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Abstract Two-player quantitative zero-sum games provide a natural framework to synthe-
size controllers with performance guarantees for reactive systems within an uncontrollable
environment. Classical settings include mean-payoff games, where the objective is to opti-
mize the long-run average gain per action, and energy games, where the system has to avoid
running out of energy. We study average-energy games, where the goal is to optimize the
long-run average of the accumulated energy. We show that this objective arises naturally in
several applications, and that it yields interesting connections with previous concepts in the
literature. We prove that deciding the winner in such games is in NP ∩ coNP and at least
as hard as solving mean-payoff games, and we establish that memoryless strategies suffice
to win.We also consider the case where the system has to minimize the average-energywhile
maintaining the accumulated energy within predefined bounds at all times: this corresponds
to operating with a finite-capacity storage for energy. We give results for one-player and
two-player games, and establish complexity bounds and memory requirements.
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1 Introduction

Quantitative games Game-theoretic formulations are a standard tool for the synthesis of
provably-correct controllers for reactive systems [24]. We consider two-player (system vs.
environment) turn-based games played on finite graphs. Vertices of the graph are called states
and partitioned into states of player 1 and states of player 2. The game is played by moving
a pebble from state to state, along edges in the graph, and starting from a given initial state.
Whenever the pebble is on a state belonging to player i , player i decides where to move the
pebble next, according to his strategy. The infinite path followed by the pebble is called a play:
it represents one possible behavior of the system. A winning objective encodes acceptable
behaviors of the system and can be seen as a set of winning plays. The goal of player 1 is to
ensure that the outcome of the game will be a winning play, whatever the strategy played by
his adversary.

To reason about resource constraints and the performance of strategies, quantitative games
have been considered in the literature. See for example [3,11,33], or [34] for an overview.
Those games are played on weighted graphs, where edges are fitted with integer weights
modeling rewards or costs. The performance of a play is evaluated via a payoff function that
maps it to the numerical domain. The objective of player 1 is then to ensure a sufficient payoff
with regard to a given threshold value. Seminal classes of quantitative games include mean-
payoff (MP), total-payoff (TP) and energy games (EG). In MP games [17,26,38], player 1
has to optimize his long-run average gain per edge taken whereas, in TP games [21,22],
player 1 has to optimize his long-run sum of weights. Energy games [6,11,25] model safety-
like properties: the goal is to ensure that the running sum of weights never drops below
zero and/or that it never exceeds a given upper bound U ∈ N. All three classes share
common properties. First, MP games, TP games, and EG games with only a lower bound
(EGL ) are memoryless determined (given an initial state, either player 1 has a strategy to
win, or player 2 has one, and in both cases no memory is required to win). Second, decid-
ing the winner for those games is in NP ∩ coNP and no polynomial algorithm is known
despite many efforts (e.g., [9,16]). Energy games with both lower and upper bounds (EGLU )
are more complex: they are EXPTIME-complete and winning requires memory in
general [6].

While those classes are well-known, it is sometimes necessary to go beyond them to accu-
rately model practical applications. For example, multi-dimensional games and conjunctions
with a parity objective model trade-offs between different quantitative aspects [12,15,37].
Similarly,windowobjectives address the need for strategies ensuringgoodquantitative behav-
iors within reasonable time frames [16].

Average-energy games We study the average-energy (AE) payoff function: in AE games, the
goal of player 1 is to optimize the long-run average accumulated energy over a play. We
introduce this objective to formalize the specification desired in a practical application [10],
which we detail in the following as a motivating example. Interestingly, it turns out that this
payoff first appeared long ago [36], but it was not subject to a systematic study until very
recently: see related work for more discussion.

In addition to being meaningful w.r.t. practical applications, AE games also have theo-
retical interest. In [14], Chatterjee and Prabhu define the average debit-sum level objective,
which can be seen as a variation of the average-energy where the accumulated energy is
taken to be zero in any point where it is actually positive (hence, it focuses on the average
debt). They use the corresponding games to compute the values of quantitative timed sim-
ulation functions. In particular, they provide a pseudo-polynomial-time algorithm to solve
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Table 1 Complexity of deciding the winner and memory requirements for quantitative games:MP stands for
mean-payoff, TP for total-payoff, EGL (resp. EGLU ) for lower-bounded (resp. lower- and upper-bounded)
energy, AE for average-energy, AEL (resp. AELU ) for average-energy under a lower bound (resp. and upper
bound U ∈ N) on the energy, c. for complete, e. for easy, and h. for hard

Game objective 1-Player 2-Player Memory

MP P [28] NP ∩ coNP [38] Memoryless [17]

TP P [19] NP ∩ coNP [21] Memoryless [22]

EGL P[6] NP ∩ coNP [6,11] Memoryless [11]

EGLU PSPACE-c. [18] EXPTIME-c. [6] Pseudo-polynomial

AE P NP ∩ coNP Memoryless

AELU , polynomial U P NP ∩ coNP Polynomial

AELU , arbitrary U PSPACE-c. EXPTIME-c. Pseudo-polynomial

AEL PSPACE-e./NP-h. Open/EXPTIME-h. Open (≥ pseudo-p.)

Results without reference are proved in this paper

those games, but the complexity of deciding the winner as well as the memory requirements
are open. Here, we solve those questions for the very similar average-energy objective.

Motivating example Our example is a simplified version of the industrial application studied
by Cassez et al. in [10]. Consider a machine that consumes oil, stored in a connected accu-
mulator. We want to synthesize an appropriate controller to operate the oil pump that fills
the accumulator, and by the effect of pressure, that releases oil from the accumulator into
the machine with a (time-varying) rate according to desired production. In order to ensure
safety, the oil level in the accumulator should be maintained at all times between a minimal
and a maximal level. This part of the specification can be encoded as an energy objective
with both lower and upper bounds (EGLU ). At the same time, the more oil (thus pressure) in
the accumulator, the faster the whole apparatus wears out. Hence, an ideal controller should
minimize the average level of oil in the long run. This desire can be formalized through the
average-energy payoff (AE). Overall, the specification is thus tominimize the average-energy
under the strong energy constraints: we denote the corresponding objective by AELU .

Contributions Our main results are summarized in Table 1.

(A) We establish that the average-energy objective can be seen as a refinement of total-
payoff, in the same sense as total-payoff is seen as a refinement of mean-payoff [21]: it
allows to distinguish strategies yielding identical mean-payoff and total-payoff.

(B) We show that deciding the winner in two-player AE games is in NP∩ coNP whereas it
is in P for one-player games. In both cases, memoryless strategies suffice (Theorem 8).
Those complexity boundsmatch the state-of-the-art forMP and TP games [9,21,26,38].
Furthermore we prove that AE games are at least as hard as mean-payoff games (The-
orem 10). Therefore, the NP ∩ coNP-membership can be considered optimal w.r.t. our
knowledge of MP games. Technically, the crux of our approach is as follows. First,
we show that memoryless strategies suffice in one-player AE games (Theorem 6): this
requires to prove important properties of the AE payoff as classical sufficient criteria
for memoryless determinacy present in the literature fail to apply directly. Second, we
establish a polynomial-time algorithm for the one-player case: it exploits the structure of
winning strategies and mixes graph techniques with local linear program solving (The-
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94 P. Bouyer et al.

orem 7). Finally, we lift memoryless determinacy to the two-player case using results
by Gimbert and Zielonka [23] and obtain the NP ∩ coNP-membership as a corollary
(Theorem 9).

(C) We establish an EXPTIME algorithm to solve two-player AE games with lower- and
upper-bounded energy (AELU ) with an arbitrary upper bound U ∈ N (Theorem 13). It
relies on a reduction of the AELU game to a pseudo-polynomially larger AE game where
the energy constraints are encoded in the graph structure. Applying straightforwardly
the AE algorithm on this game would only give us NEXPTIME ∩ coNEXPTIME-
membership, hence we avoid this blowup by further reducing the problem to a particular
MP game and applying a pseudo-polynomial algorithm, with some care to ensure that
overall the algorithm only requires pseudo-polynomial time in the original AELU game.
Since the simpler EGLU games (i.e., AELU with a trivial AE constraint) are already
EXPTIME-hard [6], the EXPTIME-membership result is optimal. We also prove that
pseudo-polynomial memory is both sufficient and in general necessary to win in AELU

games, for both players (Theorem 14). We show that one-player AELU games are
PSPACE-complete via the on-the-fly construction of a witness path based on the afore-
mentioned reduction, answering a question left open in [7]. For polynomial (in the size of
the game graph) values of the upper boundU—or if it is given in unary—the complexity
of the two-player (resp. one-player) AELU problem collapses to NP ∩ coNP (resp. P)
with the same approach, and polynomial memory suffices for both players.

(D) We provide partial answers for the AEL objective—AE under a lower bound constraint
on energy but no upper bound. We show PSPACE-membership for the one-player case
(Theorem 17), by reducing the problem to an AELU game with a sufficiently large
upper bound. That is, we prove that if the player can win for the AEL objective, then
he can do so without ever increasing its energy above a well-chosen bound. We also
prove the AEL problem to be at least NP-hard in one-player games (Theorem 17)
and EXPTIME-hard in two-player games (Lemma 20) via reductions from the subset-
sum problem and countdown games respectively. Finally, we show that memory is
required for both players in two-player AEL games (Lemma 21), and that pseudo-
polynomialmemory is both sufficient and necessary in the one-player case (Theorem18).
The decidability status of two-player AEL games remains open as we only provide a
correct but incomplete incremental algorithm (Lemma 19). We conjecture that the two-
playerAEL problem is decidable and sketch a potential approach to solve it.We highlight
the key remaining questions and discuss some connections with related models that are
known to be difficult.

Observe that in many applications, the energy must be stocked in a finite-capacity storage
for which an upper bound is provided. Hence, the model of choice in this case is AELU .

Related work This paper extends previous work presented in a conference [7]: it gives a full
presentation of the technical details, alongwith additional results and improved complexities.

The average-energy payoff—Eq. (1)—appeared in a paper by Thuijsman and Vrieze in
the late eighties [36], under the name total-reward. This definition is different from the
classical total-payoff—see Sect. 2—commonly studied in the formal methods community
(see for example [21,22]), which, despite that, has been referred in many papers as either
total-payoff or total-reward equivalently.Wewill see that both definitions are indeed different
and exhibit different behaviors.

Maybe due to this confusion, the payoff of Eq. (1)—which we call average-energy thus
avoidingmisunderstandings—was not studied extensively until recently. Nothing was known
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about memoryless determinacy and complexity of deciding the winner. Independently to our
work, Boros et al. recently studied the same payoff (under the name total-payoff ). In [5], they
study Markov decision processes and stochastic games with the payoff of Eq. (1) and solve
both questions. Their results overlap with ours for AE games (Table 1). Let us first mention
that our results were obtained independently. Second, and most importantly, our approach
and techniques are different, and we believe our take on the problem yields some interest for
our community. Indeed, the algorithm of Boros et al. entirely relies on linear programming
in the one-player case, and resorts to approximation by discounted games in the two-player
one. Our techniques are arguably more constructive and based on inherent properties of the
payoff. In that sense, it is closer to what is usually deemed important in our field. For example,
we provide an extensive comparison with classical payoffs.We base our proof of memoryless
determinacy on operational understanding of the AE which is crucial in order to formalize
proper specifications. Our technique then benefits from seminal works [23] to bypass the
reduction to discounted games and obtain a direct proof, thanks to our more constructive
approach. Lastly, while [5] considers the AE problem in the stochastic context, we focus on
the deterministic one but consider multi-criteria extensions by adding bounds on the energy
(AELU and AEL games). Those extensions are completely new, exhibit theoretical interest
and are adequate for practical applications in constrained energy systems, as witnessed by
the case study of [10].

Recent work of Brázdil et al. [8] considers the optimization of a payoff under energy con-
straint. They study mean-payoff in consumption systems, i.e., simplified one-player energy
games where all edges consume energy but some states can atomically produce a reload of
the energy up to the allowed capacity.

2 Preliminaries

Graph games We consider turn-based games played on graphs between two players denoted
by P1 and P2. A game is a tuple G = (S1, S2,E,w) where (i) S1 and S2 are disjoint finite
sets of states belonging to P1 and P2, with S = S1 � S2, (ii) E ⊆ S × S is a finite set of
edges such that for all s ∈ S, there exists s′ ∈ S such that (s, s′) ∈ E (i.e., no deadlock), and
(iii) w : E → Z is an integer weight function. Given edge (s1, s2) ∈ E, we write w(s1, s2) as
a shortcut for w((s1, s2)). We denote by W the largest absolute weight assigned by function
w. A game is called 1-player if S1 = ∅ or S2 = ∅.

A play from an initial state sinit ∈ S is an infinite sequence π = s0s1 . . . sn . . . such that
s0 = sinit and for all i ≥ 0 we have (si , si+1) ∈ E. The (finite) prefix of π up to position n
gives the sequence π(n) = s0s1 . . . sn , the first (resp. last) element s0 (resp. sn) is denoted
first(π(n)) (resp. last(π(n))). The set of all plays inG is denoted byPlays(G) and the set of all
prefixes is denoted by Prefs(G). We say that a prefix ρ ∈ Prefs(G) belongs to Pi , i ∈ {1, 2},
if last(ρ) ∈ Si . The set of prefixes that belong to Pi is denoted by Prefsi (G). The classical
concatenation between prefixes (resp. prefix and play) is denoted by the · operator. The length
of a non-empty prefix ρ = s0 . . . sn is defined as the number of edges and denoted by |ρ| = n.

Payoffs of plays Given a play π = s0s1 . . . sn . . . we define

– its energy level at position n as

EL(π(n)) =
n−1∑

i=0

w(si , si+1);

123



96 P. Bouyer et al.

– its mean-payoff as

MP(π) = lim sup
n→∞

1

n

n−1∑

i=0

w(si , si+1) = lim sup
n→∞

1

n
EL(π(n));

– its total-payoff as

TP(π) = lim sup
n→∞

n−1∑

i=0

w(si , si+1) = lim sup
n→∞

EL(π(n));

– and its average-energy as

AE(π) = lim sup
n→∞

1

n

n∑

i=1

⎛

⎝
i−1∑

j=0

w(s j , s j+1)

⎞

⎠ = lim sup
n→∞

1

n

n∑

i=1

EL(π(i)). (1)

We will sometimes consider those measures defined with lim inf instead of lim sup, in
which case we write MP,TP and AE respectively. Finally, we also consider those measures
over prefixes: we naturally define them by dropping the lim supn→∞ operator and taking
n = |ρ| for a prefix ρ ∈ Prefs(G). In this case, we simply write MP(ρ),TP(ρ) and AE(ρ)

to denote the fact that we consider finite sequences.

