTA rules by regular expres-
sions. For our complexity results, it does not matter whether the languages R are represented
by regular expressions or nondeterministic finite word automata.

A run of A on a tree t is a labeling r : Nodes (t) → States (A) such that, for every
u ∈ Nodes (t) with label a and children u1, . . . , un from left to right, there exists a rule
(q, a) → R such that r(u) = q and r(u1) . . . r(un) ∈ L(R). Note that when u has no
children, the criterion reduces to ε ∈ L(R), where ε denotes the empty word. A run is
accepting if the root is labeled with an accepting state, that is, r(root (t)) ∈ Final(A). A tree

2 Notice that, as stated in the introduction, we assume that trees only take labels from a finite alphabet Σ .
Hence, for a conjunctive query Q, the set L(Q) also consists of trees over alphabet Σ . In the rare cases where
we consider trees without schema information, we state this explicitly.

123

Conjunctive query containment over trees using schema. . . 21

t is accepted if there is an accepting run of A on t . The set of all accepted trees is denoted by
L(A) and is called a regular tree language. We denote the complement of L(A) by L(A).
In the remainder of the paper, we sometimes view the run r of an NTA on t as a tree over
States (A), obtained from t by relabeling each node u with the state r(u).

From now on, we use the word “schema” to refer to DTDs or NTAs.

2.3 Our problems of interest

We are primarily concerned with the following three decision problems:

Definition 3 – Containment w.r.t. a schema: Given two CQs P and Q, and a schema S, is
L(P) ∩ L(S) ⊆ L(Q)?

– Validity w.r.t. a schema: Given a CQ Q and a schema S, is L(S) ⊆ L(Q)?
– Satisfiability w.r.t. a schema: Given CQ Q and schema S, is L(Q) ∩ L(S) �= ∅?

All the above problems are instances of the containment problem or its complement. More
precisely, validity of Q is testing whether L(true) ∩ L(S) ⊆ L(Q) and satisfiability for Q is
testing whether L(Q) ∩ L(S) � L(false).

We note that, for all these algorithmic problems, the alphabet Σ of possible labels is
determined by the schema S.

3 Validity and containment

In this section we prove that validity of conjunctive queries with respect to schemas is
2EXPTIME-complete. This holds when the schema is given as a non-deterministic tree
automaton, as well as a DTD.

3.1 Complexity upper bounds

We first settle the upper bound for the containment problem. This is achieved through a
standard translation of existential first-order logic into NTAs (see, e.g., [45] and, with a
discussion of the upper bound [24, Theorem 4.2]). To remain self-contained, we describe the
construction in detail.

Lemma 4 Let Q be a CQ. There exists an NTA A such that L(A) = L(Q) and A can be
computed from Q in exponential time.

Proof Essentially, when reading a tree, A guesses the positions where the variables of Q
should be placed for a satisfaction of the query and checks whether the correct relations
hold between the guessed positions. As Child+, NextSibling+, and Following can eas-
ily be expressed by constant-size formulas only using Child , Child ∗, NextSibling , and
NextSibling ∗, we only need to consider the latter four axes in this proof.

Intuitively, a state of A is of the form (Xa, Xc, Xd), where Xa , Xc, and Xd are subsets of
Var (Q) such that

– Xa is the set of variables that A guesses to be placed on the ancestors of the current node,
– Xc is the set of variables that A guesses to be placed on the current node, and
– Xd is the set of variables that A guesses to be placed on descendants of the current node.

Since A guesses a valuation of Q, we have that a variable of Q can never be placed on a
node u and on a descendant of u at the same time. Hence, for each state (Xa, Xc, Xd), the
pairwise intersections of Xa , Xc, and Xd are empty.

123

22 H. Björklund et al.

In order to define A formally, we specify States (A), Final(A), and Rules (A).

States (A): The state set of A is the maximal subset of 2Var (Q) × 2Var (Q) × 2Var (Q) such
that the following conditions hold. For each (Xa, Xc, Xd) ∈ States (A),

(S1) the pairwise intersections of Xa , Xc, and Xd are empty,
(S2) for each x, y ∈ Xc, the query Q does not contain atoms of the form a(x) and b(y)

with a �= b,
(S3) for each x ∈ Xc and each y ∈ Var (Q) such that Child (y, x) is an atom in Q, we

have y ∈ Xa , and
(S4) for each x ∈ Xc and each y ∈ Var (Q) such that Child ∗(y, x) is an atom in Q, we

have y ∈ Xc ∪ Xa .

Final(A): A state (Xa, Xc, Xd) of A is in Final(A) if and only if

(F1) Xa is empty; and
(F2) Xc and Xd partition Var (Q), i.e., Var (Q) = Xc � Xd .

Rules (A): contains all rules of the form

ρ = (
(Xa, Xc, Xd), a

) → R,

where

(R1) for each x ∈ Xc, Q does not contain an atom of the form b(x) with b �= a;
(R2) R defines the language of all words (X1

a, X
1
c , X

1
d) . . . (Xn

a , X
n
c , X

n
d) for which the

following holds:
(a) Xd = X1

c � . . . � Xn
c � X1

d � . . . � Xn
d ;

(b) if x ∈ Xc and Q contains an atomChild (x, y) then there is an i in 1, . . . , n with
y ∈ Xi

c;
(c) for each i = 1, . . . , n, Xi

a = Xa ∪ Xc; and
(d) for each i = 1, . . . , n, if x ∈ Xi

c and Q contains an atom
– NextSibling (x, y), then i < n and y ∈ Xi+1

c ;

– NextSibling ∗(x, y), then there exists a j , i ≤ j ≤ n such that y ∈ X j
c .

In order to complete the proof of the lemma, we need to prove that

(1) A can be constructed from Q in exponential time; and
(2) L(A) = L(Q).

Concerning (1), it is clear that States (A) and Final(A) can be computed in time expo-
nential in |Q|. For Rules (A), we prove that we can compute a non-deterministic finite word
automaton (NFA) N that accepts, for every (Xa, Xc, Xd) ∈ States (A) and a ∈ Alpha (A),
the language L(R) in the rule

ρ = (
(Xa, Xc, Xd), a

) → R.

Since the alphabet of N is States (A), we know that every symbol it reads satisfies (S1)–
(S4). Furthermore, (R1) does not need to be checked by N , but rather by the algorithm that
constructs A, when deciding whether or not to define a transition rule of the form of ρ. Hence,
we only have to enforce (R2.a)–(R2.d).

We next describe N ’s accepting condition and the information that N needs to remember
when reading a word. As N only needs to maintain a polynomial amount of information at
the same time, it should be clear that N needs only an exponentially large set of states. A

123

Conjunctive query containment over trees using schema. . . 23

state of N consists of (X∪
c , X∪

d , Yns, Yns∗), where the components are defined as follows.
Suppose that N has read the prefix

(X1
a, X

1
c , X

1
d) . . . (Xk

a, X
k
c , X

k
d)

of a word (X1
a, X

1
c , X

1
d) . . . (Xn

a , X
n
c , X

n
d). Then

– X∪
c := X1

c ∪ . . . ∪ Xk
c ,

– X∪
d := X1

d ∪ . . . ∪ Xk
d ,

– Yns := {y | x ∈ Xk
c and NextSibling (x, y) occurs in Q}, and

– Yns∗ := {y | ∃i with 1 ≤ i ≤ k such that x ∈ Xi
c, y /∈ Xi

c ∪ . . . ∪ Xk
c , and

NextSibling ∗(x, y) occurs in Q}.
When reading symbol (Xk+1

a , Xk+1
c , Xk+1

d), N checks whether

– Xk+1
c ∩ (X∪

c ∪ X∪
d) = ∅, to partially ensure (R2.a);

– Xk+1
d ∩ (X∪

c ∪ X∪
d) = ∅, to partially ensure (R2.a);

– Xk+1
a = Xa ∪ Xc, to ensure (R2.c); and

– Yns ⊆ Xk+1
c , to ensure (R2.d)’s NextSibling-constraint.

and it changes its state to (X ′∪
c , X ′∪

d , Y ′
ns, Y

′
ns∗) as follows:

– X ′∪
c = X∪

c ∪ Xk+1
c ;

– X ′∪
d = X∪

d ∪ Xk+1
d ;

– Y ′
ns = {y | x ∈ Xk+1

c and NextSibling (x, y) occurs in Q};
– Y ′

ns∗ = (Yns∗ − Xk+1
c) ∪ {y | x ∈ Xk+1

c , y /∈ Xk+1
c , and NextSibling ∗(x, y) occurs in

Q}.
Finally, N accepts if

– Xd = X∪
c ∪ X∪

d , to ensure (R2.a), together with the above conditions on the transitions;
– for each x ∈ Xc such that Child (x, y) occurs in Q, we have x ∈ X∪

c , to ensure (R2.b);
– Yns = ∅, to ensure (R2.d)’s NextSibling constraints; and
– Yns∗ ⊆ Xk

c , to ensure (R2.d)’s NextSibling∗ constraint.

(2) A simple induction on the depth of a tree is sufficient to show that A recognizes the
language L(Q) defined by the query. In particular, for every tree t , each satisfaction of Q on
t induces an accepting run of the automaton A on t . ��

It is now easy to derive the following theorem, showing that containment of conjunctive
queries with respect to NTAs is in 2EXPTIME. We note that this upper bound is not really
new. It can be obtained by composing the exponential translation of [28] from CQs to Core
XPath and the polynomial time translation of [44] from Core XPath expressions to two-way
alternating tree automata. The result now follows as emptiness testing of two-way alternating
tree automata is in EXPTIME[46]. However, we give this self-contained proof here, as the
construction of Lemma 4 will be re-used in Lemma 18 later in the paper.

Theorem 5 Containment of CQs w.r.t. an NTA is in 2EXPTIME.

Proof We reduce the containment problem to testing intersection emptiness of three NTAs,
whose sizes are atmost doubly exponential in the size of the input. The result then immediately
follows, as intersection emptiness testing for three NTAs is in PTIME(see, e.g., Theorem
19(1) in [34]). Let A be the schema NTA and let P and Q be the queries. According to
Lemma 4, we can compute in exponential time two automata AP and AQ such that L(AP) =
L(P) and L(AQ) = L(Q). It is well-known that the complement NTA AQ of AQ can be
computed in exponential time from AQ (which is already exponentially large). Hence, the
containment problem reduces to testing whether L(A) ∩ L(AP) ∩ L(AQ) = ∅, where each
of these three NTAs can be computed in doubly exponential time. ��

123

24 H. Björklund et al.

3.2 Complexity lower bounds

In this section, we prove the following result.

Theorem 6 Validity of CQ(Child , Child+) with respect to tree automata is 2EXPTIME-
complete.

Furthermore, 2EXPTIME-hardness holds even if the tree automaton has a constant-size
alphabet (we use nine different labels in the proof).

The upper bound in Theorem 6 follows from Theorem 5. We show the corresponding
lower bound by reduction from the word problem for alternating exponential space bounded
Turing machines, which is 2EXPTIME-hard [13].

The overall idea of our proof is as follows. Let M be a given alternating Turing machine
(ATM) M and w a word of length n. For technical reasons, we first construct, in polynomial
time, an ATM Mw which accepts the empty word if and only if M accepts w. From Mw

we construct an NTA ACT that checks most important properties of (suitably encoded)
computation trees t of Mw, except their consistency with respect to the transition relation of
Mw . Furthermore, we construct a Boolean query QCT that is satisfied by a computation tree
t in L(ACT) if and only if the transition relation of Mw is not respected by t . Altogether,
QCT is valid with respect to ACT , if and only if there does not exist a consistent, accepting
computation tree for Mw. Since 2EXPTIMEis closed under complementation, we conclude
that validity of CQs with respect to NTAs is 2EXPTIME-hard.

3.2.1 Alternating turing machines

An alternating Turing machine (ATM) [13] is a tuple M = (Q,Σ, Γ, δ, q0) where Q =
Q∀ � Q∃ � {qa} � {qr } is a finite set of states partitioned into the universal states Q∀, the
existential states Q∃, an accepting state qa , and a rejecting state qr . The (finite) input and
tape alphabets are Σ and Γ , respectively, with Σ ⊆ Γ . We assume that the tape alphabet
contains a special blank symbol “ ”. The initial state of M is q0 ∈ Q. The transition relation
δ is a subset of (Q×Γ)× (Q×Γ ×{L , R, S}). The letters L , R, and S denote the directions
left, right, and stay in which the tape head is moved.

A configuration of M is a word w1qw2 where w1, w2 ∈ Γ ∗ and q ∈ Q. Here, w1qw2

denotes that M’s work tape contains the word w1w2, followed by blanks, that its tape head
points to the first symbol of w2, and that M is in state q . The successor configurations of
w1qw2 are defined as for standard TuringMachines. For configurations κ1, κ2, and transition
τ , we denote by κ1 �τ κ2 that M can move from κ1 to κ2 by performing transition τ . When
q = qa or q = qr , we say that w1qw2 is a halting configuration. We can assume without
loss of generality that no halting configuration has a successor configurations, and that each
non-halting configuration has precisely two different successor configurations. Furthermore,
we can assume without loss of generality that each halting configuration is of the form qw,
i.e., M moves its head to the beginning of the tape before halting.

A computation tree of M on an input word w is a (possibly infinite) tree t labeled with
configurations of M , such that t’s root bears the label q0w and, for each node u labeled with
w1qw2,

– if q ∈ Q∃, then u has exactly one child v, which is labeled with a successor configuration
of w1qw2,

123

Conjunctive query containment over trees using schema. . . 25

– if q ∈ Q∀, u has two children and, for each successor configuration w′
1q

′w′
2 of w1qw2,

u has a child v labeled with w′
1q

′w′
2, and

– if q ∈ {qa, qr }, then u is a leaf.

