
Acta Informatica (2015) 52:497–524
DOI 10.1007/s00236-015-0223-4

ORIGINAL ARTICLE

Contextual hyperedge replacement

Frank Drewes · Berthold Hoffmann

Received: 4 February 2014 / Accepted: 3 February 2015 / Published online: 29 March 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Contextual hyperedge-replacement grammars (contextual grammars, for short)
are an extension of hyperedge replacement grammars. They have recently been proposed as
a grammatical method for capturing the structure of object-oriented programs, thus serving
as an alternative to the use of meta-models like uml class diagrams in model-driven software
design. In this paper, we study the properties of contextual grammars. Even though these
grammars are not context-free, one can show that they inherit several of the nice properties
of hyperedge replacement grammars. In particular, they possess useful normal forms and
their membership problem is in NP.

Keywords Graph grammar · Hyperedge replacement · Context · Contextual grammar

Mathematics Subject Classification F.4.3 [formal languages] Classes defined by
grammars—contextual graph grammars

1 Introduction

Graphs are ubiquitous in science and beyond, since they provide a mathematically sound
basis for the study of all types of structural models that consist of entities and relationships
between them. Furthermore, they can nicely be visualized as diagrams, with entities depicted
as nodes, and relationships drawn as lines.

Let us just mention two fields in computer science where graphs are used:

• In the study of algorithms, graphs abstract from data structures with pointers as they
occur in programming [16].

F. Drewes (B)
Institutionen för datavetenskap, Umeå universitet, 901 87 Umeå, Sweden
e-mail: drewes@cs.umu.se

B. Hoffmann (B)
FB 3 – Informatik, Universität Bremen, 28334 Bremen, Germany
e-mail: hof@informatik.uni-bremen.de

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-015-0223-4&domain=pdf

498 F. Drewes, B. Hoffmann

• In software engineering, software is nowadays usually described by structural models,
which are often visualized as diagrams, e.g., of the Unified Modeling Language [24].

When studying graphs, one is often interested in graphs that have a certain structural property
P , e.g, cyclicity, connectedness, or the existence of a unique root. This can be used for several
purposes, e.g., to

• check whether a particular graph has the property P ,
• define P by specifying the class of all graphs having this property,
• restrict attention to the class of graphs with this property,
• exploit P in order to derive algorithms for graphs having this property, and
• investigate whether transformations on these graphs preserve P .

Therefore, it is an important problem to devise algorithmically feasible methods that
make it possible to specify sets of graphs having a certain desired property. Well-known
specification mechanisms include logic (in particular monadic second-order logic [4]), meta-
models (e.g., uml class diagrams), and graph grammars. While general graph grammars are
Turing complete and thus too powerful to be handled algorithmically, context-free graph
grammars based on node or hyperedge replacement have nice algorithmic properties. In
contrast to meta-models, context-free graph grammars are generative devices. They derive
sets of graphs constructively, by iteratively applying rules, beginning with a start graph. This
kind of definition is strict, can easily produce sample graphs by derivation, and provides the
generated graphs with a recursive structure that has many useful algorithmic applications.
However, it must not be concealed that the membership problem, that is validating a given
graph by parsing, is rather complex in general, namely NP-complete.

Unfortunately, context-free graph grammars are slightly too weak for modeling the struc-
ture of software. For instance, they cannot generate the classes of all acyclic graphs or of
all connected graphs—not even the very elementary class of arbitrary graphs over a cer-
tain set of labels can be generated. Therefore, extensions such as adaptive star grammars
[6,7,10,18] and contextual hyperedge replacement grammars [11,20] have been proposed.
In the current paper, we study contextual hyperedge grammars mainly from a theoretical
point of view, investigating their grammatical and algorithmic properties. Despite the fact
that contextual grammars are not context-free, it turns out that they share some of the most
important properties of hyperedge replacement grammars. In particular, we show that

• empty rules, chain rules, and useless rules can effectively be removed from contextual
grammars without affecting the generated language, and

• as a consequence, the languages generated by contextual grammars belong to NP, and
• the Parikh images of their generated languages are semi-linear.

These results are based on a central normal-form proved in this paper: contextual grammars
can be modified in such a way that, roughly speaking, the eventual applicability of a rule to
a hyperedge depends only on the label in its left-hand side. If this label matches the label of
the hyperedge to be replaced, the rule will eventually apply (except if the derivation does not
terminate).

The remainder of this paper is structured as follows. In Sect. 2 we recall contextual
grammars from [11] and give some examples. In particular,we discuss a grammar for program
graphs. Normal forms for these grammars are proved in Sect. 3. In Sect. 4 we show some of
their limitations w.r.t. language generation. We conclude with some remarks on related and
future work in Sect. 5. This article extends the paper [11] considerably, by giving more (and
more practical) examples, providing fully detailed proofs for the results in Sect. 3, and by
introducing the context-safe form of contextual grammars.

123

Contextual hyperedge replacement 499

2 Graphs, rules, and grammars

In this paper, we consider directed and labeled graphs. We only deal with abstract graphs in
the sense that graphs that are equal up to renaming of nodes and edges are not distinguished.
In fact, we use hypergraphs with a generalized notion of edges that may connect any number
of nodes, not just two. Such edges will also be used to represent variables in graphs and graph
grammars.

A∗ denotes the set of all finite sequences over a set A; the empty sequence is denoted by
ε. Given a sequence u, we denote by [u] the smallest set A such that [u] ∈ A∗. For a function
f : A → B, its extension f ∗ : A∗ → B∗ to sequences is defined by f ∗(a1, . . . , an) =
f (a1), . . . , f (an), for all ai ∈ A, 1 � i � n, n � 0. If g : B → C is another function, the
composition of f and g is denoted by g ◦ f .

We consider labeling alphabetsC = Ċ � C̄ �X that are sets whose elements are the labels
(or “colors”) of nodes, edges, and variables, and come with a type function type : (C̄ � X) →
Ċ ∗.

A labeled hypergraph G = 〈Ġ, Ḡ, attG , �̇G , �̄G〉 over C (a graph, for short) consists of
disjoint finite sets Ġ of nodes and Ḡ of hyperedges (edges, for short) respectively, a function
attG : Ḡ → Ġ∗ that attaches sequences of pairwise distinct nodes to edges, and labeling
functions �̇G : Ġ → Ċ and �̄G : Ḡ → C̄ � X so that �̇∗

G(attG(e)) = type(�̄G(e)) for every
edge e ∈ Ḡ. Edges are called variables if they carry a variable name as a label; the set of all
graphs over C is denoted by GC .

For a graph G and a set E ⊆ Ḡ of edges, we denote by G − E the graph obtained by
removing all edges in E from G. If E is a singleton {e}, we may write G − e instead of
G − {e}.

Given graphs G and H , a morphism m : G → H is a pair m = 〈ṁ, m̄〉 of functions
ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that preserves labels and attachments:

�̇H ◦ ṁ = �̇G , �̄H ◦ m̄ = �̄G , and attH ◦ m̄ = ṁ∗ ◦ attG .

As usual, a morphism m : G → H is injective if both ṁ and m̄ are injective.

Notation (Drawing Conventions for Graphs) Graphs are drawn as in Figs. 1 and 3 below.
Circles and boxes represent nodes and edges, respectively. The text inside is their label from
C . If all nodes carry the same label, it is just omitted. The box of an edge is connected to
the circles of its attached nodes by lines; the attached nodes are ordered counter-clockwise
around the edge, starting in its north. The boxes of variables are drawn in gray. Edges with
two attached nodes may also be drawn as arrows from the first to the second attached node.
In this case, the edge label is ascribed to the arrow. The empty graph is denoted as 〈〉.
Example 2.1 (Program graphs) In a program graph, syntactic entities – classes, variables,
signatures and bodies of methods, expressions—are represented as nodes labeled with the
first letter of the entity’s kind. Edges establish relations between entities. Those drawn as
straight arrows “ ” denote “has-a” relations (called compositions in uml terminology), and
represent the abstract syntax of the program: classes consist of subclasses, and of declarations
of features: variables, method signatures, and method bodies; method signatures have formal
parameters (represented as variables), method bodies consist of expressions; expressionsmay
have other expressions as subexpressions. Edges drawn as winding lines “ ” relate every
use of an entity with its declaration: the body of a method with the signature it implements, an
expression with a variable that is used, or updated with the value of an argument expression,
or with the signature of a method that is called with argument expressions.

123

500 F. Drewes, B. Hoffmann

class Cell is
var cts: Any;
method get() Any is

return cts;
method set(var n: Any) is

cts := n

subclass ReCell of Cell is
var backup: Any;
method restore() is

cts := backup;
override set(var n: Any) is

backup := cts;
super.set(n)

C
Cell

C ReCellS
get

B

V
cts

E

S set

B

E

E

V
n

B

E E

E E V
backup

S
restore

B

E

E

Fig. 1 An object-oriented program and its program graph

Figure 1 shows a simple object-oriented program from [1] and its representation as a
program graph. Every program entity is represented by a unique node; the names of classes,
variables, methods and parameters are irrelevant in the graph. (The names ascribed to the
nodes in the graph shall just clarify the correspondence to the text.)