Strategies A strategy for Pi , i ∈ {1, 2}, is a function σi : Prefsi (G) → S such that for all
ρ ∈ Prefsi (G)we have (last(ρ), σi (ρ)) ∈ E. A strategy σi forPi is finite-memory if it can be
encoded by a deterministic Moore machine (M,m0, αu, αn) where M is a finite set of states
(the memory of the strategy), m0 ∈ M is the initial memory state, αu : M × S → M is an
update function, and αn : M × Si → S is the next-action function. If the game is in s ∈ Si
and m ∈ M is the current memory value, then the strategy chooses s′ = αn(m, s) as the next
state of the game. When the game leaves a state s ∈ S, the memory is updated to αu(m, s).
Formally, (M,m0, αu, αn) defines the strategy σi such that σi (ρ · s) = αn(α̂u(m0, ρ), s) for
all ρ ∈ S∗ and s ∈ Si , where α̂u extends αu to sequences of states as expected. A strategy is
memoryless if |M | = 1, i.e., it does not depend on the history but only on the current state
of the game. We denote by �i (G), the sets of strategies for player Pi . We drop G when the
context is clear.

A play π = s0s1 . . . is consistent with a strategy σi of Pi if, for all n ≥ 0 where
last(π(n)) ∈ Si , we have σi (π(n)) = sn+1. Given an initial state sinit ∈ S and strategies σ1
and σ2 for the two players, we denote by Outcome(sinit, σ1, σ2) the unique play that starts in
sinit and is consistent with both σ1 and σ2. When fixing the strategy of only Pi , we denote
the set of consistent outcomes by Outcomes(sinit, σi ).

Objectives An objective in G is a set W ⊆ Plays(G) that is declared winning for P1. Given
a game G, an initial state sinit, and an objective W , a strategy σ1 ∈ �1 is winning for P1 if
for all strategy σ2 ∈ �2, we have that Outcome(sinit, σ1, σ2) ∈ W . Symmetrically, a strategy
σ2 ∈ �2 is winning for P2 if for all strategy σ1 ∈ �1, we have that Outcome(sinit, σ1, σ2) /∈
W . That is, we consider zero-sum games.

We consider the following objectives and combinations of those objectives.

– Given an initial energy level cinit ∈ N, the lower-bounded energy (EGL ) objective
EnergyL(cinit) = {π ∈ Plays(G) | ∀ n ≥ 0, cinit +EL(π(n)) ≥ 0} requires non-negative
energy at all times.
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– Given an upper bound U ∈ N and an initial energy level cinit ∈ N, the lower- and
upper-bounded energy (EGLU ) objective EnergyLU(U, cinit) = {π ∈ Plays(G) | ∀ n ≥
0, cinit + EL(π(n)) ∈ [0,U ]} requires that the energy always remains non-negative and
below the upper bound U along a play.

– Given a threshold t ∈ Q, the mean-payoff (MP) objective MeanPayoff (t) = {π ∈
Plays(G) | MP(π) ≤ t} requires that the mean-payoff is at most t .

– Given a threshold t ∈ Z, the total-payoff (TP) objective TotalPayoff (t) = {π ∈
Plays(G) | TP(π) ≤ t} requires that the total-payoff is at most t .

– Given a threshold t ∈ Q, the average-energy (AE) objective AvgEnergy(t) = {π ∈
Plays(G) | AE(π) ≤ t} requires that the average-energy is at most t .

For the MP,TP and AE objectives, note that P1 aims to minimize the payoff value while
P2 tries to maximize it. The reversed convention is also often used in the literature but both
are equivalent. For our motivating example, seeing P1 as a minimizer is more natural. Note
that we define the objectives using the lim sup variants ofMP,TP and AE, but similar results
are obtained for the lim inf variants.

Decision problem Given a game G, an initial state sinit ∈ S, and an objectiveW ⊆ Plays(G)

as defined above, the associated decision problem is to decide if P1 has a winning strategy
for this objective.

We recall classical results in Table 1. Memoryless strategies suffice for both players for
EGL [6,11],MP [17] and TP [19,22] objectives. Since all associated problems can be solved
in polynomial time for 1-player games, it follows that the 2-player decision problem is in
NP∩coNP for those three objectives [6,21,38]. For theEGLU objective,memory is in general
needed and the associated decision problem is EXPTIME-complete [6] (PSPACE-complete
for one-player games [18]).

Game values Given a game with an objective W ∈ {MeanPayoff ,TotalPayoff ,AvgEnergy}
and an initial state sinit, we refer to the value from sinit as v = inf{t ∈ Q | ∃ σ1 ∈
�1, Outcomes(sinit, σ1) ⊆ W(t)}. For both MP and TP objectives, it is known that the
value can be achieved by an optimal memoryless strategy; for the AE objective it follows
from our results (Theorem 8).

3 Average-energy

In this section, we consider the problem of ensuring a sufficiently low average-energy.

Problem 1 (AE) Given a game G, an initial state sinit, and a threshold t ∈ Q, decide if P1

has a winning strategy σ1 ∈ �1 for the objective AvgEnergy(t).

We first compare the AE objective with traditional quantitative objectives and study how
they can be connected (Sect. 3.1). Then we want to establish that in AE games, memoryless
strategies are always sufficient to play optimally, for both players. Interestingly, this result
cannot be obtained by straightforward application of many well-known sufficient criteria for
memoryless determinacy existing in the literature. We thus introduce some technical lemmas
that highlight the inherent features of the AE payoff function (Sect. 3.2) and permit to prove
the result for one-player AE games (Sect. 3.3). We then prove that one-player AE games
can be solved in polynomial-time via an algorithm combining graph analysis techniques
with linear programming. Finally, we consider the two-player case (Sect. 3.4). Applying a
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result by Gimbert and Zielonka [23], combined with our results on the one-player case, we
derive memoryless determinacy of two-player AE games. This also induces NP ∩ coNP-
membership of the AE problem by the P algorithm of Sect. 3.3. We conclude by proving
that AE games are at least as hard asMP games, hence indicating that the NP∩ coNP upper
bound is essentially optimal with regard to our current knowledge of MP games (whose
membership to P is a long-standing open problem [9,16,26,38]).

3.1 Relation with classical objectives

Several links between EGL ,MP and TP objectives can be established. Intuitively, P1 can
only ensure a lower bound on energy if he can prevent P2 from enforcing strictly-negative
cycles (otherwise the initial energy is eventually exhausted). This is the case if and only ifP1

can ensure a non-negative mean-payoff inG (here, he wants to maximize theMP), and if this
is the case, P1 can prevent the running sum of weights from ever going too far below zero
along a play, hence granting a lower bound on total-payoff. We introduce the sign-reversed
game G′ in the next lemma, which is consistent with our view of P1 as a minimizer with
regard to payoffs (as discussed in Sect. 2).

Lemma 1 Let G = (S1, S2,E,w) be a game and sinit ∈ S be the initial state. The following
assertions are equivalent.

A. There exists cinit ∈ N such that P1 has a (memoryless) winning strategy for objective
EnergyL(cinit).

B. Player P1 has a (memoryless) winning strategy for objective MeanPayoff (0) in the
game G′ defined by reversing the sign of the weight function, i.e., for all (s1, s2) ∈
E,w′(s1, s2) = −w(s1, s2).

C. Player P1 has a (memoryless) winning strategy for objective TotalPayoff (t), with t =
2 · (|S| − 1) · W, in the game G′ defined by reversing the sign of the weight function.

D. There exists t ∈ Z such that P1 has a (memoryless) winning strategy for objective
TotalPayoff (t), in the game G′ defined by reversing the sign of the weight function.

Proof Proof of A ⇔ B is given in [6, Proposition 12]. Proof of B ⇔ C ⇔ D is in [16,
Lemma 1]. ��

The TP objective is sometimes seen as a refinement of MP for the case where P1—as a
minimizer—can ensureMP equal to zero but not lower, i.e., theMP game has value zero [21].
Indeed, onemay use theTP to further discriminate between strategies that guaranteeMP zero.
In the same philosophy, the average-energy can help in distinguishing strategies that yield
identical total-payoffs. See Fig. 1. The AE values in both examples can be computed easily
using the upcoming technical lemmas (Sect. 3.2).

In these examples, the average-energy is clearly comprised between the infimum and
supremum total-payoffs. This remains true for any play.

Lemma 2 For any play π ∈ Plays(G), we have that

AE(π),AE(π) ∈ [
TP(π),TP(π)

] ⊆ R ∪ {−∞,∞}.
Proof Consider a play π ∈ Plays(G). By definition of the total-payoff and thanks to weights
taking integer values, we have that there exists some index m ∈ N0 such that, for all n ≥
m,EL(π(n)) ∈ [

TP(π),TP(π)
]
. By definition, the average-energy AE (resp. AE) measures

the supremum (resp. infinimum) limit of the averages of those partial sums, hence it holds
that AE(π),AE(π) ∈ [

TP(π),TP(π)
]
. ��
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Fig. 1 Both plays have identical mean-payoff and total-payoff:MP(π1) = MP(π1) = MP(π2) = MP(π2) =
0, TP(π1) = TP(π2) = 5, and TP(π1) = TP(π2) = 1. But play π1 has a lower average-energy: AE(π1) =
AE(π1) = 3 < AE(π2) = AE(π2) = 11/3. a Play π1 sees energy levels (1, 3, 5, 3)ω . b Play π2 sees energy
levels (1, 3, 5, 5, 5, 3)ω

In particular, if the mean-payoff value from a state is not zero, its total-payoff value is
infinite and the following lemma holds.

Lemma 3 Let G = (S1, S2,E,w) be a game and sinit ∈ S be the initial state.

1. If there exists t < 0 such that P1 has a (memoryless) winning strategy for objective
MeanPayoff (t), then P1 has a memoryless strategy that is winning for AvgEnergy(t ′)
for all t ′ ∈ Q, i.e., this strategy ensures that any consistent outcome π is such that
AE(π) = AE(π) = −∞.

2. If P1 has no (memoryless) winning strategy for MeanPayoff (0), then, for any t ′ ∈ Q,P1

has no winning strategy for AvgEnergy(t ′). In particular, P2 has a memoryless strategy
ensuring that any consistent outcome π is such that AE(π) = AE(π) = ∞.

Proof Consider the first implication. Assume P1 has a memoryless strategy σ1 ensuring that
all outcomes π ∈ Outcomes(sinit, σ1) are such that MP(π) < 0. For any such outcome,
it is guaranteed that all simple cycles have a strictly negative energy level. Thus, we have
that TP(π) = −∞, and by Lemma 2, it implies that AE(π) = −∞, as claimed. Since
AE(π) ≤ AE(π) by definition, the property holds.

Now consider the second implication. Assume there exists no winning strategy for P1 for
themean-payoff objective. By equivalence B⇔Dof Lemma 1, andmemoryless determinacy
of total-payoff games (see for example [22]), it follows that P2 has a memoryless strategy
σ2 ensuring that all consistent outcomes π ∈ Outcomes(sinit, σ2) are such that TP(π) = ∞.
By Lemma 2, this induces the claim. ��
3.2 Useful properties of the average-energy

In this subsection, we will first review some classical criteria that usually prove sufficient
to deduce memoryless determinacy in quantitative games and discuss why they cannot be
applied straight out of the box to the average-energy payoff. We will then prove two useful
properties of this payoff that will later help us to prove the desired result.

Classical sufficient criteria We briefly discuss traditional approaches to prove memoryless
determinacy in quantitative games. The first one is to study a variant of the infinite-duration

123



100 P. Bouyer et al.

game where the game halts as soon as a cycle is closed and then to relate the properties of
this variant to the infinite-duration game. This technique was used in the original proof of
memoryless determinacy for mean-payoff games by Ehrenfeucht and Mycielski [17], and in
a following simpler proof by Björklund et al. [2]. The connection between infinite-duration
games and so-called first cycle games was recently streamlined by Aminof and Rubin [1],
identifying sufficient conditions to prove that first cycle games and their infinite-duration
counterparts admit optimal memoryless strategies for both players. Among those conditions
is the need forwinning objectives to be closed under cyclic permutation (intuitively, swapping
cycles in a play should not induce a better payoff) and under concatenation (intuitively,
concatenating two prefixes should not result in a payoff better than the best of the two
prefixes).Without further assumptions, the average-energy objective satisfies neither. Indeed,
consider individual cycles represented by sequences of weights C1 = {−1}, C2 = {1} and
C3 = {1,−2}. We see that AE(C1C2) = (−1 + 0)/2 = −1/2 < AE(C2C1) = (1 − 0)/2 =
1/2, hence AE is not closed under cyclic permutations. Intuitively, the order in which the
weights are seen does matter, in contrast to most classical payoffs. For concatenation, see
that AE(C3) = 0 while AE(C3C3) = −1/2 < 0. Here the intuition is that the overall AE is
impacted by the energy of the first cycle which is strictly negative (−1). In a sense, the AE
of a cycle can only be maintained through repetition if this cycle is neutral with regard to the
total energy level, i.e., if it has energy level zero: we will formalize this intuition in Lemma 5.

Other criteria for memoryless determinacy or half-memoryless determinacy (i.e., holding
only for one of the two players) respectively appear in works by Gimbert and Zielonka [22]
and by Kopczynski [29]. They involve checking that the payoff is fairly mixing, or concave.
Again, both are false for arbitrary sequences of weights in the case of the average-energy, for
essentially the same reasons as above. Nevertheless, we will be able to prove that memoryless
strategies suffice for both players using similar ideas but first taking care of the problematic
cases. Intuitively, when those cases are dealt with, we will regain a payoff that satisfies
the above conditions. We also obtain monotonicity and selectivity of the payoff function as
defined in [23].

Extraction of prefixes The following lemma describes the impact of adding a finite prefix to
an infinite play. We prove that the average-energy over a play can be decomposed w.r.t. to
the energy level of any of its prefixes and the average-energy of the remaining suffix.