A computation tree is accepting if all its branches are finite and each leaf is labeled with a
configuration in state qa . The language L(M) accepted by M is the set of words w for which
there exists an accepting computation tree of M on w.

An ATM is said to be normalized if each universal step only affects the state of the
machine, and additionally, the machine always goes from a universal state to an existential,
or vice versa. To be more precise, if q ∈ Q∃ (resp., q ∈ Q∀) and a ∈ Γ , then {p |
((q, a), (p, b, D)) ∈ δ} ⊆ Q∀ ∪ {qa, qr } (resp., ⊆ Q∃ ∪ {qa, qr }). Moreover, if q ∈ Q∀ and
((q, a), (p, b, D)) ∈ δ, then b = a and D = S. Any ATM can be reduced in polynomial time
to a normalized ATM that accepts the same language. Thus, in the sequel, we assume that
all ATMs are normalized. There is a (normalized) exponential space bounded ATM whose
word problem is 2EXPTIME-hard [13].

In our reduction, we will work with an ATM without input. In order to do this, given
an ATM M whose word problem is 2EXPTIME-complete, and an input word w, we first
construct an ATM Mw that, when given the empty word as input, works in space exponential
in |w| and accepts if and only if M accepts w. This is achieved by letting Mw start by writing
w on its work tape and return to the first tape position. After this, it simulates M .

Let M be a normalized exponentially space bounded ATM and w ∈ Σ∗ an input for M of
length n. Let Mw = (Q,Σ, Γ, δ, q0) be constructed from M and w as described above. We
may assume that the non-blank portion of the tape of the computation of Mw on the empty
word ε is never longer than 2n .

3.2.2 The encoding

The NTA we construct from Mw will recognize encoded computation trees of Mw . We now
descibe how this encodingworks, i.e., howwe represent computation trees and configurations
in the reduction.

Encoding computation trees The encoding of computation trees is illustrated in Fig. 1. More
formally, let t be a computation tree of Mw. The encoded computation tree enc(t) is obtained
from t by replacing each node u with a tree tu , where

– the root (tu) is labeled CT ;
– the leftmost child of root (tu) is labeled r (and is root of the subtree that encodes the

actual configuration at u in t); and
– for each child ui of u, root (tu) has a subtree enc(t/ui) where t/ui denotes the subtree

of t rooted at ui .

Hence, Fig. 1 shows a fragment of an encoded computation tree representing a universal
configuration (left), and its two successor configurations (right). We know that the CT -
labeled node on top represents a universal configuration, because it has two CT -labeled
children.

Encoding configurationsWe encode a configuration of Mw as a sequence of 2n configuration
cells. Such a cell contains the content of a tape cell of Mw, plus some additional information.
In particular, the configuration cell that encodes the tape cell currently visited by Mw also
contains information about the current state. In addition, we need some information that will
be used to verify that the transitions of Mw are respected. Before describing the details, we

123

26 H. Björklund et al.

CT

r CT

r

CT

r

Fig. 1 A part of an encoded configuration tree. The CT -labeled nodes define the structure of the actual
configuration tree of Mw , while the subtrees with root label r encode the actual configurations of Mw

need the following convention for talking about transitions. If τ = ((q1, a), (q2, b,m)) is a
transition of Mw, then we say that q1 is the from-state of τ , that a is the read-symbol, q2 is
the to-state, b is the write-symbol, and m is the direction.

We use three types of configuration cells:

– The set BCells of basic cells is equal to Γ . These cells represent tape cells that are not
currently visited by the tape head and also were not visited in the last configuration.

– The set CCells of current tape-head cells is equal to Γ × δ. These cells represent tape
cells that are currently visited by the tape head. The letter from Γ represents the cell
content, while the transition from δ represents the transition by which Mw arrived in
the current configuration. (In the initial configuration, we can use an arbitrary element
from δ.)

– The set PCells of previous tape-head cells is equal to Γ × (Q×Γ ×{L , R}). These cells
represent tape cells that were visited by the tape head in the previous configuration, and
not in the current one. The letter from Γ represents the current cell content, while the
triple from Q × Γ × {L , R} represents the machine state in the previous configuration,
the cell content in the previous configuration, and the direction, left or right, the tape
head took when it left the cell. We call these the previous symbol, previous state, and
direction of the cell, respectively.

We useC = {c1, . . . , ck} = BCells ∪ CCells ∪ PCells to denote the set of all configuration
cells.

Configurations of Mw will be encoded by sequences of 2n configuration cells from C .
For such a sequence to correctly encode a configuration, we require that exactly one of its
configuration cells α = (a, τ) belongs to CCells . We also require the following:

– If the direction of τ is S (for stay), then there are no cells from PCells in the encoding.
– If the direction of τ is R (for right), then there is exactly one tile β from PCells in the

sequence. It is placed to the left of α. The cell content of β, i.e., the current symbol
it represents, is the write symbol of τ , its previous symbol is the read symbol of τ , its
previous state is the from-state of τ and its direction is R. A symmetrical condition is
imposed if the direction of τ is L .

The reason for this somewhat convoluted encoding is that it enables us to propagate infor-
mation from one configuration encoding to the next. Let Conf1 and Conf2 be two sequences
of 2n configuration cells that correctly encode two configurations of Mw . We will argue how
a few simple constraints can ensure that Conf2 encodes a valid successor configuration of
Conf1. To this end, think of Conf2 as lying on top of Conf1 in the obvious manner (i.e., the

123

Conjunctive query containment over trees using schema. . . 27

leftmost configuration cell of Conf2 lying on top of the leftmost configuration cell of Conf1,
etc.). We divide the set of constraints into two: a set of horizontal constraints ensuring con-
sistency inside Conf1 and inside Conf2, and a set of vertical constraints ensuring consistency
between Conf1 and Conf2. These constraints are similar to those used in tiling games [15].
Actually, the next part of our reduction constructs a special case of tiling games that is still
2EXPTIME-complete.

The set H(Mw) of horizontal constraints enforces the following rules:

(H1) To the left of cells of the form (a, τ) ∈ CCells such that the direction of τ is R, there
is always a cell β ∈ PCells such that

– the direction of β is R,
– the current symbol of β is the write symol of τ ,
– the previous symbol of β is the read symbol of τ ,
– the previous state of β is the from-state of τ .

The converse also holds, i.e., such cells from CCells are the only ones allowed to the
right of such cells from PCells .

(H2) To the right of cells of the form (a, τ) ∈ CCells such that the direction of τ is L , there
is always a cell β ∈ PCells such that

– the direction of β is L ,
– the current symbol of β is the write symol of τ ,
– the previous symbol of β is the read symbol of τ ,
– the previous state of β is the from-state of τ .

The converse also holds, i.e., such cells from CCells are the only ones allowed to the
left of such cells from PCells .

(H3) The only cell allowed to the right of a blank cell ∈ BCells is .

The set V (Mw) of vertical constraints enforce the following rules.

(V1) On top of a cell a ∈ BCells , the only allowed cells are a itself and any (b, τ) ∈ CCells
such that the direction of τ is either L or R and b = a.

(V2) On top of a cell (a, τ) ∈ CCells , the only allowed cells are

– any β ∈ PCells such that the previous symbol of β is a and the previous state of β

is the to-state of τ , and
– any (b, τ ′) ∈ CCells such that the from-state of τ ′ is the to-state of τ , the read letter

of τ ′ is a, the write letter of τ ′ is b, and the direction of τ ′ is S.

(V3) On top of a cell (a, (q, a′,m)) ∈ PCells , the only allowed cells are

– b ∈ BCells such that b = a, and
– any (b, τ) ∈ CCells such that b = a and the direction of τ is L or R.

Condition (V1) encodes that Mw just moved to the current position from the left or from the
right. The current position is not overwritten.

Figure 2 shows an example of a valid transition fromC1 toC2 with respect to the horizontal
and vertical constraints.

We now prove the following observation.

Observation 7 Let Conf1 ∈ C∗ encode a configuration κ1 of Mw and let Conf2 ∈ C∗. Then,
the following are equivalent:

123

28 H. Björklund et al.

PCell

c

(q1, b, R)

CCell

a

(q1, b), (q2, c, R)

CCell

b

(q, e), (q1, b, S)

BCell

a

· · ·

· · ·

· · ·

· · ·

Fig. 2 A representation of a Turing Machine transition. The transition used is τ = ((q1, b), (q2, c, R)), i.e.,
the machine is in state q1, reads symbol b, writes a c, andmoves to the right. The encoding of the cell where the
head originally was (the upper left cell) “remembers” the previous state and tape symbol, so that the horizontal
constraints can verify that the transition τ was actually allowed from the previous configuration

– Conf2 has exactly one cell (a, τ) fromCCells and both H(Mw) and V (Mw) are satisfied.
– Conf2 encodes a configuration κ2 of Mw such that κ1 �τ κ2.

Proof Let Conf1 = α1 . . . αn and Conf2 = β1 . . . βn , where each αi , βi ∈ C .
We first assume that all the constraints (H1–H3,V1–V3) hold and that Conf2 has exactly

one cell (a, τ) ∈ CCells , with τ = ((p1, b), (p2, c,m)). Since Conf2 has only one cell from
CCells , we know from (H1) and (H2) that it also has at most one cell from PCells . For the
remainder of the proof, we make a case distinction on whether a cell from PCells is present
in Conf2 or not.

Let us first consider the case where Conf2 has no cell from PCells . Since Conf1 encodes
a configuration of Mw , we know that there is a unique i ∈ {1, . . . , n} such that αi ∈ CCells .
Since Conf2 has no cell from PCells , we know from (V2) that βi = (a, τ) is the unique cell
from CCells in Conf2. Let (b0, ((q1, c0), (q2, a0,m′))) be the cell from CCells in Conf1.
From (V2) we get that b0 = b, q2 = p1, a0 = a, and m = S. This means that transition τ is
possible from the configuration encoded by Conf1 and that the result of applying it is to write
an a and let the tape head stay where it is. In all positions except i we know that Conf1 has a
cell α j from BCells ∪PCells . Constraints (V1) and (V3) therefore imply that, on top of each
such cell α j is a cell β j that represents the same tape symbol. Thus we can conclude that
Conf2 indeed represents a configuration that can be reached from the configuration encoded
by Conf1 by applying transition τ .

Next, we consider the case where Conf2 has exactly one cell from PCells . Let αi =
(b0, ((q1, c0), (q2, a0,m′))) be the unique cell from CCells in Conf1. The vertical con-
straints imply that cells from PCells are only allowed on top of cells from CCells . Thus
βi is the unique cell from PCells in Conf2. Constraint (V2) implies that βi is of the form
(y, (q2, x),m′), for some y ∈ Γ and m′ ∈ {L , R}. We assume that m′ = R (the other case
is symmetrical).

By constraint (H1), the cell to the right of the cell from PCells in Conf2 must belong
to CCells . We know that this cell is (a, ((p1, b), (p2, c,m))). By using (H1) we know that
y = c, x = b, q2 = p1, and m = m′ = R. This means that transition τ was possible from
the configuration encoded by Conf1 and that τ writes a c and moves the head to the right.
Thus βi in Conf2 (the unique cell from PCells) represents the correct tape symbol y = c.
By the same argument as above, all other cells represent the same tape symbols in Conf2 as
in Conf1 and we can conclude that Conf2 indeed represents a configuration that is reachable
from the configuration encoded by Conf1 by applying τ .

123

Conjunctive query containment over trees using schema. . . 29

For the other direction, we assume that Conf2 encodes that we arrived at κ2 by τ =
((p1, b), (p2, c,m)) and that κ1 �τ κ2. It follows immediately that Conf2 has exactly one
cell from CCells and that this cell has the form (a, τ), for some a ∈ Γ . It is also immediate
that the horizontal constraints (H1)–(H3) hold for Conf2. We have to show that (V1)–(V3)
are satisfied as well. Let i be the index of the tape cell the machine head was visiting in κ1.
Then all cells of Conf2 other than i and (possibly) i − 1 or i + 1 will belong to BCells ∪ { }
and will represent the same tape symbol as the corresponding cells inConf1. Thus the vertical
constraints hold for these cells.

If m = S, i.e., if τ is a stay transition, then the vertical constraints trivially hold for the
cells at indices i − 1 and i + 1 as well and Conf2 will have (a, τ) at index i , which satisfies
all the vertical constraints. If m = R the tape head will have moved right. In this case, Conf2
has a cell from PCells at index i and a cell from CCells at index i + 1. The definition of
encoding a transition ensures that the cell at index i represents the tape symbol c, i.e., the
symbol that is written by τ . The tape symbols at indices i − 1 and i + 1 remain unchanged,
which ensures that all vertical constraints are satisfied. The case for m = L is symmetrical.

��
Encoding configurations as trees The most crucial part of the reduction is to use the query
to detect when the transition relation of Mw is violated. To be able to do this, the query must
be able to navigate from a node representing tape cell i in one configuration tree to the node
representing cell i in a successor configuration. We now describe how the configurations of
Mw will be encoded as trees, thereby filling in the remaining structure of the empty r -rooted
trees in Fig. 1.

Recall that C = {c1, . . . , ck} is the set of all distinct cell types we need to encode config-
urations of Mw . The size k of this set is polynomial in the size of Mw.