The program graphs introduced here are simplified w.r.t. the comprehensive definition
in [26]: control flow of method bodies, types (of variables, parameters, and methods), and
visibility rules for declarations have been omitted.

Not every graph over the labels appearing in Fig. 1 is a valid program graph. We shall
define the class of valid program graphs by a contextual grammar, in Example 2.7. See [20]
for a thorougher discussion of how program graphs can be defined by meta-models, with a
uml class diagram and logical ocl constraints.
�

The replacement of variables in graphs by graphs is performed by applying a special form
of standard double-pushout rules [12].

Definition 2.2 (Contextual Rule) A contextual rule (rule, for short) r = (L , R) consists of
graphs L and R over C such that

• the left-hand side L contains exactly one edge x , which is required to be a variable (i.e.,
L̄ = {x} with �̄L(x) ∈ X) and

• the right-hand side R is an arbitrary supergraph of L − x .

Nodes in L that are not attached to x are the contextual nodes of L (and of r); r is context-free
if it has no contextual nodes.

Let r be a contextual rule as above, and consider some graph G. An injective morphism
m : L → G is called a matching for r in G. If such a matching exists, we say that r is
applicable to the variable m(x) ∈ Ḡ. The replacement of m(x) by R (via m) is then given as
the graph H obtained from the disjoint union of G −m(x) and R by identifying every node
v ∈ L̇ with m(v). We write this as H = G[R/m].

Context-free rules are known as hyperedge replacement rules in the graph grammar lit-
erature [14]. Note that contextual rules are equivalent to contextual star rules as introduced
in [20], however without application conditions.

To simplify some constructions, we will make the following assumption throughout the
paper.

Assumption In an application of a contextual rule r = (L , R) as in Definition 2.2, the
replacement of m(x) by R in G[R/m] is always made in such a way that fresh copies of the

123

Contextual hyperedge replacement 501

G : :=
0|d

G G G : :=
na

a , for all a ∈ Ċ

a G b : :=
ec

a bc , for all c ∈ C̄ , where type(c) = ab
Z = G

Fig. 2 A contextual grammar (generating the language of all graphs)

nodes and edges in R that are not in L are added to G −m(x). Thus, the nodes and edges in
G are still present in G[R/m], except for the variable that has been replaced, and all nodes
and edges that have been added are fresh copies of the corresponding ones in R.

The notion of rules introduced above gives rise to a class of graph grammars.We call these
grammars contextual hyperedge-replacement grammars, or briefly contextual grammars.

Definition 2.3 (Contextual Grammar) A contextual hyperedge-replacement grammar (con-
textual grammar, for short) is a triple � = 〈C ,R, Z〉 consisting of a finite labeling alphabet
C , a finite set R of contextual rules, and a start graph Z ∈ GC .

IfR contains only context-free rules, then � is a hyperedge replacement grammar. We let
G ⇒R H if H = G[R/m] for some rule (L , R) and a matching m : L → G. The language
generated by � is given by

L (�) = {G ∈ GC \X | Z ⇒∗
R G}.

Contextual grammars � and �′ are equivalent if L (�) = L (�′). The classes of graph
languages that are generated by hyperedge-replacement grammars and contextual grammars
are denoted by HR and CHR, respectively.

We note here that, by adding a new variable label S of type ε, every grammar can be
turned into one in which the start graph consists of a single variable and no nodes. This easy
modification is sometimes useful in formal constructions.

For individual contextual rules r , we abbreviate G ⇒{r} H by G ⇒r H . Note that the
assumption above extends to derivations: given any derivation G ⇒∗

R H , the nodes and
edges in G are still present in H , except for variables that have been replaced, and all nodes
and edges that have been added in the course of the derivation are fresh copies of those in
the corresponding right-hand sides.

Notation (Drawing Conventions for Rules) A contextual rule r = (L , R) is denoted as
L : := R, see, e.g., Figs. 2 and 4. Small numbers above nodes indicate identities of nodes in L
and R. The notation L : := R1|R2, . . . is used as a shorthand for rules L : := R1, L : := R2, . . .

with the same left-hand side. Subscripts “n” or “n|m· · · ” below the symbol : := define names
by which we can refer to rules in derivations.

Example 2.4 (The language of all graphs) The contextual grammar in Fig. 2 generates the
set of all loop-free graphs with binary edges over a labeling alphabet C , and Fig. 3 shows a
derivation with this grammar. Rules 0 and d generate n � 0 variables labeled with G; for
every node label a, the rule na generates a node labeled with a; similarly, for an edge label
c, the rule ec inserts an edge labeled with c between two nodes that are required to exist in
the context.
�

It is well known that the language of Example 2.4 cannot be generated by hyperedge
replacement [14,Chapter IV,Theorem3.12(1)]. The sameholds for context-free node replace-
ment, i.e., C-edNCE grammars; see [13, Theorem 4.17]. Thus, as CHR contains HR by
definition, we have:

123

502 F. Drewes, B. Hoffmann

G 5⇒
d G

G

GG

G G
3⇒
nA A

A

AG

G G
3⇒
ea A

A

A

a a

a

Fig. 3 A derivation with the rules in Fig. 2

0

D
: :=
h|a|b

0

0

1

D

0

1 2

⊕

D D

,

0

D

2

: :=
g

0

2

Z =
D

Fig. 4 Rules generating unrestricted control flow diagrams

Observation 2.5 HR � CHR and CHR � C-edNCE.

Flow diagrams are another example for the strict inclusion of HR in CHR: In contrast to
structured and semi-structured control flow diagrams, unrestricted control flow diagrams are
not in HR, because they have unbounded tree-width [14, Chapter IV, Theorem 3.12(7)].
However, they can be generated by contextual grammars.

Example 2.6 (Control flowdiagrams)Unrestricted control flowdiagrams represent sequences
of low-level instructions according to a textual syntax like this:

Program : := ε | � : Instruction; Program
Instruction : := halt | Assignment | if Condition then goto � | goto �

The rules in Fig. 4 generate unrestricted flow diagrams, wherein we omit the text inside the
rectangles and diamonds representing assignments and conditions, respectively. The context-
free rules h, a, and b generate control flow trees of the halt, assignment, and conditional jump,
respectively, and the fourth rule, g, which is not context-free, inserts gotos to a program
location in the context. In Fig. 5, these rules are used to derive a flow diagram that is not
structured.
�

Note that flow diagrams cannot be defined with class diagrams, because subtyping and
multiplicities do not suffice to define rootedness and connectedness of graphs.

Example 2.7 (A contextual grammar for program graphs) The rules in Fig. 6 define a contex-
tual grammar PG = (C ,P, Z) for program graphs, where the start graph Z is the left-hand
side of the first rule, hy.

Figure 7 shows snapshots in a derivation that could be completed to derive the program
graph in Fig. 1. The second graph is obtained in nine steps that apply the rules hy once, cl∗
five times, cl0 once, hy∗ once, and hy0 once. The third graph is obtained by an application
of rule at. The fourth graph is obtained in five steps that apply rules si twice, pa∗ once, and
pa0 twice. The fifth and last graph is obtained by two applications of rule im.
�

3 Normal forms of contextual grammars

In this section, we study normal form properties of contextual grammars.
Recall that, for any class C of devices (such as grammars or automata), a subclass C ′ of

C is said to be a normal form of C if every element of C can be turned into an element of

123

Contextual hyperedge replacement 503

D
⇒
b

⊕

D D

⇒
b

D D

D

⊕

⊕
⇒
h

D

D

⊕

⊕ 3⇒
a

D

D

⊕

⊕

2⇒
g

⊕

⊕

Fig. 5 A derivation of an unstructured control flow diagram

C

Hy
: :=
hy

C

Cls Hy∗

C

Hy∗
: :=

hy0 |hy∗

C C

Hy∗C

Hy

C

Cls
: :=
cl0|cl∗

C C

ClsFea

C

Fea
: :=
at|si

C

V

C

S

Par

S

Par
: :=

pa0 |pa∗

S S

ParV

C

Fea

S

: :=
im

C

B

S Bdy

B

Bdy
: :=

bo1 |bo∗

B

E

Exp

B

BdyE

Exp

E

Exp

S

: :=
ca

E

Arg

S

E

Arg
: :=
ar0|ar∗

E E

ArgE

Exp

E

Exp

V

: :=
us|as

E

V

E

E

V Exp

Fig. 6 Contextual rules deriving program graphs

C ′ that specifies the same set of objects as the original device. Consequently, we say that
a restricted class of contextual grammars is a normal form of contextual grammars (or of a
certain class of contextual grammars) if every contextual grammar (in the class considered)
can effectively be transformed into an equivalent grammar belonging to the restricted class.

Many of the normal form properties studied here are inspired by corresponding transfor-
mations of context-free graph grammars (hyperedge replacement grammars, [14]), which, in

123

504 F. Drewes, B. Hoffmann

C

Hy
9⇒
P

C

C

Hy

Fea

Fea

Fea

Fea

Fea
⇒
at

C

C

Hy

Fea

Fea

V

Fea

Fea

5⇒
P

C

CS

Fea

V

S

Fea

V

Hy

2⇒
im

C
Cell

C
ReCell

S
get

B

V
cts

Bdy

S
set

B

Bdy

V Hy

Fig. 7 Snapshots in a derivation of a program graph

turn, have been inspired by transformations of context-free string grammars, namely by the
removal of empty rules, of chain rules, and of rules that do not contribute to the language
generated.