Lemma 4 (Average-energy prefix) Let ρ ∈ Prefs(G), π ∈ Plays(G). Then,

AE(ρ · π) = EL(ρ) + AE(π).

The same equality holds for AE.

Proof Let ρ = s0 . . . sk ∈ Prefs(G) and π ∈ Plays(G) be a prefix and a play over a game G.
We prove the property for AE. By definition and decomposition, we have that

AE(ρ · π) = lim sup
n→∞

1

n

n∑

i=1

EL((ρ · π)(i))

= lim sup
n→∞

[
1

n
·

k∑

i=1

EL(ρ(i)) + 1

n
·

n∑

i=k+1

EL(ρ) + 1

n
·

n∑

i=k+1

EL(π(i − k))

]
.

For clarity, we rewrite this expression asAE(ρ ·π) = lim supn→∞
[
X1(n)+X2(n)+X3(n)

]
,

maintaining the same order.
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Since k is fixed and finite, and EL(ρ(i)) is bounded for all i ≤ k, we have that
lim supn→∞ X1(n) = limn→∞ X1(n) = 0. Furthermore, for n ≥ k + 1, we rewrite the
second term as X2(n) = (n − k − 1) · EL(ρ)/n, and it follows that lim supn→∞ X2(n) =
limn→∞ X2(n) = EL(ρ). Since both sequences X1(n) and X2(n) converge, we can write

lim inf
n→∞ X1(n) + lim inf

n→∞ X2(n) + lim sup
n→∞

X3(n) ≤ AE(ρ · π)

≤ lim sup
n→∞

X1(n) + lim sup
n→∞

X2(n) + lim sup
n→∞

X3(n).

Hence, by a small change of variable,

AE(ρ · π) = EL(ρ) + lim sup
n→∞

X3(n) = EL(ρ) + lim sup
n→∞

[
1

n
·
n−k−1∑

i=1

EL(π(i))

]

= EL(ρ) + AE(π),

as, in the limit, the (k + 1) missing terms in the sum are negligible. The proof for AE is
similar. ��

Extraction of a best cycle The next lemma is crucial to prove that memoryless strategies
suffice: under well-chosen conditions, one can always select a best cycle in a play—hence,
there is no interest in mixing different cycles and no use for memory. It holds only for
sequences of cycles that have energy level zero: since they do not change the energy, they
do not modify the AE of the following suffix of play, and one can decompose the AE as a
weighted average over zero cycles.

Lemma 5 (Repeated zero cycles of bounded length) Let C1, C2, C3, . . . be an infinite
sequence of cycles Ci ∈ Prefs(G) such that (i) π = C1 · C2 · C3 · · · ∈ Plays(G),1 (ii)
∀ i ≥ 1,EL(Ci ) = 0 and (iii) ∃ � ∈ N>0 such that ∀ i ≥ 1, |Ci | ≤ �. Then the following
properties hold.

1. The average-energy of π is the weighted average of the average-energies of the cycles:

AE(π) = lim sup
k→∞

[∑k
i=1 |Ci | · AE(Ci )∑k

i=1 |Ci |

]
. (2)

2. For any cycle C ∈ Prefs(G) such that EL(C) = 0, we have that AE(Cω) = AE(C).
3. Repeating the best cycle gives the lowest AE:

inf
i∈N>0

AE(Ci ) = inf
i∈N>0

AE((Ci )ω) ≤ AE(π).

Similar properties hold for AE.

Observe that since we assume a bound � ∈ N>0 on the length of cycles, and the game is
played on a finite graph, Point 3 of Lemma 5 does actually allow to select a best cycle: the
set of possible cycles of length at most � is finite and the infimum is reached, hence can be
replaced by the minimum.

1 We slightly abuse the notation as we see cycles as sequences of edges. The concatenation of cycles Ca =
s s′ . . . s and Cb = s s′′ . . . s is to be understood as its natural interpretation Ca · Cb = s s′ . . . s s′′ . . . s: the
origin state s only appears once in the middle and not twice as it would with Ca and Cb seen as true sequences
of states.
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Proof We prove the three points for AE, similar arguments can be applied for AE. Consider
Point 1. Let π = s10 . . . s1|C1|s

2
1 . . . s2|C2|s

3
1 . . . where sij denotes the j th state of cycle Ci , with

C1 = s10 . . . s1|C1| and for all i > 1, Ci = si−1
|Ci−1|s

i
1 . . . si|Ci |. Essentially, s

i−1
|Ci−1| is both the last

state of Ci−1 and the first one of Ci : it can also be seen as si0 and we later use both notations
depending on the role we consider for this state. Given index k ∈ N of a state sk in the
classical formulation π = s0s1s2 . . . such that sk denotes state sij in our new formulation

π = s10 . . . s1|C1|s
2
1 . . . s2|C2|s

3
1 . . . , we define c(k) = i and p(k) = j , respectively denoting the

index of the corresponding cycle and the position of state sk within this cycle. We can rewrite
the definition of the average-energy of π as

AE(π) = lim sup
n→∞

[
1

n

n∑

k=1

EL(π(k))

]

= lim sup
n→∞

⎡

⎣1

n

⎛

⎝
c(n)−1∑

i=1

|Ci |∑

j=1

EL
(
s10 . . . sij

)
+

p(n)∑

j=1

EL
(
s10 . . . sc(n)

j

)
⎞

⎠

⎤

⎦ . (3)

Observe that since all cycles are such that EL(Ci ) = 0, we have that EL(s10 . . . sij ) =
EL(si0 . . . sij ) for all indices i ∈ N>0, j ∈ {1, . . . , |Ci |}. In other words, the energy level
in a given position only depends on the current cycle. Hence, for all i ∈ N>0,

|Ci |∑

j=1

EL
(
s10 . . . sij

)
=

|Ci |∑

j=1

EL
(
si0 . . . sij

)
= |Ci | · AE(Ci )

where the second equality follows by definition of AE(Ci ). Therefore, Eq. (3) becomes

AE(π) = lim sup
n→∞

⎡

⎣1

n

⎛

⎝
c(n)−1∑

i=1

|Ci | · AE(Ci ) +
p(n)∑

j=1

EL
(
sc(n)
0 . . . sc(n)

j

)
⎞

⎠

⎤

⎦ .

Recall that, by hypothesis, there exists � ∈ N>0 such that for all i ≥ 1, |Ci | ≤ �. Observe
that the boundedness of cycles length implies that

(a) p(n) ≤ �,
(b)

∑p(n)
j=1 EL(sc(n)

0 . . . sc(n)
j ) is bounded,

(c)
∑c(n)−1

i=1 |Ci | ≤ n = ∑c(n)−1
i=1 |Ci | + p(n) ≤ ∑c(n)−1

i=1 |Ci | + �.

Combining those three arguments, we obtain that

lim sup
n→∞

[∑c(n)−1
i=1 |Ci | · AE(Ci )
∑c(n)−1

i=1 |Ci | + �

]
≤ AE(π) ≤ lim sup

n→∞

[∑c(n)−1
i=1 |Ci | · AE(Ci )

∑c(n)−1
i=1 |Ci |

]

Hence,

AE(π) = lim sup
k→∞

[∑k
i=1 |Ci | · AE(Ci )∑k

i=1 |Ci |

]

as claimed by Point 1.
Now consider Point 2. For any cycle C ∈ Prefs(G) such that EL(C) = 0, all three

hypotheses (i), (ii), and (iii) are clearly satisfied, with � = |C|. Hence by Point 1, we have
that
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AE(Cω) = lim sup
k→∞

[
k · |C| · AE(C)

k · |C|
]

= AE(C).

Finally, we prove Point 3. The equality straightforwardly follows from Point 2. It remains
to consider the inequality. By definition of the infimum, we have that, for all k ≥ 1,

inf
i∈N>0

AE(Ci ) =
∑k

i=1 |Ci | · inf i∈N>0 AE(Ci )∑k
i=1 |Ci |

≤
∑k

i=1 |Ci | · AE(Ci )∑k
i=1 |Ci |

.

Hence by taking the limit, we obtain

inf
i∈N>0

AE(Ci ) = lim sup
k→∞

[
inf

i∈N>0
AE(Ci )

]
≤ lim sup

k→∞

[∑k
i=1 |Ci | · AE(Ci )∑k

i=1 |Ci |

]
= AE(π).

This concludes our proof. ��
3.3 One-player games

We assume that the unique player is P1, hence that S2 = ∅. The proofs are similar for the
case where all states belong to P2 (i.e., S1 = ∅). Similarly, we present our results for the
AE variant, but they carry over to the AE one. Actually, since we show that we can restrict
ourselves to memoryless strategies, all consistent outcomes will be periodic and thus both
variants will be equal over those outcomes.

Memoryless determinacy Intuitively, we use Lemmas 4 and 5 to transform any arbitrary path
into a simple lasso path, repeating a unique simple cycle, yielding an AE at least as good,
thus proving that any threshold achievable with memory can also be achieved without it.

Theorem 6 Memoryless strategies are sufficient to win one-player AE games.

Proof As a preliminary step, we check whether the graph contains a reachable strictly neg-
ative cycle, e.g., using the Bellman–Ford algorithm in O(|S| · |T |)-time. If so, then P1 can
ensure a strictly negative mean-payoff, and by Point 1 of Lemma 3, a memoryless strategy
exists to make the average-energy be −∞: such a strategy consists in reaching and repeating
the negative simple cycle forever.

Now, assume that the graph contains no (reachable) strictly negative cycle. If the graph also
contains no zero cycle, then the energy level necessarily diverges to +∞, and the average-
energy is +∞ along any run. Indeed, we are in the case of Point 2 of Lemma 3. Any strategy
is optimal in that case: in particular, any memoryless strategy is.

For the rest of this proof, we consider the remaining case of graphs that contain no reach-
able strictly negative cycle, but that do contain zero cycles. We will prove that memoryless
strategies suffice for P1 in those games, by induction on the number of choices of P1. Given
a game G = (S1, S2 = ∅,E,w), we define dG = |E| − |S|. Since we assume graphs to be
deadlock-free, we have that dG ≥ 0 for any game G. We consider induction on the value dG.
For every game G such that dG = 0 and initial state sinit ∈ S,P1 wins for the AE objective
for threshold t ∈ Q iff he wins with a memoryless strategy: indeed,P1 actually has no choice
at all in G, which is reduced to a unique outcome from sinit.

Now assume that memoryless strategies suffice for P1 in every game G such that dG ≤ m
for some m ∈ N. We claim that they also suffice in every game G such that dG = m + 1.
Observe that if this holds, we are done as it proves that memoryless strategies suffice for
P1 in all one-player AE games. Let G be such a game with dG = m + 1. Recall that
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in G = (S1, S2 = ∅,E,w) there is no strictly negative cycle by hypothesis. Let s be a
state of G such that s has at least two outgoing edges. Such a state necessarily exists since
dG ≥ 1. Consider a partition of the outgoing edges of s in two non-empty sets A, B such that
A � B = {(s1, s2) ∈ E | s1 = s}. According to this partition, we can define in the natural
way two sub-games GA = (S1, S2 = ∅,E\B,w) and GB = (S1, S2 = ∅,E\A,w) such
that dGA ≤ m and dGB ≤ m. By induction hypothesis, we know that memoryless strategies
suffice to play optimally for the AE objective in those two sub-games. First, observe that if
P1 has a memoryless winning strategy σ in either GA or GB for threshold t ∈ Q, then this
strategy remains winning in G. What we need to show is that if P1 cannot win in both GA

and GB , then he also cannot win in G, even using memory in s: in the following, we assume
that P1 is memoryless in any other state s′ �= s (following the induction hypothesis) and we
show that mixing cycles in s does not help him.

By contradiction, assume that P1 cannot win in both GA and GB , but he has a winning
strategy σ in G, for the same threshold t . Let π be the outcome consistent with σ . Two cases
are possible.

First, state s is seen finitely often along π . In this case, we apply Lemma 4 repeatedly on
π to iteratively remove all cycles on s. Since there is no strictly negative cycle inG, we know
that removing one cycle cannot increase the average-energy of the play (it either stays the
same if the cycle is a zero cycle, or decreases if it is a strictly positive one). Since s is seen
finitely often, we eventually obtain a play π ′ that sees s at most once. Therefore, this play
either belongs to GA or GB (both if s is never visited). Furthermore, it has average-energy
at most t by construction. This contradicts the claim that P1 has no winning strategy in both
sub-games and concludes the proof in this case.

Second, state s is seen infinitely often along π . Since P1 is memoryless outside s, π only
contains simple cycles and can be written asπ = ρ ·C1 ·C2 ·C3 · · · where ρ is an acyclic prefix
ending in s and for all i ≥ 1, Ci is a simple cycle on s. Observe that every cycle Ci belongs
either to GA or to GB . Furthermore, since π is winning and there is no strictly negative
cycle in G, only finitely many indices i1, …, ik may correspond to a strictly positive cycle.
With the same reasoning as above (repeated application of Lemma 4), we have that the play
π ′ = ρ · Cik+1 · Cik+2 · · · , obtained by removing the first cycles up to index ik , necessarily
has a lower or equal average-energy: hence it is also winning. Now observe that the sequence
of cycles π ′′ = Cik+1 · Cik+2 · · · may still involve simple cycles from both GA and GB . Still,
as all cycles are of length at most |S|, and are zero cycles, we can apply Lemma 5 to extract
one best cycle C j , j > ik . Putting all this together, we have that π ′′′ = ρ · (C j )

ω is such that
AE(π ′′′) ≤ AE(π). Furthermore, π ′′′ is a simple lasso path that belongs either to GA or to
GB (as it now uses a unique outgoing edge from s). Consequently, π ′′′ describes a winning
strategy in one of the sub-games, which contradicts our hypothesis and concludes our proof
in this case too. ��

Polynomial-time algorithm. We now know the form of optimal memoryless strategies: an
optimal lasso path π = ρ · Cω w.r.t. the AE. We establish a polynominal-time algorithm to
solve one-player AE games.