As we can assume without loss of generality that Mw never uses more than 2n tape cells,
we can encode configurations into the leaves of full binary trees of height n, where each
leaf represents a configuration cell. For technical reasons, the configuration cells will not be
represented by labels, but rather by configuration cell gadgets. Also, each node except the
root will be equipped with a navigation gadget that signals whether the node is the left or
right child of its parent.

A configuration tree is obtained from a full binary tree B of height n as follows. The root
gets label r and the other nodes label s. The s-labeled nodes are called skeleton nodes. To
each skeleton node v we attach a little gadget indicating whether v is a left or a right child
in B. More precisely, we attach a path of length 3 labeled with p, 0, 1, respectively, to left
children and a path labeled with p, 1, 0 to right children; see Fig. 3b.

Thus, left and right children can be distinguished by the distance (1 or 2) of their 1-labelled
gadget node from their p-labelled gadget node. More precisely, a skeleton node v at level i
of a configuration tree and a skeleton node u at level i of a successor configuration tree are
both left or both right children, if the nodes v1 and u1 with label 1 in their respective gadgets
have a common ancestor which has distance i + 4 from v1 and i + 5 from u1.

Each leaf skeleton node (one that has no skeleton node children) is equipped with a
configuration cell gadget. We describe the gadget for configuration cell ci . The root of the
gadget has label c (for cell) and has two children, labeled m (for me) and f (for forbidden),
respectively. Under the m-labeled node a path of length k is attached. On this path, all nodes
have label 0, except the i-th node from the top, which has label 1. Under the f -labeled node,
there is also a path of length k, where k = |C |. Here, the j th node from the top has label 0
if and only if ci and c j fulfill the vertical constraints (V1)–(V3), i.e, if c j is allowed on top
of ci . Otherwise, it has label 1; see Fig. 3a. This concludes the description of an encoded
configuration tree.

123

30 H. Björklund et al.

c

m

0

1

0

0

f

0

1

0

1

r

s

s

p

0

1

s s

s

p

1

0

s s

p

0

1

s

(a) (b)

Fig. 3 Gadgets for the CQ validity proof. a A cell gadget encoding configuration cell 2 in a system with 4
possible configuration cells, where configuration cells number 2 and 4 are not allowed on top of configuration
cell 2. b A tree containing skeleton nodes (labeled s). Skeleton nodes that are the left (resp., right) s-child of
their parent have a p, 0, 1 (resp., p, 1, 0) gadget

CT

r

s

p

0

1

s s

p

1

0

s

p

0

1

s s

s

s

CT CT

r

s

p

0

1

s s

p

1

0

s

p

0

1

s s

s

s

CT

Fig. 4 An illustration of part of an encoded computation tree. Consider the two skeleton nodes labeled with
boldface s. They are both at level i = 3 in their respective configuration trees. If, from the node with label one
in the navigation gadget of the left boldface skeleton node (also in boldface), we go upwards i + 4 = 7 steps,
we reach the root of the part of the tree depicted here. From the other boldface 1, if we go i + 5 = 8 steps
upward, we reach the same node. This would not have been the case if one of the boldface s nodes, but not
the other, had been a right skeleton child of its parent

3.2.3 The reduction

We now explain how to construct the NTA ACT and the CQ QCT such that QCT is valid
with respect to ACT if and only if Mw does not have an accepting run.

The automaton definition The schema is represented by a nondeterministic tree automaton
ACT . The automaton should accept a tree t if and only if it satisfies a number of properties
that we explain next (see Fig. 4). For technical reasons, we need t to start at the root with a
path of length k, where k is again the number of distinct configuration cells corresponding

123

Conjunctive query containment over trees using schema. . . 31

to Mw, to the first CT -labeled node. All nodes on this path have label I and each of them
has exactly one child. Further more, ACT checks the following properties:

1. The subtree rooted at the highest CT -labeled node is an encoded computation tree. This
involves the following steps.

(a) Each CT -labeled node has exactly one child that is labeled r (i.e., the root of an
encoded configuration tree).

(b) Only configuration cell gadgets that correctly encode configuration cells and vertical
constraints of V (Mw) appear.

(c) Each encoded configuration tree is complete and has the correct height.
(d) Each skeleton node has a correctly assigned navigation gadget.

2. The CT -labeled nodes on even depth either have zero or two CT -labeled children; the
CT -labeled nodes on odd depth either have zero or one CT -labeled child. This reflects
the alternating universal and existential moves of Turing Machine Mw that is assured by
the assumption that Mw is normalized. (Here, we are assuming that k is even, so that the
path of I -labeled nodes above the highest CT -node has even length. If k is odd, the rules
for odd and even depths are inversed.)

3. For each CT -labeled node representing a universal configuration, the two child CT -
labeled nodes represent two encoded configuration trees with two different labels from
CCells . This means that the two encoded successor configurations are different. Recall
that Mw is normalized, so that transitions leaving universal configurations only change
the machine state.

4. All horizontal constraints from H(Mw) are satisfied in the encoded configurations.
5. The leftmost configuration cell of the highest encoded configuration tree is the start

configuration cell (, ((q0,), (q0, , S))). Recall that q0 is Mw’s start state, and that
Mw’s computation starts with an empty tape. This verifies that the computation tree
starts with the correct initial configuration of Mw.

6. Each CT -labeled node without CT -labeled node children has a tree attached to it
that encodes a final configuration, i.e., its leftmost configuration cell is of the form
(a, ((q1, b), (q2, c, M))) ∈ CCells with q2 = qa . Recall that qa is the accepting state of
Mw and that, before accepting, Mw moves its tape head entirely to the left. This verifies
that each path in the strategy tree leads to an accepting configuration of Mw .

To construct ACT , we construct an automaton for each of the above properties, and use
the standard construction for accepting their intersection. Each property can be checked by
a tree automaton whose size is polynomial in the size of the description of Mw—one can
essentially hard code each property into an automaton. We briefly describe the automaton
A3 for checking Property 3, as it is technically the most difficult one.

If we think of A3 as a bottom up automaton, it starts by reading the configuration cell
gadgets, and assigns states to their roots; if a gadget represents a configuration cell θ in
CCells , A3 remembers the configuration cell in its state, i.e., it enters a state qθ . Otherwise,
it assigns a neutral state s. When going up to the root of each encoded configuration tree, A3

simply propagates the state qθ upwards and checks that the encoded configuration subtree
does not contain a second θ ′ ∈ CCells . When A3 is at the root of an encoded configuration
subtree, it propagates qθ up to theCT -labeled parent. In the next transition, when going from
twoCT -labeled children to aCT -labeled parent (see also Fig. 1), it tests whether it visited the
two CT -labeled children in two different states qθ �= qθ ′ , i.e., whether the attached encoded
configuration trees contained different configuration cells θ �= θ ′ from CCells . Together

123

32 H. Björklund et al.

∗ s

s s

ss

p s s

p s s

1 s s

1 s

dli
hc

+

dlihc
+

ch
ild

i+
4

child
i+

5

Φ
i (x, y)

(px)

(tx)

(py)

(ty)

Ψ1(x1 , y1)

Ψ2(x2 , y2)

Ψn−2(xn−2 , yn−2)
Ψn−1(xn−1 , yn−1)

Ψn(s1 , s2)

Fig. 5 Graphical representation of the queries Ψi (x, y) and SameCell (s1, s2) from the proof of Theorem 6.
The small labels in parentheses denote the variable names used in the proof

with the automaton for Property 2 which checks that CT -labeled nodes with one and two
CT -labeled node children alternate correctly, this ensures Property 3.

The query We first define a formula that states that two nodes r1 and r2 are roots of two
successive encoded configuration trees, i.e., encoded configuration trees such that the second
encodes the successor configuration of the first.

Succ (r1, r2) ≡ ∃s1, s2 : r(r1) ∧ r(r2) ∧ CT (s1) ∧ CT (s2)

∧Child (s1, r1) ∧ Child (s2, r2) ∧ Child (s1, s2)

Next, we define a formula to state that two nodes x and y belong to successive encoded
configuration trees and are both at level i > 0 of their respective encoded configuration tree.
Here, Child i (x, y) abbreviates the formula stating that y can be reached from x by following
the Child -axis i times.

Φi (x, y) ≡ ∃r1, r2 : s(x) ∧ s(y) ∧ Succ (r1, r2) ∧ Child i (r1, x) ∧ Child i (r2, y)

Now we can express that x and y have the property Φi and, additionally, that they are either
both left children of their parents, or both right children.

Ψi (x, y) ≡ ∃px , py, tx , ty, z : Φi (x, y) ∧ p(px) ∧ p(py) ∧ 1(tx) ∧ 1(ty)

∧Child (x, px) ∧ Child (y, py) ∧ Child+(px , tx) ∧ Child+(py, ty)

∧Child i+4(z, tx) ∧ Child i+5(z, ty)

For a graphical representation of the subquery Ψi (x, y) (and the subquery SameCell (s1, s2)
defined below), see Fig. 5.

With the help of the above predicates, we can now express that two leaf skeleton nodes
belong to successive encoded configuration trees and that they correspond to the sameposition
in the configurations. Recall that n is the depth of the encoded configuration trees.

123

Conjunctive query containment over trees using schema. . . 33

SameCell (s1, s2)

≡ ∃x1, . . . , xn−1, y1, . . . , yn−1 :
∧

1≤i<n−1

(Child (xi , xi+1) ∧ Child (yi , yi+1))

∧Child (xn−1, s1) ∧ Child (yn−1, s2) ∧ Ψn(s1, s2) ∧
∧

1≤i≤n−1

Ψi (xi , yi)

Finally, we are ready to define our query QCT for the Turing Machine Mw, which states
that somewhere, a vertical constraint of V (Mw) is violated. Recall that k is the number of
configuration cells in CT .

QCT ≡ ∃s1, s2, t1, t2, f1,m2, p1, p2, z : SameCell (s1, s2)

∧Child (s1, t1) ∧ Child (s2, t2) ∧ f (f1) ∧ m(m2) ∧ 1(p1) ∧ 1(p2)

∧Child (t1, f1) ∧ Child (t2,m2) ∧ Child+(f1, p1) ∧ Child+(m2, p2)

∧Child n+k+3(z, p1) ∧ Child n+k+4(z, p2)

For a graphical representation of QCT , see Fig. 6. Intuitively, it will match a computation tree
if it can find two successive configurations such that there is a position i where the cell in the
second configuration is not allowed on top of the first configuration according to the vertical
constraints. It does this by inspecting the cell gadgets representing the position in the two
configurations. In the higher configuration, it looks for a 1, matched by query variable p1,
on the f -branch of the gadget, indicating that the corresponding cell is not allowed on top of
the current one. It then verifies that the gadget in the second configuration has a 1, matched
by p2 at the same depth of itsm-branch, indicating that it is an instance of the forbidden cell.
Summary This concludes the proof of Theorem 6. We have shown that given an
EXPSPACEalternating Turing machine M and a word w, we can construct a nondeter-
ministic tree automaton ACT and a CQ(Child , Child+) QCT in polynomial time, such
that QCT is valid with respect to ACT if and only if M has no accepting run on w. Since
2EXPTIMEis closed under complement, this shows that CQ(Child , Child+) validity (and
thus also containment) with respect to an NTA is 2EXPTIME-hard.

3.2.4 DTDs

Actually, the 2EXPTIMElower bound from Theorem 6 can even be strengthened to the case
where the schema is just a DTD instead of a tree automaton.

Themain technical observation one has tomake is stated in Lemma 8, which was probably
first published in [43].

Let A be an NTA. We define the annotated tree language of A to be the set of trees in
L(A) that are annotated by accepting runs of A. More formally, the annotated tree language
of A is the set of trees t over Alpha (A) × States (A) where

– πAlpha (A)(t) ∈ L(A) and
– πStates (A)(t) is an accepting run of A on πAlpha (A)(t).

Here, πAlpha (A)(t) denotes the projection of t on Alph(A), that is, πAlpha (A)(t) is obtained
from t by relabeling each label (a, q) to a. (Similarly, πStates (A)(t) relabels each (a, q) to q .)

Lemma 8 ([43])Given an NTA A, there exists a DTD DA that recognizes the annotated tree
language of A. Moreover, DA can be constructed in quadratic time.

Theorem 9 Validity of CQ(Child , Child+) with respect to a DTD is 2EXPTIME-complete.

123

34 H. Björklund et al.

∗

∗

CT

r CT

r

s

sp

1 p

CT 1

r CT

r

s

spc

f 1 p c

∗ 1 m

11

chi
ld
1

child 1

child
1+4

child 1+5

chi
ld
n

child n

child
n+4

childn+5

chil
dn

+k+
3 childn+k+4

(x1)

(px)

(tx)

(r1)

(s1)

(r2)

(s2)

(y1)

(py)

(ty)

(p1)

(z)

(xn)

(t1)

(f1)
(tx)

(px)

(r1)

(s1)

(r2)

(s2)

(yn)

(py)

(ty)

(t2)

(m2)

(p2)

(z)

(z)

Fig. 6 Graphical representation of QCT from the proof of Theorem 6. The small labels in parentheses denote
the variable names used in the proof

Proof We describe the changes that have to be made to the proof of Theorem 6. Let DACT

be the DTD accepting the annotated tree language of ACT . Hence, DACT defines trees over
Alpha (ACT) × States (ACT). For our reduction, we cannot simply use the set of annotated
trees of ACT , as this would require disjunction over alphabet symbols in the definition
of the conjunctive query QCT . Hence, the schema DTD DCT is obtained from DACT by
replacing each rule of the form (a, q) → L(a,q) where a ∈ {CT , r, s, p, 0, 1, c,m, f } with
(a, q) → L(a,q) · a. Hence, we change L(DCT) such that, in each of its trees, each (a, q)-
labeled node gets an a-labeled child.