However, we first need another normal form property for contextual grammars, which
we call context-safety. If a contextual grammar is in this form, the properties above can
been shown to be normal form properties for contextual grammars, very much as in the
context-free case. So, in a way, context-safety embodies the difference between contextual
and context-free grammars. This normal form is defined in the next subsection, and afterwards
we consider the normal forms mentioned above, in Sects. 3.2, 3.3, and 3.4.

3.1 Context-safety

In the following, let us call the label of the (unique) variable in the left-hand side of a contextual
rule its lhs label. A context-free rule can be applied to a variable x whenever its lhs label
is equal to the label of x . In particular, derivation steps replacing different variables in a
graph are independent of each other and can be re-ordered without restrictions. For instance,
arbitrary context-free rules with lhs label Chick or Egg can be applied to the graphs

Z1 = Chick Egg and Z2 = egg Chick Egg ,

in any order. In the contextual case, this is not true any more, because one rule may create
the contextual nodes that are needed to apply another rule. In particular, this may give rise
to deadlock situations. Consider the contextual rules

Chickegg

1

: :=
breed

egg

1

chick Eggchick
1

: :=
lay

chick
1

egg

(which model the mutual dependency of chicken on eggs) as an example. Then Rule breed
must be applied to Z2 before Rule lay can be used:

Z2 = egg Chick Egg ⇒breed
egg chick Egg ⇒lay

egg chick egg

None of these rule applies to the graph Z1, as breed needs the contextual node generated by
lay in order to generate the contextual node needed by lay, and vice versa.

We show now that contextual grammars can be turned into a normal form that avoids such
deadlocks. The normal form guarantees a property close to the above-mentioned indepen-
dence in hyperedge replacement grammars. Given a contextual grammar � = 〈C ,R, Z〉, let
us say that a rule assignment for a graph G ∈ GC is a mapping ass that assigns, to every
variable x ∈ Ḡ, a rule ass(x) ∈ R whose lhs label is equal to �̄G(e). In the context-free case,
wemay choose a rule assignment and then apply the corresponding rules to the variables, and

123

Contextual hyperedge replacement 505

we can do so in any order. As seen above, this may not be true in the contextual case. Clearly,
the property that necessarily has to be sacrificed is to be able to apply the chosen rules in any
order. However, the more serious difficulty is that sticking to a certain choice of ass(x) for a
given variable x may eventually result in a deadlock, if other parts of the derivation terminate
without providing the context required for ass(x). For instance, consider adding the rules

Chick : :=
chain

Chick chick : :=
empty

to the example above. Use the start graph Z2 with its two variables x1 and x2, labeled with
Chick and Egg, respectively, and choose the rule assignment given by ass(x1) = chain
and ass(x2) = lay. Then Z2 ⇒chain G1 ⇒empty G2 yields a graph containing x2 as its
unique variable, but ass(x2) = lay is not applicable to it. (If there were more rules in the
grammar, other rules could of course be applicable to x2.) Grammars that are built in such a
way that this cannot happen must have the following property: suppose that a graph G has
been derived from Z , and that a rule assignment ass for G is chosen. After some more steps
a graph H may have been obtained, perhaps containing both variables from G and some
additional variables (from the right-hand sides of rules that have been applied). Since order
is relevant, it may be necessary to apply rules to variables in var(H)\var(G). However, if
this set happens to be empty, then we want one of the rules ass(x), x ∈ var(H) ⊆ var(G) to
be applicable to x1 in H , since otherwise we have a deadlock situation as above.

This gives rise to the following formal definition of context-safety. (Note that the definition
makes use of the assumption made after Definition 2.2.)

Definition 3.1 (Context-Safety) Let � = 〈C ,R, Z〉 be a contextual grammar. For a graph
G ∈ GC , let var(G) denote the set of variables occurring in G.

1. A rule assignment ass for a graph G ∈ GC is context-safe if the following holds for all
derivationsG ⇒∗

R H : If ∅ �= var(H) ⊆ var(G), then there exists a variable x ∈ var(H)

such that ass(x) is applicable to x .
2. � is context-safe if every rule assignment for every graph G ∈ GC is context-safe,

provided that Z ⇒∗
R G.

Note that the derivation G ⇒∗
R H in the first item of Definition 3.1 may be of length 0.

Thus, in particular, at least one of the rules ass(x) is applicable to a variable x ∈ var(G),
regardless of how we choose ass.

Example 3.2 (Context-safety of example grammars)

1. The grammar for all graphs in Example 2.4 is not context-safe. Assignments to the second
graph in Fig. 3 are not context-safe if the a node insertion rule is assigned to one of the
variables, and edge insertion rules are assigned to all others. The derivations according
to this assignment generate just one node, whereas two nodes are needed for applying
the edge insertion rules.

2. The grammar for control flow diagrams in Example 2.6 is not context-safe. Assigning
Rule g to the variable in the first graph in Fig. 5 is not context-safe, since the graph does
not contain a target node for the goto that shall be inserted. (Note that the match of Rule
g must be injective!)

3. The program graph grammar in Example 2.7 is not context-safe. Assignments to the
second graph in Fig. 7 are not context-safe if they assign Rule im to some variables and
Rule at to all the others, since Rule at fails to generate the S-node needed as a contextual
node for applying Rule im.

123

506 F. Drewes, B. Hoffmann

4. The contextual grammar (C , {breed, lay}, Z2) in the introduction of this section is
context-safe. In the only terminal derivation of this grammar shown above, the unique
assignments to the variables are context-safe.

5. The contextual grammar (C , {breed, lay}, Z1) is not context-safe. There is no context-
safe assignment to the start graph Z1 since the rules depend circularly on each other.

We will now formulate and prove the main technical result of this paper: every contextual
grammar can be turned into an equivalent context-safe one. The idea behind this construction
is to use a guess-and-verify strategy to keep track of the order in which the node labels will be
introduced by the rules. For this, the variable labels are augmented with a sequence sq ∈ Ċ ∗
of those node labels that are not yet present in the graph, and with a set M ⊆ [sq].1 The set M
is needed to record which of the labels in the sequence sq are supposed to be introduced by
applying rules to the variable and its descendents. The labels in [sq]\M have been guessed to
be introduced by other variables in the graph. Thus, rules are applicable if the labels of their
contextual nodes do not occur in sq. When a rule is applied, symbols from the beginning
of sq which occur in the right-hand side (and are also in M) are removed from sq and M ,
and the remaining ones are “distributed” to the descendant variables. While we cannot really
guarantee that the labels in sq are indeed introduced in the exact order in which they occur
in sq, the control we achieve in this way is enough to ensure context-safety.

Theorem 3.3 (Context-Safe Normal Form)Context-safe contextual grammars are a normal
form of contextual grammars.

Proof Consider a contextual grammar � = 〈C ,R, Z〉, where we may without loss of gen-
erality assume that Z consists of a single variable x such that �̄Z (x) = S and type(S) = ε.
Moreover, to simplify the construction, let us assume that, for every rule (L , R) ∈ R, the
label of each contextual node in L̇ is distinct from the labels of all other nodes in L̇ . Drop-
ping this assumption is easy but tedious: In the construction below, the sequences sq and
sets M could contain repeated elements (thus turning M into a multiset), the multiplicity
being bounded by the maximum number of occurrences of a single contextual node label in
a left-hand side of �.

To prove the theorem, it suffices to show that there is a context-safe contextual grammar�′
such that L (�′) = L , where L = {G ∈ L (�) | �̇G(Ġ) = Ċ }. In other words, �′ generates
only those graphs inL (�) in which all node labels occur. This is because we may apply the
construction to all sub-grammars of � obtained by deleting some of the node labels (as well
as the rules containing them), and taking the union of the resulting grammars (after having
made their sets of variable labels disjoint except for the one that labels the variable in the
start graph).

Let X ′ contain all augmented symbols A〈M, sq〉 such that A ∈ X , sq ∈ Ċ ∗ is repetition-
free, and M ⊆ [sq] is such that sq has a nonempty prefix in M∗ unless sq = ε.

We let the set of labels of �′ be C ′ = (C \X) ∪ X ′. For a graph G ∈ GC ′ we let
strip(G) ∈ GC denote the graph obtained from G by turning each variable label A〈M, sq〉
into A.