The crux of our algorithm consists in computing, for each state s, the best—w.r.t. theAE—
zero cycle Cs starting and ending in s (if any). This is achieved through linear program-
ming (LP) over expanded graphs. For each state s and length k ∈ {1, . . . , |S|}, we compute
the best cycle Cs,k by considering a graph (Fig. 2) that models all cycles of length k from s
and that uses k + 1 levels and two-dimensional weights on edges of the form (c, l · c) where
c is the weight in the original game and l ∈ {k, k − 1, . . . , 1} is the level of the edge.
In the LP, we look for cycles Cs,k of length k on s such that (a) the sum of weights in

123



Average-energy games 105

s s s

1 1

−1−1

(s,2)

(s ,1)

(s ,1)

(s,0)

(−1,−2)

(1,2)

(1,1)

(−1,−1)

(a) (b)

Fig. 2 The best cycle Cs,2 is computed by looking for a path from (s, 2) to (s, 0) with sum zero in the first
dimension (zero cycle) and minimal sum in the second dimension (minimal AE). Here, the cycle via s′ is
clearly better, with AE equal to −1/2 in contrast to 1/2 via s′′. a original game. b Expanded graph for k = 2

the first dimension is zero (thus Cs,k is a zero cycle), and (b) the sum in the second one is
minimal. Fortunately, this sum is exactly equal to AE(C) · k thanks to the l factors used in
the weights of the expanded graph. Hence, we obtain the optimal cycle Cs,k (in polynomial
time). Doing this |S| times for each state s, we obtain for each of them the optimal cycle
Cs (if one zero cycle exists). Then, by Lemma 4, it remains to compute the least EL with
which each state s can be reached using classical graph techniques (e.g., Bellman–Ford), and
to pick the optimal combination to obtain an optimal memoryless strategy, in polynomial
time.

Theorem 7 The AE problem for one-player games is in P.

Proof Let sinit be the initial state and t ∈ Q be the threshold. From Theorem 6, we can
restrict our search to memoryless strategies achieving average-energy less than or equal to t .
As noted in the proof of Theorem 6, if a strictly negative simple cycle exists and can be
reached from sinit, then the answer to the AE problem is clearly Yes, as average-energy −∞
is achievable. Checking if such a cycle exists and is reachable can be done in cubic time in
the number of states (e.g., using Bellman–Ford to detect negative cycles).

Hence, we now assume that no negative cycle exists. The main part of our algorithm
consists in computing, for each state s, the least average-energy that can be achieved along
a simple zero cycle starting and ending in s (if any). Indeed, strictly positive cycles should
be avoided as there is no negative cycle to counteract them. Applying Lemma 4, it then
remains to compute the least energy level with which each state s can be reached (simple
paths are sufficient as there are no negative cycles), and to pick the optimal combina-
tion. Again, this last part can be solved by using classical graph algorithms in cubic time
in |S|.

We now focus on computing the best zero cycle from a state s. This is achieved by
enumerating the possible lengths, from 1 to |S| (simple cycles suffice). For a fixed length k,
we consider a new graph Gs,k , made of k+1 copies of the original gameG. The states of Gs,k
are pairs (u, l) with u ∈ S and 0 ≤ l ≤ k. The new graph is arranged in levels, indexed
from l = k for the top one to l = 0 for the bottom one: l represents the number of steps
remaining to close the cycle of length k. For each edge (u, u′) of G, with w(u, u′) = c, and
for each 1 ≤ l ≤ k, except if both u′ = s and l < k (in order to rule out intermediary visits
to s), there is an edge from (u, l) to (u′, l − 1). This edge carries a pair of weights (c, l · c).
Our aim is to find a path in this graph from (s, k) to (s, 0) (hence this is a simple cycle of
length k) such that the sum of the weights on the first dimension is zero (hence this is a zero
cycle) and the sum on the second dimension is minimized (when divided by k, this sum is
precisely the average-energy, if starting from energy level zero).

This problemcan be expressed as a linear program,with variables xu,u′,l for each edgeu →
u′ and each 1 ≤ l ≤ k. While they are not required to take integer values, these variables are
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intended to represent the number of times the edge from (u, l) to (u′, l − 1) is taken along a
“path” in Gs,k . The linear program is as follows:

minimize
∑

xu,u′,l · l · w(u, u′) subject to
1. 0 ≤ xu,u′,l ≤ 1 for all xu,u′,l;
2. for all (u, l) with 1 ≤ l ≤ k − 1,

∑

u′
xu′,u,l+1 =

∑

u′
xu,u′,l;

3.
∑

u′
xs,u′,k =

∑

u′
xu′,s,1 = 1;

4.
∑

xu,u′,l · w(u, u′) = 0;
5.

∑
xu,u′,l ≥ 1.

Condition (2) states that each state has the same amount of “incoming” and “outgoing” flow.
Condition (3) expresses the fact that we start and end up in state s. Condition (4) encodes
the fact that we are looking for zero cycles, and Condition (5) rules out the (possible) trivial
solution where all variables are zero.

First observe that if this LP has no solution, then there is no zero cycle of length k from s.
Now, assume it has a solution (x0u,u′,l): this solutionminimizes

∑
xu,u′,l ·l ·w(u, u′). Consider

a sequence of edges s = uk → uk−1 → · · · → u1 → u0 = s for which xul ,ul−1,l > 0 for
all l. The existence of such a sequence easily follows from Conditions (2) and (3). Assume
that this is not a zero cycle. As there are no negative cycles, then this must be a positive cycle.
But in order to fulfill Condition (4), we would need a negative cycle to compensate for this
positive cycle, hence implying contradiction. We conclude that any sequence of consecutive
edges as selected above is a zero cycle. Similarly, there cannot be a zero cycle of length k
from s with better average-energy, as this would contradict the optimality of this solution.
We thus have obtained an average-energy-optimal simple zero cycle of length k from s, in
polynomial time. Indeed, the LP is polynomial in the size of Gs,k , itself polynomial in the
size of the original game: the expanded graph has its size bounded by |S| · (k + 1) and all
weights are bounded by k ·W with k ≤ |S| and W the largest absolute weight in the original
game.

As discussed above, this process can be repeated for each state s and each length k, 1 ≤
k ≤ |S|, hence at most |S|2 times. For each state, we select the best cycle among the |S|
possible ones (one for each length). Therefore, in polynomial time, we get a description of
the best cycles w.r.t. the average-energy, for each s ∈ S. Clearly if no such cycle exists,
then the answer to the AE problem is No, as all cycles are strictly positive and the average-
energy of any play will be +∞. If some exist, we can find an optimal strategy by picking
the best combination between such a cycle from a state s and a corresponding prefix from
sinit to s of minimal energy level. As presented before, this is achieved in polynomial time.
Then the answer to the AE problem is Yes if and only if this optimal combination yields
average-energy at most equal to t . This concludes our proof. ��
3.4 Two-player games

Memoryless determinacy Wenow prove that memoryless strategies still suffice in two-player
games. As discussed in Sect. 3.2, most classical criteria do not apply. There is, however, one
result that proves particularly useful. Consider any payoff function such that memoryless
strategies suffice for both one-player versions (S1 = ∅, resp. S2 = ∅). In [23, Cor. 7],
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Gimbert and Zielonka establish that memoryless strategies also suffice in two-player games
with the same payoff. Thanks to Theorem 6, this entails the next theorem.

Theorem 8 Average-energy games are determined and both players have memoryless opti-
mal strategies.

Observe that this result is true for both variants of the average-energy payoff function,
namely AE and AE. When both players play optimally, they can restrict themselves to mem-
oryless strategies and both variants thus coincide as mentioned earlier.

Solving average-energy games Finally, consider the complexity of deciding the winner in a
two-player AE game. By Theorem 8, one can guess an optimal memoryless strategy for P2

and solve the remaining one-player game for P1, in polynomial time (by Theorem 7). The
converse is also true: one can guess the strategy of P1 and solve the remaining game where
S1 = ∅ in polynomial time. Thus, we obtain the following result.

Theorem 9 The AE problem for two-player games is in NP ∩ coNP.

We complete our study by proving that MP games can be encoded into AE ones in
polynomial time. The former are known to be in NP ∩ coNP but whether they belong to
P is a long-standing open question (e.g., [9,16,26,38]). Hence, w.r.t. current knowledge,
the NP ∩ coNP-membership of the AE problem can be considered optimal. The key of the
construction is to double each edge of the original game and modify the weight function
such that each pair of successive edges corresponding to such a doubled edge now has a total
energy level of zero, and an average-energy that is exactly equal to the weight of the original
edge. Then we apply decomposition techniques as in Lemma 5 to establish the equivalence.

Theorem 10 Mean-payoff games can be reduced to average-energy games in polynomial
time.

Proof Let G = (S1, S2, E, w) be a game, and t ∈ Q be the threshold for the mean-payoff
problem. From G, we build another game G ′ = (S′

1, S
′
2, E

′, w′) such that
– S′

1 = S1 ∪ E and S′
2 = S2;

– E ′ contains two types of edges:

– (s, e) ∈ E ′ iff there exists s′ such that e = (s, s′) ∈ E . Then w′(s, e) = 2 · w(e).
– (e, s′) ∈ E ′ for any e = (s, s′) ∈ E . Then w′(e, s′) = −2 · w(e).

We claim that P1 has a strategy ensuring objective MeanPayoff (t) in G if and only if the
answer for the AE problem in G ′ is Yes for the same threshold t . A similar construction is
used in [5].

With a prefix ρ = (si )i≤n in G, we can associate a prefix ρ′ = (s′
i )i≤2n in G ′ as follows:

for all k ≤ n, s′
2k = sk , and for all k < n, s′

2k+1 = (sk, sk+1). The mean-payoff along ρ then
equals the average energy along ρ′ (assuming initial energy 0 for ρ′). Indeed, applying the
same decomposition arguments as for Lemma 5 and by definition of the weight function w′,
we have that

AE(ρ′) = 1

n

n−1∑

i=0

2 · w′(si , (si , si+1)) + w′((si , si+1), si+1)

2

= 1

n

n−1∑

i=0

4 · w(si , si+1) − 2 · w(si , si+1)

2
= 1

n

n−1∑

i=0

w(si , si+1) = MP(ρ).
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Conversely, with a prefix ρ′ = (s′
i )i≤2n inG ′ starting and ending in a state in S1 ∪ S2, we can

associate a prefix ρ = (si )i≤n in G such that sk = s′
2k for all k ≤ n. Again, assuming the

initial energy is zero in ρ′, the average energy along ρ′ equals the mean payoff along ρ.
Now, assume thatP1 has a winning strategy σ inG from some state s ∈ S1∪S2, achieving

mean-payoff less than or equal to t . Consider the strategy σ ′ for G ′ defined as σ ′(ρ′) = σ(ρ)

if ρ′ ends in S1. If ρ′ ends in a T -state of the form (s, s′), then we let σ ′(ρ′) = s′, which is
the only possible outgoing edge. We see that the outcomes of σ ′ correspond to the outcomes
of σ , so that, assuming that the initial energy level is zero, σ ′ enforces that the average-energy
is below t for any infinite outcome. Conversely, given a strategy σ ′ for G ′ whose outcomes
have average-energy below t , the strategy defined by σ(ρ) = σ ′(ρ′) for all finite paths ρ

in G secures a mean-payoff below t . Observe that the equivalence holds both between AE
and MP, and between AE and MP. Indeed, we have seen that for both MP and AE games,
memoryless strategies suffice and decision problems for both variants coincide. ��

4 Average-energy with lower- and upper-bounded energy

We extend the AE framework with constraints on the running energy level of the system.
Such constraints are natural in many applications where the energy capacity is bounded
(e.g., fuel tank, battery charge). We first study the case where the energy is subject to both
a lower bound (here, zero) and an upper bound (U ∈ N). We study the problem for the
fixed initial energy level cinit := 0. In this case, the range of acceptable energy levels is by
definition constrained to the interval [0,U ]. Our approach benefits from this: we solve the
AELU problem by considering an AE problem (and subsequently, an MP problem) over an
expanded game that explicitly accounts for the lower and upper bounds on the energy.

Formally, we want to decide if P1 can ensure a sufficiently low AE while keeping the EL
within the allowed range.

Problem 2 (AELU ) Given a game G, an initial state sinit, an upper bound U ∈ N, and
a threshold t ∈ Q, decide if P1 has a winning strategy σ1 ∈ �1 for the objective
EnergyLU(U, cinit := 0) ∩ AvgEnergy(t).

Again, we present results for the supremum variant AE but they also hold for the infimum
one AE.

Illustration Consider the one-player game in Fig. 3. The energy constraints force P1 to
keep the energy in [0, 3] at all times. Hence, only three strategies can be followed safely,
respectively inducing plays π1, π2 and π3. Due to the bounds on energy, it is natural that
strategies need to alternate between both a positive and a negative cycle to satisfy objective
EnergyLU(U, cinit := 0) (since no simple zero cycle exists). It is yet interesting that to play
optimally (play π3), P1 actually has to use both positive cycles, and in the appropriate order
(compare plays π2 and π3).

This type of alternating behavior is more intricate than for other classical conjunctions of
objectives. Consider for example energy parity [12] or multi-dimensional energy games [15,
37]. It is usually necessary to use different cycles in such games: intuitively, one needs one
“good” cycle for each dimension and one for the parity objective, and a winning strategy
needs to alternate between those cycles. However, there is no need to use two different cycles
that are “good” w.r.t. the same part of the objective. In the case of AELU games, we see that
it is sometimes necessary to use two (or more) different cycles even though they impact the
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Fig. 3 Example of a one-player AELU game (U = 3) and the evolution of energy under different strategies
that maintain it within [0, 3] at all times. The minimal average-energy is obtained with play π3: alternating
in order between the +1,+2 and −3 cycles. a One player AELU game. b Play π1 = (acacacab)ω . c Play
π2 = (aacab)ω . d Play π3 = (acaab)ω

sum of weights in the same direction (e.g., several positive cycles). This gives a hint of the
complexity of AELU games.

4.1 Pseudo-polynomial algorithm and complexity bounds

We first reduce the AELU problem to the AE problem over a pseudo-polynomial expanded
game, i.e., polynomial in the size of the original AELU game and in U ∈ N. By Theorem 9
and Theorem 7, this reduction induces NEXPTIME ∩ coNEXPTIME-membership of the
two-player AELU problem, and EXPTIME-membership of the one-player one. We improve
the complexity for two-player games by further reducing the AE game to an MP game:
this yields EXPTIME-membership, which is optimal (Theorem 13). We also improve the
one-player case by observing that a witness lasso path in the MP game can be built on-the-
fly, and the mean-payoff of this path can be computed using only polynomial space in the
original game, hence we end up with PSPACE-membership which we also prove optimal in
Theorem 13.