It remains to describe how QCT changes: here, we simply need to replace each atom of
the form a(x) (where a ∈ {CT , r, s, p, 1,m, f }) with Child (x, y) ∧ a(y). The rest of the
proof carries through. ��

123

Conjunctive query containment over trees using schema. . . 35

Theorem9 also implies that validitywith respect to aDTDbecomes 2EXPTIME-complete
for XPath patterns with the path intersection operator (as in XPath 2.0). We discuss this more
precisely in Sect. 6.

4 Satisfiability

Satisfiability of CQs with respect to NTA has a drastically lower complexity than validity.
In this section, we show that the problem is NP-complete. Further more, we show that the
lower bound holds already for DTDs and CQs that only use one axis.

4.1 Complexity upper bounds

In this section, we show that testing satisfiability for CQs with respect to a nondeterministic
tree automaton is in NP . The idea is a kind of small model property for such queries. The
small model is obtained by fairly standard cutting and pumping techniques (see also, e.g., [7,
Lemma 1] or [27, Theorem 2, Theorem 3]). We start with the following lemma.

Lemma 10 There is a polynomial p such that if a CQ Q is satisfiable with respect to an
NTA A, then there is a tree t ∈ L(Q) ∩ L(A) and a satisfaction θ of Q on t such that for all
variables x, y ∈ Var (Q), the length of the path from θ(x) to θ(y) is at most p(|A|, |Q|).
Proof Let t be a tree such that t |	 Q and t ∈ L(A), let θ be a satisfaction of Q on t , let
T = {θ(x) | x ∈ Var (Q)}, and let r be an accepting run of A on t . Furthermore, let S be the
set of nodes that are lowest common ancestors of some subset of T of size at least 2.

Suppose that there exists a simple path ρ between two distinct vertices u and v in T ∪ S
such that u is an ancestor of v, there are no nodes in T ∪ S on ρ, and the length of ρ is
more than |States (A)| · |Σ | + 1. Notice that all descendants in T of nodes on ρ are also
descendants of v. Towards a contradiction, assume that w is the lowermost node on ρ that
has a descendant w′ ∈ T that is not a descendant of v. Then w would be the lowest common
ancestor of v and w′ and thus belong to S. In other words, no variable of Q is mapped by θ

to any node in the subtrees that branch off from ρ.
Then there are two distinct nodes w �= u and w′ �= v on ρ such that w is an ancestor of

w′, r(w) = r(w′), and lab t (w) = lab t (w′). Let t ′ be the tree obtained from t by replacing
the subtree rooted atw with the one rooted atw′. Clearly, r restricted to t ′ is still an accepting
run of A and θ , restricted to t ′, is still a satisfaction of Q. This process can be repeated until
no nodes u, v ∈ T ∪ S can be found that satisfy the above condition. When this is achieved,
the distance, for any x, y ∈ Var (Q), between θ(x) and θ(y), is at most 1+ |Var (Q)| · (|Σ | ·
|States (A)| + 1). ��

Lemma 10 gives us the main machinery to prove the general NPupper bound on satisfia-
bility:

Theorem 11 Satisfiability of CQs with respect to an NTA is in NP.

Proof We can assume w.l.o.g. that the NTA A is reduced, i.e., each state of A can be used
in an accepting run.3 We know from Lemma 10 that if a query Q is satisfiable with respect

3 Transforming an NTA to a reduced NTA can be done in polynomial time by first performing an emptiness
test for every state of A, followed by a reachability test. Section 4.2 of [35] describes an algorithm for reducing
a DTD. The algorithm for NTAs is analogous.

123

36 H. Björklund et al.

to an NTA A, then there is a tree t ∈ L(A) and a satisfaction θ of Q on t such that for all
x, y ∈ Var (Q), the distance between θ(x) and θ(y) is small (polynomial). In general, t can
be exponentially large. If Q is satisfiable with respect to A, however, the NPalgorithm can
guess a polynomial size connected subset t ′ of nodes of t and a valuation θ of Q on t ′. The
algorithm also guesses what states an accepting run r of A on t would assign to the nodes in
t ′. It then verifies that θ is a satisfaction of Q (in polynomial time), and that t ′ can be extended
to a tree in L(A) such that the states assigned to nodes are consistent with the transitions of
A. The last check is done as follows. For each node v of t ′ with label a and it’s assigned
state q , let v1, . . . , vn be the children of v in t ′, with labels a1, . . . , an and assigned states
q1, . . . , qn , respectively. As A is reduced we only need to test whether there exist transition
rules (qi , ai) → Li in A for each 1 ≤ i ≤ n, and that there exist z0, . . . , zn ∈ States (A)∗
such that there is a transition rule (q, a) → L in A with z0q1z1 . . . zn−1qnzn ∈ L . This
last test can be performed in polynomial time by a sequence of n reachability tests on the
automaton representing L . ��
4.2 Complexity lower bounds

We show that our upper bound for satisfiability w.r.t. a schema is tight, in quite a strong sense.
In particular, when considering a DTD as schema, satisfiability is NP-hard for queries using
only a single axis, no matter which axis this is. For some axes, the result is already known:4

Theorem 12 (Wood [47]) Let Axis be any element of {Child , Child+, Child ∗}. Then Sat-
isfiability for CQs using only the relation Axis w.r.t. a DTD is NP-hard.

The proof relies on the following lemma:

Lemma 13 (Wood [47]) The following problem is NP-hard. Given a regular expression R
over alphabet Σ , does L(R) contain a string that contains each Σ-symbol?

Proof We reduce from Vertex Cover. Recall that for Vertex Cover we are given a
graph G = (V, E) and a positive integer k ≤ |V |, and ask whether there is a subset V ′ ⊆ V
such that |V ′| ≤ k and, for each edge (u, v) ∈ E , at least one of u and v belongs to V ′. Let
G = (V, E) and k be an arbitrary instance of Vertex Cover. We will construct a regular
expression R over a finite alphabet Σ such that there is a string in L(R) containing each
Σ-symbol if and only if G has a vertex cover of size k or less.

Let V = {v1, . . . , vn} and E = {e1, . . . , em}. For each 1 ≤ i ≤ n, let Ei =
{ei,1, . . . , ei,mi } ⊆ E be the set of edges incident to vi . The alphabet Σ is given by E � {#},
where each ei ∈ E , 1 ≤ i ≤ m, is viewed as a distinct symbol. For each 1 ≤ i ≤ n, let si be
the string ei,1 . . . ei,mi . Let S be the regular expression

s1 + · · · + sn .

Then R = (S#)k−1S, that is, k concatenated occurrences of expression S, separated by #-
symbols. This means that every word in L(R) is a concatenation of k strings of edge symbols,
separated by #,where each string of edge symbols represent the edges incident to some vertex.

Let V ′ = {v j1 , . . . , v jk } be a vertex cover of size k. We find a string w ∈ L(R) by
concatenating s j1 , . . . , s jk , separated by #. Since V

′ is a vertex cover for G, w must include
every edge in E and hence every symbol in Σ .

4 To the best of our knowledge, the full proof is unpublished. For the convenience of our readers, we provide
Wood’s proof, which he kindly provided in a personal communication.

123

Conjunctive query containment over trees using schema. . . 37

Let w ∈ L(R) be a string which includes every symbol in Σ . The string w must be of
the form w = w1#w2# . . . #wk , where each wi , 1 ≤ i ≤ k, is one of the n strings in L(S).
Then each wi is equal to s ji for some 1 ≤ ji ≤ n. Since w contains all symbols in Σ , the set
V ′ = {v j1 , . . . , v jk } is a vertex cover for G and |V ′| ≤ k. ��
Remark 14 Wood’s Lemma [47] already holds if the regular expression is deterministic
(sometimes also called one-unambiguous [12]). Intuitively, a regular expression is determin-
istic if, when reading a word from left to right without looking ahead, it is always clear where
in the expression the next symbol can be matched. In DTDs in practice, regular expressions
must always be deterministic.

Formally, deterministic regular expressions are defined as follows [12]. Let r̄ stand for the
REobtained from r by replacing, for every integer i and alphabet symbola, the i-th occurrence
of a in r by ai (counting occurrences from left to right). For example, for r = b∗a(b∗a)∗
we have r̄ = b∗

1a1(b
∗
2a2)

∗. A regular expression r is deterministic (or one-unambiguous) if
there are no words waiv and wa jv

′ in L(r̄) such that a ∈ Σ and i �= j . For instance, the
expression (a+b)∗a is not deterministic since bothwords a2 and a1a2 are in L((a1+b1)∗a2).
The equivalent expression b∗a(b∗a)∗ is deterministic. Not every regular expression can be
determinized, that is, converted to an equivalent deterministic regular expression. In fact,
deciding if a given expression can be determinized is PSPACE-complete [17,33].

Wood [47] remarks that it may be that the regular expressions in this construction are
not deterministic. However, the only situation in which the regular expression cannot be
rearranged so that it is deterministic is when there are two nodes which are adjacent to each
other and nothing else. In this case, the problem is trivial if there are no other nodes. If there
are other nodes, then the graph is disconnected inwhich case the problem can be decomposed.
If we assume that the graph is connected then the regular expression can always be made
deterministic.

It is not hard to prove Theorem 12 given Lemma 13:

Proof (of Theorem 12) By reduction from the problem in Lemma 13. Given a regular expres-
sion R over Σ , the DTD accepts all trees of depth 2 in which the children of the root form a
string in L(R), and the CQ tests whether each Σ-symbol occurs below the root. ��

Notice that Wood’s proof already shows hardness for CQs for which the underlying graph
is a tree or, even stronger, star-shaped. Indeed, Wood’s original result is on XPath queries,
which are tree-shaped by design.

For the remaining cases, we will reduce from the Shortest Common Supersequence
problem; or the Shortest Common Superstring problem, both of which are known to be
NP-complete [25,42].We say that s is a supersequence of s0 if s0 can by obtained by deleting
symbols from s, and s is a superstring of s0 if s0 can be obtained by deleting a prefix and a
suffix of s. The Shortest Common Supersequence (respectively, Shortest Common
Superstring) problem asks, given a set of strings S, and an integer k, whether there exists a
string of length at most k which is a supersequence (respectively, superstring) of each string
in S.

Theorem 15 Let Axis be an any element of {Child , Child+, Child ∗, NextSibling,
NextSibling+, NextSibling ∗, Following }. Then, testing Satisfiability for CQ(Axis) w.r.t. a
DTD is NP-hard.

Proof Three cases are immediate from Theorem 12. We provide a proof for every Axis in
{NextSibling , NextSibling+, NextSibling ∗, Following }. For NextSibling , we reduce from

123

38 H. Björklund et al.

Fig. 7 Query for the proof of
Theorem 15 b11 b21 · · · bn1

1

...
...

b1m b2m · · · bnm
m

Shortest Common Superstring, and for all other axes, we reduce from Shortest
Common Supersequence. To this end, let S and k be an input of Shortest Common
Superstring (resp., Shortest Common Supersequence).We first provide the proofs for
Axis in {NextSibling ,NextSibling+, Following }, and then explain how these can be adapted
for NextSibling ∗. The DTD d for the former three cases has only one rule, namely

r → (a1 + · · · + an)
k,

where Σ = {a1, . . . , an}. That is, the DTD defines trees of depth 2, in which the root has
precisely k children. Let S = {b11 . . . bn11 , . . . , b1m . . . bnmm }. Then the query Q is defined as
shown in Fig. 7. Here, each arrow denotes Axis. It is easy to see that Q is satisfiable w.r.t.
d if and only if Shortest Common Superstring (resp., Shortest Common Super-
sequence) has a solution for S and k if Axis is NextSibling (resp., Axis is NextSibling+ or
Following).

If Axis is NextSibling ∗, we adjust the DTD to

r → ((a1 + · · · + an)#)
k,

where # does not appear in any word in S. The query Q is adapted so that, likewise, between
every pair of Σ-symbols, the symbol # must occur. ��

5 Queries with data values

A data tree is a tree in which each node u carries, besides its label lab (u), a data value from a
countably infinite data domain Δ (see also [11]).5 We write u ∼ v if two nodes in a data tree
have the same data value. Conjunctive queries over data trees can, in addition to the usual
predicates, use the binary predicates ∼ and � with the obvious interpretation. We adopt our
notation to denote CQ fragments for data values as follows: CQ(∼), CQ(�), and CQ(∼, �)
denote the CQs that use only data equality, only data inequality, and both, respectively, and
in which all axes are allowed. For Q ∈ CQ(∼, �), L(Q) is the set of all data trees t such
that there exists a satisfaction of Q on t . Schemas do not constrain data values in any way,
i.e., the set of data trees L(A) defined by an NTA A is defined precisely as in Sect. 2.2, but
with “tree” replaced by “data tree”.

Our problems of interest for queries with data values are the same problems as defined in
Sect. 2.3, but with the new definition of L(Q). We first show that data values do not change
the complexity of the satisfiability and validity problems.

Theorem 16 Satisfiability of CQs(∼, �) w.r.t. an NTA is NP-complete.

The lower bound just follows from Theorem 15. For the upper bound, the proof of Lemma 10
and Theorem 11 straightforwardly carries over to data trees.

