
Acta Informatica (2017) 54:399–433
DOI 10.1007/s00236-016-0261-6

ORIGINAL ARTICLE

Regular and context-free nominal traces

Pierpaolo Degano1 · Gian-Luigi Ferrari1 ·
Gianluca Mezzetti1,2

Received: 13 February 2014 / Accepted: 27 January 2016 / Published online: 23 February 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Two kinds of automata are presented, for recognising new classes of regular and
context-free nominal languages. We compare their expressive power with analogous propos-
als in the literature, showing that they express novel classes of languages. Although many
properties of classical languages hold no longer in the nominal case, we design a slight
restriction of our models that preserve some interesting ones. In particular, we prove the
emptiness problem decidable and we construct the intersection between (restricted) regular
and context-free automata. By examples and walking through their properties we argue the
relevance of our models in the context of the verification of resource usage patterns.

1 Introduction

Describing resources and reasoning about their usages is a difficult task that emerges in all
scenarioswhere effectivemechanisms are strongly required to control howpossibly unbound-
edly many computational resources are granted to multiple and heterogeneous entities. A
paradigmatic example are Cloud systems [24], that support network access to a shared pool
of dynamically configurable computing resources with elastic usage requirements. Simi-
larly, in the so-called Internet of Things [23], mobile devices are capable to dynamically
discover, acquire and interact with multiple heterogeneous resources. The ability of dealing

This work has been partially supported by the MIUR PRIN project Security Horizons.

B Gian-Luigi Ferrari
giangi@di.unipi.it

Pierpaolo Degano
degano@di.unipi.it

Gianluca Mezzetti
mezzetti@cs.au.dk

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

2 Present Address: Department of Computer Science, Aarhus University, Aarhus, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-016-0261-6&domain=pdf

400 P. Degano et al.

with unboundedly many resources also underpins the manipulation of XML schemata [39];
the orchestration of Web-services [41]; the development of security protocols (e.g. nonces
and time-stamps) [1,20].

Abstract models are needed for describing the behaviour of programs involving a poten-
tially unbounded number of computational resources, for detecting bugs and verifying
properties of their usage. In this paper we will contribute to the definition of an abstract
model based on languages over infinite alphabets, aka nominal languages. In particular, we
will propose two new kind of automata that recognise a class of regular and of context-
free languages with an infinite alphabet, through which one can abstractly represent several
complex patterns of resource usages, as illustrated below.

In the context of programming languages, the term resource refers to software or operating
system entities, such as graphic devices, file handles, network and database connections, as
well as concurrent objects like locks. The following recursive function updateFiles,
written in an F#-like syntax, abstractly implements a resource usage pattern, typical of many
applications, e.g. for updating and synchronizing a storage service available on the cloud—
this programming pattern is known in the programming language community under the
name of Resource Acquisition Is Initialization1 idiom. Intuitively, the code below monitors
the changes to a certain number of files of interest. We omit the actual operations on the
resources in order to focus on the control flow pattern followed for acquiring and releasing
them.

In reaction to a change notification (here encoded in the info parameter) the routine
updates the files if certain conditions are met (represented by the updatable condition).
We assume that the metadata of the files of interest are stored into a suitable data structure,
i.e. a collection, and that an iterator (itCollection) steps through the collection of files.
Notice that the routine uses a fresh file r at each iteration. The use construct defines the
scope of a resource usage: it binds similarly to let, but it additionally take care of disposing
the resource when the it leaves its scope.

let rec updateFiles(itCollection, info) =
if (itCollection.hasNext) {
use r = new file(itCollection.next())

if (updatable(r,info)){
...// updating file with info

updateFile(itCollection, info))
}

// dispose file resource implictly called here
}
...

Since we are only interested in how the routine above operates over its resources, we
can abstractly represent a computation by only recording resource activations and disposals
(within the scope). Intuitively, a run-time monitor can extract information from a run and
represent it as the following trace

new(r1)new(r2) . . .new(rn) rel(rn) . . .rel(r2)rel(r1)

where r1, r2, . . . , rn correspond to the fresh files created by new and disposed by rel. In
the trace, the files appear following a pattern that has the same structure of the words in the

1 http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization.

123

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

Regular and context-free nominal traces 401

context-free language {wwR}, where wR stands for the reverse of w. Additionally, the file
resources r1, r2, . . . , rn are pairwise distinct because of the freshness constraint (granted by
the invocations to new), and because resource disposal adheres to the scope imposed by the
use construct. Note also that there are unboundedly many fresh file resources because the
value of n depends on the actual size of the collection which is unknown a priori; we call
this property unbound freshness.

It is worth noting that calculi for concurrent and distributed systems faced the similar
problem of handling unboundedly many fresh (or restricted) names, in the development of
the so called nominal calculi [12,25,31,36,44].

We now consider another aspect of resource usage, on a simple Java-like program-
ming example. Consider a basic service for managing resources with the try-with-
resources2 statement that declares one or more resources, and that ensures each declared
resource to be closed (disposed or released in our terms) at the end of the statement. Recall
that only Java objects that implement the interface java.lang.AutoCloseable are
resources.

public class MyObjectService implements AutoCloseable {
private String metaData;

public void doIt() {
System.out.println("MyObjectService is doing it!");
metaData = // ?

}

public String getInfo() {
return metaData;

}

@Override
public void close() throws Exception {

System.out.println("MyObjectService is closed!");
// dispose of resource implictly called here

}
}

// Client code
String metaDataInfo = "suitable info";

try(MyObjectService myObj = new MyObjectService()){
myObj.doIt();
//actions on myObj
metaDataInfo = myObj.getInfo();

}

System.out.println(metaDataInfo); // use of metaDataInfo

The client is granted access to all the services associated with the objects including the
getInfo() method that handles the service metadata. After the invocations of doIt, the

2 https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html.

123

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

402 P. Degano et al.

client gets and stores inside a local object (here String) a (meta) property of the whole
object, i.e. of the whole resource. When try-with-resources is completed the object
resource is disposed. However, the client can still access and operate with the metadata of
the resource. The following trace abstractly represents the creation of fresh resources and
access to any of their public parts in a run.

new(myObj)access(myObj)access(myObj)access(myObj)rel(myObj)

access(metaDataInfo)

The last action represents what we call a late access to myObj, performed through the last
statement on metaDataInfo. Through such a late access, the client can acquire possibly
confidential (meta)data, leading to an unwanted information flow from the service to the
client. Expressing and detecting at a suitable abstraction level the correct flow of information
requires then the ability of tracking in exact terms how and when resources are accessed.

Although the Java program above may appear artificial, it is an instance of the well-
known programming pattern for Object Oriented programming, called object-pool,3 where
the object kept is still accessible after its release. Note that nominal techniques are needed
because pools are not necessarily finite. A paradigmatic example is the Cached Thread Pools
of Java,4 which can spawn an unbound number of threads, while reusing the ones that have
been released. Late usage of resources also occurs in the composition of web services [21].

The examples above and the programming pragmatics show the importance of devising
expressive and flexible abstractions to control the usage of resources. The problem becomes
crucial by the current programming practice, where it is common to pick from theWeb some
scripts, or plugins, or code snippets, and assemble them into a bigger program,with little or no
control about the correctness (e.g. security) of the whole program. Verifying properties may
be cumbersome even for small programs, and it may also lead to rather complex checking
machineries. Correctness properties are typically expressed in terms of formalisms which
predicate over execution traces of, e.g., finite state machines, regular expressions, context-
free grammars, linear temporal logics, and their extensions. The encoding of resource usage
properties like unbound freshness and late usage discussed above cannot be directly expressed
in standard specification formalisms, because it is crucial to deal with freshness of resources
and their scope.

The literature has many proposals for statically abstracting program behaviour, as done
in the simple traces given above (see [6,9,16,40,46], just to cite a few). Along this line,
two of the authors of this paper introduced a framework to statically compute sound over-
approximations of the possible run-time traces of a program [3–6]. This approximations
are then model-checked [8] to guarantee that prescribed policies will hold at runtime. The
over-approximations can be seen as context-free languages, and the present work aims at
extending that approach also to nominal languages [34].

In summary, the contribution of this paper are the following. We introduce an abstract
model formodelling resource usage that takes care of (i) expressing context-free behaviour, as
well as regular ones (ii) handling unboundedly many resources, with (iii) unbound freshness,
and (iv) late usage of resources.

We express context-free traces of resource usage through Pushdown Nominal Automata
(PDNA±), that extend classical pushdown automata. The alphabet of PDNA± is infinite, so
we can undertake item (ii) above in the style of nominal techniques [22].

3 http://www.oodesign.com/object-pool-pattern.html.
4 http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool--.

123

http://www.oodesign.com/object-pool-pattern.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool--

Regular and context-free nominal traces 403

To guarantee freshness of resources (i.e. of the symbols of the alphabet), the PDNA±
exploit (finitely many) additional structures, called m-registers, that store resources in a
stack-like fashion. A resource is fresh if no m-register contains it. Since m-registers have
unbounded capacity, unbounded freshness, as stated in (iii), is guaranteed. As expected,
when a resource is released, it is removed from the m-register that stores it, and so it can be
re-used as fresh later on. Finally, we grant late usage allowing a resource to be mentioned
after it has been disposed, as in item (iv). The stack of PDNA± plays a crucial role in this
mechanism: a resource in use, i.e. occurring in a m-register, say N , can be saved in the stack
and can remain there after it has been removed from N , ready to be recalled once occurring
again on top of the stack. In the over-simplified example above, the metadata will be recorded
in a m-register N , and a mention to it pushed on the stack. After disposing the object, one
can still access its metadata through the hook stored in the stack.

Here we also investigate the problem of handling unboundedly many resources and of
unbounded freshness in regular languages. To do that, we introduce the new model of Finite
State Nominal Automata (FSNA±), that are finite state automata enrichedwith a finite number
of m-registers.

We then prove that the languages recognised by both FSNA± and PDNA± are closed
under union, and the first ones are also closed under intersection, provided that symbols are
not released. The intersection of a language accepted by a FSNA± with that of a PDNA±
is recognised by a PDNA±, provided that neither automata release resources. Neither the
FSNA± and PDNA± languages, instead, are closed under complement.

We also establish the decidability of the emptiness for FSNA± and for the subclass of
PDNA± in which symbols are not released. Consequently, it is feasible to model-check
a property expressed as a (restricted) FSNA± against a model expressed as a (restricted)
PDNA±, by verifying the emptiness of their intersection, in the style of [49].

We also compare the expressiveness and some properties of our models with other pro-
posals in the literature, that will be briefly surveyed. In particular, we consider the regular
languages over infinite alphabet and their recognisers investigated in [7,14,18,27,29,31,33,
47,48], as well as the context-free languages over infinite alphabet of [7,12,15,17,39,42,43].

The paper is organised as follows. Notation and abbreviations are summarised in Table 1.
In Sect. 2 we introduce FSNA±; we study their language theoretical properties in Sect. 3;
and we compare their expressiveness and their properties with those of other models in the
literature in Sect. 4. Section 5 introduces PDNA±; investigates their properties in Sect. 6;
and compares them with other proposals in Sect. 7.

2 Finite State Nominal Automata

As anticipated in the introduction, our automata abstractly model traces of software systems,
with the focus on the pattern they follow when manipulating resources. A common pattern is
that programs can only request a fresh resource, and not a specific one: think of object refer-
ences, server mirrors, nonces, etc. Resources are often manipulated opaquely: the program is
only allowed to test them for equality. Hence, fresh resources are interchangeable: the set of
traces that a program can generate does not depend on the specific identity of the resources
involved, but only on their relative equality and inequality. In the literature this property is
called language equivariance [12].

To keep our presentation simple, we almost always consider languages over resources,
disregarding actions on them. Occasionally, we shall consider actions on resources as well

123

404 P. Degano et al.

Table 1 Notation

Math

i, j ∈ r = {i | 1 ≤ i ≤ r} Set of indices in N, the natural numbers

L �� L ′, |L| Incomparable sets: L � L ′ and L � L ′,
cardinality of L

img(f) The image of the function f

Words

Σ = Σs ∪ Σd ,Σs ∩ Σd = ∅ ({?, 	} ∪ N) ∩Σ = ∅ Alphabet with Σs finite set of static symbols and
Σd countably infinite set of dynamic symbols

a, b ∈ Σ ; w ∈ Σ∗ Symbols in Σ and words, where ε is the empty
string

w[i], |w| , wR , ‖w‖ i-th symbol, length, reverse, and set of symbols
of w

Automata

q ∈ Q State of an automaton

σ ∈ Σs ∪ r ∪ {ε,	} Input symbol in a transition label

Z ∈ Σs ∪ r ∪ {ε, ?} Stack read symbol in a transition label

ζ ∈ (Σs ∪ r)∗; z ∈ Σs ∪ r Stack write symbols in a transition label

Δ ∈ {i+, i− | i ∈ r} ∪ {ε} m-registers update in a transition label

S, |S| A stack, its height, � is the empty stack

r ∈ N Number of registers

N , M m-registers, � is the empty m-register

‖N‖ Set of (dynamic) symbols in N

C , ρ A configuration, and a run C1 → · · · → Ck

R, A; L(R), L(A) A FSNA±, PDNA± automaton and their
language

L(FSNA±),L(VFA), . . . Set of languages accepted by FSNA±,VFA, . . .

automata

(known as data-words [11] and briefly surveyed before Example 2), to illustrate the minor
changes needed to deal with them (see e.g. Fig. 2). To account for freshness, resources are
abstractly represented by symbols of an infinite alphabet a ∈ Σ , that we assume partitioned
in a finite set of static symbols Σs and an infinite set of dynamic symbols Σd . The first is
intended to represent the finite amount of resources known before program execution, while
Σd contains the resources that may be acquired or generated at run-time.