Observe that if U is encoded in unary or if U is polynomial in the size of the original
game, the complexity of the AELU problem collapses to NP ∩ coNP for two-player games
and to P for one-player games thanks to our reduction to an AE problem and the results of
Theorem 9 and Theorem 7.

The reductions Given a game G = (S1, S2, E, w), an initial state sinit, an upper bound
U ∈ N, and a threshold t ∈ Q, we reduce the AELU problem to an AE problem as follows. If
at any point along a play, the energy drops below zero or exceeds U , the play will be losing
for the EnergyLU(U, cinit := 0) objective, hence also for its conjunction with the AE one. So
we build a new game G ′ over the state space (S × {0, 1, . . . ,U }) ∪ {sink}. The idea is to
include the energy level within the state labels, with sink as an absorbing state reached only
when the energy constraint is breached. We now consider the AE problem for threshold t on
G ′. By putting a self-loop of weight 1 on sink, we ensure that if the energy constraint is not

123



110 P. Bouyer et al.

(a, 0) (a, 1) (a, 2) (a, 3)

(b, 0) (b, 1) (b, 2) (b, 3)

(c, 0) (c, 1) (c, 2) (c, 3)

sink

1 | 0 1 | 1 1 | 2
0 | 0 0 | 1 0 | 2 0 | 3

1 | 0 1 | 1 1 | 2 1 | 3
1 | 2

0 | 0 0 | 1 0 | 2 0 | 3

−3 | 3

2 | 0 2 | 1

Fig. 4 Reduction from the AELU game in Fig. 3a to an AE game and further reduction to an MP game over
the same expanded graph. For the sake of succinctness, the weights are written as c | c′ with c the weight used
in the AE game and c′ the one used in the MP game. We use the upper bound U = 3 and the average-energy
threshold t = 1 (the optimal value in this case). The optimal play π3 = (acaab)ω of the original game
corresponds to an optimal memoryless play in the expanded graph

guaranteed in G, the answer to the AE problem in G ′ will be No as the average-energy will
be infinite due to reaching this positive loop and repeating it forever. Hence, we show that the
AELU objective can be won in G if and only if the AE one can be won in G ′ (thus avoiding
the sink state). The result of the reduction for the game in Fig. 3a is presented in Fig. 4.

Lemma 11 The AELU problem over a game G = (S1, S2, E, w), with an initial state sinit,
an upper bound U ∈ N, and a threshold t ∈ Q, is reducible to an AE problem for the same
threshold t ∈ Q over a game G ′ = (S′

1, S
′
2, E

′, w′) such that |S′| = (U + 1) · |S| + 1 and
W ′ = max {min {W, U }, 1}, i.e., the largest absolute weight in G ′ is at most the same as in
G, or equal to constant 1.

Proof Consider the game G = (S1, S2, E, w), with initial state sinit, upper bound U ∈ N

and threshold t ∈ Q. We define the expanded game G ′ = (S′
1, S

′
2, E

′, w′) as follows.
– S′

1 = (S1 × {0, 1, . . . ,U }) ∪ {sink}.
– S′

2 = S2 × {0, 1, . . . ,U }.
– For all (u, v) ∈ E, (u, c) ∈ S′, we have that:

1. if d = c + w(u, v) ∈ [0,U ], then e = (
(u, c), (v, d)

) ∈ E ′ and w′(e) = w(u, v),
2. else e = (

(u, c), sink
) ∈ E ′ and w′(e) = 1.

– (sink, sink) ∈ E ′ and w(sink, sink) = 1.

The game G ′ starts in state (sinit, 0) and edges are built naturally to reflect the changes in the
energy level. Whenever the energy drops below zero or exceeds U , we redirect the edge to
sink, where a self-loop of weight 1 is repeated forever.

We claim that P1 has a winning strategy σ1 for the AELU objective in G if and only if
he has a winning strategy σ ′

1 for the AE objective in G ′, for the very same average-energy
threshold t .

First, consider the left-to-right implication. Assume σ1 is winning for objective
EnergyLU(U, cinit := 0) ∩ AvgEnergy(t) in G. The very same strategy can be followed
in G ′, ignoring the additional information on the energy in the state labels. Precisely, for any
prefix ρ′ = (s0, c0)(s1, c1) . . . (sn, cn) in G ′, we define σ ′

1(ρ
′) = (s, c) where s = σ1(ρ) for

ρ = s0s1 . . . sn and c = cn+w(sn, s). Obviously, playing this strategy ensures that the special
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state sink is never reached, as otherwise it would not be winning for EnergyLU(U, cinit := 0)
in G, by construction of G ′. Since all weights are identical in both games except on edges
entering the sink state, we have that any consistent outcome π ′ of σ ′

1 in G ′ corresponds to a
consistent outcome π of σ1 in G such that AE(π ′) = AE(π), and conversely. Therefore, σ ′
is clearly winning for objective AvgEnergy(t) in G ′.

Second, consider the right-to-left implication. Assume σ ′
1 is winning for objective

AvgEnergy(t) in G ′. Then this strategy ensures that sink is avoided forever. Otherwise,
there would exist a consistent outcome π ′ reaching sink, and such that AE(π ′) = ∞ > t
because of the strictly positive self-loop. Thus the strategy would not be winning. Hence by
construction of G ′, this strategy trivially ensures EnergyLU(U, cinit := 0) in G ′. From σ ′

1, we
build a strategy σ1 in G in the natural way, potentially integrating the information on the
energy within the memory of σ1. Again, there is a bijection between plays avoiding sink in
G ′ and plays in G, such that σ1 is winning for EnergyLU(U, cinit := 0) ∩ AvgEnergy(t) in G.

Hence we have shown the claimed reduction. For the sake of completeness, observe that
the reduction holds both for AE and AE variants of the average-energy. It remains to discuss
the size of the expanded game. Observe that |S′| = (U + 1) · |S| + 1. Furthermore, if W is
the largest absolute weight in G, then W ′ = max {min {W,U }, 1} is the largest one in G ′.
Indeed, W ′ is upper-bounded by U by construction (as all edges of absolute weight larger
than U can be redirected directly to sink) and it is lower-bounded by 1 due to edges leading
to sink. So the state space of G ′ is polynomial in the state space of G and in the value of
the upper bound U , while its weights are bounded by either the largest weight W , the upper
bound U or constant 1. ��

Wenow show that theAE gameG ′ can be further reduced to anMP gameG ′′ bymodifying
the weight structure of the graph. Essentially, all edges leaving a state (s, c) of G ′ are given
weight c in G ′′, i.e., the current energy level, and the self-loop on sink is given weight
(�t�+1). This modification is depicted in Fig. 4. We claim that the AE problem for threshold
t ∈ Q in G ′ is equivalent to the MP problem for the same threshold in G ′′. Indeed, we
show that with our change of weight function, reaching sink implies losing, both in G ′ for
AE and in G ′′ for MP, and all plays that do not reach sink have the same value for their
average-energy in G ′ as for their mean-payoff in G ′′.

Lemma 12 The AE problem over the game G ′ = (S′
1, S

′
2, E

′, w′) defined in Lemma 11 is
reducible to anMP problem for the same threshold t ∈ Q over a game G ′′ = (S′

1, S
′
2, E

′, w′′)
sharing the same state space but with largest absolute weight W ′′ = max{U, �t�+1}, where
U is the energy upper bound of the original AELU problem.

Proof Let G ′ = (S′
1, S

′
2, E

′, w′) be the game defined in Lemma 11, as a reduction from
the original game G for the AELU problem with upper bound U ∈ N and average-energy
threshold t ∈ Q. We now build the game G ′′ = (S′

1, S
′
2, E

′, w′′) by simply modifying the
weight function of G ′. The changes are as follows:

– For all edge e = ((s, c), (s′, c′)) ∈ E ′, its weight in G ′ is w′(e) = c′ − c and we now
set it to w′′(e) = c in G ′′. Recall that by construction of G ′, the value c represents the
current energy level for any prefix ending in (s, c). This is the value we now use for the
outgoing edge. Also, this value is constrained in [0, U ] by definition of G ′.

– For all edge e = ((s, c), sink) ∈ E ′, its weight in G ′ is w′(e) = 1 and we now set it to
w′′(e) = c in G ′′ for the sake of consistency (the actual value over this type of edges will
not matter eventually).
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– For the self-loop e = (sink, sink) ∈ E ′, its weight in G ′ is w′(e) = 1 and we now set it
to w′′(e) = �t� + 1 in G ′′. That is, reaching sink will imply a mean-payoff higher than
the threshold.

Before proving the claim, we show that for all plays π ∈ Plays(G ′) = Plays(G ′′) that do
not reach sink, we have that AEG ′(π) = MPG ′′(π), where the subscript naturally refers to
the change of weight function. Let

π = s′
0s

′
1s

′
2 . . . = (s0, c0)(s1, c1)(s2, c2) . . .

be such a play, where for all i ≥ 0, s′
i ∈ S′ and (si , ci ) ∈ S×[0,U ] ∩N is its corresponding

label. By definition of G ′′, we have that,

∀ n ≥ 0, w′′(s′
n, s

′
n+1) = cn = ELG ′(π(n)).

Hence by definition of the mean-payoff and the average-energy,

MPG ′′(π) = lim sup
n→∞

1

n

n−1∑

i=0

w′′(s′
i , s

′
i+1)

= lim sup
n→∞

1

n

n−1∑

i=0

ELG ′(π(i)) = AEG ′(π). (4)

For the sake of completeness, observe that this equality does not hold for plays reaching sink,
as they have infinite average-energy in G ′ but finite mean-payoff in G ′′.

We proceed by proving the claim that P1 has a winning strategy σ ′
1 for the AE objective

in G ′ if and only if he has a winning strategy σ ′′
1 for the MP objective in G ′′, for the very

same threshold t .
First, consider the left-to-right implication. Assume σ ′

1 is winning for objective
AvgEnergy(t) in G ′. We apply the same strategy in G ′′ straightforwardly as the underlying
graph is not modified. Since this strategy is winning for the AE objective in G ′, it necessarily
avoids sink both in G ′ and G ′′ (as otherwise the AE would be infinite). Hence by Eq. (4), we
have that σ ′

1 is also winning forMeanPayoff (t) in G ′′.
Second, consider the right-to-left implication. Assume σ ′′

1 is winning for objective
MeanPayoff (t) in G ′′. Since the self-loop on sink has weight �t� + 1, it is necessary that σ ′′

1
never reaches sink otherwise it would not be winning. Hence we apply the same strategy in
G ′ and by Eq. (4), we have that σ ′′

1 is also winning for AvgEnergy(t) in G ′.
This proves correctness of the reduction. The same reasoning can be followed forAE (thus

usingMP) instead of AE. We end by discussing the size of G ′′. Clearly, the state space S′′ is
identical to S′, hence |S′′| = (U + 1) · |S| + 1. However, the largest absolute weight in G ′′
is W ′′ = max{U, �t� + 1}. Indeed, the self-loop on sink has weight (�t� + 1) and all other
edges have weight bounded by the energy upper bound U by construction. ��

Illustration Consider the AELU game G depicted in Fig. 3a. We have seen that the optimal
strategy isπ3 = (acaab)ω. Now consider the reduction to theAE game, and further to theMP
game, depicted in Fig. 4. The optimal (memoryless) strategy in both the AE game G ′ and the
MP game G ′′ is to create the play π ′ = ((a, 0)(c, 1)(a, 1)(a, 3)(b, 0))ω, which corresponds
to the optimal play π3 in the original game. It can be checked that AEG(π3) = AEG ′(π ′) =
MPG ′′(π ′).

Complexity The reduction from the AELU game to the AE one induces a pseudo-polynomial
blow-up in the number of states. Thanks to the second reduction and the use of a pseudo-

123



Average-energy games 113

polynomial algorithm for the MP game [9,38], we get EXPTIME-membership, which is
optimal for two-player games thanks to the lower bound proved forEGLU [6]. The complexity
is reduced when the bound U is given in unary or is polynomial in the size of the game,
matching the one obtained for AE games without energy constraints.

For the one-player case, we also use the reduction to an MP game. By [17], optimal
memoryless strategies exist, hence it suffices to non-deterministically build a simple lasso
path in G ′′, and to check that it satisfies the mean-payoff constraint. It can be done using only
polynomial space through on-the-fly computation.

Theorem 13 TheAELU problem isEXPTIME-complete for two-player gamesandPSPACE-
complete for one-player games. If the upper bound U ∈ N is polynomial in the size of the
game or encoded in unary, the AELU problem collapses toNP∩ coNP and P for two-player
and one-player games, respectively.

Proof Let G = (S1, S2, E, w) be the original AELU game, W ∈ N its largest absolute
weight,U ∈ N the upper bound for energy and t ∈ Q the threshold for theAELU problem. By
Lemma 11, this AELU problem is reducible to an AE problem for the same threshold t over a
gameG ′ = (S′

1, S
′
2, E

′, w′) such that |S′| = (U+1)·|S|+1 andW ′ = max {min {W, U }, 1}.
By Lemma 12, the AELU problem can be further reduced to an MP problem for the same
threshold t over a game G ′′ = (S′

1, S
′
2, E

′, w′′) sharing the same state space as G ′ but with
largest absolute weight W ′′ = max{U, �t� + 1}. We start by proving the complexity upper
bounds.

First, consider the one-player case. Combining Theorem 7 and the reduction to an AE
game, we obtain that one-player AELU games can be solved in pseudo-polynomial time,
i.e., polynomial in |S| but also in the value of U (hence exponential in the size of its binary
encoding). This both givesEXPTIME-membership of one-playerAELU gameswith arbitrary
upper bounds, andP-membership of the same gameswith polynomial or unary upper bounds.
For arbitrary bounds, we improve the complexity from EXPTIME to PSPACE. To do so,
we consider the further reduction to an MP game, but we do not completely build the MP
game G ′′ which is known to be of exponential size. Instead, we build non-deterministically a
witness lasso path (thanks tomemoryless determinacy [17], they are sufficient) and check on-
the-fly that the path is winning or not, using only polynomial space. Recall that we consider
a game G ′′ such that S′

2 = ∅. Our non-deterministic algorithm answers Yes if P1 has a
winning strategy in G ′′ (and hence in G thanks to Lemmas 11 and 12), No otherwise, and is
as follows:

1. Guess a state s′
r ∈ S′

1 = (S1 × {0, 1, . . . ,U }) ∪ {sink} that will be the starting (and
ending) state of the cycling part of the lasso path. For the following, we assume that
s′
r �= sink otherwise the lasso path that we are trying to build is clearly losing (see proof
of Lemma 12) and the algorithm answers No. Thus, store state s′

r = (sr ,m) for some
m ∈ {0, . . . ,U }.