5 We assume Δ to contain all the data values we use in our proofs and examples.

123

Conjunctive query containment over trees using schema. . . 39

Table 1 Decidability for
Containment(X |Y)

X\Y ∼ � ∼, �

∼ 2EXPTIME 2EXPTIME 2EXPTIME

� 2EXPTIME 2EXPTIME Undecidable

∼, � 2EXPTIME 2EXPTIME Undecidable

The lower bound of the following theorem follows from Theorem 6. The upper bound
follows from Theorem 20, which subsumes it.

Theorem 17 Validity of CQ(∼, �) w.r.t. an NTA is 2EXPTIME-complete.

Next, we consider containment w.r.t. a schema. We write

Containment(X |Y)

for the problem of determining whether L(P) ∩ L(A) ⊆ L(Q) for a query P ∈ CQ(X), a
query Q ∈ CQ(Y) and an NTA A. For instance, Containment(∼ |∼, �) is about contain-
ment of queries with data equalities in queries with data equalities and inequalities.

As can be seen in Table 1, the consideration of data values does not change the com-
plexity of the query containment problem for queries P, Q, unless P is allowed to use data
inequalities and Q to use both equalities and inequalities. In the latter case the problem is
undecidable (Theorem 25).

5.1 Complexity upper bounds

The proofs of the upper bounds make use of transformations from certain non-data trees to
data trees. We define these transformations next.

We assume that Δ contains pairwise distinct values d0, d1, d2, Given a finite alphabet
Σ and n ∈ N, let Σn , denote the alphabet Σ × {d1, . . . , dn, ∗}. The set of (non-data) trees
over Σn is denoted T (Σn).

We define functions f� and f∼, mapping trees from T (Σn) to data trees. They leave the
sets of vertices and edges unchanged. In a nutshell, both functions map nodes with label
(a, di) to nodes with label a and data value di . They differ in how nodes with labels (a, ∗) are
handled: f∼ maps all these nodes to nodes with label a and the same data value d0, whereas
f� maps all those nodes to nodes with different data values. More formally, f∼ and f� fulfil
the following conditions, for every tree t ∈ T (Σn), for some d0 /∈ {d1, . . . , dn}.
1. If lab t (v) = (a, di), for a ∈ Σ and i ∈ {1, . . . , n}, then node v of f∼(t) and f�(t) have

label a and data value di .
2. If lab t (v) = (a, ∗), for a ∈ Σ , then node v of f∼(t) has label a and data value d0.
3. If lab t (v) = (a, ∗), for a ∈ Σ , then node v of f�(t) has label a and a data value that

does not appear elsewhere in the tree.

Lemma 18 Given a query Q in CQ(∼, �) with n variables, one can construct NTAs A∼
Q

and A�

Q in exponential time such that for each Σn-tree t it holds that

(a) t ∈ L(A∼
Q) if and only if f∼(t) ∈ L(Q), and

(b) t ∈ L(A�

Q) if and only if f�(t) ∈ L(Q).

123

40 H. Björklund et al.

Proof The proof is an extension of the proof of Lemma 4 and we use the notation and
definitions from that proof. We give a proof for statement (b). The proof for statement (a) is
very similar.

Given Q ∈ CQ(∼, �), we construct an NTA A over Σn such that t ∈ L(A) if and
only if f�(t) ∈ L(Q). A state of A has the form (Xa, Xc, Xd , F), where Xa, Xc, Xd are
as in the proof of Lemma 4 and F : Var (Q) → {d1, . . . , dn, ∗} is a function. Formally,
(Xa, Xc, Xd , F) ∈ States (A) if (Xa, Xc, Xd) fulfill the conditions (S1)–(S4) in the proof of
Lemma 4 and additionally

(S5) if x ∼ y is an atom of Q, then F(x) = F(y) and, if F(x) = ∗, then either both x and
y belong to Xc, or none of them do, and

(S6) if x � y is an atom of Q, then F(x) �= F(y) or F(x) = F(y) = ∗ and not both of x
and y belong to Xc.

A state (Xa, Xc, Xd , F) is accepting if (Xa, Xc, Xd) satisfies conditions (F1)–(F2) of the
proof of Lemma 4.
Rules (A): contains all rules of the form

ρ = (
(Xa, Xc, Xd , F), (a, λ)

) → R, (†)

where (R1) and (R2) from the proof of Lemma 4 are satisfied, and

(R3) for each x ∈ Xc, we have F(x) = λ;
(R4) for each (X1

a, X
1
c , X

1
d , F

1) . . . (Xm
a , Xm

c , Xm
d , Fm) ∈ L(R), we have F1 = · · · =

Fm = F .

For the same reasons as in the proof of Lemma 4, automaton A can be computed in
exponential time. The function F increases the state space by a factor of at most |Var (Q)|n .
Clearly, thanks to (R4), in each accepting run of A, all nodes have the same evaluation
function F . We can therefore consider this function as independent of a particular node of t .

We show that L(A) = {t ∈ T (Σn) | f�(t) |	 Q}. For the inclusion from left to right,
let t ∈ L(A) with some accepting run r . We define the valuation θ of Q by letting θ(x) be
the unique node v satisfying r(v) = (Xa, Xc, Xd , F) with x ∈ Xc, for some Xa, Xc, Xd , F .
The proof of Lemma 4 immediately implies that with this valuation f�(t) satisfies all atoms
of Q not involving ∼. We claim that f�(t) and θ also satisfy all ∼-atoms of Q.

Indeed, if x ∼ y is an atom of Q, then, thanks to (S5), F(x) = F(y). Thus, x ∼ y is
satisfied if F(x) ∈ {d1, . . . , dn}. If F(x) = ∗, again thanks to (S5), there must be a node v

on which {x, y} ⊆ Xc holds, implying that x ∼ y holds.
For atoms x � y we consider two cases: if F(x) = F(y) = ∗, (S6) guarantees that θ(x) �=

θ(y) and by the definition of f�(t) the two nodes have different data values. Otherwise, (S6)
guarantees that F(x) �= F(y) and again x � y is satisfied. Hence, f�(t) |	 Q.

For the inclusion from right to left, let Q′ be the query resulting from Q by removing all
(positive and negative) ∼-atoms. Let A′ be the NTA for Q′ as guaranteed by Lemma 4.

Let t ∈ T (Σn) such that f�(t) |	 Q and let θ be a satisfaction of Q on f�(t). We define
an evaluation function F by letting F(x) be the second component of the label of θ(x) in t ,
for each x ∈ Var (Q).

Let t ′ be the Σ-tree obtained from t by projecting all labels to Σ . It is easy to see that
t ′ |	 Q′. Let r ′ be an accepting run of A′ on t ′ corresponding to θ , as it was established in
the proof of Lemma 4.

Let r be obtained from r ′ by adding F as fourth component to each state r ′(v) for nodes
v of t . We claim that r is a run of A.

123

Conjunctive query containment over trees using schema. . . 41

First of all, we need to show that r only needs states that fulfil (S5) and (S6). The first
statements of both conditions are immediately guaranteed by the definition of F and the fact
that θ is a satisfaction of Q. The second statement of (S5) holds as well: the satisfaction of
each atom x ∼ y by θ and the definition of f�(t) guarantee that, in case F(x) = F(y) = ∗,
we have θ(x) = θ(y), and therefore (S5) holds. Similarly for the second statment of (S6).

In r ′ it holds that, for each variable x , there exists exactly one node v with a state
(Xa, Xc, Xd , F) with x ∈ Xc and v = θ(x). From this (R3) immediately follows. Con-
dition (R4) is guaranteed by the construction of r . ��

We next show that if Q ∈ CQ(∼) ∪ CQ(�) then the containment test only needs to
consider very particular trees.

Let P be a query with variables from {x1, . . . , xn} and let td be a data tree matching P
with satisfaction θ . Then we write gn(td , θ) for the Σn-tree resulting from td by assigning a
label to every node v as follows. If lab td (v) = a,

– then v gets label (a, d j), if j ∈ {1, . . . , n} is minimal with θ(x j) ∼ v, or
– v gets label (a, ∗) if no such j exists.

Lemma 19 Let P, Q ∈ CQ(∼, �) and td be a data tree such that td |	 P with satisfaction
θ but td �|	 Q. Then the following hold.

(a) f∼(gn(td , θ)) |	 P and f�(gn(td , θ)) |	 P.
(b) If Q ∈ CQ(∼) then f�(gn(td , θ)) �|	 Q.
(c) If Q ∈ CQ(�) then f∼(gn(td , θ)) �|	 Q.

Proof Let P, Q, td , θ be as stated. It is straightforward that θ is a satisfaction for P on both
f∼(gn(td , θ)) and f�(gn(td , θ)).
To show (b), let us assume that Q ∈ CQ(∼) and f�(gn(td , θ)) |	 Q. Since td and

f�(gn(td , θ)) only differ on their data values and∼ on f�(gn(td , θ)) is actually a refinement
of ∼ on td , we can conclude that td |	 Q, a contradiction. Therefore, f�(gn(td , θ)) �|	 Q.

The proof of (c) similarly uses the fact that ∼ on td is a refinement of ∼ on f∼(gn(td , θ)).
��

We are now ready to state and prove our upper bound results.

Theorem 20 Each ofContainment(∼, � | ∼),Containment(∼, � | �),Containment
(∼ | ∼, �), w.r.t. an NTA is 2EXPTIME-complete.

Proof Hardness is immediate from Theorem 6.
For the upper bound on Containment(∼, � | ∼) we observe that from Lemma 19 (a)

and (b) it follows that if td is a counterexample to the containment of P in Q w.r.t. an NTA
A then f�(gn(td , θ)) is a counterexample as well. The upper bound then easily follows by
combining A�

P and A�

Q as defined in Lemma 18 with the NTA An which accepts a Σn-tree
t if its Σ-projection is accepted by A. The former two automata are of at most exponential
size, their deterministic counterparts are of at most doubly exponential size and therefore
it can be tested in doubly exponential time whether L(A�

P) ∩ L(An) ⊆ L(A�

Q). The upper
bound on Containment(∼, � | �) follows similarly from Lemma 19 (a) and (c).

For the upper bound on Containment(∼ | ∼, �) it suffices to observe, that if Q uses
� but P does not, then P ⊆ Q holds if and only if L(A) = ∅ because in this case trees in
which all data values are the same never match Q. ��

Hence, ∼ and � do not increase the complexity of query containment as long as they do
not co-occur in Q. We show next, that the picture changes dramatically if they do co-occur
and P uses �.

123

42 H. Björklund et al.

5.2 Undecidability results

We now turn to the proof of undecidability of Containment(� | ∼, �) (and thus also:
Containment(∼, � | ∼, �)).We first prove that validity with respect to an NTA is undecid-
able for UCQ(∼, �) and show how to adapt that to a reduction to Containment(� | ∼, �)

later on.

Theorem 21 Validity of UCQ(∼, �) queries w.r.t. NTAs is undecidable.

Proof Our proof, inspired by a proof from [40], is by a reduction fromPost’s Correspondence
Problem (PCP). In the proofs of Theorems 23 and 25 below, this reduction will be adapted
for the respective settings. Some choices in the presentation of the reduction were made with
these adaptations in mind. Readers should thus not be surprised if we do not always choose
the most obvious option to express properties of trees.

An instance of PCP over alphabet Γ = {a, b} is a sequence (w1, u1), . . . , (wn, un) of
pairs, where wi , ui ∈ Γ +, for i ∈ {1, . . . , n}. A solution to an instance is a non-empty
sequence i1, . . . , im ∈ {1, . . . , n} such that wi1 . . . wim = ui1 . . . uim . It is known that the set
of PCP instances for which a solution exists is undecidable [41].

Given an instance R = (w1, u1), . . . , (wn, un) of PCP over alphabet Γ , we will construct
a UCQ Q and an NTA A such that Q is valid with respect to A if and only if R has no
solution.

The set Σ of labels to be used by A and Q is defined as {r, #} � I � Γ , where

– r is the root label, # is a separator label, and
– I = {I1, . . . , In} is a set of index labels.

In this reduction, solution candidates will be encoded over unary trees. The automaton A
only accepts unary trees, such that the labels of the tree, read from root to leaf, form a word
in the language of the regular expression

r · (
(I1 · w1) + · · · + (In · wn)

)+ · # · (
(I1 · u1) + · · · + (In · un)

)+ · #.
Thus, all data trees accepted by A can actually be seen as data words, i.e., words where each
position carries a label and a data value. In order to simplify the terminology in the rest of the
proof, wewill therefore use standard terminology for words to reason about these unary trees.
The queries we construct will be stated as tree queries, but can be read as queries over words
by interpreting Child as the next position predicate and Child+, Child ∗as the transitive and
the transitive and reflexive closure of Child , respectively.

For a data word w and a label set X , let w|X be the word over X obtained from w by
removing all data values and deleting all positions with labels not in X .

If R has a solution, then there is a word rw#u# that is accepted by A such that w|Γ = u|Γ
and w|I = u|I .

The intuition behind our proof is as follows. We encode solution candidates for R by data
words rw#u# such that the following conditions hold.

(ENC1): No data value appears more than twice below the root.
(ENC2): The occurence of r and the two occurrences of # have the same data value.
(ENC3): If two positions are at corresponding positions in w|I and u|I , they have the same

data value.
(ENC4): If two positions are at corresponding positions in w|Γ and u|Γ , they have the same

data value.

123

Conjunctive query containment over trees using schema. . . 43

(ENC5): The length of w|I equals the length of u|I and the length of w|Γ equals the length
of u|Γ .

(ENC6): If two positions have the same data value, they carry the same label, unless one
carries r and the other #.

If a data word satisfies the requirements (ENC1)–(ENC6), we say that it is a good encoding.
We construct Q such that it matches every word accepted by A that is not a good encoding.
We further show that R has a solution if and only if there exists a good encoding that is
accepted by A. Hence, Q is valid w.r.t. A if and only if R has no solution.