Let R′ be the set of all rules r = (L , R) over augmented symbols with strip(r) =
(strip(L), strip(R)) ∈ R which, in addition, satisfy the following. Suppose that the lhs label
of r is A〈M, sq〉, and var(R) = {x1, . . . , xm} with �̄G(xi) = Ai 〈Mi , sqi 〉 for i = 1, . . . ,m.
Then the condition for including r inR′ is that sq can be decomposed into sq = sq0sq

′ such
that

1 Recall that [sq] denotes the set of symbols that occur in sq.

123

Contextual hyperedge replacement 507

(a) [sq] ∩ �̇L(L̇) = ∅,
(b) [sq0] = M ∩ �̇R(Ṙ),
(c) M1, . . . , Mm is a partition of M\�̇R(Ṙ), and
(d) for i = 1, . . . ,m, sqi is the shortest suffix of sq

′ such that Mi ⊆ [sqi].
Note that the augmented rule r is uniquely determined by M , sq, and the assignment of the
sets M1, . . . , Mm to the variables of R; below, we express the latter by saying that xi is
assigned the responsibility Mi . Intuitively, condition (a) means that the left-hand side must
not contain node labels (and, in particular, contextual node labels) that are not yet assumed
to be available in the graph, (b) means that the labels in M that are generated by the rule are
those which were guessed to be generated next, (c) means that we distribute the remaining
responsibilities for generating node labels in M to the variables in the right-hand side, and (d)
means that the sqi are obtained from the remainder of sq by removing the prefix of labels that
are not in Mi . This ensures that Ai 〈Mi , sqi 〉 ∈ X ′. Intuitively, the removal of this prefix is
justified because, by (c), such node labels are in the responsibility of some other variable, and
have been guessed to be created by that variable before the first node label in sqi is generated.

Now let�′ = 〈C ′ ∪{S},R0∪R′, Z〉, whereR0 consists of all rules (Z , Z ′) such that Z ′ is
obtained by relabeling the variable in Z to the augmented variable name S〈Ċ , sq〉, for some
ordering sq of Ċ (i.e., sq is a sequence in Ċ ∗ that contains every label in Ċ exactly once).2 In
the following, we assume that every variable label in C ′ is the lhs label of at least one rule in
R′. (Obviously, variable labels that do not satisfy this assumption may be removed, together
with the rules in whose right-hand sides they occur.)
Claim 1. L (�′) ⊆ L (�).
We have strip(r) ∈ R for every rule r ∈ R′. Hence, for every derivation

Z ⇒ Z ′ = G0 ⇒r1 G1 ⇒r2 · · · ⇒rn Gn ∈ GC \X
in �′ it holds that

Z = strip(G0) ⇒strip(r1) strip(G1) ⇒strip(r2) · · · ⇒strip(rn) strip(Gn) = Gn .

Claim 2. L ⊆ L (�′).
Consider a derivation Z = G0 ⇒r1 G1 ⇒r2 · · · ⇒rn Gn ∈ L with r1, . . . , rn ∈ R. For
every a ∈ Ċ , let p(a) be the least i ∈ {1, . . . , n} such that a occurs in Gi . Note that the
nodes labeled with a in Gp(a) belong to the right-hand side of the rule rp(a). Hence, for every
j < p(a), there is a unique variable in G j from which these nodes have been generated
(directly or indirectly). We call such a variable an ancestor of a.

Let sq = a1 · · · ak be any ordering of Ċ such that p(a1) � · · · � p(ak). For i = 0, . . . , n,
we turnGi into Hi ∈ GC ′ by relabeling each variable x ofGi to the augmented variable name
�̄Gi (x)〈M(x), sq(x)〉, as follows. M(x) is the set of all node labels of which x is an ancestor,
and sq(x) is the shortest suffix of sq such that M(x) ⊆ [sq(x)]. In particular, for i = 0, since
the unique variable x in G0 is an ancestor of every node label, we have sq(x) = sq. It is now
straightforward to check that

Z ⇒ H0 ⇒r ′
1
H1 ⇒r ′

2
· · · ⇒r ′

n
Hn = Gn

in �′, for rules r ′
1, . . . , r

′
n ∈ R′ such that strip(r ′

i) = ri . If x is the variable in Gi−1 to which
ri is applied, the rule r ′

i is obtained from ri by

• turning the lhs label or ri into �̄Gi−1(x)〈M(x), sq(x)〉 and
2 We can use Ċ in S〈Ċ , sq〉 rather than having to guess a subset of Ċ , because we want �′ to generate L
rather than the whole language L (�).

123

508 F. Drewes, B. Hoffmann

• assigning every variable xi in the right-hand side the responsibility M(xi).

Claim 3. If Z ⇒+ G in �′, where var(G) = {x1, . . . , xm} and �̄G(xi) = Ai 〈Mi , sqi 〉 for
i = 1, . . . ,m, then �̇G(Ġ) ⊇ Ċ \ ⋃m

i=1 Mi . Moreover,
⋃m

i=1 Mi ⊆ ⋃m
i=1[sqi] and thus

�̇G(Ġ) ⊇ Ċ \ ⋃m
i=1[sqi].

For one-step derivations Z ⇒ G in �′, this holds by the construction of the rules whose lhs
label is S. Moreover, the property �̇G(Ġ) ⊇ Ċ \⋃m

i=1 Mi is preserved by the rules in R′,
thanks to (c), and the property

⋃m
i=1 Mi ⊆ ⋃m

i=1[sqi] is preserved thanks to (b)–(d). This
completes the proof of Claim 3.

We can finally prove the statement of the theorem: if Z ⇒+ G in �′, then all rule
assignments for G are context-safe. Consider a rule assignment ass for G and a derivation
G ⇒n

R′ H such that ∅ �= var(H) ⊆ var(G). We proceed by induction on n to show that
there exists a variable x ∈ var(H) such that ass(x) is applicable to x .

(n = 0) For a graph G and a variable x occurring in G, let sqG(x) denote the sequence of
node labels such that �̄G(x) = A〈M, sqG(x)〉 for some A ∈ X and M ⊆ Ċ . By the construc-
tion of the rules r = (L , R) in R′, if x is the variable in L and y is any variable in R, then
sqR(y) is a suffix of sqL(x). By an obvious induction on the length of the derivation yielding
G, this yields the following: If x1, . . . , xm are the variables in G, then sqG(x1), . . . , sqG(xm)

are suffixes of one and the same sequence (namely the one nondeterministically chosen in the
first step of the derivation Z ⇒+ G). Consequently, there is an h ∈ {1, . . . ,m}, such that each
sqG(xi) is a suffix of sqG(xh). By Claim 3, �̇G(Ġ) ⊇ Ċ \⋃m

i=1[sqG(xi)] = Ċ \[sqG(xh)].
Since the rule ass(xh) fulfills condition (a), this means that the label of each contextual node
in its left-hand side appears in G. Thus, ass(xh) is applicable to xh .

(n → n + 1) For the inductive step, let n � 1 and G ⇒R′ G1 ⇒n−1
R′ H . Let ass1 be an

arbitrary rule assignment for G1 such that ass1(x) = ass(x) for all variables x ∈ var(G) ∩
var(G1). Note that ass1 exists, because of our assumption that every variable label is the label
of at least one rule. Now, applying the induction hypothesis to the derivation G1 ⇒n−1

R′ H
yields a variable x in H such that ass1(x) applies to x . However, since var(H) ⊆ var(G),
we have x ∈ var(G) and ass(x) = ass1(x).
�

We note here that, from a practical point of view, the construction of �′ in the preceding
proof may be optimized with respect to the number of variable labels and rules. This is
because the annotations M and sq can be restricted to the subset of those labels which, in �,
are node labels of contextual nodes.

Example 3.4 (Context-safe form of the program graph grammar) For the context-safe form
of the program graph grammar PG in Example 2.7, we add a start rule pr with a nullary
variable named Z:

Z : :=
pr

C

Hy

Since only the labels S and V label contextual nodes (in rules im, ca, us, and as), we restrict
augmentations to these labels.

Then the new variable names are of the form A〈M, sq〉, where A ∈ {Z,Hy,Hy∗,Cls,

Fea,Par,Bdy,Exp,Arg}, M ⊆ {S,V} and sq ∈ {ε,S,V,SV,VS}. The requirement (in
the proof of Theorem 3.3) that “M ⊆ [sq] is such that sq has a nonempty prefix in M∗ unless
sq = ε” allows the following augmentations 〈M, sq〉:

{〈∅, ε〉, 〈{S},S〉, 〈{S},SV〉, 〈{V},V〉, 〈{V},VS〉, 〈{S,V},SV〉, 〈{S,V},VS〉}

123

Contextual hyperedge replacement 509

The program graph rules in Fig. 6 have up to two variables on their right-hand sides. Each
rule gives rise to one or more rules obtained by relabeling the variables in its left-hand side
and in its right-hand side in all possible ways that satisfy the requirements (a)–(d) in the
proof.