2. Check that s′
r is reachable from the initial state (sinit, 0). This can be done in

NLOGSPACE w.r.t. the size of G ′′ (see e.g., [35]), hence NPSPACE w.r.t. the orig-
inal problem. If it is not, then the answer is No.

3. Build step by step2 a lasso path by constructing a simple cycle in G ′′ starting in s′
r . This

construction is non-deterministic: if at any point, the sink state is reached, the algorithm
returns No. The construction stops as soon as s′

r is reached, or after |S′| + 1 steps if s′
r

2 Observe that given a state in G′′, it is indeed possible to build any neighboring state using only E and w

from the original game: one can effectively build the graph G′′ on-the-fly.
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is not reached: in the latter case, the answer is also No (after |S′| + 1 steps, we know for
certain that a cycle was created hence our lasso path is complete). While constructing
the cycle, we make on-the-fly computations: at each step, the next state is chosen non-
deterministically and the only information that is stored—except from state s′

r used to
determine the end of the cycle—is the number of steps from leaving s′

r , and the sum of
the weights seen along the cycle.

4. Assume s′
r is reached (otherwise we have seen that the answer is No). Let s′

0s
′
1 . . . s′

l be
the sequence of states visited along the construction, with s′

0 = s′
l = s′

r . We have stored
the length l and the sum of weights

γ =
l−1∑

i=0

w′′ (s′
i , s

′
i+1

)
.

Now, we check if
γ

l
≤ t : this quantity is the mean-payoff of the lasso path we have

constructed. If yes, then the answer is Yes, thanks to Lemmas 11 and 12: the lasso path
describes a winning strategy. Otherwise, the answer is No as this lasso path represents a
losing strategy, by the same lemmas.

The correctness of this algorithm is guaranteed by Lemmas 11 and 12. It remains to argue
that it only uses polynomial space in the original AELU problem. Observe that our on-the-
fly computations only need to record the state s′

r , the current state, the current length and
the current sum. We have that both states belong to S1 × {0, 1, . . . ,U }, that l < |S′| =
(U + 1) · |S| + 1 and that the sum is bounded by l · W ′′ = l · max{U, �t� + 1}. Hence,
encoding those values only requires a polynomial number of bits w.r.t. the input of the AELU

problem (i.e., logarithmic in the upper bound U , the largest weight W and the threshold t).
This proves that our algorithm lies in NPSPACE, and by Savitch’s theorem [35] we know
that NPSPACE = PSPACE: hence we proved the upper bound for the one-player AELU

problem.
Second, consider two-player AELU games. In this case, we solve the MP problem over

G ′′ using a pseudo-polynomial algorithm such as the one presented in [9], whose complexity
isO(|S∗|3 ·W ∗) for a game with |S∗| states and largest absolute weightW ∗ ∈ N. Therefore,
the complexity of solving the original AELU problem is

O (|S′|3 · W ′′) = O
((

(U + 1) · |S| + 1
)3 · max{U, �t� + 1}

)
,

which is clearly pseudo-polynomial.HenceweobtainEXPTIME-membership for two-player
AELU games. If the upper bound U ∈ N is polynomial in the size of the game or encoded
in unary, it is sufficient to solve the polynomially-larger AE game G ′ using Theorem 9 to
obtain NP ∩ coNP-membership.

Now consider lower bounds. The AELU problem trivially encompasses the lower- and
upper-bounded energy problem EGLU , i.e., the AELU without consideration of the average-
energy. Indeed, consider a game G with an objective EnergyLU(U, cinit := 0), for some U ∈
N. Assume P1 has a winning strategy for this objective. Then this strategy ensures that
along any consistent outcome π , the running energy at any point is at most equal to U . By
definition, this implies that AE(π) ≤ AE(π) ≤ U . Hence this strategy is also winning for the
AELU objective written as the conjunction EnergyLU(U, cinit := 0)∩AvgEnergy(t :=U ). The
converse is also trivially true. Ergo, any lower bound on the complexity of the EGLU problem
also holds for the AELU one. The EXPTIME-hardness of the two-player EGLU problem was
proved in [6], the PSPACE-hardness of the one-player version was proved in [18] (in the
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Fig. 5 Families of games witnessing the need for pseudo-polynomial-memory strategies for EGLU (and
AELU ) objectives. The goal ofP1 is to keep the energy in [0, U ] at all times, forU ∈ N. The left game is won
by P1 and the right one by P2 but both require memory polynomial in the value U to be won. a P1 needs to
take U times (s, s′) before taking (s, s) once and repeating. b P2 needs to increase the energy up to U using
(a, c) to force P1 to take (g, d) then make him lose by taking (a, b)

equivalent setting of reachability in bounded one-counter automata). Note that those results
clearly rely on having an upper bound U larger than polynomial (w.r.t. the size of the game)
and encoded in binary, as we have already shown that in the opposite case the complexity of
the problem is reduced.

Finally, observe that the same reduction and complexities also hold if we use AE instead
of AE to define the AELU problem. This concludes our proof. ��
Remark 1 One could argue that the reduction from AE games to MP games presented in
Lemma 12 could be used to solve AE games without resorting to the specific analysis of
Sect. 3. Indeed, in the case where the mean-payoff value is zero, any memoryless strategy
(which we know to suffice) that is winning should only create zero cycles: the energy can
be constrained in the range [−2 · |S| · W, 2 · |S| · W ] along any winning play. However,
applying a pseudo-polynomialMP algorithm on this new gamewould only grantEXPTIME-
membership for AE games (because of the polynomial dependency on W ), in contrast to the
NP ∩ coNP and P results obtained with the refined analysis for two-player and one-player
AE games respectively.

4.2 Memory requirements

Weprove pseudo-polynomial lower and upper bounds onmemory for the two players inAELU

games. The upper bound follows from the reduction to a pseudo-polynomialAE game and the
memoryless determinacy of AE games proved in Theorem 8. Observe that winning strategies
obtained via our reductions have a natural form: they are memoryless w.r.t. configurations
(s, c) denoting the current state and the current energy level. As noted before, when the
upper bound on energy U ∈ N is polynomial or given in unary, the expanded game is only
polynomial in size, and the memory needs are also reduced.

The lower bound can be witnessed in two families of games asking for strategies using
memory polynomial in the energy upper bound U ∈ N to be won by P1 (Fig. 5a) or
P2 (Fig. 5b) respectively. It is interesting to observe that those families already ask for
such memory when considering the simpler EGLU objective (i.e., bounded energy only).
Sufficiency of pseudo-polynomial memory for EGLU games follows from [6] but to the best
of our knowledge, it was not proved in the literature that such memory is also necessary.

Theorem 14 Pseudo-polynomial-memory strategies are both sufficient and necessary to
win in EGLU and AELU games with arbitrary energy upper bound U ∈ N, for both players.
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Polynomial memory suffices when U is polynomial in the size of the game or encoded in
unary.

Proof We first prove the upper bound on memory. The expanded game G ′ built in the
reduction from the AELU to the AE problem (Lemma 11) has a state space of size |S′| =
(U + 1) · |S| + 1, over which memoryless strategies suffice, by Theorem 8. Thus, winning
for the AELU objective only requires memory that is polynomial in the original number of
states and the upper bound value U ∈ N. The same reduction holds for EGLU games with
an even simpler safety objective (never reaching sink) instead of the AE one (or equivalently
with the AE objective for threshold t = U ). Thus, with regard to the binary encoding of U ,
strategies require exponential memory in general. For the special cases of unary encoding
or polynomially bounded value U , polynomial memory suffices. Note that as usual, these
arguments are true for both the AE and the AE versions of the objective.

We now discuss the two families of games witnessing that pseudo-polynomial memory is
also a lower bound for both players.

First, consider the one-player game depicted in Fig. 5a and parametrized by the value
U ∈ N. Assume the objective is EGLU , asking for the energy to remain within [0, U ] at all
times. Recall that the initial energy level is fixed to cinit := 0. It is easy to see that there is only
one acceptable strategy for P1: playing (s, s′) exactly U times, then playing the self-loop
(s, s) once, and repeating this forever. Indeed, any other strategy eventually leads the energy
outside the allowed range. Hence, to win this game,P1 needs a strategy described by aMoore
machine whose memory contains at least (U +1) states. This proves that pseudo-polynomial
memory is required for P1 in EGLU games. Furthermore, the same argument can be applied
on this game with objective AELU by considering the average-energy threshold t :=U which
is trivially ensured by strategies satisfying the EGLU objective.

Second, consider the two-player3 EGLU game depicted in Fig. 5b. Again this game is
parametrized by the energy upper bound U ∈ N and the initial energy level is fixed to
cinit := 0. This game can be won by P2 using the following strategy: if the energy level is
in [1, U ], play (a, c), otherwise play (a, b). Note that this strategy again requires at least
(U + 1) states of memory in its Moore machine (to keep track of the energy level).

This strategy is indeed winning. Observe that P1 can only decrease the energy by using
edge (g, d) of weight −U , and this edge can only be used safely if the energy level is exactly
U . In addition, the energy is bound to reach or exceed U eventually (as it will increase by 1
or 2 between each visit of a). If it exceeds U , then P2 wins directly. Otherwise, assume that
the energy is U when the game is in state g. If P1 plays (g, f ), he loses (the energy reaches
U + 1). If he plays (g, e),P2 wins by playing (a, c) (the energy also reaches U + 1). And
if P1 plays (g, d),P2 wins by playing (a, b) (the energy reaches −1). Hence, P2 wins the
game against all strategies of P1.

Now, observe thatP2 cannot win if he uses a strategy with less memory states in its Moore
machine. Indeed, any such strategy cannot keep track of all the energy levels between 0 and
U and play (a, c) a sufficient number of times in a row before switching to the appropriate
choice (depending on the energy being 0 orU ). Therefore, if P2 uses such a strategy, P1 can
maintain the energy in the allowed range by simply reacting to edge (a, b) with (g, f ) and
to edge (a, c) by choosing between (g, d) (if the energy is U ) and (g, e) (otherwise). Such
choices are safe for P1 as the strategy of P2 does not have enough memory to distinguish the
resulting energy levels from the intermediate ones.

3 In EGLU games with only P2 (i.e., S1 = ∅), P2 does not need memory to play as he can pick beforehand
which of the energy bounds (lower or upper) he will transgress, and then do so with a memoryless strategy.
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This proves that P2 also needs pseudo-polynomial memory in EGLU games. Finally, we
remark that this reasoning also holds for the AELU objective with threshold t :=U , as for the
previous game. ��

5 Average-energy with lower-bounded energy

We concludewith the conjunction of anAE objectivewith a lower bound (again equal to zero)
constraint on the running energy, but no upper bound. This corresponds to an hypothetical
unbounded energy storage. Hence, its applicability is limited, but it may prove interesting on
the theoretical standpoint.

Problem 3 (AEL ) Given a game G, an initial state sinit and a threshold t ∈ Q, decide if P1

has a winning strategy σ1 ∈ �1 for objective EnergyL(cinit := 0) ∩ AvgEnergy(t).

This problem proves to be challenging to solve: we provide partial answers in the follow-
ing, with a proper algorithm for one-player games but only a correct but incomplete method
for two-player games. As usual, we present our results for the supremum variant AE.

Illustration Consider the game in Fig. 3. Recall that for AELU with U = 3, the optimal play
is π3, and it requires alternation between all three different simple cycles. Now consider
AEL . One may think that relaxing the objective would allow for simpler winning strategies.
This is not the case. Some new plays are now acceptable w.r.t. the energy constraint, such as
π4 = (aabaaba)ω, with AE(π4) = 11/7 and π5 = (aaababa)ω, with AE(π5) = 18/7. Yet,
the optimal play w.r.t. the AE (under the lower-bound energy constraint) is still π3, hence
still requires to use all the available cycles, in the appropriate order. This indicates that AEL

games also require complex solutions.

5.1 One-player games

We assume that the unique player isP1. Indeed, the opposite case is easy as forP2, the objec-
tive is a disjunction and P2 can choose beforehand which sub-objective he will transgress,
and do so with a simple memoryless strategy (both AE and EGL games admit memoryless
optimal strategies as seen before). We show that one-player AEL problems lie in PSPACE
by reduction to AELU problems for a well-chosen upper bound U ∈ N and then application
of Theorem 13.

The reduction Given a gameG = (S1, S2 = ∅, E, w)with largest weightW ∈ N, an initial
state sinit, and a threshold t ∈ Q, we reduce the AEL problem to an AELU problem with an
upper bound U ∈ N defined as U := t + N 2 + N 3, with N = W · (|S| + 2). Observe that
the length of the binary encoding of U is polynomial in the size of the game, the encoding
of the largest weight W and the encoding of the threshold t . The intuition is that if P1 can
win a one-player AEL game, he can win it without ever reaching energy levels higher than
the chosen bound U , even if he is technically allowed to do so. Essentially, the interest of
increasing the energy is making more cycles available (as they become safe to take w.r.t. the
lower bound constraint), but increasing the energy further than necessary is not a good idea
as it will negatively impact the average-energy. To prove this reduction, we start from an
arbitrary winning path in the AEL game, and build a witness path that is still winning for
the AEL objective, but also keeps the energy below U at all times. Our construction exploits
a result of Lafourcade et al. that bounds the value of the counter along a path in a one-
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counter automaton (stated in [31] and proved in [30, Lemma 42]). We slightly adapt it to our
framework in the next lemma. The technique is identical, but the statement is more precise.
In the following, we call an expanded configuration of the game G a couple (s, c) where
s ∈ S is a state and c ∈ Z a level of energy.