We are next going to define the subqueries of query Q. We can express that (ENC1) or
(ENC2) is violated by

Q1 ≡ ∃u, x, y, z : r(u) ∧ Child+(u, x) ∧ Child+(x, y)

∧Child+(y, z) ∧ u ∼ x ∧ x ∼ y ∧ y ∼ z

Q2,r ≡ ∃x, y : r(x) ∧ #(y) ∧ Child+(x, y) ∧ x � y

Q2,# ≡ ∃x, y : #(x) ∧ #(y) ∧ Child+(x, y) ∧ x � y

For the remaining conditions we use a binary auxiliary query Separated(x, y) that expresses
that x is in the first half of the word and y in the second.6

Separated(x, y) ≡ ∃x ′, x ′′, y′ : #(x ′) ∧ #(x ′′) ∧ #(y′)
∧Child+(x, x ′) ∧ Child+(x ′, x ′′) ∧ Child+(y′, y)

We next define a query Qw,u parameterized by two words w, u over Σ ∪ {∗} which will be
used to express violations of conditions (ENC3) and (ENC4). In a nutshell, Qw,u expresses
that there are positions x1 and y1 of the first and second half, respectively, that have the same
data value, the subwords starting at x1 and y1 match w and u, but their end-positions have
different data values. Queries of this form will catch many data words that fail to be good
encodings.

Let v = v1 . . . vk and z = z1 . . . z� be words over Σ ∪ {∗} for some k, � ≥ 2. Then we
define

Qv,z ≡ ∃x1, . . . , xk, y1, . . . , y� : Separated(x1, y1) ∧ x1 ∼ y1 ∧ xk � y�

∧
k−1∧

i=1

Child (xi , xi+1) ∧
k∧

i=1

vi (xi) ∧
�−1∧

i=1

Child (yi , yi+1) ∧
�∧

i=1

zi (yi)

Here, ∗(x) has to be interpreted as TRUE.
We can express that condition (ENC3) is violated by the disjunction of the following

queries.

– Qr∗,#∗, expressing that the first I -position after the root and the first I -position after the
first #, respectively, have different data values.

– QIiwi∗,Ii ui∗, for each i ∈ {1, . . . , n}, expressing that the I -pair following some I -pair
with equal data values has different data values.

We note that A makes sure that in all cases the two ∗-positions carry labels from I . Notice
that these two queries have size polynomial in the PCP instance.

6 This definition is donewith the proof of Theorem 23 in the back of ourminds and thereforemore complicated
than a reader might have expected. In this proof, the reader should think of x ′ and y′ as being mapped to the
same node.

123

44 H. Björklund et al.

Violations of condition (ENC4) can be expressed similarly, but there are more cases to
distinguish due to the possible I -symbols between two Γ -symbols. We use the following
queries.

– Qr∗∗,#∗∗, expressing that the first Γ -position after the root and the first Γ -position after
the first #-position, have different data values.

– Qσ1σ2,τ1τ2 for each combination of σ1, σ2, τ1, τ2 ∈ Γ expressing that a Γ -pair with
identical data values is immediately followed by a Γ -pair with different data values.

– Qσ1σσ2,τ1τ2 for each combination of σ1, σ2, τ1, τ2 ∈ Γ and σ ∈ I , expressing that a
Γ -pair with identical data values is followed by a Γ -pair with different data values, but
there is an intermediate I -position in the v-word.

– Qσ1σ2,τ1ττ2 for each combination of σ1, σ2, τ1, τ2 ∈ Γ and τ ∈ I , analogously, with an
intermediate I -position in the z-word.

– Qσ1σσ2,τ1ττ2 for each combination of σ1, σ2, τ1, τ2 ∈ Γ and σ, τ ∈ I , analogously, with
intermediate I -positions in both words.

As will be detailed below, (ENC5) does not require an extra query.
Finally, violations of (ENC6) are expressed by the queries

Qσ :τ ≡ ∃x, y : σ(x) ∧ τ(y) ∧ x ∼ y,

for every pair (σ, τ) ∈ Σ2 with σ �= τ and (σ, τ) /∈ {(r, #), (#, r)}.
Query Q is the disjunction of all the CQs for (ENC1)–(ENC6) defined above.
We now show that L(A)−L(Q) �= ∅ if and only if R has a solution. For the if-direction, let

i1, . . . , im be a solution for R. Let w = Ii1 ·wi1 . . . Iim ·wim and u = Ii1 ·ui1 . . . Iim ·uim . Let
s be a data word with label sequence rw#u# such that (ENC1)–(ENC6) hold for s. Clearly,
s is accepted by A. It is easy to verify that none of the disjuncts of Q is satisfied by s. Thus
we can conclude that s ∈ L(A) − L(Q).

For the only-if-direction, assume that data word s belongs to L(A)− L(Q). We show that
s encodes a solution to R. Since s is accepted by A, we know that its label sequence has the
form rw#u#, with w ∈ [(I1 · w1) + · · · + (In · wn)]+ and u ∈ [(I1 · u1) + · · · + (In · un)]+.
So, both w and u are non-empty words. Furthermore, failure of Q1 and Q2 ensure (ENC1)
and (ENC2).

Since neither Qr∗,#∗ nor any of the QIiwi∗,Ii ui∗ queries match s, we can conclude that
the first two I -positions have the same data value and, whenever two I -positions have the
same data value, the next two I -positions have the same data values as well. We note that
thanks to A, the pair following an I -pair needs to be an I -pair or the pair of #-positions.
Altogether, (ENC3) holds and |w|I | = |u|I |. (ENC4) and |w|Γ | = |u|Γ | follow in the same
fashion. Thus, (ENC5) holds as well. Finally, (ENC6) holds, since none of the formulas Qσ :τ
matches s.

We can conclude that w|I = u|I and w|Γ = u|Σ and that thus R has a solution. ��
By some extra work and a different way of encoding solution candidates, the proof of

Theorem 21 can be extended to show that Containment(� | ∼, �) is undecidable. To this
end, we need the following lemma.

Lemma 22 Given P, Q1, . . . , Qk ∈ CQ(∼, �), and anNTA A, queries P ′, Q′ ∈ CQ(∼, �)

and an NTA A′ can be computed such that L(P)∩ L(A) ⊆ L(Q1)∪ · · · ∪ L(Qk) if and only
if L(P ′) ∩ L(A′) ⊆ L(Q′).

Proof This proof is an adaptation of a proof from [38].GivenCQs Q1, . . . , Qk and automaton
A, we construct CQs P ′, Q′, and NTA A′ such that P ′ ⊆ Q′ w.r.t. A′ if and only if P ⊆

123

Conjunctive query containment over trees using schema. . . 45

Fig. 8 Gadgets used in the proof
of Lemma 22

Q1 Q2 Qk

T T T

T

T

T

P

T

T

Qi

GQ GP GQi

Q1 ∪ · · · ∪ Qk w.r.t. A. We assume that all input queries are satisfiable, even with respect to
A, which can be tested in NP . Furthermore, all queries should have pairwise disjoint variable
sets.

The main idea is in Fig. 9. Query P is inside the GP -gadget in P ′ and the queries Qi are
inside the GQi -gadgets in Q′. Intuitively, P ′ and Q′ work together as follows. Imagine that
a tree t matches P ′ and has the sequence of 2k − 1 S-nodes as indicated in P ′. The middle
S-node in this sequence is attached to a subtree in L(GP). Now, in order for Q′ to also match
t , one of the (k many) S-nodes in Q′ must match the middle S-node in t , which means that
one of the GQi matches the tree in L(GP).

We now discuss the construction in detail. Figure 8 describes a number of query gadgets
that we will need in the reduction. The double lines have an extended meaning here; e.g.,
the double line from T ′ to Q1 means that there is a variable x such that the query contains
the atom T ′(x) and, for every variable y in the copy of Q1, the atom Child+(x, y). The
arrows between the T ′-labeled nodes in GQ indicate NextSiblingpredicates. The gadget GQi

is parameterized by i . It is crucial but easy to see that, for every i ,GQ ⊆ GQi . Figure 9 shows
how copies of the gadgets are put together to form queries P ′ and Q′. Each copy of a gadget
is unique, i.e., for each new copy, the variables are renamed. The automaton A′ checks the
following properties.

1. There are exactly 2k − 1 nodes with label S and 2k − 1 nodes with label T .
2. There are exactly k · 2(k − 1) + 1 nodes with label T ′.
3. The root has label R and has exactly one child. This child has label S.
4. Each S-labeled node, except one, has one S-labeled child.
5. Each S-labeled node has exactly one child labeled T .
6. Each T -labeled node has exactly k children, each labeled T ′, except the T -labeled node

that is child of the kth S-labeled node, counted from the root. This node has exactly one
child, labeled T ′. We call this the distinguished T -labeled node.

7. Each T ′-labeled node has exactly one child.
8. The tree rooted at the grandchild of the distinguished T -labeled node is accepted by A.

Assume that P ⊆ Q1 ∪ · · · ∪ Qk w.r.t. A. Consider a tree t ∈ L(P ′) ∩ L(A′). Let
s1, . . . , sk, . . . , s2k−1 be the S-labeled nodes of t , ordered by increasing distance from the
root. For j ∈ {1, . . . , 2k − 1}, let t j be the tree rooted in the T -labeled child of s j . For
each j ∈ {1, . . . , 2k − 1} − {k}, we note that since GQ matches in the subtree rooted at the
T -labeled child of s j , so does GQi , for every i ∈ {1, . . . , k}.

Query GP must match in tk . Since tk only has one T -labeled node, any such matching
must assign the topmost variable of GP to the root of tk . This means that P must match in
the tree t ′k , rooted in the sole grandchild of the root of tk . Since Amust accept t ′k , we conclude

123

46 H. Björklund et al.

P Q

R

S

GQ

S

GQ S

GP S

GQ

S

GQ

k −
1
tim

es

k −
1
tim

es

R

S

GQ1 S

GQ2
S

GQk

Fig. 9 Queries P ′ and Q′ from the proof of Lemma 22

that Q1 ∪ · · · ∪ Qk matches in t ′k , i.e., there is an i ∈ {1, . . . , k} such that Qi matches in t ′k .
This, in turn, means that GQi matches in tk .

We can now construct a matching of Q in t . The gadgets GQ1 , . . . ,GQi−1 match
in tk−i+1, . . . , tk−1, respectively, GQi matches in tk , and GQi+1 , . . . ,GQk match in
tk+1, . . . t2k−i , respectively.

Assume, on the other hand, that P � Q1 ∪ · · · ∪ Qk w.r.t. A. Let p be a tree in (L(P) ∩
L(A)) − L(Q1 ∪ · · · ∪ Qk). Let t be a tree in L(P ′) ∩ L(A′), whose existence is guaranteed
by our assumption, and define tk and t ′k as above. Replace t ′k by p in t . The resulting tree tp
still belongs to L(P ′) ∩ L(A′), since p is accepted by A and P matches in p. But since no
Qi , for i ∈ {1, . . . , k} matches in p, there is no matching of Q′ in tp . Thus P ′

� Q′ w.r.t.
A′. ��

Theorem 23 Containment(� | ∼, �) is undecidable.

Proof It would be tempting to conclude Theorem 23 directly from Theorem 21 and
Lemma 22, since Theorem 23 shows undecidability of validity, that is, basically, query
containment with TRUE (and thus a query without ∼) as the left-hand query. However, the
reduction in the proof of Lemma 22 might introduce ∼-atoms in P ′ through the pattern GQ ,
which has to fulfill GQ ⊆ GQi , for every i .

Therefore, we modify the proof of Theorem 21, apply Lemma 22, and do some final
adaptations. Given an instance R of PCP , we first construct a query Q that is a disjunction
of CQs and an automaton A such that Q is valid w.r.t. A, if and only if R has no solution. To
remove the disjunction in Q, we then use a modification of the construction in the proof of
Lemma 22.

Altogether, we construct queries P� ∈ CQ(�) and Q∼,� ∈ CQ(∼, �), and NTA A′ such
that Q is valid w.r.t. A if and only if L(P�) ∩ L(A′) ⊆ L(Q∼,�).

123

Conjunctive query containment over trees using schema. . . 47

a

b

b

a

(a)

a

b

b

a
(b)

u

z3

z1 z2 x

z3

z1 z2 y

z3

z1 z2 z

∼

∼

∼

(c)

Fig. 10 Trees and queries used in the proof of Theorem 23

We first describe how wemodify the encoding of solution candidates for R from the proof
of Theorem 21. We modify the unary trees used in that proof as follows. Each node gets a
new extra leftmost child. The new nodes inherit their label from their parent node. The “old”
nodes all get a new “blank” label (see Fig. 10a, b).