Our automata use special data structures to record the dynamic symbols appearing in a
recognised string, calledmindful registers (m-registers for short). Anm-register N is actually
a stack S of symbols in Σd and an activation state (x ∈ {1, 0}). An empty stack makes the
m-register empty, as well, and we denote it by �. When the tag x is 1 then the m-register is
active, otherwise the m-register is inactive. The operations on an m-register N are built on
the standard push, top and pop operations as follows:

s-push(a, 〈x, S〉) = 〈1,push(a, S)〉
s-top(〈1, S〉) = top(S)

s-pop(〈x, S〉) =
{

〈0,pop(S)〉 if S �= �
〈0, S〉 if S = �

123

Regular and context-free nominal traces 405

Fig. 1 The FSNA± R0 accepting the language {aw | a ∈ Σd , w ∈ Σ∗
d , a /∈ ‖w‖}

An s-push operation makes an m-register active, regardless of its activation state. The oper-
ation s-top yields a value only if the m-register is active and not empty, otherwise it is
undefined. Finally, after a s-pop, the m-register N becomes inactive. Note that s-popping an
empty m-register results in a no-operation, so making it impossible to discern an inactive
m-register from an empty one.

A symbol is fresh with respect to an m-register when it does not appear in its stack.
Before formally definingFinite State Nominal Automata (FSNA± for short) we intuitively

illustrate their recognising mechanisms through the automaton R0 in Fig. 1. A run on R0

recognising a word w is a sequence of configurations leading from its initial state q0 to its
final state q2. We assume that R0 has two m-registers that will be part of configurations. In
the initial configuration the two m-registers are empty and we render them as

[
�, �

]
.

The leftmost edge is q0
ε−→
2+ q1, and following it the automaton reads no symbol (recorded

by ε) and goes from the configuration 〈q0,
[
�, �

]〉 to a configuration of the form 〈q1,
[
�, a

]〉
where a symbol a ∈ Σd is s-pushed in the m-register number 2, as dictated by the label 2+,

provided a is freshw.r.t. both them-registers of R0. By using the edge q1
2−→
ε

q2 the automaton

reaches the configuration 〈q2,
[
�, a

]〉 and reads a, i.e. the s-top symbol of the m-register
number 2, while nothing is done on the m-registers because of the label ε.

There are three edges looping in state q2. The edge q2
ε−→
1+ q2 s-pushes a fresh symbol

in the m-register number 1 and reads no symbol; q2
1−→
ε

q2 recognises the s-top symbol

of m-register number 1 and leaves the m-registers untouched. Slightly differently, the edge
labelled q2

ε−→
1− q2 s-pops a symbol from the m-register number 1 (because the label is 1−)

and recognises no symbol. After following it the m-register number 1 becomes inactive and

the edge q2
1−→
ε

q2 can not be followed.

A runon R0 is 〈q0, abc,
[
�, �

]〉 ε−→〈q1, abc,
[
�, a

]〉 a−→〈q2, bc,
[
�, a

]〉 ε−→〈q2, bc,
[
b ,

a
]〉 b−→〈q2, c,

[
b , a

]〉 ε−→ 〈q2, c,
[
�, a

]〉 ε−→ 〈q2, c,
[
c , a

]〉 c−→ 〈q2, ε,
[
c , a

]〉.
The readermay convince himself that the language recognised by R0 is {aw | a ∈ Σd , w ∈

Σ∗
d , a /∈ ||w||}.
In the formal definition and hereafter we use some notation and abbreviations collected

in Table 1. We denote the set of the natural numbers by N, k is the segment of the natural
numbers {i | 1 ≤ i ≤ k}, w is a word in Σ∗ with length |w| and i-th symbol w[i], ‖w‖
denotes the set of symbols used in w, ε is the empty word.

Definition 1 (Finite State Nominal Automata)
A finite state nominal automaton (FSNA±) is the tuple R = 〈Q, q0,Σ, δ, r, F〉 where:

– Q is a finite set of states, q, q1, q ′, . . . ∈ Q

123

406 P. Degano et al.

– q0 ∈ Q is the initial state
– Σ = Σs ∪ Σd is the infinite alphabet (Σs is finite, Σd denumerable, Σs ∩ Σd = ∅)
– r ∈ N is the number m-registers
– δ is the transition relation: (q, σ, q ′,Δ) ∈ δ with σ ∈ Σs ∪ r ∪ {ε},Δ ∈ {i+, i− | i ∈

r} ∪ {ε}
We call a transition new when Δ = i+; delete when Δ = i−; update when Δ �= ε.
For brevity, we write q

σ−→
Δ

q ′ ∈ δ whenever (q, σ, q ′,Δ) ∈ δ

– F ⊆ Q is the set of final states

A configuration is a tuple C = 〈q, w, [N1, . . . , Nr]〉 where q is the current state, w ∈ Σ∗
is the word to be recognised and [N1, . . . , Nr] is an array of r m-registers with symbols in
Σd . The configurations 〈q f ∈ F, ε, [N1, . . . , Nr]〉 are final.

The application of a transition is detailed by the following definition:

Definition 2 (Recognising step) Given an FSNA± R, a step 〈q, w, [N1, . . . , Nr]〉 →
〈q ′, w′, [N ′

1, . . . , N
′
r]〉 occurs if and only if there exists a transition q

σ−→
Δ

q ′ ∈ δ such

that both conditions hold:

1.

⎧⎪⎨
⎪⎩

σ = ε ⇒ w = w′ and

σ = i ⇒ w = s-top(Ni)w
′ and

σ ∈ Σs ⇒ w = σw′

2.

⎧⎪⎨
⎪⎩

Δ= i+ ⇒ ∃b∈Σd .N ′
i =s-push(b, Ni) ∧ ∀ j.b /∈ ‖N j‖ ∧ ∀ j (j �= i).N j = N ′

j and

Δ = i− ⇒ N ′
i = s-pop(Ni) ∧ ∀ j (j �= i).N j = N ′

j and

Δ = ε ⇒ ∀ j.N j = N ′
j

Finally, the language accepted by an FSNA± R, which we call (nominal) regular, is

L(R) = {
w ∈ Σ∗ | ∃ρ : C1 = 〈q0, w, [�, . . . , �]〉 →∗ Ck,with Ck final

}
where →∗ denotes the reflexive and transitive closure of the → relation.

A couple of examples follow.

Example 1 The FSNA± R1 in Fig. 2 recognises Σ∗. The run ρ1 recognises the word aax ,
where x can be any symbol in Σ , even a itself, because the m-registers are empty when a
fresh symbol is required by the edge labeled 1+.

By removing the edge q0
ε−→
1− q0 from R1 we obtain the automaton R2 in Fig. 2. Without

that deletion edge, there is no way to forget a symbol from the m-registers. Hence all the
issued symbols are recorded in the m-registers stack, and when a new symbol is s-pushed
it must be fresh with respect to all of them. The language accepted by the FSNA± R2 is
L0 = {w ∈ Σ∗

d | ∀i, j (i �= j). w[i] �= w[j]}. The run ρ2 recognises the string abc.

The next example considers traces of data-words [38]. A data-word is a finite sequence
of positions each having a label which either represents an action and is taken from a finite
alphabet, or data and is taken from an infinite alphabet. We feel free to use data-words to ease
the development of our examples, indeed only minor variations of our automata definitions
are required to handle a finite number of actions acting on both static and dynamic resources.

Example 2 Consider again the first example in the introduction showing the recursive func-
tion updateFiles. In the abstraction of a run, we actually considered traces in the form

123

Regular and context-free nominal traces 407

Fig. 2 Three examples of FSNA± Ri and of their runs ρi . The automaton R1 accepts Σ∗; note that the
dynamic symbol x can be any symbol in Σd , even a, because the m-register is empty when x is s-pushed and
there is no restriction on its freshness. The automaton R2 accepts L0 in Example 1; and R3 accepts strings
new(a)new(b)rel(a) (a �= b)

of data-words, where the actions new and rel operate on files. The FSNA± R3 in Fig. 2
accepts the unwanted traces where the resource that was picked second-last (new(1)) is
released (rel(1)) before the release of the resource that was picked last (new(2)). Note
that the (data-word) symbols σ assume the form new(u),rel(u), u ∈ 2 ∪ Σs .

Note that the constraint on s-pop to deactivate the affected m-register limits the expres-
siveness of FSNA±. Indeed, by relaxing that condition, we would be able to count on each
m-register, by performing a new transition to increment, a delete to decrement and using the
active/inactive status of m-registers to discern whether it is zero or not. These mechanisms
are very similar to the ones of r -counter machines [35].

We introduce now a sub-class of FSNA± where no delete transitions are allowed, as it is the
case for the automaton R2 in Fig. 2. As expected, this restriction reduces the expressiveness
of FSNA±, e.g. none of this restricted automata can accept Σ∗.

Definition 3 (FSNA+) An FSNA+ is a FSNA± with no delete transition q
σ−→
i− q ′.

In the statement below L(FSNA+),L(FSNA±) denote the classes of language of
FSNA+,FSNA±, respectively.

Property 1 L(FSNA+) � L(FSNA±)

Proof By contradiction, assume there exists a FSNA+ with r m-registers that accepts Σ∗.
Consider a string of the form ww with |w| = |‖w‖| = r + 1 and let b ∈ ‖w‖ be such that
b �= s-top(Ni) after w has been scanned; note that such a b always exists. However, ww can
not be accepted because b still occurs in one of the r m-registers and thus can not be s-pushed
again. ��

We present now a variation of the FSNA+s which can update more than one m-register in
a single transition. This variation will be useful in the proof of Theorem 6, as expected, this
parallelization does not extend the expressiveness of the FSNA±. For simplicity, we permit
below to update two m-registers only, the extension to any finite number being straightfor-
ward.

123

408 P. Degano et al.

Definition 4 (Finite Nominal Automata 2) A finite state nominal automaton 2 (FSNA+2) is
a tuple R = 〈Q, q0,Σ, δ2, r, F〉 where:
– Q, q0,Σ, r and F are as in Definition 1
– δ2 is the transition relation: (q, σ, q ′, (Δ1,Δ2)) ∈ δ2 with q, q ′ ∈ Q, σ ∈ Σs ∪ r ∪

{ε},Δ1,Δ2 ∈ {i+ | i ∈ r} ∪ {ε}, such that ∀i ∈ r. (Δ1,Δ2 �= i−) and (Δ1 = Δ2 ⇒
Δ1 = Δ2 = ε)

Definition 5 (Recognising step)
A step 〈q, w, [N1, . . . , Nr]〉 → 〈q ′, w′, [N ′

1, . . . , N
′
r]〉 occurs iff there exists q σ−−−−→

(Δ1,Δ2)

q ′ ∈ δ2 such that

1. As in Definition 2

2.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀ j ∈ r (j �= Δ1,Δ2). N j = N ′
j and

Δ1 = i+ ⇒ ∃b1 ∈ Σd .N ′
i = s-push(b1, Ni) ∧ ∀ j ∈ r. b1 /∈ ‖N j‖

∧ b1 �= s-top(Ni) and

Δ2 = i+ ⇒ ∃b2 ∈ Σd .N ′
i = s-push(b2, Ni)

∧ ∀ j ∈ r. b2 /∈ ‖N j‖ ∧ b2 �= s-top(Ni)

As anticipated, the FSNA+2 have the same expressive power of FSNA+.

Theorem 1 Given a FSNA+2 A there exists an FSNA+ A′ accepting the same language.

Proof Let A = 〈Q, q0,Σ, δ2, r, F〉 and define A′ = 〈Q ∪ Q′, q0,Σ, δ, r, F〉 where Q′ is a
set of fresh statesqp , one for each transition p ∈ δ2 and δ is such that∀p = q

σ−−−−→
(Δ1,Δ2)

q ′ ∈ δ2

we have that q
σ−→
Δ1

qp, qp
ε−→

Δ2
q ′ ∈ δ. It is now immediate proving the equality of the

accepted languages. ��

3 Properties of the FSNA±

This section studies some language theoretical properties of the two classes of automata
FSNA± and FSNA+ introduced so far. The following property is immediate:

Property 2 Increasing the number of m-registers increases the expressive power of FSNA±.

Any finite number of m-registers is not sufficient for breaking the barrier between regular and
context-free languages, because m-registers are not full-fledged stacks: they become inactive
after an s-pop and empty registers can not be distinguished from inactive ones. This is shown
by the following “classical” example, showing a Dyck-like language that is not regular.

Example 3 Let Lr = {wwR ∈ Σ∗
d | |w| = r and ∀i, j (i �= j). w[i] �= w[j]} then no

FSNA± R with less that r states and r m-registers accepts Lr . Indeed, a standard argument
on FSA proves that r states are required. Assume now that R has less than r registers Ni

and accepts wwR . By the pigeonhole principle, there is at least a symbol of w, say a, such
that ∀i.a �= s-top(Ni) when w has been read. Since a ∈ ‖w‖, a needs to be s-pushed while
traversing wR , but it is fresh so it can be replaced by any other (fresh) different symbol,
which makes R to accept also ww′R , where w′R �= wR : contradiction.