Lemma 15 Let g ∈ Z. Let (s, c) and (s′, c′) be two expanded configurations of the game G
such that there exists an expanded path ρexp = (s0, c0) . . . (sm, cm) in G from (s, c) to (s′, c′)
with ci ≥ g for every 0 ≤ i ≤ m. Then, there is a path ρ′

exp = (s′
0, c

′
0)(s

′
1, c

′
1) . . . (s′

n, c
′
n) in

G from (s, c) to (s′, c′) such that:
– for every 0 ≤ i ≤ n, g ≤ c′

i ≤ max{c, c′, g} + N 2 + N 3, where N = W · (|S| + 2), with
W the maximal absolute weight in G;

– there is an (injective) increasingmapping ι : {1, . . . , n} → {1, . . . ,m} such that for every
1 ≤ i ≤ n, s′

i = sι(i) and c′
i ≤ cι(i).

Furthermore, for any two expanded paths ρ1 and ρ2, with last(ρ1) = (s, c) and
first(ρ2) = (s′, c′), if AE(ρ1 · ρexp · ρ2) ≤ g, then it also holds that AE(ρ1 · ρ′

exp · ρ2) ≤
AE(ρ1 · ρexp · ρ2) ≤ g.

Proof Wewriteα = W ·(|S|+1), β = (α+W )·(α+W−1)−1 and K = max
{
c, c′, g

}+(α+
W )2. We apply inductively a transformation that removes similar ascending and descending
segments of the path. The segments are selected such that their composition is neutralw.r.t. the
energy.

Pick a subpath ρexp[k, k + h] = (sk, ck) . . . (sk+h, ck+h) of ρexp, if it exists, such that:

(a) ck ≤ K and ck+h ≤ K ;
(b) for every 0 < � < h, ck+� > K ;
(c) there is 0 < � < h such that ck+� > K + W · (|S| + 1) · β.

If such a subpath does not exist, then this means that the cost along ρexp is overall bounded by
K +W · (|S|+1) ·β (since condition (a) is not restrictive–c, c′ ≤ K ), which then concludes
the proof. Hence, assume such a subpath exists for the following steps.

Ascent part Let k ≤ �0 ≤ · · · ≤ �β ≤ k + h be indices such that:

– c�i > K + i · W · (|S| + 1);
– for every k ≤ � < �i , c� ≤ K + i · W · (|S| + 1).

Fix 0 ≤ i ≤ β. Then it holds that c�i ≤ K + i · W · (|S| + 1) + W and thus c�i+1 − c�i >

K + (i + 1) · W · (|S| + 1) − (K + i · W · (|S| + 1) + W ) = W · (|S| + 1) − W = W · |S|.
Let Ji be a subset of [�i ; �i+1] defined by �i ∈ Ji , and if j ∈ Ji , then let j ′ ≤ �i+1

be the smallest index larger than j (if it exists) such that c j ′ > c j . Obviously we have

c j < c j ′ ≤ c j + W . Hence the cardinal of Ji is at least 1 + W ·|S|
W ≥ |S| + 1. Hence

there is a state s̃(i) and two indices ji,1 < ji,2 ∈ Ji with (s ji,1 , c ji,1) = (̃s(i), α1) and
(s ji,2 , c ji,2) = (̃s(i), α2) with c�i ≤ α1 < α2 ≤ c�i+1 , hence using previous computed
bounds, 0 < α2 − α1 ≤ c�i+1 − c�i < W · (|S| + 2) = α +W . We write d̃(i) = α2 − α1. The
segment between indices ji,1 and ji,2 is a candidate for being removed. Due to the value of
β, there is d ∈ {d̃(i) | 0 ≤ i ≤ β} that appears (α + W ) times in that set.

Descent part We do a similar reasoning for the “descent” part. There must exist indices
k ≤ m0 ≤ · · · ≤ mβ ≤ k + h such that:

– cmi > K + (β − i) · W · (|S| + 1);
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– for every mi < m ≤ k + h, cm ≤ K + (β − i) · W · (|S| + 1).

Note that we obviously have �β < m0.
Then we apply the same combinatorics as for the ascent part. There is some value 0 <

d ′ < α + W which appears at least α + W times in potential cycles within the segment
ρexp[k, k + h].

Transformation The algorithm then proceeds by removing d ′ segments that increase the cost
by d within ρexp[�0, �β ] and d segments that decrease the cost by d ′ within ρexp[m0,mβ ].
This yields another path ρ′

exp and an obvious injection of ρ′
exp into ρexp which satisfies all

the mentioned constraints. The sum of all energy levels along ρ′
exp is smaller than that along

ρexp, and any energy level along ρ′
exp is obtained from that along ρexp by decreasing by at

most 0 < d · d ′ < (α + W )2. By assumption on segment ρexp[k, k + h] and bound K , we
get that the cost along ρ′

exp is always larger than or equal to g, c and c′.
We iterate this transformation to get a uniform upper bound. We finally notice that the

obtained upper bound K + W · (|S| + 1) · β is bounded itself by max{c, c′, g} + N 2 + N 3,
where N = W · (|S| + 2). This implies the expected result. ��

We build upon this lemma to define an appropriate transformation leading to the witness
path and derive a sufficiently large upper bound U ∈ N for the AELU problem.

Lemma 16 The AEL problem over a one-player game G = (S1, S2 = ∅, E, w), with an
initial state sinit and a threshold t ∈ Q, is reducible to an AELU problem over the same game
G, for the same threshold t and upper bound U := t + N 2 + N 3, with N = W · (|S| + 2).

Proof Weprove thatwe can bound the energy along awitness of the one-playerAEL problem.
Let σ be a winning strategy of P1 for objective EnergyL(cinit := 0) ∩ AvgEnergy(t) and
π = s0s1 . . . sn . . . be the corresponding outcome.

We build another strategy σ̃ with corresponding play π̃ such that for every n, 0 ≤ cinit +
EL(π̃(n)) ≤ cinit + t + N 2 + N 3, where N = W · (|S| + 2) (W is the maximal absolute
weight in G), and such that AE(π̃) ≤ AE(π). We actually build the play π̃ directly, and infer
strategy σ̃ .

From π , we build the expanded play πexp = (s0, c0)(s1, c1) . . . (sn, cn) . . . such that
ci = EL(π(i)) for every i ≥ 0. Since π is a witness satisfying the objective EnergyL(cinit) ∩
AvgEnergy(t), it holds that ci + cinit ≥ 0 for every i ≥ 0. We now show that some pair (s, c)
is visited infinitely often along πexp. Toward a contradiction, assume that it is not the case.
Then since energy levels are bounded from below along π , this means that lim infn→∞ cn =
TP(π) = +∞, and by Lemma 2, that AE(π) = +∞ which contradicts the play being
winning for theAE objective with threshold t ∈ Q. Now select the smallest energy c and state
s such that (s, c) is visited infinitely often along πexp. Pick n0 such that (1) (sn0 , cn0) = (s, c),
(2) π[≥ n0] = sn0sn0+1 . . . only visits states that are visited infinitely often along π , and
(3) for every (s′, c′) along πexp[≥ n0], it holds that c′ ≥ c.

We can then write πexp as πexp[≤ n0] · C1 · C2 . . . where each Ci ends at configuration
(s, c) (hence Ci forms a cycle), and each configuration (s′, c′) along some Ci satisfies c′ ≥ c.
We write γi for the projection of Ci on states (without energy level)—it forms a cycle as well.
We obviously have

AE(π) = EL(π(n0)) + AE(π[> n0]) = c + AE(π[> n0])
by Lemma 4, and since AE(π) ≤ t , there must be some cycle Ci such that AE(γi ) ≤ t − c.
We write γ for such a γi , and we define � = π(n0) · γ ω: it is a lasso-shaped play which
also satisfies the objective EnergyL(cinit) ∩ AvgEnergy(t).
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We will now modify the play � , so that the energy does not grow too much along it. We
write �exp for the expanded version of � : it is of the form

�exp[≤ n0] · (
�exp[n0 + 1, n0 + p])ω

,

where �exp[n0 + 1, n0 + p] projects onto γ when the energy information is removed (note
that the last configurations of �exp[≤ n0] and of �exp[n0 + 1, n0 + p] are (s, c)). We will
do two things: (i) first we will work on the cycle γ ; and (i i) then we will work on the prefix
� [≤ n0], to build a witness with a fixed upper bound on the energy. For the rest of the proof,
we assume that �exp = (s0, c0)(s1, c1) . . . so that (sn, cn) = (s, c) for every n = n0 + b · p
for some integer b.

First consider point (i). Let us notice that c ≤ t , otherwise the average-energy along �

could not be at most t (remember that the cost along the expanded version of γ starting at
(s, c) is always larger than or equal to c by construction). We pick the first maximal subpath
�exp[k, k+h] of�exp with [k, k+h] ⊆ (n0, n0+ p), such that ck+� > t for every 0 ≤ � ≤ h.
By maximality of �exp[k, k + h], it is the case that ck−1 ≤ t and ck+h+1 ≤ t . We infer that
t < ck ≤ t + W and t < ck+h ≤ t + W , where W is the maximal absolute weight in the
game G. We apply Lemma 15 to the path �exp[k, k + h] with g = t , and we get that we can

build an expanded path �
(k)
exp which is shorter than �exp[k, k + h] and such that:

– at all positions of �
(k)
exp, the energy is in the interval [t, t + N 2 + N 3], where N =

W · (|S| + 2);
– there is an injective increasing mapping ι : [0, |�(k)

exp|] → [k, k + h] such that for every

index 1 ≤ i ≤ |�(k)
exp|, the state of �

(k)
exp[= i] coincides with that of �exp[= ι(i)] and the

energy at position i of �
(k)
exp is smaller than or equal to cι(i).

In particular, we have a new witness for the objective EnergyL(cinit) ∩ AvgEnergy(t), which
is the play � [< n0] · (

� [n0, k − 1] · �(k) · � [k + h + 1, n0 + |γ | − 1])ω, where �(k) is

the projection of �
(k)
exp over the states of the game G. We iterate this transformation over all

relevant segments of γ (this will happen only a finite number of times), and we end up with
a new lasso-play � ′ = � [≤ n0] · (γ ′)ω such that:

– � ′ satisfies the objective EnergyL(cinit) ∩ AvgEnergy(t);
– for every 1 ≤ � ≤ |γ ′|,−cinit ≤ EL(� ′(n0 + �)) ≤ t + N 2 + N 3.

Now, consider point (i i). It remains to work on the prefix � [≤ n0] (which is still a prefix
of � ′). We apply Lemma 15 to the prefix � [≤ n0] with g = 0, and we get an appropriately
bounded witness.

Summing up, our construction proves that if there exists a winning play for EnergyL(cinit
:= 0)∩AvgEnergy(t) in the one-player gameG, then there exists one forEnergyLU(U, cinit :=
0)∩AvgEnergy(t), withU := t +N 2 +N 3. Since the converse implication is obvious (as the
second objective is strictly stronger), this concludes the proof of the reduction to an AELU

game. ��

Complexity Plugging this bound U in the PSPACE algorithm for one-player AELU games
(Theorem 13) implies PSPACE-membership for one-player AEL games also. In terms of
time complexity, we saw that this problem can thus be solved in pseudo-polynomial time.We
prove that no truly-polynomial-time algorithm can be obtained unless P = NP as the one-
player AEL problem isNP-hard. We show it by reduction from the subset-sum problem [20]:
given a finite set of naturals A = {a1, . . . , an} and a target natural v, decide if there exists a
subset B ⊆ A such that

∑
ai∈B ai = v. The reduction is sketched in Fig. 6: a play corresponds
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s1

a1

¬a1

s2

a2

¬a2
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an

¬an

end 0
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0

0

0
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0

0

0

an

0

−v

−v

Fig. 6 Reduction from the subset-sum problem for target v ∈ N to a one-player AEL problem for average-
energy threshold t := v

to a choice of subset. In order to keep a positive energy level, P1 has to pick a subset that
achieves a sum at least equal to v, but in order to satisfy the AE threshold, this sum must be
at most v: hence P1 must be able to pick a subset whose sum is exactly the target v.

Theorem 17 The AEL problem is in PSPACE and at least NP-hard for one-player games.

Proof First, consider the claim of PSPACE-membership. Let G = (S1, S2 = ∅, E, w) be a
game with initial state sinit. Consider the AEL problem for a given average-energy threshold
t ∈ Q. By Lemma 16, this problem is reducible to the AELU problem with upper bound
U := t + N 2 + N 3, with N = W · (|S| + 2). Hence, U is of order O(t + W 3 · |S|3), and its
encoding is polynomial in the encoding of the originalAEL problem (including thresholds and
weights, not only in the number of states of the original game!). Following the complexity
analysis presented in Theorem 13, we thus conclude that the one-player AEL problem is
indeed in PSPACE. In terms of time, by using theMP reduction and the pseudo-polynomial
algorithm, we have an algorithm for the one-player AEL problem that takes time of order

O
((

(U + 1) · |S| + 1
)3 · max{U, �t� + 1}

)
= O

((
t + W 3 · |S|3)4 · |S|3

)
,

which is still pseudo-polynomial in the size of the original AEL problem (i.e., polynomial in
the number of states and in the values of the largest absolute weight and of the average-energy
threshold).

Second, we prove that the one-player AEL problem is NP-hard. Consider the subset-sum
problem for the set A = {a1, . . . , an} such that for all i ∈ {1, . . . , n}, ai ∈ N, and target
v ∈ N. Deciding if there exists a subset B ⊆ A such that

∑
ai∈B ai = v is well-known to

be NP-complete [20]. We reduce this problem to an AEL problem over the game G depicted
in Fig. 6. Observe that this game has polynomially as many states as the size of A, and that
its largest absolute weight is equal to the maximum between the largest element of A and
the target v. It is clear that there is a bijection between choices of subsets of A and plays
in G. Let us fix threshold t := v for the average-energy. Recall that Lemma 4 implies that
the average-energy of any play is exactly its energy level at the first visit of end (because
afterwards the zero self-loop is repeated forever). Hence, we have that

1. a play π in G is winning for EnergyL(cinit := 0) if and only if the corresponding subset
B is such that

∑
ai∈B ai ≥ v;

2. a play π in G is winning for AvgEnergy(t := v) if and only if the corresponding subset
B is such that

∑
ai∈B ai ≤ v.