Clearly, the automaton A can be adapted to take care of this new shape of trees. The
disjuncts Qi of the query Q are transformed into queries Q′

i that reflect the change of the
encoding as follows. Each atomic formula a(x), for a ∈ Σ is replaced by ∃x ′Child (x, x ′) ∧
a(x ′), where x ′ is a fresh variable. At the same time, for each original variable z of Qi a new
atom blank(z) is added, ensuring that these variables can only be matched by (“original”)
nodes on the backbone of the tree. It is easy to see that a formula Qi holds on an “old”
encoding of a solution candidate if and only if Q′

i holds on its “new” encoding. The first
query Q1 (corresponding to (ENC1)) is modified even further, by replacing Child+(u, x)
with

∃z1, z2, z3 : Child+(u, z1) ∧ Following (z1, z2) ∧ Child (z3, z2) ∧ Child (z3, x),

and Child+(x, y) and Child+(y, z) by the same kind of gadget.
The resulting query Q′

1 is depicted in Fig. 10c. We note that the latter modification does
not change the semantics on the intended trees, resulting from a solution candidate by the
above “new” encoding. TheNTA A′ and the query Q∼,� = Q′ are obtained from the adapted
automaton A and the disjunction of the queries Q′

i just as in the proof of Lemma 22.
We still need to define P∼. To this end, let P ′ be the query that would be obtained

from applying the proof of Lemma 22 to Q′
1 ∪ · · · ∪ Q′

m and A. From the construction
of Lemma 22, we have that P ′ contains several occurrences of the gadget GQ′ , which can
contain data equalities. We change GQ′ to G�

Q′ ∈ CQ(�) such that, for each i ≤ m, we
have G�

Q′ ⊆ Q′
i . To this end, we replace subqueries Q

′
j in GQ′ by subqueries Q�

j , in which

every atom x ∼ y is replaced7 by x = y. Clearly, Q�

j ⊆ Q′
j holds, for every j . However,

to mimic the proof of Lemma 22, we need to make sure that GQ′ , and therefore each of the
new queries Q�

j , is satisfiable by some data tree (not necessarily of the shape of encodings
of solution candidates).

7 Of course, the resulting equality atoms can be removed by suitable variable renaming.

123

48 H. Björklund et al.

σ τ

(a)

x1 = y1

w1

w2

wk−1

wk

u2

u −1

u

u1

(b)

z3

u, x, y, z z2

z1

(c)

Fig. 11 Data trees witnessing the satisfiability of all queries Q�

j in the proof of Theorem 23

For queries of the form Qσ :τ this is actually very easy: Q′
σ :τ is the following query (in

prenex form and after identification of y and x):

∃x, x1, x2 : Child (x, x1) ∧ σ(x1) ∧ Child (x, x2) ∧ τ(x2),

which is satisfiable as Fig. 11a illustrates. Queries Q�

j resulting from formulas of the form
Qw,u are satisfiable as well, as the reader may conclude from Fig. 11b.

Since neither Q2,r nor Q2,# do contain any ∼-atoms, the only remaining, but also the
most complicated, case is query Q�

1 . However, as Fig. 11c illustrates, Q
′
1 is also satisfiable

by mapping its variables as indicated.
Altogether, we have described a reduction from PCP to Containment(� | ∼, �) and we

can conclude that the latter is undecidable. ��
5.3 Containment without schema information

It actually turns out that if both queries can use ∼ and �, the schema automaton from
Theorem 23 can be eliminated. Thus containment for CQ(∼, �) queries is undecidable even
without schema information.

For the proof, we first show a counterpart of Lemma 22.

Lemma 24 The problem to determine whether L(P) ⊆ L(Q1) ∪ · · · ∪ L(Qk) for given
queries P, Q1, . . . , Qk from CQ(∼, �), is reducible to containment for CQ(∼, �) queries.

Proof The proof is analogous to the proof of Lemma 3 in [38] (and quite similar to the proof
of Lemma 22). ��
Theorem 25 Containment for CQ(∼, �) queries is undecidable.

Proof The proof is similar to the proof of Theorem 23 in that it modifies the proof of
Theorem 21 and combines it with (the new) Lemma 24. Given an instance

(w1, u1), . . . , (wn, un)

of PCP over alphabet Γ = {a, b}, we construct a CQ(∼, �) query P and a disjunction Q of
CQ(∼, �) queries, such that P ⊆ Q if and only if (w1, u1), . . . , (wn, un) has no solution.

123

Conjunctive query containment over trees using schema. . . 49

As before, we let Σ = {r, #} � I � Γ . In the absence of an NTA, there are two additional
aspects that we have to use the queries to take care of:

(1) The structure of any solution candidate, i.e., it should be a word matching the regular
expression

r · [(I1 · w1) + · · · + (In · wn)]
+ · # · [(I1 · u1) + · · · + (In · un)]+ · #.

(2) Since we no longer have a schema that determines the set of labels that can occur in
trees, we cannot ensure that two nodes have the same label by a disjunction over all pairs
of non-equal labels, as we did in the proof of Theorem 21. Therefore, we use data values
to encode the labels of Σ .

We first describe how to achieve (1). Let Σ = {σ1, . . . , σm} with σ1 = r and σm = #. The
query P guarantees that the tree has a path that starts with positions with pairwise distinct
data values which carries all symbols from Σ − {#}, beginning with r , and has at least two
occurrences of #:

P ≡ ∃x1, . . . , xm−1, y1, y2

:
m−2∧

i=1

Child (xi , xi+1) ∧
m−1∧

i=1

σi (xi) ∧
∧

1≤i< j≤m−1

xi � x j

∧Child+(xm−1, y1) ∧ Child+(y1, y2) ∧ #(y1) ∧ #(y2).

As in the proof of Theorem 21, we use the query Q to ensure (ENC1)–(ENC6). Furthermore,
to make sure that solution candidates do not branch, we add the following query as a disjunct
to Q.

∃x, y: NextSibling (x, y)

To ensure that only the first position has label r we also add

∃x, y: Child (x, y) ∧ r(y).

For every i ∈ {1, . . . , n} we must make sure that Ii is followed by wi (if in the first half of
the solution candidate) followed by I j (for some j) or #. To this end, we write one query for
every possible deviation from this pattern. I.e., for every word s in Γ |wi | − {wi } we write a
query that matches the pattern Ii · s, and for every a ∈ Σ , we write a query that matches the
pattern Ii · wi · a.

However, we can not do this directly, since, as already mentioned above, we can not
exhaustively enumerate all labels that might occur in a tree. Therefore, we need to modify
the queries described in the previous paragraph along the same lines as we modify the other
queries from the proof of Theorem 21 to achieve (2), as explained next.

The idea for (2) is very simple. The new encoding uses two (consecutive) positions y, z
to encode one position x of the old encoding of a solution candidate (with the exception of
the m − 1 first positions and the two #-positions). Position y is responsible for the data value
d of x and therefore just has d as data value. Position z encodes the label σ j of position x
by carrying the same data value as the j-th position of the path (i.e., the position to which
x j is mapped in P above). The labels of y and z are thus irrelevant. The queries Qi and the
queries that shall ensure the pattern of solution candidates have to be adapted accordingly,
in a straightforward manner.

We note that the application of Lemma 24 to P and Q1, . . . , Qk might introduce∼-atoms
in P ′. ��

123

50 H. Björklund et al.

6 Conjunctive queries versus XPath 2.0

Actually, it is technically not difficult to write the queries of our lower bound proofs as XPath
2.0 queries (see, e.g., [6,44]) adhering to the grammar

locpath ::= ‘/’ locpath | locpath ‘/’ locpath | locstep
locpath ∩ locpath

locstep ::= axis ‘::’ ntst ‘[’ bexpr ‘]’ …‘[’ bexpr ‘]’
bexpr ::= bexpr ‘and’ bexpr | locpath.
axis ::= ‘self’ | ‘child’ | ‘parent’ | ‘descendant’ |

‘descendant-or-self’ | ‘ancestor’ |
‘ancestor-or-self’ | ‘following’ |
‘following-sibling’ | ‘preceding’ |
‘preceding-sibling’.

where “locpath” is the start production and “ntst” denotes Σ-symbols labeling document
nodes or the star ‘∗’ that matches all tags (“node tests”). All operators come from Core XPath
1.0, except for the path intersection operator ‘∩’ which is from XPath 2.0. The semantics
of the path intersection operator can be found in [44]. Essentially, a locpath returns a binary
relation on a tree, and path intersection returns the intersection of two binary relations.

The most challenging query is the query QCT from the proof of Theorem 6. Recall
that QCT is graphically presented in Fig. 6 in Sect. 3.2.3, which significantly helps for
understanding the XPath 2.0 query.

QCT ≡
n⋂

i=0

Φi

We define the queries used in QCT :

Φ0 = 1/parentn+k+3:: ∗ /childn+k+4::1

For 1 ≤ i ≤ n, we define Φi as

Φi = 1/ancestor:: f/parent::t/parent::s/

(Ψ 1
i ∩ Ψ 2

i)/

child::t/child::m/descendant::1

where Ψ 1
i is defined as

Ψ 1
i = ./child::p/descendant::1/parenti+4:: ∗ /

childi+5::1/ancestor::p/parent::s

and Ψ 2
i is defined as

Ψ 2
i = ./parenti ::r/parent::CT /

child::CT /child::r/childi ::s

The XPath 2.0 version of query QCT can also be adapted accordingly for the proof of
Theorem 9, using predicate expressions.

123

Conjunctive query containment over trees using schema. . . 51

Fig. 12 How to reduce from
n-ary queries to 0-ary queries

a

b c

e

dx1 x2 x3

a

b c

e

∗

dx1 x2 x3

X2X1 X3

7 Boolean versus N-ary queries

Until now, we always considered conjunctive queries without free variables. This means that
we only looked at whether a tree models the query or not instead of considering queries
that return n-tuples. One can also consider n-ary conjunctive queries, i.e., CQs with n free
variables, returning a n-ary relation when evaluated on a tree. For two n-ary queries P and
Q, P is contained in Q if, for every tree t , the relation returned by P is a subset of the relation
returned by Q.

First, notice that, for testing whether a query is satisfiable or not, it does not matter whether
a query is Boolean or n-ary. So all our results on satisfiability carry over to n-ary queries.

Second, all our other results concern conjunctive queries that can use the Child -axis.
Using a technique of Kimelfeld and Sagiv [30], one can reduce containment for such n-ary
queries to containment of Boolean queries. For instance, consider the left query P(x1, x2, x3)
in Fig. 12. The reduction does two things. First of all, it introduces for each free variable xi ,
a new variable x ′

i and adds the atoms Child (xi , x ′
i) ∧ Xi (x ′

i) to the query, where Xi is a new
label. Second, for each leaf node v of the query8 that does not correspond to a free variable,
it adds a new variable v′ and adds the atom Child (v, v′) to the query. For example, for the
query P(x1, x2, x3), we obtain the query P ′ on the right of Fig. 12. Here, nodes u labeled
with ∗ in the figure are nodes for which the query does not have a label, i.e., does not have
an atom of the form a(u). It is now easy to see that, for two queries P(x) and Q(x)9 with n
free variables, P is contained in Q if and only if L(P ′) ⊆ L(Q′), where P ′ and Q′. Indeed,
the proof is analogous to the one in [30].

One can generalize this reasoning to incorporate schemas. Such schemas would, e.g.,
allow the labels Xi as leaf child of every node.

8 Related work

We discuss the relation of our paper to some of the above mentioned work. Most relevant
to us are the papers by ten Cate and Lutz [44], by David [20] (which evolved independently
from ours), and by Lakshmanan et al. [32]. The connection with Hidders’ work [29] is
explainedmore elaborately in [7]. Hidders considers XPath 2.0 satisfiability, but does not take
schema information into account. Ten Cate and Lutz study query containment for expressive
fragments of XPath 2.0, which is closely related to our conjunctive queries. They also take
schema information into account (at least for DTDs and XML Schema Definitions) and get

8 For the purpose of the reduction, a node v of the query is a leaf node if and only if the query does not have
any atom of the form Child (v, w) or Child+(v, w).
9 We can assume w.l.o.g. that the free variables are the same in P and Q.

123

52 H. Björklund et al.

2EXPTIME-completeness, but their queries are much more powerful. They have negation,
disjunction, and union while conjunctive queries do not.

The precise relation between our conjunctive queries andXPath 2.0 is not entirely obvious.
Conjunctive queries are at least as expressive as the XPath 2.0 fragment that consists of Core
XPath 1.0 without union, disjunction or negation, but augmented with the XPath 2.0 path
intersection operator (see [44]). This implies that our upper bound proofs also apply to this
XPath 2.0 fragment. On the other hand, such XPath expressions are syntactically constrained
and cannot use path intersection arbitrarily. Our lower bound proofs can, however, also be
adapted to these XPath 2.0 expressions. In this light, our results significantly strengthen the
lower bound proof of Theorem 27 in [44] when DTD information is considered. Ten Cate and
Lutz consider Core XPath 2.0 queries with path intersection and vertical navigation (denoted
CoreXPath↓,↑(∩) in their paper) and prove that path containment w.r.t. DTD information is
2EXPTIME-complete (Theorem 27 and Proposition 6 in [44]). Their proof uses negation and
union in queries, but our lower bound proof in Sect. 6 shows that, in the presence of DTDs,
containment for CoreXPath↓,↑(∩) queries is 2EXPTIME-hard, even when the queries do not
use union or negation. (Without DTD information, containment of CoreXPath↓,↑(∩)without
union or negation drops to Π P

2 [7], since this fragment of CoreXPath↓,↑(∩) is a subclass of
conjunctive queries over trees.)

David studies the complexity of satisfiability for Boolean combinations of data tree pat-
terns with respect to DTDs [20]. Different fragments are investigated, and the complexity
results range from NP to undecidable. This formalism is on the surface quite similar to CQs
with data value predicates, but there are some decisive differences. First, the data tree patterns
are always tree-shaped, like XPath queries without path intersection. Second, the semantics
used in [20] is injective, i.e., two variables cannot be assigned the same node, unlike the one
for CQs. This means that boolean combinations of data tree patterns are in general more
expressive but exponentially less succinct than CQs.