123

Regular and context-free nominal traces 409

We establish now a few closure properties w.r.t. standard language operations: union (∪),
intersection (∩), complementation (.), concatenation (·) and Kleene star (∗). To simplify
and structure the proofs of these properties we need some auxiliary technical definitions.

In order to support the definition of the intersection automaton R, we will use the standard
construction, that builds the product of two automata R1 and R2. As usual, a state of R is a
pair of states of R1 and R2, but it has an additional component: the merge function defined
below, that describes how the m-registers of the two automata to intersect are mapped into
those of the intersection automaton. Given that Definition 6-8 aim to support the proof of
the closure by intersection of FSNA+ (and later PDNA+), we assume all the mentioned
m-registers to be active.

Definition 6 (Merge function) Let m : {1, 2} ×r → 2r be a function. Stipulating m1(x) =
m(1, x),m2(x) = m(2, x), m is a merge iff m1 and m2 are injective.

The m-registers i, j aremerged bym, in symbols i
m←→ j , whenm1(i) = m2(j), we write

i |
m←→ j when they are not merged or, by abuse of notation, whenever i = ε or j = ε.
We stipulate that m extends to a relation between active m-registers such that

m[N 1
1 , . . . , N 1

r , N 2
1 , . . . , N 2

r] = [M1, . . . , M2r] iff ∀i ∈ r, j ∈ 2r. N 1
i , N 2

i , Mj are active

and ∀i, j ∈ r

1. s-top(N 1
i) = s-top(Mm1(i)) and s-top(N

2
i) = s-top(Mm2(i))

2. s-top(N 1
i) = s-top(N 2

j) when i
m←→ j

3.
⋃

i∈r ‖N 1
i ‖ ∪ ⋃

i∈r ‖N 2
i ‖ = ⋃

i∈2r ‖Mi‖
The m1 (resp. m2) component of m associates the state of the m-registers of the R1

automaton (resp. R2) with the ones of R. As we will show afterwards, the extension of the
merge to a relation between m-registers can be used to develop an invariant between the
states of the m-registers of R1, R2 and the states of the m-registers of R along a recognising
run of a word w.

Definition 7 (Effective Update) Given two merge functions m,m′, the effective update
m
m′(Δ1,Δ2

)
of Δ1,Δ2 ∈ {i+ | i ∈ r} ∪ {ε} is the pair (Δ1,Δ2) where:

if Δ1
m′←→ Δ2 then Δ1 = m′

1(Δ1) and Δ2 = ε;

if Δ1 |
m′←→ Δ2 then

– Δ1 is such that:

– if Δ1 = ε then Δ1 = ε

else if m1(Δ1) �= m′
1(Δ1) then Δ1 = ε else Δ1 = m′

1(Δ1)

– Δ2 is such that:

– if Δ2 = ε then Δ2 = ε

else if m2(Δ2) �= m′
2(Δ2) then Δ2 = ε else Δ2 = m′

2(Δ2)

Definition 8 (Evolution) Given a merge m we say that a merge m′ is an evolution of m with

respect to Δ1,Δ2, in symbols m
Δ1,Δ2
� m′, iff

123

410 P. Degano et al.

Fig. 3 R is a portion of the FSNA+2 automaton recognising the intersection of the languages of R1 and R2,
the diagrams at the bottom represent the mergesm,m′, wherem1(1) = 2,m2(1) = 2,m′

1(1) = 2,m′
2(1) = 1

1. ∀i ∈ {1, 2}, j ∈ r (j �= Δ1,Δ2). mi (j) = m′
i (j)

2. if Δ1
m←→ j, j �= Δ2 then Δ1 |

m′←→ j

3. if i
m←→ Δ2, i �= Δ1 then i |

m′←→ Δ2

To intuitively illustrate the definitions above, in Fig. 3 we show a portion of the automaton
R = R1 ∩ R2 recognising the intersection of the two FSNA+ R1 and R2.

The intersection automaton R is obtained by the standard construction that builds the
new states as the product of the old ones. Additionally, each pair 〈q1, q2〉 (q1, q2 ∈ R1, R2

resp.) is enriched with a merge function m. The m describes how the m-registers of the two
automata are mapped into those of R

The idea underlying m is to guarantee the following invariant I along the runs: if R1 and
R2 are in configurations 〈q10 , w, [y]〉 and 〈q20 , w, [x]〉 then (i) R will be in configuration

〈〈q10 , q20 ,m〉, w, [h , z]〉 and (ii) if two m-registers have the same s-tops then they are
merged by m (and vice versa). This is illustrated in the left-most configurations of Fig. 4:
if x = y = a then m maps the two registers to one register of R (here the second one),
and z = a. The edges of the automaton are also defined in the standard way. However, the
m-register mentioned in σ of R is the one merged bym, provided that R1 and R2 agree on σ .
Also the updates (Δ,Δ′) in R are determined by the updates Δ1 of R1 and Δ2 of R2 under
the merge m, and form an effective update (see Definition 7).

Consider again Fig. 3. The transition t : 〈〈q10 , q20 〉,m〉 2−→
2+ 〈〈q11 , q21 〉,m〉 is present because

there are q10
1−→
1+ q11 and q20

1−→
1+ q21 and m maps the first m-register of R1 and that of R2

to the second of R. Instead, the state 〈〈q10 , q20 〉,m′〉 (omitted in the figure) has no outgoing
edges, because the symbols read by R1 and R2 are kept apart by m′.

There are transitions that only differ for the merge function in their target state. Not all the
possiblemerges respect however the invariant Imentioned above. Indeed, we only keep those
that are evolution (in the sense of Definition 8) of the merge in the source state, according to

the updatesΔ1,Δ2 of R1, R2 respectively. For example, the transition 〈〈q10 , q20 〉,m〉 2−−−−−→
(1+,2+)

〈〈q21 , q21 〉,m′〉 permits the recognising step C
a−→ C ′, where the m-register of R1 now has got

a d , while that of R2 has got c, and m′ keeps them apart.

123

Regular and context-free nominal traces 411

Fig. 4 Two recognising steps of R (middle), built from steps of R1 (top), and steps of R2 (bottom). The step

C
a−→ C ′ simultaneously updates two m-registers. In the figure the second component of the configurations,

i.e. the word that might be recognised, is omitted for clarity

Instead, if both m-registers store the same dynamic symbol c, the merge is stillm, and the

transition t above enables the step C
a−→ C ′′ and guarantees the invariant.

We are now ready to state and prove some closure properties of FSNA± and FSNA+:

Theorem 2 (Closure properties)

∪ ∩ . · ∗
L(FSNA±) � × × � �
L(FSNA+) � � × × ×

Proof Union: it suffices a new initial state with two outgoing ε-transition to the old initial
states.

Concatenation (and Kleene star) for FSNA±: a sequence of transitions from the final states
of the first FSNA± make inactive all the m-registers, leading to a state, call it qr , having
loops that can empty them all (see Fig. 5a; note that the m-registers may not be emptied in
the state qr). Then an ε-transition goes from qr to the initial state of the second automaton.

Complement of FSNA±: Consider L = {w | ∃a ∈ Σd , n ∈ N.a appears 2n + 1 times in w}
that is recognised by the FSNA± in Fig. 5b. Assume that its complement L = {w | ∀a ∈
Σd . ∃n ∈ N. a appears 2n times in w} is recognised by an automaton R with r m-registers.
This automaton also acceptsww, wherew = a1, . . . , ar+1,∀i, j (i �= j).ai �= a j . However,
after recognising w, there exists some ai that is not s-top of any m-register. The word ww′
where w′ is obtained by w by replacing ai with a fresh symbol b is accepted by R, as well:
contradiction because L � ww′ /∈ L .

Complement for FSNA+: Property 1 (Σ∗ is the complement of ∅) suffices.
Concatenation (and Kleene star) for FSNA+: Consider L = {ww′ | w ∈ L and w′ ∈ L ′},
with L , L ′ languages of two FSNA+ R, R′. If R accepts a string w such that a ∈ w, a ∈ w′
but a �= s-top(Ni) for all the m-registers in the final configuration of all accepting runs, then
we obtain a contradiction because a can not be s-pushed since not fresh.

123

412 P. Degano et al.

(a)

(b)

Fig. 5 a The concatenation automaton of two automata R1 and R2 has the states and the transition of both
of them, as initial state the one of R1, as final states the ones of R2. The final states of R1 are connected to
qr , qr is connected to the initial state of R2. The self-loops in qr are used to empty the r m-registers. b An
automaton recognising L = {w | ∃a.w[i] = a and a appears 2n + 1 times in w}

Fig. 6 The language L2 = {apnqmb | a ∈ Σd , a = b ⇒ m > n}

Intersection of FSNA± Let L1 = {apnqma}, with a ∈ Σd and p, q be chosen symbols in
Σs . Clearly, L1 is regular. Consider the language recognised by the automaton in Fig. 6:
L2 = {apnqmb | a ∈ Σd , a = b ⇒ m > n}. Now, the language L1 ∩ L2 = {apnqma | m >

n} can not be recognised by any FSNA±.
Intersection of FSNA+ We formalise here the intuitive construction given in Fig. 3, the
proof uses Definition 9 and Lemmas 1 and 2 given below. Given two automata R1 and R2,
we construct the intersection automaton R1 ∩ R2 recognising L(R1) ∩ L(R2).

The proof of the equivalence L(R1 ∩ R2) = L(R1)∩L(R2) can be obtained by induction
on the length of the runs by using Lemmas 1 and 2. Without loss of generality, we consider
the simplifying assumption that all the registers are active in the initial configuration. Indeed
all the m-registers can be initialised by initial ε-transitions, without modifying the recognised
language.

Definition 9 (Intersection Automaton) The intersection automaton of two FSNA+s R1 =
〈Q1, q10 ,Σ, δ1, r, F1〉 and R2 = 〈Q2, q20 ,Σ, δ2, r, F2〉 is the following FSNA+2:

R1 ∩ R2 = 〈Q, q0,Σ, δ, 2r, F〉, where

– Q = Q1 × M × Q2 where M is a set of merge functions for m-registers

123

Regular and context-free nominal traces 413

– q0 = 〈q10 ,m∗, q20 〉, with m∗ s.t. m∗
1,m

∗
2 are the identity functions (i.e. the r registers of

the two intersecting automata are merged onto the first r registers of R1 ∩ R2)
– F = {〈q1,m, q2〉 | q1 ∈ F1, q2 ∈ F2,m ∈ M}
– 〈q1,m, q2〉 σ−−−−→

Δ1,Δ2

〈q ′
1,m

′, q ′
2〉 ∈ δ iff m

Δ1,Δ2
� m′ and

q1
σ1−−→
Δ1

q ′
1 ∈ δ1 and q2

σ2−−→
Δ2

q ′
2 ∈ δ2 and

– if σ1, σ2 ∈ r then σ = m1(σ1) = m2(σ2) and
– if σ1, σ2 ∈ Σs then σ = σ1 = σ2 and

– (Δ1,Δ2) =
m
m′(Δ1,Δ2

)
or q1

ε−−→
Δ1

q ′
1 ∈ δ1 and

– σ = ε and
– q ′

2 = q2 and

– (Δ1,Δ2) =
m
m′(Δ1, ε

)
or q2

ε−−→
Δ2

q ′
2 ∈ δ2 symmetric to the previous case.

Now we prove the two lemmata used before for proving that R1 ∩ R2 accepts L(R1) ∩
L(R2). Intuitively, the first states that whenever two automata R1, R2 make a step with the
same label, also the automaton R1 ∩ R2 can perform the very same step.

Lemma 1 Let R1 and R2 be two FSNA+, let a �= ε and
step1 : 〈q1, aw, [N 1

1 , . . . , N 1
r]〉 −→ 〈q ′

1, w, [N ′1
1 , . . . , N

′1
r]〉 and

step2 : 〈q2, aw, [N 2
1 , . . . , N 2

r]〉 −→ 〈q ′
2, w, [N ′2

1 , . . . , N
′2
r]〉 be steps of R1 and R2, respec-

tively.
Then for any merge m and [M1 . . . , M2r] m-registers of R1 ∩ R2 such that

m([N 1
1 , . . . , N 1

r , N 2
1 , . . . , N 2

r]) = [M1, . . . , M2r]
there exists the step of R1 ∩ R2

step : 〈〈q1,m, q2〉, aw, [M1, . . . , M2r]〉 −→ 〈〈q ′
1,m

′, q ′
2〉, w, [M ′

1, . . . , M
′
2r]〉 with

m′([N ′1
1 , . . . , N

′1
r , N

′2
1 , . . . , N

′2
r]) = [M ′

1, . . . , M
′
2r]

Proof Assume that q1
σ1−−→
Δ1

q ′
1 and q2

σ2−−→
Δ2

q ′
2 justify step1 and step2. Then we have the

following cases, depending on the labels of these transition.

– σ1, σ2 ∈ r
Define m′ such that ∀i, j ∈ r (i �= Δ1, j �= Δ2).m′

1(i) = m1(i),m′
2(j) = m2(j).