Therefore, P1 has a winning strategy for the AEL objective EnergyL(cinit := 0) ∩AvgEnergy
(t := v) in G if and only if there exists a subset B for which the sum of elements is exactly
equal to the target v.
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This proves the reduction from the subset-sum problem and the NP-hardness result.
Observe two things. First, the hardness proof relies on having set elements and a target
value that are not polynomial in the size of the input set A. Indeed, the subset-sum problem
is solvable with a pseudo-polynomial algorithm, hence in P for polynomial values. Second,
our reduction also holds for the AE variant of the average-energy. ��

Memory requirements Recall that for P2, the situation is simpler and memoryless strategies
suffice. By the reduction to AELU , we know that pseudo-polynomial memory suffices for
P1. This bound is tight as witnessed by the family of games already presented in Fig. 5a. To
ensure the lower bound on energy, P1 has to play edge (s, s′) at least U times before taking
the (s, s) self-loop. But to minimize the average-energy, edge (s, s′) should never be played
more than necessary. The optimal strategy is the same as for the AELU problem: playing
(s, s′) exactly U times, then (s, s) once, then repeating, forever. As shown in Theorem 14,
this strategy requires pseudo-polynomial memory.

Theorem 18 Pseudo-polynomial-memory strategies are both sufficient and necessary to win
for P1 in one-player AEL games. Memoryless strategies suffice for P2 in such games.

5.2 Two-player games

For the two-player AEL problem, we only provide partial answers, as open questions remain.
We first discuss decidability: we present an incremental algorithm that is correct but incom-
plete (Lemma 19) and we draw the outline of a potential approach to obtain completeness
hence decidability. Then, we prove that the two-player AEL problem is at least EXPTIME-
hard (Lemma 20). Finally, we show that, in contrast to the one-player case, P2 also requires
memory in two-player AEL games (Lemma 21).

Decidability Assume that there exists some U ∈ N such that P1 has a winning strategy for
the AELU problem with upper bound U and average-energy threshold t . Then, this strategy
is trivially winning for the AEL problem as well. This observation leads to an incremental
algorithm that is correct (no false positives) but incomplete (it is not guaranteed to stop).

Lemma 19 There is an algorithm that takes as input an AEL problem and iteratively solves
corresponding AELU problems for incremental values of U ∈ N. If a winning strategy is
found for some U ∈ N, then it is also winning for the original AEL problem. If no strategy
is found up to value U ∈ N, then no strategy of P1 can simultaneously win the AEL problem
and prevent the energy from exceeding U at all times.

While an incomplete algorithm clearly seems limiting from a theoretical standpoint, it is
worth noting that in practice, such approaches are common and often necessary restrictions,
even for problemswhere a complete algorithm is known to exist. For example, the existence of
an initial energy level sufficient towin inmulti-dimensional energy games can be decided [15]
but practical implementations resort to an incremental scheme that is in practice incomplete
because the theoretical bound granting completeness is too large to be tackled efficiently
by software synthesis tools [4]. In our case, we have already seen that if such a bound
exists for the two-player AEL problem, it needs to be at least exponential in the encoding of
problem (cf. one-player AEL games). Hence it seems likely that a prohibitive bound would
be necessary, rendering the algorithm of Lemma 19 more appealing in practice.

Nevertheless, we conjecture that the AEL problem is decidable for two-player games
and that, similarly to the one-player case, an upper bound on the energy can be obtained.
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Unfortunately, this claim is much more challenging to prove for two-player games. Clearly,
the approach of Lemma 16 has to be generalized: while in one-player games we could pick a
witness winning play and transform it, we now have to deal with tree unfoldings—describing
sets of plays—because of the uncontrollable choices made by P2.

A potentially promising approach is to define a notion close to the self-covering trees
used in [15] for energy games. Roughly, take any winning strategy of P1 in a two-player
AEL game. Without further assumption, this strategy could be infinite-memory. It can be
represented by its corresponding infinite tree unfolding where in nodes of P1, a unique child
is given by the strategy, and in nodes of P2, all possible successors yield different branches.
Every rooted branch of this tree is infinite and describes a winning play. Then, we would like
to achieve the following steps.

1. Prove that all branches of this unfolding can be cut in such a way that the resulting finite
tree describes a finite-memory strategy that is still winning for the AEL objective.

2. Reduce the height of this finite tree by compressing parts of the branches: deleting
embedded zero cycles seems to be a good candidate for the transformation to apply.

3. Derive an upper bound on the height of the compressed tree and, consequently, on the
maximal energy level reached along any play consistent with the corresponding strategy.

4. Use this upper bound to reduce the AEL problem to an AELU problem.

Sadly, some challenges appear on the technical side when trying to implement this approach,
mainly for items 1 and 3. Intuitively, the additional difficulty (when compared to the approach
developed in [15] and similar works) arises from the fact that describing what is a good cycle
pattern for the AEL objective is much more intricate than it is for a simple EGL objective
(in which case we simply look for zero cycles). This makes the precise definition of an
appropriate transformation of branches, and the resulting tree height analysis, more tedious
to achieve.

We also mention that the AEL problem could be reduced, following a construction similar
to the one given in Sect. 4.1, to a mean-payoff threshold problem over an infinite arena, where
states of the expanded graph are arranged respectively to their energy level, ranging from
zero to infinity, and where weights would also take values insideN∪{∞} (as they reflect the
possible energy levels). To the best of our knowledge, it is not known if mean-payoff games
over such particular structures are decidable. If so, an algorithm would have to fully exploit
the peculiar form of those arenas, as it is for example known that general models such as
pushdown games are undecidable for the mean-payoff [13].

Finally, one could envision to fill the gap between one-player and two-player AEL games
by using a general result similar to [23, Cor. 7]. Recall that we used it to derive memoryless
determinacy in the two-player case frommemoryless determinacy of both one-player versions
(S1 = ∅ and S2 = ∅). However, we here have that in one-player games, P1 requires pseudo-
polynomial memory. Therefore, it is necessary to extend the result of Gimbert and Zielonka
to finite-memory strategies: that is, to show that if we have a bound on memory valid in
both one-player versions of a game, then this bound, or a derived one, is also valid in the
two-player version. This is not known to be the case in general, and establishing it for a
sufficiently general class of games seems challenging.

Complexity lower bound We now prove that the two-player AEL problem would require
at least exponential time to solve. Our proof is by reduction from countdown games.
A countdown game C is a weighted graph (V, E), where V is the finite set of states, and
E ⊆ V×N\{0}×V is the edge relation. Configurations are of the form (v, c), v ∈ V, c ∈ N.
The game starts in an initial configuration (vinit, c0) and transitions from a configuration
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Fig. 7 Reduction from a countdown game C = (V,E) with initial configuration (vinit, c0) to a two-player
AEL problem for average-energy threshold t := 0

(s, c) are performed as follows. First, P1 chooses a duration d, 0 < d ≤ c such that there
exists e = (v, d, v′) ∈ E for some v′ ∈ V . Second, P2 chooses a state v′ ∈ V such that
e = (v, d, v′) ∈ E . Then the game advances to (v′, c − d). Terminal configurations are
reached whenever no legitimate move is available. If such a configuration is of the form
(v, 0),P1 wins the play, otherwise P2 wins. Deciding the winner given an initial configura-
tion (vinit, c0) is EXPTIME-complete [27].

Our reduction is depicted in Fig. 7. The EL is initialized to c0, then it is decreasing along
any play. Consider the AEL objective for AE threshold t := 0. To ensure that the energy
always stays non-negative, P1 has to switch to stop while the EL is no less than zero. In
addition, to ensure an AE no more than t = 0,P1 has to obtain an EL at most equal to
zero before switching to stop (as the AE will be equal to this EL thanks to Lemma 4 and
the zero self-loop on stop). Hence, P1 wins the AEL objective only if he can ensure a total
sum of chosen durations that is exactly equal to c0, i.e., if he can reach a winning terminal
configuration for the countdown game. The converse also holds.

Lemma 20 The AEL problem is EXPTIME-hard for two-player games.

Proof Given a countdown game C = (V, E) and an initial configuration (vinit, c0), we build
a game G = (S1, S2, E, w) with initial state sinit such that P1 has a winning strategy in G
for the AEL objective for threshold t := 0 if and only if he has a winning strategy in C to
reach a terminal configuration with counter value zero. The construction is depicted in Fig. 7.
Formally, the game G is built as follows.

– S1 = V ∪ {start, stop}.
– S2 = {

(v, d) ∈ V × N\{0} | ∃ v′ ∈ V, (v, d, v′) ∈ E}
.

– sinit = start.
– For each (v, d, v′) ∈ E , we have that (v, (v, d)) ∈ E with w(v, (v, d)) = −d and

((v, d), v′) ∈ E with w((v, d), v′) = 0.
– Additionally, (start, vinit) ∈ E with w(start, vinit) = c0, (stop, stop) ∈ E with

w(stop, stop) = 0 and for all v ∈ V, (v, stop) ∈ E with w(v, stop) = 0.

First, consider the left-to-right direction of the claim. Assume P1 has a winning strategy
for the AEL objective in G. As noted before, such a strategy necessarily reaches the energy
level zero then switches to stop directly. Hence, applying this strategy in the countdown
game ensures that the sum of durations will be exactly equal to c0 (recall that we start our
AEL game by initializing the energy to c0 then decrease it at every step by the duration chosen
by P1). Thus, this strategy is winning in the countdown game C.
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Fig. 8 Simple two-player AEL
game witnessing the need for
memory even for P2

s1 s2 s3

0

−11 −1

2

Second, consider the right-to-left direction. Assume that P1 has a winning strategy in the
countdown game C. Playing this strategy in G ensures to reach a state v ∈ S1 with energy
level exactly equal to zero. Thus a winning strategy for the AEL objective is to play the
countdown strategy up to this point then to immediately take the edge (v, stop). Indeed, any
consistent outcome will satisfy the lower bound on energy (as the energy will never go below
zero), and it will have an average-energy equal to t = 0 (because the energy level when
reaching stop will be zero).

This shows both directions of the claim and concludes our proof. Observe that this reduc-
tion is also true if we consider the AE variant of the average-energy. ��

Memory requirements We close our study of two-player AEL games by discussing the mem-
ory needs. First note that we cannot provide upper bounds: if we had such bounds, we could
derive a bound on the energy along any consistent play and reduce the AEL problem to
an AELU one as discussed before, hence proving its decidability. Second, we already know
by Theorem 18 that pseudo-polynomial memory is necessary for P1. Finally, we present a
simple game (Fig. 8) where P2 needs to use memory in order to prevent P1 from winning.

Lemma 21 Pseudo-polynomial-memory strategies are necessary towin forP1 in two-player
AEL games. Memory is also required for P2 in such games.

Proof We only have to prove that P2 needs memory in the game of Fig. 8. Consider the AEL

objective for the average-energy threshold t := 1 on this game. Assume that P2 is restricted
to memoryless strategies. Then, there are only two possible strategies for P2. If P2 always
takes the self-loop (s2, s2), then the only consistent play is s1(s2)ω: it has AE equal to 1, and
satisfies the lower bound constraint on energy, thus P1 wins. If P2 always takes (s2, s3), then
P1 can win by producing the following play: s1s2(s3s2s3)ω. It also has AE equal to 1, and
satisfies the energy constraint. Hence P2 cannot win this game with a memoryless strategy.
Nonetheless, he has a winning strategy that uses memory. Let this strategy be the one that
plays (s2, s3) once then chooses the self-loop (s2, s2) forever. When this strategy is used
by P2,P1 has to pick (s3, s2) in the first visit of s3 otherwise he loses because the energy
goes below zero. But if P1 picks this edge, the unique outcome becomes s1s2s3(s2)ω, whose
average-energy is 2 > t , hence also losing for P1. Thus, the defined strategy is winning for
P2. ��

6 Conclusion

We presented a thorough study of the average-energy payoff. We showed that average-
energy games belong to the same intriguing complexity class asmean-payoff, total-payoff and
energy games and that they are similarly memoryless determined. We then solved average-
energy games with lower- and upper-bounded energy: such a conjunction is motivated by
previous case studies in the literature [10]. Lastly, we provided preliminary results for the
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case of average-energy with a lower bound but no upper bound on the energy. Following
the publication of [7], Larsen et al. addressed a different problem in [32]: they proved that
deciding if there exists a threshold t ∈ Q such that P1 can win a two-player game for
objective EnergyL(cinit := 0) ∩ AvgEnergy(t) can be done in doubly-exponential time. This
is indeed equivalent to deciding if there exists an upper-bound U ∈ N such that P1 can
win for the objective EnergyLU(U, cinit := 0), which is known to be in 2EXPTIME [25].
Unfortunately, this approach does not help in solving Problem 3, where the threshold t ∈ Q

for the average-energy is part of the input: solving two-player AEL games is still an open
question.

We believe that the average-energy objective and its variations model relevant aspects
of systems in practical applications as hinted by the aforementioned case study. Hence, we
would like to extend our knowledge of this objective tomore generalmodels such as stochastic
games, or games with multi-dimensional weights. Of course, the open questions regarding
the AEL objective are intriguing. Finally, we would like to implement our techniques in
synthesis tools and assess their applicability through proper case studies.
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18. Fearnley, J., Jurdziński, M.: Reachability in two-clock timed automata is PSPACE-complete. In: Proceed-
ings of ICALP, LNCS 7966, pp. 212–223. Springer, Berlin (2013)

19. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Berlin (1997)

123



Average-energy games 127

20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, New York (1979)

21. Gawlitza, T., Seidl, H.: Games through nested fixpoints. In: Proceedings of CAV, LNCS 5643, pp. 291–
305. Springer, Berlin (2009)

22. Gimbert, H., Zielonka, W.: When can you play positionnaly? In: Proceedings of MFCS, LNCS 3153, pp.
686–697. Springer, Berlin (2004)

23. Gimbert, H., Zielonka, W.: Games where you can play optimally without any memory. In: Proceedings
of CONCUR, LNCS 3653, pp. 428–442. Springer, Berlin (2005)

24. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current
Research, LNCS 2500. Springer, Berlin (2002)

25. Juhl, L., Larsen, K.G., Raskin, J.-F.: Optimal bounds for multiweighted and parametrised energy games.
In: Theories of Programming and Formal Methods, LNCS 8051, pp. 244–255. Springer, Berlin (2013)
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