Conjunctive queries over trees are closely related to the tree patterns investigated in the
context of incomplete XML [3,21,27]. The incomplete trees introduced in [3] are tree-shaped
but have variables with which they can test data value equality. When investigated in a setting
where one can express that each node carries a unique data value, a data value equality test
between two nodes therefore expresses that the nodes are the same. For this reason, some of
our proofs on queries with data value tests (Sect. 5) can be adapted to show similar results
about incomplete trees (see, e.g., [21]). In particular, the proof of Theorem 8.1 in [21] builds
on the proof of our Theorem 25.

In XML data exchange, the pattern queries for specifying the relationship between source
data and target data are similar to conjunctive queries over trees [9,22,23]. The topic of XML
data exchange is treated in depth in [2], Part 3.

Datalog programs that operate on trees and that natively use relations such as Child
and Descendant are closely connected to conjunctive queries over trees as well. In fact,
such Datalog programs are usually more powerful than conjunctive queries over trees and,
therefore, our lower bound proofs can be used to obtain lower bounds for Datalog query
containment, see, e.g., [1,4,10].

Furthermore, there is a large amount of work on static analysis for XPath 1.0 (see, e.g.,
[5,18,19,26,37,38,40,47]). XPath 1.0 relates to our conjunctive queries in a similar way as
XPath 2.0, except that XPath 1.0 does not have a path intersection operator. In other words,
complexity lower bounds for XPath 1.0 sometimes carry over to conjunctive queries. We
indicated this in the paper whenever relevant.

Lakshmanan et al. study satisfiability, with andwithout schema information, of tree pattern
queries, where the tree patterns are also equipped with a node identity operator and can

123

Conjunctive query containment over trees using schema. . . 53

#

a (val = b11) · · · a (val = bm1) a

a (val = b12) · · · a (val = bm2) a

...
...

...

a (val = b1n1
) · · · a (val = bmnm

) a

#

k
tim

es

Fig. 13 Query Q for the proof of Lemma 26. Each single arrow denotes the Child -axis, and each double
arrow denotes the Child+-axis

compare data values.10 The results of the paper do not overlap much with our results on
satisfiability, since they consider a limited, non-recursive, form of DTDs. However, their
claim [32, Theorem 3.2] that query satisfiability for queries with structural constraints, Value
Based Constraints (VBCs) and no wildcards is in PTIME, seems to be wrong in the light
of our findings. Indeed, by adapting the proof of our Lemma 15, we can conclude that this
problem is NP-hard, as shown next. We state the lemma in the terminology of [32] but the
main construction in our NP-hardness proof for the same problem can be understood from
our definitions.

Lemma 26 Query satisfiability for queries with structural constraints, Value Based Con-
straints (VBCs) and no wildcards is NP-hard.

Proof We give a reduction from Shortest Common Supersequence. Thereto, let S and k
be an input of Shortest Common Supersequence. Let S = {b11 . . . b1n1 , . . . , b

m
1 . . . bmnm }

be a set of strings over some alphabet. Then the query Q is defined as shown in Fig. 13. The
idea is that a common supersequence for S must be formed in the data values of a length k
string, that is enforced by the right hand side of Fig. 13. The confluency in the bottom #-
labeled node is obtained via structural constraints, which allow to identify nodes (see [32]).
All nodes, apart from the two #-labeled nodes bear the alphabet label a. Finally, the val = x
equations denote the value-based constraints—they say that the value at the current node
must be equal to x .

It is easy to see that Q is satisfiable if and only if Shortest Common Supersequence
has a solution for S and k. ��

10 Here, structural constraints include node identities and VBCs allow comparison of data values to constants.

123

54 H. Björklund et al.

9 Conclusion

We studied the query containment and the validity problem for conjunctive queries over
trees (1) relative to a schema and (2) taking into account data values. It turned out that in
the presence of a schema the complexity of the problem drastically increases. Thus, even
though the query language does not have neither negation nor disjunction, it shares the bad
complexity (2EXPTIME) of the language in [44].

Not surprisingly, with equalities and inequalities on data values the containment problem
even becomes undecidable. Nevertheless, a slight restriction on the occurrence of inequalities
yields a decidable problem.

Although conjunctive queries are a very natural query language, future research should
identify tractable fragments, in particular with other restrictions than acyclicity (see, e.g.,
[39]). We found it interesting to observe that, from the lower bound proof of Theorem 6, we
can conclude that there does not exist an exponential-size tree automaton recognizing the
complement language of a conjunctive query.

Corollary 27 In general, there does not exist an exponential-size nondeterministic tree
automaton recognizing L(Q), where Q is a CQ(Child ,Child+).

Proof Towards a contradiction, assume that, for every conjunctive query Q, there exists
an exponential-size NTA AQ for L(Q). This means that, if there is a counterexample for
the containment problem P ⊆ Q w.r.t. NTA A, there always exists a counterexample of
exponential depth. However, this would imply, according to the proof of Theorem 6, every
EXPSPACEalternating Turing Machine has an accepting computation tree of at most expo-
nential depth, which is a contradiction. ��

Finally, we point out that some of our lower bound proofs (Theorems 6, 9, 12, and 15)
use non-fixed alphabets. It is not yet clear if the proofs can also be adapted for alphabets of
constant size.

Acknowledgements This workwas supported by grant numberMA4938/2-1 from theDeutsche Forschungs-
gemeinschaft (Emmy Noether Nachwuchsgruppe) and the Swedish Research Council Grant 621-2011-6080.

References

1. Abiteboul, S., Bourhis, P.,Muscholl, A.,Wu, Z.: Recursive queries on trees and data trees. In: International
Conference on Database Theory (ICDT), pp. 93–104 (2013)

2. Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange. Cambridge University
Press, Cambridge (2014)

3. Barceló, P., Libkin, L., Poggi, A., Sirangelo, C.: XML with incomplete information. J. ACM 58(1), 4
(2010)

4. Benedikt, M., Bourhis, P., Senellart, P.: Monadic datalog containment. In: International Colloquium on
Automata, Languages, and Programming (ICALP), pp. 79–91 (2012)

5. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs. J. ACM 55(2), Art. no. 8
(2008). doi:10.1145/1346330.1346333

6. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J., Siméon, J.: XML path
language (XPath) 2.0. Technical report, World Wide Web Consortium (2007). http://www.w3.org/TR/
xpath20/

7. Björklund, H., Martens, W., Schwentick, T.: Conjunctive query containment over trees. J. Comput. Syst.
Sci. 77(3), 450–472 (2011)

8. Björklund, H., Martens, W., Schwentick, T.: Validity of tree pattern queries with respect to schema
information. In: Mathematical Foundations of Computer Science (MFCS), pp. 171–182 (2013)

123

http://dx.doi.org/10.1145/1346330.1346333
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/

Conjunctive query containment over trees using schema. . . 55

9. Bojanczyk, M., Kolodziejczyk, L.A., Murlak, F.: Solutions in XML data exchange. J. Comput. Syst. Sci.
79(6), 785–815 (2013)

10. Bojanczyk,M.,Murlak, F.,Witkowski,A.: Containment ofmonadic datalog programs via bounded clique-
width. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 427–439
(2015)

11. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML
reasoning. J. ACM 56(3), Art. no.13 (2009). doi:10.1145/1516512.1516515

12. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Comput. 142(2), 182–206
(1998)

13. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)
14. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In:

STOC, pp. 77–90 (1977)
15. Chlebus, B.S.: Domino-tiling games. J. Comput. Syst. Sci. 32(3), 374–392 (1986)
16. Clark, J., Murata, M.: Relax NG specification (2001). http://www.relaxng.org/spec-20011203.html
17. Czerwinski, W., David, C., Losemann, K., Martens, W.: Deciding definability by deterministic regular

expressions. In: InternationalConference onFoundations of SoftwareScience andComputationStructures
(FOSSACS), pp 289–304. Springer, Berlin (2013)

18. Czerwinski,W.,Martens,W.,Niewerth,M., Parys, P.:Minimization of tree pattern queries. In: Symposium
on Principles of Database Systems (PODS), pp. 43–54 (2016)

19. Czerwinski, W., Martens, W., Parys, P., Przybylko, M.: The (almost) complete guide to tree pattern
containment. In: Symposium on Principles of Database Systems (PODS), pp. 117–130 (2015)

20. David, C.: Complexity of data tree patterns over XML documents. In: MFCS, pp. 278–289 (2008)
21. David, C., Gheerbrant, A., Libkin, L., Martens, W.: Containment of pattern-based queries over data trees.

In: International Conference on Database Theory (ICDT), pp. 201–212 (2013)
22. David, C., Hofman, P., Murlak, F., Pilipczuk, M.: Synthesizing transformations from XML schema map-

pings. In: International Conference on Database Theory (ICDT), pp. 61–71 (2014)
23. David, C, Libkin, L., Murlak, F.: Certain answers for XML queries. In: Symposium on Principles of

Database Systems (PODS), pp. 191–202 (2010)
24. Flum, Jörg, Frick, Markus, Grohe, Martin: Query evaluation via tree-decompositions. J. ACM 49(6),

716–752 (2002)
25. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. J. Comput. Syst. Sci. 20(1),

50–58 (1980)
26. Geerts, F., Fan, W.: Satisfiability of XPath queries with sibling axes. In: DBPL, pp. 122–137 (2005)
27. Gheerbrant, A., Libkin, L., Tan, T.: On the complexity of query answering over incomplete XML docu-

ments. In: ICDT, pp. 169–181 (2012)
28. Gottlob, G., Koch, C., Schulz, K.U.: Conjunctive queries over trees. J. ACM 53(2), 238–272 (2006)
29. Hidders, J.: Satisfiability of XPath expressions. In: DBPL, pp. 21–36 (2003)
30. Kimelfeld, B., Sagiv, Y.: Revisiting redundancy and minimization in an XPath fragment. In: Extending

Database Technology (EDBT), pp. 61–72 (2008)
31. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J. Comput. Syst.

Sci. 61(2), 302–332 (2000)
32. Lakshmanan, L.V.S., Ramesh, G., Wang, H., Zhao, Z.: On testing satisfiability of tree pattern queries. In:

VLDB, pp. 120–131 (2004)
33. Lu, P., Bremer, J., Chen, H.: Deciding determinism of regular languages. Theory Comput. Syst. 57(1),

97–139 (2015). doi:10.1007/s00224-014-9576-2
34. Martens, W., Neven, F.: On the complexity of typechecking top-down XML transformations. Theor.

Comput. Sci. 336(1), 153–180 (2005)
35. Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for XML schemas and chain

regular expressions. SIAM J. Comput. 39(4), 1486–1530 (2009)
36. Martens,W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity of XML schema. ACM

Trans. Database Syst. 31(3), 770–813 (2006)
37. Marx, M.: Conditional XPath. ACM TODS 30(4), 929–959 (2005)
38. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J. ACM 51(1), 2–45 (2004)
39. Murlak, F., Oginski,M., Przybylko,M.: Between tree patterns and conjunctive queries: Is there tractability

beyond acyclicity? In: Mathematical Foundations of Computer Science (MFCS), pp. 705–717 (2012)
40. Neven, F., Schwentick, T.: On the complexity of XPath containment in the presence of disjunction, DTDs,

and variables. Log. Methods Comput. Sci. 2(3), Art. no. 1 (2006). doi:10.2168/LMCS-2(3:1)2006
41. Post, E.L.: A variant of a recursively unsolvable problem. Bull. AMS 52(4), 264–268 (1946)
42. Räihä, K.J., Ukkonen, E.: The shortest common supersequence problem over binary alphabet is NP-

complete. Theor. Comput. Sci. 16(2), 187–198 (1981)

123

http://dx.doi.org/10.1145/1516512.1516515
http://www.relaxng.org/spec-20011203.html
http://dx.doi.org/10.1007/s00224-014-9576-2
http://dx.doi.org/10.2168/LMCS-2(3:1)2006

56 H. Björklund et al.

43. Takahashi, M.: Generalizations of regular sets and their application to a study of context-free languages.
Inf. Control 27(1), 1–36 (1975)

44. ten Cate, B., Lutz, C.: The complexity of query containment in expressive fragments of XPath 2. J. ACM
56(6), Art. no. 31 (2009). doi:10.1145/1568318.1568321

45. Thatcher, JamesW.,Wright, Jesse B.: Generalized finite automata theory with an application to a decision
problem of second-order logic. Math. Syst. Theory 2(1), 57–81 (1968)

46. Vardi, Moshe Y.: Reasoning about the past with two-way automata. In: Proceedings of the 25th Inter-
national Colloquium on Automata, Languages and Programming (ICALP’98), Aalborg, Denmark, July
13–17, 1998, pp. 628–641 (1998)

47. Wood, P.T.: Containment for XPath fragments under DTD constraints. In: ICDT, 2003. Full version,
obtained through personal communication (2003)

123

http://dx.doi.org/10.1145/1568318.1568321

	Conjunctive query containment over trees using schema information
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Conjunctive queries over trees
	2.2 Schemas
	2.3 Our problems of interest

	3 Validity and containment
	3.1 Complexity upper bounds
	3.2 Complexity lower bounds
	3.2.1 Alternating turing machines
	3.2.2 The encoding
	3.2.3 The reduction
	3.2.4 DTDs

	4 Satisfiability
	4.1 Complexity upper bounds
	4.2 Complexity lower bounds

	5 Queries with data values
	5.1 Complexity upper bounds
	5.2 Undecidability results
	5.3 Containment without schema information

	6 Conjunctive queries versus XPath 2.0
	7 Boolean versus N-ary queries
	8 Related work
	9 Conclusion
	Acknowledgements
	References