If s-top(N
′1
Δ1

) = s-top(N
′2
Δ2

) (Δ1,Δ2 �= ε)

– if ∀i.i |
m←→ Δ2 ∧ Δ1 |

m←→ i then let m′
1(Δ1) = m2(Δ2) and m′

2(Δ2) = m2(Δ2).

– Otherwise if k
m←→ Δ2 or Δ1

m←→ k then let m′
1(Δ1) = m′

2(Δ2) = h /∈ Img(m).

If s-top(N
′1
Δ1

) �= s-top(N
′2
Δ2

) but

– m′
1(Δ1) (resp. m′

2(Δ2)) is such that s-top(N
′1
Δ1

) = s-top(N
′2
k),Δ1 �= ε for some

k �= Δ2 then let m′
1(Δ1) = m2(k).

– Otherwise,

123

414 P. Degano et al.

• if Δ1
m←→ k for some k �= Δ2, then let m′

1(Δ1) = h /∈ Img(m).

• Otherwise, if Δ1 |
m←→ k for all k �= Δ2 then let m′

1(Δ1) ∈ {h} ∪ m(Δ1), with
h /∈ Img(m).

Recall thatm is a merge and note thatm,m′ may possibly differ inΔ1,Δ2. Nowwe show
that alsom′ is a merge, by showing its projections are injective. By contradiction, assume
m′ is not injective, then if m′(Δ1) �= m(Δ1) (resp. for Δ2), by construction, it is only
the case that m′

1(Δ1) = m′
2(k) for some k. If k = Δ2 then m′

1(Δ1) = m′
2(k) /∈ Img(m),

contradiction because m′
1,m

′
2 are injective since there is no k s.t. m′

1(k) = m′
1(Δ1) or

m′
2(k) = m′

2(Δ2). If k �= Δ2 then we have that only m′
2 can be non-injective, but this

requires m′
2(Δ2) = m′

2(k), k �= Δ2 but this is not possible by construction.

We show that m
Δ1,Δ2
� m′: condition (1) is trivially satisfied by construction, conditions

(2–3) are taken explicitly into account in the construction.
Since step1 and step2 fulfil the hypothesis, by condition 1.2 of Definition 2, it turns out
that both N 1

σ1
, N 2

σ2
are active and a = s-top(N 1

σ1
) = s-top(N 2

σ2
). This last fact implies

that m1(σ) = m2(σ) since m is merge. By letting σ = m1(σ), conditions (1) and (2)
imply that s-top(Mσ) = a.
By construction of A1 ∩ A2 we then have the transition

t : 〈q1,m, q2〉 σ−−−−→
Δ1,Δ2

〈q ′
1,m

′, q ′
2〉 ∈ δ

where (Δ1,Δ2) =
m
m′(Δ,Δ′)

.
Next we shall prove that m′ is a merge of m-registers through which [M ′

1, . . . , M
′
2r] can

be obtained from [M1, . . . , M2r] and step is justified by t .
First, ∀i ∈ r(i �= Δ1,Δ2).Mi = M ′

i . If Δ1 �= ε ∧ m(Δ1) = m′(Δ1) then let M ′
Δ1

=
s-push(b1, MΔ1

) with b1 = s-top(N
′1
Δ1

) otherwise let M ′
Δ1

= MΔ1
. Symmetrically for

M ′
Δ2

(note that Δ1 �= Δ2).

We prove now that m′([N ′1
1 , . . . , N

′1
r , N

′2
1 , . . . , N

′2
r]) = [M ′

1 . . . , M ′
2r]. The condi-

tions (1) and (2) are satisfied because for all i, j ∈ r s.t. i �= Δ1, j �= Δ2 we have
m′

1(i) = m1(i),m′
2(j) = m2(j), the involved m-register are left untouched and m is

a merge of m-registers. By construction of M ′
m′(Δ1)

(resp. M ′
m′(Δ2)

) we also have that
s-top(M ′

m′(Δ1)
) = s-top(N ′

Δ1
). The condition (3) is implied by the construction of m′,

condition (4) holds because b1, b2 are in
⋃

i∈2r ‖M ′
i‖ only if they are in

⋃
i∈r ‖N ′1

i ‖ or⋃
i∈r ‖N ′2

i ‖ respectively.
We now show that the condition 2 of Definition 5 is satisfied.With the construction above⋃

i∈2r ‖Mi‖ = ⋃
i∈r ‖M ′

i‖\{b1, b2}. Since
⋃

i∈r ‖N 1
i ‖ ∪ ⋃

i∈r ‖N 2
i ‖ = ⋃

i∈2r ‖Mi‖,
if b1 ∈ ⋃

i∈r ‖N 2
i ‖ then b1 ∈ ⋃

i∈r ‖Mi‖, otherwise, by condition 2 of Definition 2

for step1, b1 /∈ ⋃
i∈r ‖N 1

i ‖. This holds symmetrically for b2. Then if b1, b2 are pushed
on top of MΔ1

, MΔ2
then they are fresh, i.e. b1, b2 /∈ ⋃

i∈r ‖Mi‖. Also, when both are
pushed on top of MΔ1

, MΔ2
we have b1 �= b2, so satisfying condition 2 of Definition 5.

Since a satisfies condition 1 of Definition 5 for t , the following step exists:

〈〈q1, aw,m, q2〉, [M1, . . . , Mr]〉 a−−→ 〈〈q ′
1, w,m′, q ′

2〉, [M ′
1, . . . , M

′
r]〉

123

Regular and context-free nominal traces 415

– if σ1, σ2 ∈ Σs , the proof is analogous to that of the previous case: take m′ as above, then
by construction of R1 ∩ R2 we have the following transition, where σ = σ1 = σ2

t : 〈q1,m, q2〉 σ−−−−→
Δ1,Δ2

〈q ′
1,m

′, q ′
2〉

With the same construction of [M ′
1, . . . , M

′
r] above, we obtain

〈〈q1, aw,m, q2〉, [M1, . . . , Mr]〉 a−−→ 〈〈q ′
1, w,m′, q ′

2〉, [M ′
1, . . . , M

′
r]〉

– σ1 = ε or σ2 = ε, trivial. ��
The following lemma states that whenever the automaton R1 ∩ R2 makes a step, also the

automata R1 and R2 can perform the very same step.

Lemma 2 Let R1 and R2 be two FSNA+, let a �= ε and let step : 〈〈q1,m, q2〉, aw,

[M1, . . . , M2r]〉 −→ 〈〈q ′
1,m

′, q ′
2〉, w, [M ′

1, . . . , M
′
2r]〉 be a step of R1 ∩ R2 then for any

[N 1
1 . . . , N 1

r], [N 2
1 . . . , N 2

r] such that
m([N 1

1 , . . . , N 1
r , N 2

1 , . . . , N 2
r]) = [M1, . . . , M2r]

there exist two steps of R1 and R2

step1 : 〈q1, aw, [N 1
1 , . . . , N 1

r]〉 −→ 〈q ′
1, w, [N ′1

1 , . . . , N
′1
r]〉 and

step2 : 〈q2, aw, [N 2
1 , . . . , N 2

r]〉 −→ 〈q ′
2, w, [N ′2

1 , . . . , N
′2
r]〉 and

m′([N ′1
1 , . . . , N

′1
r , N

′2
1 , . . . , N

′2
r]) = [M ′

1, . . . , M
′
2r]

Proof Assume that 〈q1,m, q2〉 σ−−−−→
Δ1,Δ2

〈q ′
1,m

′, q ′
2〉 justifies step.

– if σ �= ε then by construction of R1 ∩ R2 we have that t1 : q1 σ1−→
Δ1

q ′
1 and t2 : q2 σ2−→

Δ2
q ′
2.

We only prove the case σ ∈ r; the others follow from a similar argument.

– if σ ∈ r:
let [N ′1

1 , . . . , N
′1
r] (resp. [N ′2

1 , . . . , N
′2
r]) be such that ∀i ∈ r (m′

1(i) �= Δ1∧m′
1(i) =

m1(i)).N
′1
i = N 1

i . If Δ1 �= ε then take

N
′1
Δ1

= s-push(s-top(M ′
m′
1(Δ1)

), N 1
Δ1

)

Condition 1 of Definition 2 is satisfied for the transition t1 because s-top(Mσ) =
s-top(Nσ1) = a since σ = m1(σ1) by construction and m is a merge of m-registers.
We prove now condition 2 of Definition 2. For b = s-top(M ′

m′
1(Δ1)

) we consider the

two cases: Δ1 �= ε and Δ1 = ε. In the first case the condition is guaranteed by the
fact that b /∈ ⋃

j∈2r ‖Mj‖, hence, sincem is a merge of m-registers (condition 3) b /∈⋃
j∈r ‖N 1

j ‖. WhenΔ1 = ε then we havem′
1(Δ1) �= m′

2(Δ2), in this casem′
1(Δ1) �=

m1(Δ1), by injectivity ofm′
1, by the fact thatm is amergeofm-registers andby the fact

thatm′
1 only differs fromm1 inΔ1 we have that∀i ∈ r.s-top(Mm′

1(Δ1)
) �= s-top(N 1

i).

For c = s-top(M ′
m′
2(Δ2)

). We consider two cases: Δ2 �= ε and Δ2 = ε. In the first

case the condition is guaranteed by the fact that c /∈ ⋃
j∈2r ‖Mj‖, hence, since m

is a merge of m-registers (condition 3) c /∈ ⋃
j∈r ‖N 2

j ‖. When Δ2 = ε then we

have two cases: m′
2(Δ2) = m′

1(Δ1) = Δ1 or m′
2(Δ2) �= m′

1(Δ1). In the first case

123

416 P. Degano et al.

the condition is satisfied by the same reasoning above because c = s-top(M ′
Δ1

), the

second case is verified only when m′
2(Δ2) �= m2(Δ2), in this case, by injectivity of

m′
2, by the fact that m is a merge of m-registers and by the fact that m′

2 only differs
from m2 in Δ2 we have that ∀i ∈ r.s-top(Mm′

2(Δ2)
) �= s-top(N 2

i).
Hence all the conditions for t1, t2 are satisfied, so both step1 and step2 exist.
We are left to prove that m′([N ′1

1 , . . . , N
′1
r , N

′2
1 , . . . , N

′2
r]) = [M ′

1 . . . , M ′
2r]. The

conditions (1) and (2) are satisfied because for all i, j ∈ r s.t. i �= Δ1, j �= Δ2 we
havem′

1(i) = m1(i),m′
2(j) = m2(j), the involved m-register are left untouched and

m is a merge of m-registers. By construction of N ′
Δ1

(resp. N ′
Δ2

) we also have that
s-top(M ′

m′(Δ1)
) = s-top(N ′

Δ1
). The condition (3) is implied by the construction of

N ′
Δ1

because (for some j)m′
1(Δ1) = m′

2(j) implies s-top(N
′1
Δ1

) = s-top(M ′
m′(Δ1)

) =
s-top(N

′2
j), condition (4) holds because b, c are in

⋃
i∈r ‖N ′1

i ‖ or
⋃

i∈r ‖N ′2
i ‖ only

if they are in
⋃

i∈2r ‖M ′
i‖ respectively. ��

Having proved both Lemmas 1 and 2, we conclude the proof of the whole theorem. ��
Note that the same argument used in the proof of the intersection between two FSNA±

suffices to establish the following property.

Property 3 There exists languages L1 and L2, accepted by FSNA± and FSNA+, respectively
such that L1 ∩ L2 is not a regular nominal language.

We now study the decidability of some typical problems in automata theory, namely those
of membership, universality and emptiness. Given an automaton R, the first and the second
problems amount to check if a word w and Σ∗ are accepted by R; the third if L(R) = ∅.
Theorem 3 1. The membership problem for FSNA± is decidable
2. The universality problem is undecidable for FSNA±, while for FSNA+ it is decidable,

and the answer is always negative
3. The emptiness problem is decidable for FSNA±

Proof 1. A trivial linear non-deterministic procedure suffices.
2. Theorem 4 proved in the next sub-section guarantees that FSNA± are more expressive

than FMA. Now the statement follows because universality is undecidable for FMA [39].
Since FSNA+ can not generate Σ∗, the second claim is proved.

3. The actual content of the m-registers is negligible when reasoning about emptiness,
only their activation states are important because a step can be inhibited by an inac-
tive m-register. So, we can abstract a configuration 〈q, w, [N1, . . . , Nr]〉 as a pair
〈q, [x1, . . . , xr]〉, where xi is the activation state of Ni . Suppose now that there exist
an accepting run for w. The problem is now reduced to verify the emptiness of a non-
nominal finite state automaton. ��

4 Expressiveness of FSNA±

In the literature there are many nominal languages, working on infinite alphabets or on data-
words. We consider here only those that are intuitively regular, in that they can not express
Dyck-like languages, e.g. the language {wwR} when |w| is not bounded (see Example 3).
An incomplete list of the regular languages in the literature includes variable finite automata
(VFA) [27], finite memory automata (FMA) [29] and their extension with non-deterministic
reassignment (NFMA) [30], Usage Automata (UA) [7], fresh-register automata (FRA) [47]

123

Regular and context-free nominal traces 417

Table 2 Acomparison of the closure properties of FSNA±, FSNA+ automata with the ones of other automata
in the literature, namely VFA [27], FMA [29], UA [7], FRA [47], HRA [48], CRA [14] and NFMA [30]

∪ ∩ . · ∗
L(FSNA±) � × × � �
L(FSNA+) � � × × ×
L(VFA) � � × ?? ??