Table 1 summarizes the augmentation of the variable names of selected context-safe rules
in the program graph example. For the start rule pr, the left-hand side symbolZ stays as it was,
and we get two augmented rules, with variable names Hy〈{S,V},SV〉 and Hy〈{S,V},VS〉
on the right-hand side. Rule hy has 17 augmented variations, for all augmentations of the
left-hand side variable, and all distributions of these augmentations to the right-hand side
variables; the augmentations for rules hy∗, cl∗ bo∗, and ar∗ are built analoguously. The rule

Table 1 Augmentated variables of the context-safe program graph grammar

P lhs label rhs label(s)
pr1 Z Hy S,V},SV N/A
pr2 Z Hy S,V},VS N/A
hy1 Hy ,ε Cls ,ε Hy∗ ,ε
hy2 Hy V},V Cls ,ε Hy∗ V},V
hy3 Hy V},V Cls V},V Hy∗ ,ε
hy4 Hy V},VS Cls ,ε Hy∗ V},VS
hy5 Hy V},VS Cls V},VS Hy∗ ,ε
hy6 Hy S},S Cls ,ε Hy∗ S},S
hy7 Hy S},S Cls S},S Hy∗ ,ε
hy8 Hy S},SV Cls ,ε Hy∗ S},SV
hy9 Hy S},SV Cls S},SV Hy∗ ,ε
hy10 Hy S,V},SV Cls ,ε Hy∗ S,V},SV
hy11 Hy S,V},SV Cls V},V Hy∗ S},SV
hy12 Hy S,V},SV Cls S},SV Hy∗ V},V
hy13 Hy S,V},SV Cls S,V},SV Hy∗ ,ε
hy14 Hy S,V},VS Cls ,ε Hy∗ S,V},VS
hy15 Hy S,V},VS Cls V},VS Hy∗ S},S
hy16 Hy S,V},VS Cls S},S Hy∗ V},VS
hy17 Hy S,V},VS Cls S,V},VS Hy∗ ,ε
hy01 Hy ,ε N/A N/A
at1 Fea ,ε N/A N/A
at2 Fea V},V N/A N/A
at3 Fea V},VS N/A N/A
si1 Fea ,ε Par ,ε N/A
si2 Fea V},V Par V},V N/A
si3 Fea V},VS Par V},VS N/A
si4 Fea S},S Par ,ε N/A
si5 Fea S},SV Par ,ε N/A
si6 Fea S,V},SV Par V},V N/A
bo11 Bdy ,ε Exp ,ε N/A
bo12 Bdy V},V Exp V},V N/A
bo13 Bdy V},VS Exp V},VS N/A
bo14 Bdy S},S Exp S},S N/A
bo15 Bdy S},SV Exp S},SV N/A
bo16 Bdy S,V},SV Exp S,V},SV N/A
bo17 Bdy S,V},VS Exp S,V},VS N/A
im1 Fea ,ε Bdy ,ε N/A
im2 Fea V},V Bdy V},V N/A
as1 Exp ,ε Exp ,ε N/A
as2 Exp S},S Exp S},S N/A

123

510 F. Drewes, B. Hoffmann

hy0 has a single augmentation; this is the same for the rules cl0, pa0, and us, which have no
variable on their right-hand side and do not generate any node labeled with S or V. Rule at is
similar, but since it generates a node labeled with V, there are three possible augmentations:
the left-hand side may be labeled with Fea〈∅, ε〉, with Fea〈{V},V〉, or with Fea〈{V},VS〉.
Rule si has six augmentations; whenever the left-hand side variable “promises” to generate
an S-node (S ∈ M), this node will be generated first (is the head of sq). Rule bo1 has
a single variable on the right-hand side, and needs seven augmentations, for all possible
augmentations of variables. Rule im has only two augmentations, as the node label S does
occur on their left-hand side (like ca, which is not shown). Finally, the augmentations of rule
as are analoguous, because V occurs on its left-hand side. Altogether, the context-safe form
PG′ of the program graph grammar PG has 113 augmented rules, for 18 rules in the original
grammar.
�

It is worthwhile observing that the mapping strip in the proof of Theorem 3.3 turns
derivations of the context-safe grammar �′ into derivations of the original grammar �. We
note this slightly stronger form of the theorem as a corollary. For this, let us say that an
edge relabeling is a mapping rel on edge labels. Such an edge relabeling is extended to
a mapping on graphs and rules in the obvious way: for an edge relabeling rel : C̄ → C̄ ′
and a graph G ∈ GC we let rel(G) = 〈Ġ, Ḡ, attG , �̇G , rel ◦ �̄G〉. For a rule r = (L , R),
rel(r) = (rel(L), rel(R)).

Corollary 3.5 For every contextual grammar � one can effectively construct an equiva-
lent context-safe contextual grammar �′ together with an edge relabeling rel such that
rel(Z ′) ⇒rel(r1) rel(G1) ⇒rel(r2) · · · ⇒rel(rn) rel(Gn) is a derivation in � for every deriva-
tion Z ′ ⇒r1 G1 ⇒r2 · · · ⇒rn Gn in �′.

To be precise, we note here that the construction in the proof of Theorem 3.3 does not
entirely fulfil Corollary 3.5 (with strip as rel), because of the initial rules (Z , Z ′). However,
these rules can easily be removed by composing them with the rules applying to Z ′, as
proposed in Definition 3.12.

Corollary 3.5 will be used in Sect. 3.4 to show that contextual grammars can effectively be
reduced. However, let us first show (in the next two subsections) that both empty and chain
rules can be removed from contextual grammars.

3.2 Removing empty rules

We say that a rule (L , R) with L̄ = {x} is an empty rule if R = L − x , and a chain rule
if R − y = L − x for a variable y ∈ R̄. In the case of chain rules, we say that �̄R(y) is
the rhs label of the rule. Note that both empty and chain rules are more general than in the
context-free case, because L may contain contextual nodes. Hence, the applicability of these
rules may be subject to the existence of nodes with certain labels elsewhere in the graph.
Moreover, in the case of chain rules it is not required that the variable y is attached to the
same nodes as x . Hence, chain rules can “move” a variable through a graph.

Similar to the context-free case [14, Section IV.1], the overall strategy for removing
empty and chain rules is to compose them with other rules. In the case of empty rules, no real
composition is required. We just determine the labels of those variables that can, possibly via
a sequence of derivation steps, be removed without generating any terminal node or edge.
Then we build new rules by removing some of these variables from the right-hand sides of
the original rules, thus anticipating the application of empty rules. Collecting the variables
that can be removed works precisely as in the context-free case, i.e., we do not take the

123

Contextual hyperedge replacement 511

contextual nodes into account at all. For this, consider a contextual grammar � = 〈C ,R, Z〉.
Let PR be the set of ordinary context-free Chomsky rules given as follows: if R contains
a rule r = (L , R) such that L̇ = Ṙ and R̄ = {x1, . . . , xk} ⊆ var(R) (i.e., an application
of r adds neither nodes nor terminal edges to the graph) then R̃ contains the Chomsky rule
pr = (A → w) where A is the lhs label of r and w = �̄R(x1) · · · �̄R(xk), arranging the
variables in R in some arbitrary order. Now, define X�

ε to be the set of all variable labels
A ∈ X such that A →∗

R̃
ε. Note that X�

ε can be computed by the usual iterative procedure.

For A ∈ X�
ε we denote by depth(A) the length d of the shortest derivation A →d

R̃
ε.

As mentioned, the basic idea for the removal of empty rules from contextual grammars
is the same as for hyperedge replacement grammars: We add new rules that are obtained by
removing variables named by X�

ε from their right-hand sides. Let us illustrate this using the
program graph grammar as an example.

Example 3.6 (Removing empty rules from the programgraph grammar) In the programgraph
grammar PG of Example 2.7, we have

P̃ = {Hy → ClsHy∗,Hy∗ → ε,Cls → ε,Cls → FeaCls,Par → ε,Arg → ε}
which yields the set XPG

ε = {Hy,Hy∗,Cls,Par,Arg} of variables generating ε. The set
Pδ = {pr,hy,hy∗, cl∗, si,pa∗, ca,ar∗} ⊆ P contains the rules where variables with names
in XPG

ε occur on the right-hand side. We introduce variants of these rules where some of
these variables are removed from the right-hand sides, and delete the original empty rules
as well as the empty rule that is introduced by removing the variables named Cls and Hy∗
from the right-hand side of rule hy. We get the set of rules shown in Fig. 8. So 17 rules of P,
plus the start rule pr, are replaced with 25 non-empty rules.
�

In Example 3.6, removal of empty rules happens to work correctly. However, to make it
work in general, it turns out that we have to assume that the grammar is context-safe. This is
illustrated by the following example.

Example 3.7 (Removal of empty rules) Consider two node labels a, ā with ¯̄a = a, and the
following rules, where α ∈ {a, ā}:

S : :=
1|2α

S S Sα α Sα ᾱ : :=
3α

ᾱ

The grammar generates the language of all discrete graphs over {a, ā} that contain both
labels. (Recall that a discrete graph is a graph without edges.)

Whenwe apply the construction of Lemma3.8 to this grammar,we obtain X�
ε = {Sa,Sā};

removal of empty rules from this grammar deletes the empty rules 3a and 3ā, and adds the
following rules:

S : :=
4α

α

However, the original contextual grammar does not generate graphs with a single node:

whereas the original rule 2a generates the graph Sa a , rule 3a is not applicable to this
graph as its contextual node labeled ā is missing.