L(FMA) � � × � �
L(UA) � � × � ×
L(FRA) � � × × ×
L(HRA) � � × � �
L(CRA) � � × ?? ??

L(NFMA) � � × � �

and their evolution history register automata (HRA) [48], class register automata (CRA)
[14], Data Walking Automata (DWA) [33], the variant of HD-automata in [18] and the
fp-automata [31].

A notion similar to the one of them-register can be found inHRA [48] and in the chronicles
of the chronicle deallocating automata [32].

Table 2 recalls the closure properties of FSNA± and FSNA+ and of those models above
for which the literature provides these results.

The next theorem investigates the relationship among our models and the (regular) ones
in the literature in terms of expressiveness. When considering data-words, we assume for
simplicity that there is a single action α on resources, that will be omitted in words, i.e.
we write a instead of α(a). We write A �� B when two sets A, B are incomparable, i.e.
A � B, B � A.

Theorem 4 (Expressiveness comparison)

1. L(FSNA±) � L(VFA) � L(UA)

2. L(FSNA±) � L(FMA)

3. L(FSNA+) � L(UA)

4. L(FSNA+) �� L(VFA)

5. L(FSNA+) �� L(FMA)

6. L(FSNA±) �� L(HRA)

7. L(FSNA+) �� L(fp-automata)

8. L(FSNA±) ⊇ L(fp-automata)

Proof Sketch:

1. L(FSNA±) � L(VFA) � L(UA)

The VFA have been proved more expressive than UA in [19]. A FSNA± simulates
a VFA by using m-registers associated to each variable (and never s-popping them),
the distinguished free variable y of VFA can be mapped to a m-register that is always
s-popped after being used. The last condition matches the one of VFA requiring the
symbols associated to each occurrence of y in the witnessing pattern to be different from
the other variables, but possibly equal to another symbol associated with y. The language
L0 in the Example 1 belongs to L(FSNA±) but not to L(VFA).

123

418 P. Degano et al.

2. L(FSNA±) � L(FMA)

The main differences between the two models are the following. The registers of FMA
have an initial assignment, while FSNA± have static resources playing the same role
(and initialisation can anyway be done by initial ε-transitions that FMA have not).
FMA associate the reassignment function ρ with states rather than with edges; the
same effects can be obtained by FSNA± when all the edges starting from a state q
have the same Δ. Additionally, ρ reassigns a register using the input symbol, while
FSNA± update an m-register (through an ε-transition) and then recognize the fresh
symbol in it. In FMA, all the registers have to be different, and a reassignment may
update a register with the same symbol it already contains; the FSNA± can sim-
ulate this behaviour using two edges with Δ = i+ and Δ = ε, accounting for
the cases a new symbol is assigned or the same one is reassigned, respectively. So,
L(FSNA±) ⊇ L(FMA) and the language L0 in Example 1 shows that inclusion is
strict.

3. L(FSNA+) � L(UA)

The expressiveness of UA is the same of VFAwithout the y (see [34]), so the construction
in item 1 suffices (note that there will be no delete transitions).

4. L(FSNA+) �� L(VFA) and 5. L(FSNA+) �� L(FMA)

Consider L0 = {w ∈ Σ∗
d | ∀i, j. w[i] �= w[j]} of Example 1. We have that L0 ∈

L(FSNA+) but L0 /∈ L(VFA) ∪ L(FMA). Also Σ∗ ∈ L(FMA) ∩ L(VFA) but Σ∗ /∈
L(FSNA+).

5. L(FSNA±) �� L(HRA)

Consider the language L = {a0b0 . . . anbn | ∀i, j. i �= j ⇒ ai �= a j , bi �= b j }, L is
not recognised by any FSNA± but it is recognised by an HRA because of the capability
of using multiple stories. On the other hand the language L ′ = {a1 . . . anb1 . . . bn |
∀i, j. i �= j ⇒ ai �= a j ∧ bi �= b j , n − i ≥ j ⇒ bi �= a j } is in L(FSNA±) but not in
L(HRA). This is because m-registers are stacks while places are sets.

6. L(FSNA+) �� L(fp-automata) and L(FSNA±) ⊇ L(fp-automata)

Both FSNA±,FSNA+ recognise the language {a1 . . . an | i �= j ⇒ ai �= a j }, that
instead is not by anyfp-automata. However FSNA+ can not recogniseΣ∗, a language
in L(fp-automata). ��

5 Pushdown Nominal Automata

The introduction discusses a simple program that picks up and releases unboundedly many
resources. The behaviour of this program was conveniently abstracted as the Dyck-like
context-free nominal language of words

new(r1)new(r2) . . .new(rn) rel(rn) . . .rel(r2)rel(r1) (1)

where r1, r2, . . . , rn are pairwise distinct resources. Various kinds of recognisers for these
context-free nominal languages have been recently proposed and justified by their theoretical
and practical relevance [12,13,17,37,42].

Below, we extend FSNA± with a stack, so obtaining our version of nominal, push-down
automata. Of course, the nominal language {wwR} of Example 3 is accepted by one of them.

We store elements of the infinite alphabetΣ in the stack of a PDNA±, and we can push on
it strings of symbols inΣ , possibly retrieved through the indexes of m-registers. By pushing,

123

Regular and context-free nominal traces 419

e.g., the string a 3 b one actually pushes a s-top(N3) b. A preliminary definition is in order
to handle these cases.

Definition 10 Let ζ ∈ (Σs ∪ r)∗ and let S be a stack. Then, Pushreg(ζ, S) extends the
standard push operation as follows

Pushreg(ε, S) = S
Pushreg(z ζ ′, S) = Pushreg(ζ ′, push(σ, S))

where σ =
{
z if z ∈ Σs

s-top(Nz) if z ∈ r

Definition 11 (Pushdown Nominal Automata) A Pushdown Nominal Automata (PDNA±)
is A = 〈Q, q0,Σ, δ, r, F〉 where:
– Q, q0, r, F are as in FSNA± (Definition 1)
– δ is the transition relation: (q, σ, Z , q ′,Δ, ζ) ∈ δ with σ ∈ Σs ∪ r ∪ {ε,	}, Z ∈

Σs ∪ r ∪ {ε, ?},Δ ∈ {i+, i− | i ∈ r} ∪ {ε}, ζ ∈ (Σs ∪ r)∗.
For (q, σ, Z , q ′,Δ, ζ) ∈ δ we use the notation q

σ,Z−−→
Δ,ζ

q ′ ∈ δ

A configuration is a tuple C = 〈q, w, [N1, . . . , Nr], S〉 where q, w, [N1, . . . , Nr] are as in
FSNA± and S is a stack with symbols in Σ .

A configuration 〈q f ∈ F, ε, [N1, . . . , Nr], �〉 is final (� is the empty stack).

As defined below, PDNA± may use in a richer way than standard pushdown automata the
top of the stack, call it a. First, we can compare the current symbol in the input with a, if
the symbol σ in the transition to be applied is 	. Also, if Z = ε the string obtained from ζ

is pushed on the stack, as explained above. Instead, if Z = i the top a is popped from the
stack, provided that the s-top of the i th m-register is a. Finally, if Z =? a pop occurs, with
no further constraints.

Definition 12 (Recognising Step) Given a PDNA± A, the step 〈q, w, [N1, . . . , Nr], S〉 →
〈q ′, w′, [N ′

1, . . . , N
′
r], S′〉 occurs iff q σ,Z−−→

Δ,ζ
q ′ ∈ δ and the following hold

1. condition 1 of Definition 2 and σ = 	 ⇒ w = top(S)w′ and
2. condition 2 of Definition 2 and

3.

⎧⎪⎨
⎪⎩
Z = ε ⇒ S′ = Pushreg(ζ, S) and

Z = i ⇒ S′ = Pushreg(ζ, pop(S)) ∧ top(S) = s-top(Ni) and

Z =? ⇒ S′ = Pushreg(ζ, pop(S))

Finally, the language accepted by a PDNA± A, which we call (nominal) context-free, is

L(A) = {
w ∈ Σ∗ | ∃ρ : C1 = 〈q0, w, [�, . . . , �], �〉 →∗ Ck,with Ck final

}
The following example shows that PDNA± are able to express the above new-rel

language on data-words (1).

Example 4 The PDNA+ accepting (1) is in Fig. 7b. The labels of transitions, but Δ, contain
new(u),rel(u), u ∈ r ∪ Σs . Figure 7b also shows the run for new(a)new(b)rel(b)
rel(a); also here we omit the strings in configurations and we only mention the symbols
in the m-registers. Note that, only keeping the names of the resources, we get

⋃
r∈N

Lr =
{wwR | w ∈ Σ∗

d }, for Lr of Example 3.

The late usage pattern discussed in the introduction can be expressed by PDNA±. This
comes with the ability of recognising symbols on the stack, while they have been deleted
from the m-registers. The following example witnesses this feature.

123

420 P. Degano et al.

(a)

(b)

Fig. 7 a A PDNA± accepting {wwR | w ∈ Σ∗
d }, and a run on aabbaa. b A PDNA+ for the data-word

language of the updateFiles function in the introduction, and a run on new(a) new(b) rel(b)
rel(a). Strings are omitted in configurations

Example 5 Figure 7a shows a PDNA± accepting L p = {wwR | w ∈ Σ∗
d }, and a run accept-

ing aabbaa (for brevity, we do not write the strings to be recognised in the configurations, as
the current symbols label the steps). The automaton behaves just as a FSNA± in the 1st, 3rd,
5th and 7th steps of ρ1. Additionally, in this initial part of the run, the stack is involved in the

2nd, 4th and 6th steps. They all occur because of edge q1
1,ε−−→
1−,1

q0, that causes the symbol in

the m-register 1 to be pushed on the stack. In steps 8th,9th,10th the edge q2
	,?−−→
ε,ε

q2 causes

the top of the stack to be (successfully) matched with the current symbol (as dictated by the
label) and popped (because of ?).

As done for FSNA± we introduce the class of automata that update two m-registers at the
same time, and the sub-class of PDNA± without delete transitions.

Definition 13 (PDNA+ and PDNA+2)

– A PDNA+ is a PDNA± with no edges q
σ,Z−−→
i−,ζ

q ′.

– A PDNA+2 is a PDNA+ with transitions of the form q
σ,Z−−−−−−→

(Δ1,Δ2),ζ
q ′ (cf. Definition 4)

As expected, the class of languages accepted by PDNA± strictly includes that accepted
by PDNA+. Indeed, the same proof of Property 1 applies here. Just as done for FSNA+2, we
can prove that PDNA+2 and PDNA+ have the same expressive power. In spite of the reduced
expressiveness, PDNA+ can accept a wide class of (Dyck-like) context-free languages, for
instance the automaton in Example 4 is a PDNA+.

6 Properties of PDNA±

Obviously, the class of pushdown nominal languages includes the regular ones.

123

Regular and context-free nominal traces 421

Property 4 L(FSNA±) � L(PDNA±)

Proof Inclusion is trivially proved: from a given FSNA± obtain the equivalent PDNA± by
adding labels ζ = ε, Z = ε to each edge. Example 3 suffices to prove that the inclusion is
strict. ��

We now study under which operators the classes of languages accepted by PDNA± and
PDNA+ are closed.

Theorem 5 (Closure properties)

∪ ∩ . · ∗
L(PDNA±) � × × � �
L(PDNA+) � × × × ×

Proof Union:
The construction is the same of Theorem 2 in both cases; of course the initial ε-transitions
do not alter the stack (ζ = Z = ε).

Intersection and complement:
Follows from the classical results on context-free languages, the same languages of the
classical counterexamples can be used in our case.

Concatenation and Kleene star:
The proof in Theorem 2 applies here as well; note that the stack is empty in the initial and
final configurations. ��

A classical result in automata theory is that the class of context-free languages is closed by
intersection with the class of regular ones. We investigate the same property in the nominal
case, and we find that only the intersection of FSNA+ and PDNA+ is a PDNA+ (hence a
PDNA±).

Theorem 6 (Intersection)

is a FSNA± ∩ PDNA± FSNA± ∩ PDNA+ FSNA+ ∩ PDNA± FSNA+ ∩ PDNA+

PDNA± × × × �
PDNA+ × × × �

Proof Consider the FSNA± language L1 = {apnbqmrn′
csm

′
d | a = c ⇒ n′ > n, b = d ⇒

m′ > m, a �= b, c �= d} in Fig. 8 and the PDNA+ language L2 = a{p}∗b{q}∗{r}∗a{s}∗b.
The language L1∩L2 = {apnbqmrn′

csm
′
d | n′ > n,m′ > m, a �= b}, by classical reasoning

on context-free languages, is not recognised by any PDNA+ nor PDNA±. Note that L1 can
be recognised by the PDNA± obtained by adding Z = ε, ζ = ε to all the edges in Fig. 8 and
L2 is a nominal regular language recognised by both a FSNA+ and a FSNA±. This justifies
the entries × of the statement.

We prove now that PDNA+ ∩ FSNA+ is a PDNA+:

123

422 P. Degano et al.

Fig. 8 A FSNA± accepting the language L1 = {apnbqmrn′
csm

′
d | a = c ⇒ n′ > n, b = d ⇒ m′ >

m, a �= b, c �= d}

The proof follows step by step that of Theorem 2, with additional care to manage the stack,
which however is only determined by how the PDNA+ handles it. The detailed construction
follows.

Given the PDNA+ 〈Q1, q10 ,Σ, δ1, r, F1〉 and the FSNA+ 〈Q2, q20 ,Σ, δ2, r, F2〉, their
intersection automaton (of type PDNA+2) is 〈Q, q0,Σ, δ, 2r, F〉, where
– Q = Q1 × M × Q2, with M set of merge functions
– q0 = 〈q10 ,m∗, q20 〉 where m∗ is a merge such that m∗

1,m
∗
2 are the identity functions (i.e.

the m-registers of the two intersecting automata are initially merged onto the firsts r
register of the intersection automaton)

– F = {〈q1,m, q2〉 | q1 ∈ F1, q2 ∈ F2,m ∈ M}
– 〈q1,m, q2〉 σ ,Z−−−−−→

Δ1,Δ2,ζ

〈q ′
1,m

′, q ′
2〉 ∈ δ iff m

Δ1,Δ2
� m′ and

q1
σ1,Z−−−→
Δ1,ζ

q ′
1 ∈ δ1 and q2

σ2−−→
Δ2

q ′
2 ∈ δ2 and (σ1, σ2 ∈ r or σ1, σ2 ∈ Σs) and

– if σ1, σ2 ∈ r then σ = m1(σ1) = m2(σ2) and
– if σ1, σ2 ∈ Σs then σ = σ1 = σ2 and

– (Δ1,Δ2) =
m
m′(Δ1,Δ2

)
, Z = m1(Z), ζ = m1(ζ)

or q1
	,Z−−−→
Δ1,ζ

q ′
1 ∈ δ1 and q2

σ2−−→
Δ2

q ′
2 ∈ δ2 and σ2 ∈ r, σ = m2(σ2) and ζ = m1(ζ)

and either Z = k ∈ r implies k
m←→ σ2, Z = m2(σ2), (Δ1,Δ2) =

m
m′(Δ1,Δ2

)
,

or Z =? implies Z = m2(σ2), (Δ1,Δ2) =
m
m′(Δ1,Δ2

)
or q1

ε,Z−−→
Δ1ζ

q ′
1 ∈ δ1 and σ = ε, (Δ1,Δ2) =

m
m′(Δ1, ε

)
, Z = m1(Z), ζ = m1(ζ)

or q2
ε−−→

Δ2
q ′
2 ∈ δ2 σ = ε, (Δ1,Δ2) =

m
m′(Δ1, ε

)
, Z = ε, ζ = ε ��

We finally prove that the emptiness problem is decidable for PDNA+. The proof relies
on a variant of the classical pumping lemma. Roughly it says that, given a language L
recognised by a PDNA+, there exists a constant n, such that any string w ∈ L , |w| > n
can be decomposed as w = uvxyz, such that also w′ = u′x ′z′ belongs to L with u′, x ′, z′
obtained from u, x, z by carefully substituting (distinguished) dynamic symbols and erasing
v and y. Before proving it, we need some auxiliary definitions and lemmata.

Since we focus on the emptiness problem, we are interested in the existence of a word,
rather than in its actual shape. Therefore, whenever immaterial, we feel free to omit from
now onwards the word in configurations and the input symbol in transitions.5

5 Consequently, we have that 〈q, [N1, . . . , Nr], S〉 → 〈q ′, [N ′
1, . . . , N

′
r], S′〉 iff there exists q σ,Z−−→

Δ,ζ
q ′ ∈ δ

satisfying the conditions (2 − 3) of Definition 12 and the following holds:

123

Regular and context-free nominal traces 423

Notation From now onwards, assume as given a PDNA+ and let C = 〈q, [N1, . . . , Nr], S〉
be a configuration; ρ = C1 →∗ Ck,Ci = 〈qi , wi , [Ni

1, . . . , N
i
r], Si 〉 be a run; B =

[B[1], . . . , B[n]] denote an array, and let B[i, . . . , j], i ≤ j denote the portion of the array
between the i-th and j-th positions. We will also use the array notation for stacks, assuming
that the leftmost item S[1] is the bottom and S[i] is the i-th element in it, the height of a stack
S will be denoted |S|.
Also, call swap f an injective partial function f : Σd ⇀ Σd , and its homomorphic extensions
to strings, tuples, array and stacks.

What follows extends similar definitions and proofs of [2].

Definition 14 (C-rep)Let ES be the set of symbols occurring in the stack S of a configuration
C such that e ∈ ES iff ∀i.top(Ni) �= e. Let

f irst (e, S) =
{
1 if top(S) = e

f irst (e, pop(S)) + 1 otherwise

Let fS : ES → {1, . . . , |S|} to be such that fS(e) = f irst (e, S) (note that fS is injective).
The function C-rep(S) that returns a stack of symbols in Σs ∪ {i | 1 ≤ i ≤ r} ∪ {i | 1 ≤

i ≤ |S|} is defined by:
– C-rep([]) = []
– C-rep(b :: S′) = a :: C-rep(S′) iff

– b ∈ Σs, a = b or
– b ∈ Σd , ∃i.b = top(Ni), a = i or
– b ∈ Σd ,∀i.b �= top(Ni), a = fS(b)

Definition 15 (Activation state) The activation state of the m-registers of a configuration C
is an array m = [m[1], . . . ,m[r]] where m[i] = 1 iff Ni is active, m[i] = 0 otherwise.

Definition 16 (Representative state) The representative state of a configuration C is the
triple (q,m, R) where m is the activation state of the m-registers and R = C-rep(S), i.e. R
represents S on C . We write C ∼ C ′ to indicate that C has the same representative state of
C ′.

Lemma 3 Let C1 → C ′
1 then for any configuration C2 such that C2 ∼ C1 there exists C ′

2
such that C2 → C ′

2 and C
′
2 ∼ C ′

1.

Footnote 5 continued

(1m)

{
σ = 	 ⇒ top(S) is defined
σ = i ⇒ s-top(Ni) is defined

If 〈q, [N1, . . . , Nr], S〉 → 〈q ′, [N ′
1, . . . , N

′
r], S′〉 because there exists q σ,Z−−→

Δ,ζ
q ′ ∈ δ satisfying the conditions

(1m, 2, 3) then by setting for any w′ the word w such that⎧⎪⎨
⎪⎩

σ = ε ⇒ w = w′
σ = 	 ⇒ w = aw′
σ = i ⇒ w = aw′

we have that also 〈q, w, [N1, . . . , Nr], S〉 → 〈q ′, w′, [N ′
1, . . . , N

′
r], S′〉. By induction, if

〈q, [N1, . . . , Nr], S〉 →∗ 〈q ′, [N ′
1, . . . , N

′
r], S′〉 then for any word w′ there exists a word w such that

〈q, w, [N1, . . . , Nr], S〉 →∗ 〈q ′, w′, [N ′
1, . . . , N

′
r], S′〉.

123

424 P. Degano et al.

Proof Let t = (q, σ, Z , q ′,Δ, ζ) ∈ δ be used for justifying the transitionC1 → C ′
1. We first

show that t justifies also C2 → C ′
2 by constructing a suitable C ′

2 = 〈q ′, [M ′
1, . . . , M

′
r], T ′〉.

First of all, note that, being C1 ∼ C2, the main stacks S and T have the same depth and the
m-registers Ni and Mi have the same activation state. Therefore, sinceC1 satisfies (1m), also
C2 does, i.e. : {

σ = 	 ⇒ top(T) is defined

σ = i ⇒ s-top(Mi) is defined

For the same reason, in condition (3), the operations pop(T), top(T) and s-top(Mi) are
defined and so are the arguments of the operation Pushreg.Note that ζ may contain a reference
to a register j and again we have that the required s-top(Mj) is defined, because the activation
state of Mj is the same of N j .

We are left to prove that condition (2) can be fulfilled by theM ′
j and to prove thatC

′
1 ∼ C ′

2.
We proceed by cases on Δ.

Case Δ = i+) Let ∀ j (j �= i).M ′
j = Mj , M ′

i = s-push(c, Mi) with c to be
T [f irst (c, Mi)] if c ∈ S to preserve the representative state, that requires
to relate T ′ with S′. Otherwise we choose c /∈ Mj , ∀ j ∈ r and c /∈ T .
We are left to prove that C ′

2 ∼ C ′
1. Trivially C ′

2 and C ′
1 have the same

state q ′. The activation state of the m-registers is also the same, because
in both configurations only the i-th is affected (if active it is left such
as well it becomes active because of the s-push), while the activation
state of the others is the same in C ′

1 and C ′
2 because C1 ∼ C2. Also

ES = ET and the same ζ is pushed on both stacks, so ES′ = ET ′ . Now
fS′(s-top(Ni)) = fT ′(s-top(Mi)), that proves C ′

1 ∼ C ′
2.

Case Δ = i−) Let M ′
j = Mj ,∀ j (j �= i) and M ′

i = s-pop(Mi) which is defined because
C1 ∼ C2. The proof that the tuple (q ′,Δ, ζ) ∈ δ(q, σ, Z) justifies C2 →
C ′
2 is similar to the case above. Only the i − th m-register is affected, if

active it gets deactivated, it is left deactivated otherwise.
Case Δ = ε) Letting M ′

j = Mj ,∀ j ∈ r suffices to fulfil condition (2). The proof that
the transition (q, σ, Z , q ′,Δ, ζ) belongs to δ justifies C2 → C ′

2 is similar
to the case above. Only the i-th m-register is affected, if active it gets
deactivated, it is left deactivated otherwise. ��

Definition 17 (Level) A level G = (i, j, h) with height l on ρ is a triple (i, j, h) such that
1 ≤ i < j < h ≤ k and

– |Si | = |Sh | ,
∣∣S j

∣∣ = |Si | + l
– |Si | ≤ |Su | ≤ ∣∣S j

∣∣ for all u.i ≤ u ≤ j .
– |Sh | ≤ |Su | ≤ ∣∣S j

∣∣ for all u. j ≤ u ≤ h

Given a levelG on ρ, define two indices lG↓ , f G↑ , called respectively last-push and first-pop
of G.

lG↓ = max{y ≤ j | ∣∣Sy∣∣ = |Si |} f G↑ = min{y ≥ j | ∣∣Sy∣∣ = |Si |}
Figure 9 shows an example of levels, l↓ and f↑.

Property 5 Given a level (i, j, h) with height l on ρ, for each k < l there exists a level
(u, j, v) for some u, v with height k.

123

Regular and context-free nominal traces 425

Fig. 9 An example of V-level and G-level on a run

Definition 18 (Full state) Let G be a level on ρ and let ClG↓
= 〈q, [N1, . . . , Nr], a ::

S〉,C f G↑
= 〈q ′, [N ′

1, . . . , N
′
r], S′〉.

The full state of a level G on ρ is the tuple (c, q,m, q ′,m′) such that:

– If a ∈ Σs then c = a, if a ∈ Σd and ∃i.top(Ni) = a then c = i , if a ∈ Σd and
∀i.top(Ni) �= a then c = �.

– m,m′ are the activation states of the m-registers in ClG↓
,C f G↑

, respectively.

Property 6 Let C1 = 〈q1, [N 1
1 , . . . , N 1

r], S1〉 →n Cn = 〈qn, [Nn
1 , . . . , Nn

r], Sn〉 and let
G = (1, j, n) be a level on the above run with height l, for some j . Then there exists a cutoff
run DlG↓

, . . . , D f G↑
with Di = 〈qi , [Ni

1, . . . , N
i
r], S′

i 〉, S′
i = T :: Si [1, . . . , |Si | − l] for any

stack T with top(T) = top(SlG↓
).

Proof Sketch: by definition of level the transitions does not depend on the content of the
stack below the height of SlG↓

��

We now prove our restricted pumping lemma: a de-pumping lemma.

Lemma 4 (De-Pumping Lemma) Let A = 〈Q, q0, δ, r,Σs ∪ Σd , F〉 be a PDNA+ and let
p′ = 2r |Q|2 (|Σs | + r + 1) and p = 2r |Q| (|Σs | + r + p′ + 1)p

′ + 1. For each word
w ∈ L(A) such that |w| > p and ρ is (one of) the shortest among its accepting runs, we can
construct a word w′ ∈ L(A) with a strictly shorter accepting run.

Proof Let w ∈ L(A) such that |w| > p; take ρ = C1 → · · · → Ck , Ci =
〈qi , wi , [Ni

1, . . . , N
i
r], Si 〉 out of the set of the shortest accepting runs; and let l be the maxi-

mum height of the stack in ρ.

Case l ≤ p′) Recall that |w| > p, hence ρ contains at least p configurations. There are at
most 2r |Q| (|Σs |+r+l+1)l < p different representative states of the config-
urations of ρ. Hence there are at least two configurationsCx ,Cy, x < y with
the same representative state. By applying Lemma 3, from the runCy →∗ Ck

we obtain that also Cx →∗ F for some F with the same representative state
of Ck . Therefore, also F is a final configuration. The thesis follows because
the run ρ′ = C1 →∗ Cx →∗ F is shorter than ρ.