This shows that the construction does not workwithout context-safety. Onemay attempt to
circumvent this problem by not simply removing variables with labels in X�

ε , but composing

123

512 F. Drewes, B. Hoffmann

Z : :=
pr|pr1

C

Hy

C C

Hy
: :=

hy|hy1 |hy2|hy3

C

Cls Hy∗

C

Hy∗

C

Cls

C

Hy∗
: :=

hy∗ |hy∗
1|hy∗

2 |hy∗
3

C

Hy∗C

Hy

C

C

Hy

C

Hy∗C

C

C

C

Cls
: :=
cl∗|cl1

C

ClsFea

C

Fea

C

Fea
: :=

at|si|si0

C

V

C

S

Par

C

S

S

Par
: :=

pa∗|pa1

S

ParV

S

V

C

Fea

S

: :=
im

C

B

S Bdy

B

Bdy
: :=

bo∗ |bo1

B

BdyE

Exp

B

E

Exp

E

Exp

S

: :=
ca|ca0

E

Arg

S

E

S

E

Arg
: :=
ar∗|ar1

E

ArgE

Exp

E

E

Exp

E

Exp

V

: :=
us|as

E

V

E

E

V Exp

Fig. 8 Removing empty rules from the program graph grammar in Fig. 6

the original rules with empty rules in such a way that the contextual nodes of those empty
rules are added to the left-hand side of the resulting rule. This notion of rule composition
will be formalized in Definition 3.12. However, for the removal of empty rules, it does not
yield the desired result. The composition of 2a and 2ā with the empty rules 3a and 3ā, resp.,
yields the following new rules:

S ᾱ : :=
5α

α ᾱ

Unfortunately, adding these rules and removing the empty rules yields

S ⇒ S S a ā

due to a deadlock: Rule 5a cannot be applied to the graph in the middle because the graph
does not contain a node labeled a, and vice versa for rule 5ā. So the language of the new
grammar is empty.

Thus we have to turn the original grammar into a context-safe one (in simplified form as
the subscript sq is not needed here). This yields the following rules:

123

Contextual hyperedge replacement 513

SM : := SM1 SM2 SM\{α}
α α whereM ⊆ {a, ā},M1 M2 =M

SM
α ᾱ : := ᾱ whereM ⊆ {α}, i.e, ᾱ /∈ M

Now, X�
ε =

{
SM

α | M ⊆ {α}
}
, and the removal of empty rules yields SM ::= α forM ⊆ {α}.

This rule is correct since SM with ᾱ /∈ M only appears in the context of another SM̄ with
ᾱ ∈ M̄ , which gives rise to a node labeled ᾱ.
�

We can now show that the removal of empty rules indeed works correctly, under the
condition that it is applied to a context-safe grammar.

Lemma 3.8 (Removal of Empty Rules) Let � = 〈C ,R, Z〉 be a context-safe contextual
grammar with Z̄ = {x} and Ż = ∅.3 If �′ is the contextual grammar obtained from � by

1. replacing every rule (L , R) ∈ R by the set of all rules of the form (L , R − E) such that
E ⊆ {x ∈ var(R) | �̄R(x) ∈ X�

ε } and
2. removing all empty rules from the resulting set of rules

then L(�′) = L(�)\{〈〉}.
Proof By very much the same arguments as in the context-free case, it follows that
L(�)\{〈〉} ⊆ L(�′). Thus, it remains to be shown that L(�′) ⊆ L(�). For this, we need
context-safety. By induction on the length of derivations, given any derivation Z ⇒∗

R′ G,
there exist a derivation Z ⇒∗

R H and a set E ⊆ {x ∈ var(H) | �̄H (x) ∈ X�
ε } such that

G = H −E . We have to consider the case whereG ∈ GC \X , which means that E = var(H).
Thus, denoting H − var(H) by H , we have to show that H ⇒∗

R H . For this, we show by
induction on n = ∑

x∈var(H) depth(�̄H (x)) that H ⇒n
R H for every graph H such that

Z ⇒∗
R H and �̄H (var(H)) ⊆ X�

ε .
For n = 0 we have var(H) = ∅, and hence there is nothing to show. Now, assume

that n > 0. For every variable x ∈ var(H) with depth(�̄H (x)) = d there is a derivation
�̄H (x) →d

R̃
ε. Let ass be the assignment that assigns to each x ∈ var(H) the rule r such

that pr is the first rule applied in the derivation �̄H (x) →d
R̃

ε. Then, by context-safety, one

of the rules ass(x) (for x ∈ var(H)) applies to x , yielding H ⇒R H ′ with H ′ = H and∑
x∈var(H ′) depth(�̄H ′(x)) = ∑

x∈var(H) depth(�̄H (x)) − 1. Thus, the induction hypothesis

applies to H ′, yielding H ⇒R H ′ ⇒n−1
R H ′ = H , as claimed.
�

3.3 Removing chain rules

Just as the removal of empty rules, the removal of chain rules follows the pattern known from
the theory of context-free grammars. Roughly speaking, an arbitrary sequence of applications
of chain rules, followed by an application of a rule that is not a chain rule, is composed into
a single rule. Composing two rules r and r ′ means to apply r ′ to the right-hand side of r ,
which yields the right-hand side of the composed rule. Unfortunately, things are not quite as
simple for contextual grammars, because an application of r ′ may make use of contextual
nodes that do not belong to the right-hand side of r . Thus, to make sure that the composed
rules faithfully implement r followed by r ′, the left-hand side may have to be extended by
additional contextual nodes. We also have to take into account that an application of r may

3 Recall that, by the remark after Definition 2.3, the requirement Ż = ∅ is no limitation.

123

514 F. Drewes, B. Hoffmann

Fig. 9 Rules with singleton
contexts for rule ec in Fig. 2

a G : :=
ec

a E a E b : :=
ec

a bc

not immediately be followed by an application of r ′. It may be the case that contextual nodes
required by r ′ are not yet available, as they are still to be generated in another branch of the
derivation. Fortunately, this problem can be solved if r is a chain rule: As the following lemma
shows, we can reorder derivation steps in such a way that every application of a chain rule is
immediately followed by an application of a rule that replaces the variable in the right-hand
side of that chain rule. For technical convenience, given two arbitrary contextual rules r and
r ′, let us say that G ⇒rr ′ H via I if G ⇒r I ⇒r ′ H , where the second step replaces one
of the variables coming from the right-hand side of r . We simply write G ⇒rr ′ H without
specifying I if I is of no particular interest.

Lemma 3.9 Let � = 〈C ,R, Z〉 be a contextual grammar and G ∈ L (�). Then there is a
derivation Z = G0 ⇒r1 G1 ⇒r2 · · · ⇒rn Gn = G such that, for all i ∈ {1, . . . , n − 1}, if
ri is a chain rule then Gi−1 ⇒ri ri+1 Gi+1 via Gi .

Proof For graphs G, H , and I , if G ⇒r I using a chain rule r then İ = Ġ. Hence, if
I ⇒r ′ H via a matching m, replacing a variable in Ḡ ∩ Ī , then r ′ applies to G as well, using
the same matching m. Consequently, the steps can be switched yielding G ⇒r ′ I ′ ⇒r H
for a graph I ′. This shows that an application of a chain rule can be shifted to the right as
long as the next derivation step replaces a variable other than the one in the right-hand side
of this chain rule. Hence, the property asserted in the lemma can be guaranteed by shifting
all applications of chain rules to the right as far as possible.
�

As a consequence of the previous lemma let us note in passing that contextual grammars
require at most one contextual node in their left-hand sides.

Lemma 3.10 Contextual grammars in which each rule contains at most one contextual node
are a normal form of contextual grammars.

Proof Using Lemma 3.9 this is straightforward. Suppose we wish to implement a rule r
whose left-hand side contains a variable with k attached nodes and l � 1 contextual nodes.
We use l chain rules r1, . . . , rl to collect the l contextual nodes one by one, finally ending up
with a variable that is attached to k+l nodes. The original rule is then turned into a context-free
rule r ′. Clearly, every derivation step G ⇒r H can be turned into a derivation G ⇒r1···rlr ′ H
of length l + 1. (Here we extend the notation ⇒r1r2 to l chain rules followed by one arbitrary
rule in the obvious way.) Conversely, by Lemma 3.9 every terminating derivation in the new
grammar can be rewritten in such a way that r1, . . . , rl and r ′ only occur in subderivations
of the form G ⇒r1···rlr ′ H , which means that each such subderivation can be replaced by
G ⇒r H yielding a derivation in the original grammar.
�
Example 3.11 (Rules with singleton contexts) In the grammar in Example 2.4 generating all
graphs, the edge-inserting rules have two contextual nodes. We can replace the rules ec (for
c ∈ C̄) by two rules e′

c and e′′
c for a fresh variable name E with type(E) = a, as shown in

Fig. 9.
�
Let us now formalize the notion of rule composition discussed informally above.

Definition 3.12 (Composition of Contextual Rules) Let r and r ′ be contextual rules. A
composition of r and r ′ is a contextual rule (L , R) such that L ⇒rr ′ R.

123

Contextual hyperedge replacement 515

In the following, we denote the set of all compositions of contextual rules r and r ′ by
r ; r ′. Note that r ; r ′ is an infinite set, as contextual rules may have any number of contextual
nodes.Wewill soon take care of this problem, but let us first note that rule composition works
as expected. For a detailed treatment including proofs (in a much more general case) see [12,
Sections 3.4.1and 5.4].

Fact 3.13 Let r and r ′ be contextual rules, and let G and H be graphs. Then G ⇒rr ′ H if
and only if there is a rule p ∈ r ; r ′ such that G ⇒p H .

To circumvent the problem that composition creates infinitely many rules, we define a
partial order on contextual rules, as follows. For contextual rules r = (L , R) and r ′ =
(L ′, R′), we let r � r ′ if there is a discrete graph D such that L ′ = L � D and R′ = R � D
(up to isomorphism, as usual).