Case l > p′) Note that there is a level on ρ with height l, say G = (i, j, h). By Property 5,
there exist at least l levels (u, j, v) with different heights that are levels on ρ.

123

426 P. Degano et al.

There are only p′ < l different full states that can be associated with these
levels, hence there exist two levels, say U = (u1, j, v1) and V = (u2, j, v2)
with the same full state. Assume w.l.o.g. nU = ∣∣Su1 ∣∣ = ∣∣Sv1

∣∣ <
∣∣Su2 ∣∣ =∣∣Sv2

∣∣ = nV . Let ClU↓
,ClV↓

be the configuration with index last-push and

let C f U↑
,C f V↑

be the configuration with index first-pop of level U and V

respectively (see Fig. 9).
By Lemma 6, from the run ClV↓

→∗ C f V↑
it is possible to obtain a cut off run

DlV↓
= 〈qlV↓ , wlV↓

, [NlV↓
1 , . . . , N

lV↓
r], TlV↓ 〉 →∗

D f V↑
= 〈q f V↑

, w f V↑
, [N f V↑

1 , . . . , N
f V↑
r], T f V↑

〉
where Ti = SlU↓

:: Si [nV , . . . , |Si |].
Since TlV↓

= T f V↑
= SlU↓

= S f U↑
and ClU↓

,C f U↑
have the same full state of

ClV↓
,C f V↑

, respectively, it follows that DlV↓
∼ ClU↓

and D f V↑
∼ C f U↑

.

Consequently, by Lemma 3, from the run DlV↓
→∗ D f V↑

we obtain the run

ClU↓
→∗ H for some H ∼ D f V↑

∼ C f U↑
. By the same lemma, from the run

C f U↑
→∗ Ck we obtain a run H →∗ F , where F has the same representative

state of Ck , hence it is final.
The thesis follows because the run C1 →∗ ClU↓

→∗ H →∗ F is shorter

than ρ. ��
We eventually prove the decidability of the emptiness problem for our push-down nominal

automata with no delete transitions; we conjecture that it is instead undecidable for PDNA±.

Theorem 7 Given a PDNA+ A, it is decidable whether L(A) = ∅.
Proof (Sketch) By repeatedly applying the De-Pumping Theorem 4, L(A) is non empty if it
contains a word w′, made of distinguished symbols, and such that |w′| ≤ p, where p is the
constant in Theorem 4. ��

7 Expressiveness of PDNA±

To the best of our knowledge, the literature has different notions of nominal context-free
languages, i.e. able to express Dyck-like languages: quasi context-free languages (QCFL)
[17], Usages introduced in [7], the context-free automata (that we call here NPA) in [13],
DMPA [15], HOPAD [42], Pebble automata [39], and the pushdown r-register system (r-
PDRS) [37].

Below we compare the properties and the expressive power of PDNA± with that of above
models for different notions of nominal context-free languages.

Table 3 shows some closure properties of our automata with those of the other models,
when presented in the literature. To the best of our knowledge, the closure of a context-free
nominal language with a regular one has not been investigated explicitly for other nomi-
nal models, even if it is folklore that intersecting a QCFL with a FMA automaton can be
done mimicking the construction of the intersection between FMA. Remarkably, we have
constructed the PDNA+ resulting from the intersection of a PDNA+ with a FSNA+ (see
Theorem 6).

123

Regular and context-free nominal traces 427

Table 3 A comparison of the closure properties of our automata with the ones of QCFL[17], Usages [7] and
NPA [12]

∪ ∩ . · ∗
L(PDNA±) � × × � �
L(PDNA+) � × × × ×
L(QCFL) � × × � �
L(Usages) � × × × ×
L(N PA) � ?? ?? ?? ??

L(Pebble) � ?? ?? ?? ??

Table 4 Decidability of the emptiness problem for QCFL [17], Usages [7], DMPA [15], Pebble [39] and
r-PDRS automata

PDNA+ PDNA± QCFL Usages DMPA Pebble r-PDRS

Emptiness � ?? � � × × �

The decidability and the complexity of the emptiness problem has been investigated for
QCFL,Usages, DMPA, Pebble automata because of the relevance of this problem in verifi-
cation. In [37] the authors shows the decidability of reachability on r-PDRS automata, which
implies the decidability of their emptiness. In Table 4 we summarise the decidability results
of the emptiness problem for the above models and for ours.

We now compare the expressiveness of PDNA± and PDNA+ with that of other models
in the literature. Also here, we assume that data-words have a single action, not displayed in
words (see Theorem 4).

Theorem 8 (Expressivness Comparison)

– L(PDNA+) �� L(QCFL)

– L(PDNA±) � L(QCFL)

– L(PDNA+) = L(Usages)
– L(PDNA±) � L(Usages)
– L(PDNA±) �� L(DMPA)

Proof – L(PDNA±) � L(QCFL)

We consider the infinite alphabet pushdown automata (IAPA) that recognise L(QCFL)

[17]. The same argument in Theorem 4, item 2 (L(FSNA±) � L(FMA)) suffices for
showing the inclusion, which is strict, because L0 in the Example 1 is not recognised by
any IAPA.

– L(PDNA+) = L(Usages)
Usages are built from (static and dynamic) symbols n (actually α(n), where α is an action
on n) with operation of sequentialization ·, nondeterminism +, recursion and creation of
a new dynamic symbol, through νn (see Table 5).
When sequentialising two processes, the second can not use any dynamic symbol used
by the first one, just as it happens when two PDNA+ are sequentialised by connecting
the final states of the first with the initial one of the second. Since there is no deletion,
the m-registers monotonically grow.

123

428 P. Degano et al.

Table 5 Operational semantics of Usages

(epsilon)
ε ·U,R ε−→ U,R

(act)
α(r),R α(r)−−→ ε,R

(dot)
U,R a−→ U ′,R′

U · V,R a−→ U ′ · V,R′
(plus)

U + V,R a−→ U,R′ U + V,R a−→ V,R′

νn.U,R ε−→ U {r/n},R ∪ {r}
if r ∈ Σd\R

(rec)
μh.U,R ε−→ U {μh.U/h},R

capture avoiding

Nondeterministic choice + directly corresponds to the union of two automata.
Recursion can be dealt with as done in [6] by transforming an expression in a BPA, that
has an immediate counterpart as a PDNA+.
For each occurrence of a νn in the usage at hand we associate an m-register. Creation of a
new symbol, i.e. reducing the νn, corresponds to updating the corresponding m-register.
When a νn occurswithin a recursive expression, a renaming occurs to guarantee freshness
of the dynamic symbol to be generated. Note that only a finite number of m-registers is
necessary, as the number of νn occurring in a usage is fixed and Property 7 holds.

– L(PDNA±) � L(Usages)
Σ∗ ∈ L(PDNA±), while Σ∗ /∈ L(Usages) by Theorem 9.

– L(PDNA+) �� L(QCFL)

The proof of Theorem 8, item 5 suffices (FSNA+ � FMA).
– L(PDNA±) �� L(DMPA) Using their multiple stacks, the DMPA can express the lan-

guage (of patterns) {anbncn}, that can not be recognised by a PDNA±. However, their
notion of freshness also requires that a new symbol can not occur in the stacks, which is
not the case for PDNA±. ��
Note in passing that the expressiveness of fp-automata does not go beyond the one of

PDNA±, deallocation offp-automata can be reproduced in PDNA± by delete transitions;
swapping the contents of two registers in fp-automata via a permutation (there are only
a finite number of them) can be done by PDNA± by suitably mentioning/updating/deleting
the corresponding registers in the next states.

A detailed comparison between the expressiveness of PDNA± and r-PDRS [37] is out
of the scope of this paper, mainly because recognising languages with an unbound number
of fresh resources (unbound/global freshness), or with late usage, were not an issue for r-
PDRS. Extending their main result on the decidability of reachability on r-PDRS in these
cases does not seem straightforward. Indeed, the original result in [37] is based on the limited
distinguishability lemma (Lemma 5.), which states that for any recognising run there exists
an equally long run where only 3r symbols are used. This lemma would be false for e.g.
L = {w | ∀i, j (i �= j).w[i] �= w[j]} (accepted by a FSNA+), because the length of any
recognizing run of w ∈ L is at least |‖w‖| = |w|, and it suffices to take a run longer than 3r .

8 Conclusions

We modelled two new aspects of resource usage arising in current programming languages
and paradigms, namely unbound freshness, i.e. the possibility of having unboundedly many
fresh resources, and late usage, i.e. the possibility of referring to a resource even after it has

123

Regular and context-free nominal traces 429

been disposed.We do that through novel classes of automata for nominal languages, that read
from the input unboundedly many fresh symbols. These symbols can explicitly be released,
and re-used later on, as if they were fresh.We intuitively classify our automata as context-free
PDNA±, and regular FSNA±, respectively, because they can recognise Dyck-like languages,
and can not, respectively. We also considered a sensible restriction of them, PDNA+ and
FSNA+, that can not release and re-use as fresh symbols already seen.

We studied some closure properties of our models: union, intersection, complementation,
concatenation and Kleene star. We related the expressive power of our nominal automata to
that of some analogous models in the literature and we investigated the decidability of the
problems of emptiness and universality for them.

The decidability of the emptiness, in particular in the context-free case, is important
because it provides foundations to some verification techniques. To the best of our knowledge,
no class of nominal languages proposed so far is closed under complementation.

Lack of closure under complementation affects, for example, the standard automata-based
model-checking procedure [49]. This wide-spread verification technique requires to represent
both the model and the properties as languages L (typically context-free) and L ′ (typically
regular) and to verify the emptiness of the intersection of L with the complement of L ′.
Indeed, an element of a non-empty intersection is a counterexample to the property in hand.
However, this problem is mitigated when the property, i.e. a regular language, is not specified
as the set of the accepted words, rather by the set of non accepted words, following the so-
called default-accept paradigm [45]. In other words, one specifies the unwanted behaviour,
so making complementation unnecessary at all. This is typically the case some properties
arising in static analysis [26,40] and for security policies [4,45], that define behaviour that
are deemed unacceptable. The specification of the property in the default-accept approach
is usually done through an automaton (e.g. a security automaton), the language of which
contains the unwanted behaviour. Operationally, one then builds a run-time executionmonitor
based on this automaton, that watches programs and performs a transition in correspondence
with an execution step that possibly affects the property under monitoring. Right before the
automaton reaches a final state, the program run is aborted, because it is about to violate some
requirement. Following a static approach, one typically extracts an abstract behaviour from
a program and model-checks it against the required property, expressed by an automaton
where complementation is built-in (for security properties, see e.g. [6,8,28]).

The connection between nominal automata and program verification has been also inves-
tigated in [26]. The authors introduce a programmer-friendly language (TOPL) which can
be used to express temporal properties of objects. A TOPL formula can be transformed to
obtain a register automaton, which in turn can be used to monitor the execution of a Java
program, seeking for violation of the property expressed by the formula, in a default-accept
manner.

This paper contributes to this line of research, characterising a large class for which the
automata based model-checking is feasible, when default-accept properties are of interest.
We proposed PDNA+ to express the model and FSNA+ for the property, the intersection of
which is again a PDNA+. We also proved the decidability of emptiness problem for PDNA+.
These two results guarantee that model-checking is effective in the nominal setting, within
the default-accept paradigm. Further investigation is required on understanding the impact
the disposal mechanism has on the feasibility of this verification technique.

A different approach to verification has been recently proposed in [9]: compliance of a
model with respect to a property is checked through a notion of simulation between automata.
In [10], the same authors propose a logic with variables ranging over an infinite domain and
establish a correspondence with a parametrised transition system. We can easily adapt their

123

430 P. Degano et al.

verification technique to our case, even though decidability of simulation is presently an open
issue for our models.

Further research is needed to fill in the gap between our foundational results and proto-
typical implementations of our abstract model-checking procedure. Languages and logics
which match the expressiveness of our models are also needed to make nominal technique
easier to use for developers, in the style of [10,26].

Acknowledgements We thank Lillo Galletta, Alexander Kurz, Matteo Sammartino and Nikos Tzevelekos
for many helpful discussions and the anonymouos referees for their suggestions.

Appendix: Usages

To compare the expressive power of PDNA± against Usages we need to extend the expres-
siveness theorems about Usages.

Theorem 9 The language Σ∗ is not generated by any Usages.

Proof The proof has the following structure: a new transition system for Usages is given,
this is provably equivalent to the original one [7]. Then a few lemmata are proved to provide
support for the final argument.

In the following we will use the word redex to identify the source of a transition deduced
by only applying an (instance of an) axiom.

Lemma 5 If U0,R ε−→ U1,R′ and μh.U is its redex, then U0{μh.U/h} = U1.

Proof (By induction on the depth of the proof)
There are two exhaustive cases:

– Base case: U0 = μh.U and the thesis follows easily.

– Inductive case: U0
ε−→ U1 has been proved by

U ′
0

ε−→ U ′
1

U ′
0 · V ε−→ U ′

1 · V
by rule (seq) as last

step. By the inductive hypothesis we have that U ′
1 = U ′

0{μh.U/h} and the thesis follows
easily.