Observation 3.14 For graphs G, H ∈ GC and contextual rules r � r ′, if G ⇒r ′ H then
G ⇒r H .

Lemma 3.15 Let R be a finite set of rules over a finite labeling alphabet C and let R be
the set of all rules r over C such that r � r for some r ∈ R. Then (R,�) is a well partial
order4 (wpo, for short).

Proof Let Ċ = {a1, . . . , an} and assume without loss of generality that the rules in R are
pairwise incomparable w.r.t. �. Every rule r ∈ R has the form (L � D, R � D) for a unique
rule r = (L , R) ∈ R and a unique discrete graph D. Furthermore, D can be represented as
d = (d1, . . . , dk) ∈ Nk , where di = |{v ∈ Ḋ | �̇D(v) = ai }| for 1 � i � n. Hence, we may
denote r by r + d . Clearly, using this notation, given two rules r + d and r ′ + d ′ in R, we
have r + d � r ′ + d ′ if and only if r = r ′ and d � d ′, where � is the usual partial order on
Nk . This proves the statement since (Nk, �) is a wpo and R is finite (using the fact that the
union of finitely many wpos is a wpo).
�

The basic idea for removing a chain rule is to compose it with the rules for the variable
on its right-hand side. For the program graph grammar, this is easily achieved.

Example 3.16 (Removing chain rules from the program graph grammar) The program graph
grammer in Example 2.7 does not contain a chain rule, but the removal of empty rules in
Example 3.6 introduces chain rules hy2, hy3, and cl1, shown in Fig. 8. Composing these rules
with all rules for the variable names on their right-hand sides yields composed rules cl2 to
cl5, and hy4 to hy12. Two of these rules are contextual (by composition with rule im). The
new rules are shown in Fig. 10. The resulting grammar has 31 instead of 26 rules altogether.

�
We can now show how to remove chain rules from contextual grammars.

Lemma 3.17 (Removal of Chain Rules) For every contextual grammar, one can effectively
construct an equivalent contextual grammar that does not contain chain rules.

Proof Let � = 〈C ,R, Z〉 be a contextual grammar. We iteratively add compositions of
rules to R, as follows: Let R0 = R. For each i = 0, 1, . . ., choose a chain rule r ∈ R
and a rule r ′ ∈ Ri which is not a chain rule. Now, let Ri+1 = Ri ∪ {p} for a minimal rule

4 Recall that a wpo is a partial order that is well-founded (there are no infinite descending chains) and has no
infinite antichains (every infinite subset contains comparable elements).

123

516 F. Drewes, B. Hoffmann

C

Cls
: :=

cl∗|cl2|cl3|cl4

C

ClsFea

C

V

C

S

Par

C

S

C

Cls

S

: :=
cl5

C

B

S Bdy

C

Hy
: :=

hy|hy4 |hy5|hy6 |hy7 |hy8
hy9 |hy10 |hy11

C

Cls Hy∗

C

Hy∗C

Hy

C

C

Hy

C

C

C

Hy∗C

C

ClsFea

C

V

C

S

Par

C

S

C

Hy

S

: :=
hy12

C

B

S Bdy

Fig. 10 Removing chain rules from the program graph grammar of Fig. 8

p ∈ r ; r ′ (w.r.t. �) such that q �� p for all q ∈ Ri . Clearly, such a rule p can effectively
be found if it exists. The process stops when there are no more rules r ∈ R, r ′ ∈ Ri ,
and q ∈ r ; r ′ of the kind required. Let i0 be the index i at which this happens and define
R′ = {r ∈ Ri0 | r is not a chain rule}. We claim that i0 exists (i.e., the iteration does
eventually stop) and that �′ = 〈C ,R′, Z〉 is equivalent to �.

To see that i0 exists, notice that all rules in Ri are of the form (L � D, R � D′), where L
and R are left- and right-hand sides of rules in R and D and D′ are discrete graphs. Since
R is finite, it follows that there is a finite set R′′ of rules over C such that, for every rule
r ∈ Ri , there is a rule r0 ∈ R′′ with r0 � r . Hence, taking R′′ as R in Lemma 3.15, all
Ri are subsets of the well partial order (R′′,�). By construction, the rules r1, r2, . . . added
to the sets Ri satisfy r1 �� r2 �� · · · . Hence, if this sequences were infinite, it would either
contain an infinite descending chain or an antichain, both of which is impossible. Hence, the
process must eventually terminate.

By the fact that R ⊆ R1 ⊆ · · · ⊆ Ri0 and the if direction of Fact 3.13, the contextual
grammar�i0 = 〈C ,Ri0 , Z〉 is equivalent to�. It remains to be shown that every derivation in
�i0 can be turned into a derivation that does not make use of chain rules, i.e., into a derivation
in �′. By Lemma 3.9 and an obvious induction on the number of steps using chain rules, it
suffices to verify that G ⇒rr ′ H implies G ⇒R′ H , for every chain rule r ∈ R and every
rule r ′ ∈ Ri0 that is not a chain rule. Fact 3.13 yields a rule p ∈ r ; r ′ such that G ⇒p H . By
Observation 3.14 we can assume that p is a minimal element of r ; r ′. However, this means
that there exists a rule q ∈ Ri0 such that q � p (because otherwise the construction would
not have terminated at step i0). Again using Observation 3.14, G ⇒p H and q � p implies
that G ⇒q H , which finishes the proof.
�
Example 3.18 (Removal of chain rules) Consider the (incomplete) contextual grammar with
the following rules:

S : :=
s1|s2

S A

1 2

S : :=
s3

1 2

S S : :=
s4

S

S

123

Contextual hyperedge replacement 517

where , , and indicate three distinct node labels. The rules for the variable name A will
be added in Example 3.23; they should generate -labeled nodes in particular. The variable
S generates a tree having a unique leaf labeled with if only rules s1, s2, and s3 are used,
provided that A generates trees over . Note that trees need not be binary, because the S-
labeled variable may “jump back” to any node that has been previously generated by rule s3.
If there happens to be a -labeled node at some point (presumably be generated by A), then
the generation may “spread out” to this node by means of rule s4.

Rule s3 is a chain rule. Composing it with the rules s1 and s2 yields rules

1 2

S : :=
s1|s2

1 2

S A

1 2

Another composition with, e.g., s′
1 yields a rule

1 2 3

S : :=
s1

1 2 3

S A

,

but s′
1 � s′′

1, which means that this rule is not needed: whenerver s′′
1 applies to a graph, s′

1
does apply as well, with the same result. Similarly, composing s3 with itself yields only a
rule s′

3 such that s3 � s′
3. However, composing s3 with s4 yields the rule

1 2 3

S : :=
s4

1 2 3

S

S

,

which is not subsumed by another rule. Further iteration does not yield more rules to be
included, which means that rule s3 can now be removed.
�
Theorem 3.19 Contextual grammars with neither empty nor chain rules are a normal form
of those contextual grammars that do not generate the empty graph.

Proof Use Lemma 3.8 followed by Lemma 3.17. Obviously, if applied to a grammar without
empty rules, the construction used to prove Lemma 3.17 does not create empty rules.
�

Note that it seems that Theorem 3.19 cannot be combined with Lemma 3.10, because the
proof of the latter creates chain rules.

3.4 Reducedness

In the case of context-free grammars (both on strings and graphs), reducedness is a very
useful property. As we shall show, even contextual grammars can effectively be reduced
without affecting their generated language. In context-free grammars, reducedness usually
refers to the usefulness of all nonterminals (which correspond to our variable labels), where
a nonterminal is useful if it occurs in at least one terminating derivation. In the case of
contextual grammars, it is more appropriate to speak about the usefulness of rules rather than
of variable labels, because two rules with the same lhs label do not necessarily match the
same graphs. Thus, even if all variable labels are useful in the sense mentioned above, the
grammar could contain rules that can never be applied.

123

518 F. Drewes, B. Hoffmann

Definition 3.20 (Reduced Contextual Grammar) In � = 〈C ,R, Z〉, a rule r ∈ R is useful
if there is a derivation of the form Z ⇒∗

R G ⇒r G ′ ⇒∗
R H such that H ∈ GC \X . � is

reduced if every rule in R is useful.

In order to prove that reducedness can always be achieved, we need a lemma regarding
the following notion of derivation tree skeletons of a contextual grammar � = 〈C ,R, Z〉.
Intuitively, these derivation tree skeletons are derivation trees that are obtained by forgetting
about the contextual nodes of rules. For the formal definition, let us order the variables in Z
and in the right-hand side of every rule inR in an arbitrary but fixed way. Then the recursive
definition of derivation tree skeletons reads as follows:

• If var(Z) = {x1, . . . , xk} then Z [�̄Z (x1), . . . , �̄Z (xk)], the tree consistingof a root labeled
with Z and ordered children labeledwith �̄Z (x1), . . . , �̄Z (xk), is a derivation tree skeleton
of �.

• If r = (L , R) is a rule inR with var(R) = {x1, . . . , xk}, and t is a derivation tree skeleton
of � that contains a leaf labeled with the lhs label of r , then the tree t ′ obtained from t
by replacing this leaf by the subtree r [�̄R(x1), . . . , �̄R(xk)] is a derivation tree skeleton
of �.