��
Lemma 6 If U0,R0

a0−→ U1,R1
a1−→ · · · an−1−−→ Un,Rn and k is the least index such that

μh.U is the redex of Uk
ak−→ Uk+1 and rule (rec) is never used in reducing Ui , i < k then

Ui = Ci [μh.U] for some Ci and ak = ε.

Lemma 7 Let U0,R0
a0−→ U1,R1

a1−→ · · · an−1−−→ Un,Rn be a computation and let k be

the least index such that μh.U is the redex of Uk
ak−→ Uk+1 and rule (rec) is never used in

reducing Ui , i < k then ∃U ′
i ≡ Ui , i < k such that U ′

0,R0
a0−→ U ′

1,R1
a1−→ · · ·U ′

k
ak+1−−→

Uk+2,Rk+2
ak+2−−→ · · · an−1−−→ Un,Rn and (rec) is never used reducing Ui , 0 ≤ i ≤ k.

Proof By Lemma 6 Ui = Ci [μh.U], i ≤ k, also μh.U is never the redex of Ui , i < k,

hence also U ′
i = Ci [U {μh.U/h}],Ri

ai−→ U ′
i+1 = Ci+1[U {μh.U/h}],Ri+1. By Lemma 5

U ′
k = Uk[U {μh.U/h}] = Uk+1. ��

123

Regular and context-free nominal traces 431

Lemma 8 Let U0,R0
a0−→ U1,R1

a1−→ · · · an−1−−→ Un then ∃U ′
0 ≡ U0 such that

U ′
0,R0

a0a1...an−1−−−−−−→ U ′
m,Rm for someU ′

m,Rm such that∀i.U ′
i ,Ri

ai−→ U ′
i+1,Ri+1 is deduced

using (rec) rule.

Proof By repeated application of Lemma 7. ��
Property 7 (of capture avoiding substitutions) Given μh.U, if n occurs in the scope of νn,
then U {μh.U/h} contains a term νn′.U ′, n′ �= n and n does not occur in U ′.

Proof Follows because unfolding a recursion is capture-avoiding and all the bound names
are different. ��

For simplicity , we write an for the dynamic resource replacing a name n in U when the
rule (new) is applied.

Let U with k occurrences of νni be such that �U� = Σ∗ and let s = an1an2 . . . ank+1

an1an2 . . . ank+1 . By Lemma 8, there existsU ′ ≡ U such thatU ′,∅ s−→ U , {an1 , . . . , ank+1}∪
R with no transition deduced using rule (rec).

Since ν.nk+1 does not occur inU , then there exists a subterm ofU of the formμh.U , with
νni .U ′′, (0 < i ≤ k) in U . Therefore, U ′ = U {μh.U/h} and the replacing term contains
νnk+1.U ′′{nk+1/ni }, nk+1 �= ni for some i because our assumption of keeping bound names
apart.

Therefore νnk+1.U ′′{nk+1/ni } occurs in U ′ for some U ′′ (by Lemma 8) and ni does not
occur in U ′′{nk+1/ni }. Also nk+1 must occur at least twice in U ′′{nk+1/ni } and nowhere
else. Since U ′′{nk+1/ni } can not generate ani , it can not generate ank+1an1 . . . ank ank+1 . ��

References

1. Abadi,M., Needham, R.M.: Prudent engineering practice for cryptographic protocols. IEEETrans. Softw.
Eng. 22(1), 6–15 (1996). doi:10.1109/32.481513

2. Amarilli, A., Jeanmougin, M.: A proof of the pumping lemma for context-free languages through push-
down automata (2012). arXiv:1207.2819

3. Bartoletti, M., Costa, G., Degano, P., Martinelli, F., Zunino, R.: Securing Java with local policies. JOT
8(4), 5–32 (2009)

4. Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service composition. JCS 17(5), 799–837
(2009)

5. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Semantics-based design for secure web services.
IEEE Trans. Softw. Eng. 34(1), 33–49 (2008)

6. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource usage analysis. ACM
Trans. Program. Lang. Syst. 31(6), 23 (2009)

7. Bartoletti,M.,Degano, P., Ferrari,G.L., Zunino,R.:Model checking usage policies.Math. Struct. Comput.
Sci. 25(3), 710–763 (2015)

8. Bartoletti, M., Zunino, R.: LocUsT: a tool for checking usage policies. Tech. Rep. TR08-07, University
of Pisa (2008)

9. Belkhir, W., Chevalier, Y., Rusinowitch, M.: Guarded variable automata over infinite alphabets (2013).
arXiv:1304.6297

10. Belkhir, W., Rossi, G., Rusinowitch, M.: A parametrized propositional dynamic logic with application
to service synthesis. In: Advances in Modal Logic 10, invited and Contributed Papers from the Tenth
Conference on “Advances in Modal Logic, Groningen, The Netherlands, 5–8 August 2014, pp. 34–53
(2014). http://www.aiml.net/volumes/volume10/Belkhir-Rossi-Rusinowitch.pdf

11. Benedikt, M., Ley, C., Puppis, G.: Automata vs. logics on data words. In: Dawar, A., Veith, H. (eds.)
CSL, LNCS, vol. 6247, pp. 110–124. Springer, Berlin (2010)

12. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets (2011). http://www.mimuw.edu.pl/
sl/PAPERS/lics11full.pdf

123

http://dx.doi.org/10.1109/32.481513
http://arxiv.org/abs/1207.2819
http://arxiv.org/abs/1304.6297
http://www.aiml.net/volumes/volume10/Belkhir-Rossi-Rusinowitch.pdf
http://www.mimuw.edu.pl/sl/PAPERS/lics11full.pdf
http://www.mimuw.edu.pl/sl/PAPERS/lics11full.pdf

432 P. Degano et al.

13. Bojanczyk,M., Klin, B., Lasota, S.: Automata with group actions. In: LICS, pp. 355–364. IEEEComputer
Society, Washington, DC, USA (2011). doi:10.1109/LICS.2011.48

14. Bollig, B.: An automaton over data words that captures EMSO logic. In: Katoen, J.P. , König, B. (eds.)
CONCUR 2011, LNCS, vol. 6901, pp. 171–186. Springer, Berlin (2011)

15. Bollig, B., Cyriac, A., Gastin, P., Kumar, K.N.: Model checking languages of data words. In: Birkedal,
L. (ed.) FOSSACS 2012, LNCS, vol. 7213, pp. 391–405. Springer, Berlin (2012)

16. Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-passing programs. In:
Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Portland, OR, USA, January 16–18, 2002, pp. 45–57 (2002)

17. Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta Inf. 35(3), 245–267
(1998)

18. Ciancia, V., Tuosto, E.: A novel class of automata for languages on infinite alphabets. Tech. rep., CS-09-
003, University of Leicester, UK (2009)

19. Degano, P., Ferrari, G.L., Mezzetti, G.: Nominal automata for resource usage control. In: Moreira, N.,
Reis, R. (eds.) CIAA 2012, LNCS, vol. 7381, pp. 125–137. Springer, Berlin (2012)

20. Dierks, T., Rescorla, E.: RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2 (2008).
http://tools.ietf.org/html/rfc5246

21. Ferris, C., Farrell, J.: What are web services? Commun. ACM 46(6), 31 (2003). doi:10.1145/777313.
777335

22. Gabbay, M., Pitts, A.: A new approach to abstract syntax with variable binding. Form. Asp. Comput.
13(3), 341–363 (2002)

23. Gershenfeld, N., Krikorian, R., Cohen, D.: The internet of things. Sci. Am. 291(4), 76 (2004)
24. Gong, Z., Gu, X.,Wilkes, J.: PRESS: predictive elastic resource scaling for cloud systems. In: Proceedings

of the 6th International Conference on Network and Service Management, CNSM 2010, Niagara Falls,
Canada, October 25–29, 2010, pp. 9–16 (2010). doi:10.1109/CNSM.2010.5691343

25. Gordon, A.D.: Notes on nominal calculi for security and mobility. In: Focardi, R., Gorrieri, R. (eds.)
FOSAD 2000, LNCS, vol. 2171, pp. 262–330. Springer, Berlin (2001)

26. Grigore,R.,Distefano,D., Petersen,R.L., Tzevelekos,N.:Runtimeverificationbasedon register automata.
In: Tools and Algorithms for the Construction and Analysis of Systems—19th International Conference,
TACAS 2013, Lecture Notes in Computer Science, vol. 7795, pp. 260–276. Springer, Berlin (2013)

27. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In: Dediu, A.H.,
Fernau, H., Martín-Vide, C. (eds.) LATA, LNCS, vol. 6031, pp. 561–572. Springer, Berlin (2010)

28. Jensen, T.P.,Métayer, D.L., Thorn, T.: Verification of control flowbased security properties. In: 1999 IEEE
Symposium on Security and Privacy, Oakland, California, USA, May 9–12, 1999, pp. 89–103 (1999)

29. Kaminski, M., Francez, N.: Finite-memory automata. TCS 134(2), 329–363 (1994)
30. Kaminski, M., Zeitlin, D.: Finite-memory automata with non-deterministic reassignment. Int. J. Found.

Comput. Sci. 21(5), 741–760 (2010)
31. Kurz, A., Suzuki, T., Tuosto, E.: On nominal regular languages with binders. In: Birkedal, L., (ed.)

FOSSACS 2012, LNCS, vol. 7213, pp. 255–269. Springer, Berlin (2012)
32. Kurz, A., Suzuki, T., Tuosto, E.: Nominal regular expressions for languages over infinite alphabets.

Extended abstract (2013). arXiv:1310.7093
33. Manuel, A., Muscholl, A., Puppis, G.: Walking on data words. In: Mogens, N., Branislav, R. (eds.)

Computer Science-Theory and Applications, pp. 64–75. Springer, Berlin (2013)
34. Mezzetti, G.: Nominal context-free behaviour. Ph.D. thesis, University of Pisa (2014)
35. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, NJ (1967)
36. Montanari, U., Pistore, M.: π -calculus, structured coalgebras, and minimal hd-automata. In: Mogens, N.,

Branislav, R. (eds.) MFCS 2000, LNCS, vol. 1893, pp. 569–578. Springer, Berlin (2000)
37. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Reachability in pushdown register automata. In: Csuhaj-

Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) Mathematical Foundations of Computer Science 2014 - 39th
International Symposium, MFCS 2014, Budapest, Hungary, August 25–29, 2014. Proceedings, Part I,
Lecture Notes in Computer Science, vol. 8634, pp. 464–473. Springer, Berlin (2014). doi:10.1007/978-
3-662-44522-8_39

38. Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alphabets. Math. Found.
Comput. Sci. 2001, 560–572 (2001)

39. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACMTrans.
Comput. Log. (TOCL) 5(3), 403–435 (2004)

40. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 1st ed. 1999. corr. 2nd printing,
1999 edn. Springer, Berlin (2005)

41. Papazoglou, M.P.: Web Services—Principles and Technology. Prentice Hall, Englewood Cliffs (2008).
http://vig.pearsoned.com/store/product/1%2C1207%2Cstore-12521_isbn-0321155556%2C00.html

123

http://dx.doi.org/10.1109/LICS.2011.48
http://tools.ietf.org/html/rfc5246
http://dx.doi.org/10.1145/777313.777335
http://dx.doi.org/10.1145/777313.777335
http://dx.doi.org/10.1109/CNSM.2010.5691343
http://arxiv.org/abs/1310.7093
http://dx.doi.org/10.1007/978-3-662-44522-8_39
http://dx.doi.org/10.1007/978-3-662-44522-8_39
http://vig.pearsoned.com/store/product/1%2C1207%2Cstore-12521_isbn-0321155556%2C00.html

Regular and context-free nominal traces 433

42. Parys, P.: Higher-order pushdown systems with data. In: Faella, M., Murano, A. (eds.) GandALF, EPTCS,
vol. 96, pp. 210–223 (2012)

43. Perrin, D., Pin, J.: Infinite words: automata, semigroups, logic and games. Pure Appl. Math. 141 (2004)
44. Pitts, A.M., Stark, I.D.B.: Observable properties of higher order functions that dynamically create local

names, or what’s new? In: Andrzej, M.B., Stefan, S. (eds.) MFCS 1993, LNCS, vol. 711, pp. 122–141.
Springer, Berlin (1993)

45. Schneider, F.B.: Enforceable security policies. ACMTrans. Inf. Syst. Secur. (TISSEC) 3(1), 30–50 (2000)
46. Skalka, C., Smith, S.F., Horn, D.V.: Types and trace effects of higher order programs. J. Funct. Program.

18(2), 179–249 (2008)
47. Tzevelekos, N.: Fresh-register automata. ACM SIGPLAN Not. 46(1), 295–306 (2011)
48. Tzevelekos, N., Grigore, R.: History-register automata. In: Pfenning, F. (ed.) Foundations of Software

Science and Computation Structures - 16th International Conference, FOSSACS 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16–24, 2013. Proceedings, vol. 7794, pp. 17–33. Springer, Berlin (2013)

49. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS, pp.
332–344. IEEE Computer Society (1986)

123

	Regular and context-free nominal traces
	Abstract
	1 Introduction
	2 Finite State Nominal Automata
	3 Properties of the FSNApm
	4 Expressiveness of FSNApm
	5 Pushdown Nominal Automata
	6 Properties of PDNApm
	7 Expressiveness of PDNApm
	8 Conclusions
	Acknowledgements
	Appendix: Usages
	References