Thus, derivation tree skeletons of � are defined as (one may define them) in the context-free
case; see, e.g., [14, Section II.3] and [5, Section 2.3.2]. A node of a derivation tree skeleton
is internal if its label is a rule. Given a derivation D, we denote its derivation tree skeleton by
tD . We omit the explicit formal definition of tD here, because it should be obvious. Clearly,
if D has length n then tD has n internal nodes. Note that, in contrast to the contex-free case,
tD does not uniquely determine the graph derived by D, because it lacks information about
the matching of contextual nodes. In fact, a derivation tree skeleton may not correspond to
any valid derivation at all. However, in the context-safe case this is always guaranteed. To
state this result in a proper way, let us say that a derivation tree skeleton is terminal if all
nodes except the root are internal ones.

Lemma 3.21 If � is a context-safe contextual grammar then each terminal derivation tree
skeleton of � is the derivation tree skeleton of at least one derivation in �.

Proof Suppose t is a terminal derivation tree skeleton of �, and let us say that the lhs label of
a proper subtree of t is the lhs label of the rule labeling its root. A derivation tree skeleton t ′
is a predecessor of t if it can be obtained from t by replacing any number of proper subtrees
of t by their lhs labels. Now, assume that t contains n + 1 nodes (i.e., n internal nodes plus
the root). To prove the claim, we show by induction on i � n that there is a derivation D of
length i such that tD is a predecessor of t . This proves the claim because, for i = n, tD has
n internal nodes and is thus equal to t .

For i = 0, note that the derivation tree skeleton of the derivation of length 0 is
Z [�̄Z (x1), . . . , �̄Z (xk)], which is a predecessor of t . For 1 � i � n, let D be a deriva-
tion of length i − 1 such that tD is a predecessor of t , and let G be the graph derived
by D. The variables x1, . . . , xm in G correspond to the leaves of tD that are labeled with
�̄G(x1), . . . , �̄G(xm). These nodes are internal nodes in t (since t is terminal), and labeled
with rules r1, . . . , rm whose lhs labels are �̄G(x1), . . . , �̄G(xm). Let ass be the rule assign-
ment for G given by ass(xi) = ri . Since � is context-safe, one of the rules ri applies to the
corresponding variable xi . Hence, D can be prolonged by a step G ⇒ri G

′ replacing xi . By
construction, the derivation tree skeleton of the resulting derivation D′ is a predecessor of t
(obtained by turning the node labeled �̄G(xi) into an internal node labeled ri). This proves
the lemma.
�

123

Contextual hyperedge replacement 519

We can now show how reducedness can be achieved.

Theorem 3.22 Reduced contextual grammars are a normal form of contextual grammars.

Proof For a contextual grammar � = 〈C ,R, Z〉, let ��� denote � with all useless rules
removed. Clearly, ��� is reduced and L (�) = L (���). Hence, by Theorem 3.3 it suffices
to prove that the set of useful rules of a context-safe contextual grammar � = 〈C ,R, Z〉 can
effectively be determined.

By Lemma 3.21, a rule in � is useful if and only if it appears in a terminal derivation
tree skeleton of �. Since contextual nodes are irrelevant for the definition of derivation tree
skeletons, thismeans that usefulness of rules can be checked in the sameway as in the context-
free case (after applying Theorem 3.3 to make � context-safe). More precisely, we can turn
� into a hyperedge-replacement grammar �′ by replacing every rule (L , R) by (L ′, R),
where L ′ is obtained from L by removing all contextual nodes. (Thus, their counterparts in
R become nodes that are generated by the rule rather than being taken from the context.)
Clearly, �′ has the same derivation tree skeletons as �, which means that usefulness can be
checked as in the context-free case.
�
Example 3.23 (Removal of useless rules) Let us now add the following rules for A to the
rules in Example 3.18:

A : :=
a1|a2

A A
A

: :=
a3

Thus rule a3 generates the -node that can be used as a context by rule s4 of Example 3.18.
Note, however, that is enabled only if there is a node , and s2 is the only rule creating such
a node. Hence there will not be any variable named S left when rule a3 is applicable. The
conclusion is that s4 is, in fact, useless. There are, however, terminal derivation tree skeletons
containing occurrences of s4, the smallest example being

Z[s4[s2[],s2[]]] where Z =
A

This is because the grammar is not context-safe: We can assign s4 to the unique variable of
Z although is not applicable to it.

Turning the grammar into the context-safe form remedies this deficiency. Consider the
annotation of S to be or (because it suffices to consider the labels and
of contextual nodes in the annotations). All annotated variants of s4 have a lhs labelS〈M, sq〉
such that . Such a variable can only be generated by three rules, namely these:

S { , }, : :=
S /0,ε A { , },

S , }, : :=
S { }, A { }, S /0,ε A { , },

123

520 F. Drewes, B. Hoffmann

Here, the first and the third rule cannot appear in any terminal derivation tree skeleton,
because no rule for A generates a -labeled node, which means that the annotation makes
termination impossible. However, if a derivation tree skeleton contains the second rule, it
cannot be terminated either, since the only rule that has the lhs label is

A { }, : : =
A { }, A /0,ε

In particular, a3 does not have an annotated variant with this lhs label, because of the con-
textual node labeled with .

Therefore, none of the annotated variants of s4 appears in a terminal derivation tree
skeleton; they are all correctly identified as being useless.
�
Example 3.24 (Reducedness of the program graph grammar) In the context-safe form the
program graph grammar discussed in Example 3.4, the following augmentations shown in
Table 1 are useless:

• 4-5 of rules hy, hy∗, and cl∗.
• 3 of rule si.
• 2-7 of rule bo1.
• 2-17 of rules bo∗ and ar∗.
• 2 of rules as and ca.

Thus 69 of the 113 rules of the context-safe form are useful. Note that, for each of the
original program graph rules, at least one of its context-safe variants is useful. Hence, since
the relation between the two grammars is the one expressed in Corollary 3.5, each of the
rules of the original grammar is useful.
�

By turning a grammar into a reduced one, it can be decidedwhether the generated language
is empty (as it is empty if and only if the set of useful rules is empty and the start graph contains
at least one variable).

Corollary 3.25 For a contextual grammar �, it is decidable whether L (�) = ∅.

4 Limitations of contextual grammars

Let us now come to two results that show limitations of contextual grammars similar to
the known limitations of hyperedge-replacement grammars. The first of these results is a
rather straightforward consequence of Lemma 3.8: as in the context-free case, the languages
generated by contextual grammars are in NP, and there are NP-complete ones among them.

Theorem 4.1 For every contextual grammar �, it holds that L (�) ∈ NP. Moreover, there
is a contextual grammar � such that L (�) is NP-complete.

Proof The second part follows from the well-known fact that there are NP-complete
hyperedge-replacement languages [21]. For the first part, by Lemma 3.8, it may be assumed
that � contains neither empty nor chain rules. It follows that the length of each derivation
is linear in the size of the graph generated. Hence, derivations can be nondeterministically
“guessed”.
�

123

Contextual hyperedge replacement 521

It should be pointed out that the corresponding result for hyperedge-replacement languages
is actually slightly stronger than the one above, because, in this case, even the uniform
membership problem is in NP (i.e., the input is (�,G) rather than just G). It is unclear
whether a similar result can be achieved for contextual grammars, because the construction
given in the proof of Lemma 3.8 may, in the worst case, lead to an exponential size increase
of �.

For the next result, also known from the theory of hyperedge-replacement languages,
let us recall the standard notions of Parikh images and semilinearity. In the following, let
us assume that our alphabets C are implicitly provided with an arbitrary but fixed order
a1, . . . , ak (where C = {a1, . . . , ak}). Given a graph G ∈ GC , its Parikh image is the k-tuple
ψ(G) = (n1, . . . , nk) such that ni is the number of nodes or edges in G whose label is ai .
Thus ψ simply counts the numbers of occurrences of the different labels in G. As usual, the
Parikh image of a graph language L ⊆ GC is ψ(L) = {ψ(G) | G ∈ L}.

A subset � of Nk is linear if there are ξ, ξ1, . . . , ξm ∈ Nk such that

� =
{

ξ +
m∑

i=1

siξi | s1, . . . , sm ∈ N

}

(using scalar multiplication and componentwise addition), and it is semilinear if it is a finite
union of linear sets. The famous theorem by Parikh [23] states that the Parikh image of a
context-free language (with respect to the terminal alphabet of the grammar) is semilinear. It
is known (and not very difficult to see, using Parikh’s theorem) that this holds for hyperedge-
replacement languages as well [5,14]. We can now extend this result to the contextual case.

Theorem 4.2 For every language L ∈ CHR, the Parikh image ψ(L) is semilinear.

Proof To prove the theorem, it suffices to show thatψ ′(L) is semi-linear, whereψ ′ is defined
likeψ but counts only edge labels. To see this, notice that we can attach a single edge labeled
ã to every node labeled a when this node is generated. Then counting nodes labeled a is the
same as counting edges labeled ã.

Now, we use Lemma 3.21, in a way similar to the proof of Theorem 3.22. By Theorem 3.3,
we may assume that � is context safe. Now, consider again the hyperedge-replacement
grammar �′ obtained from � by removing all contextual nodes from the left-hand sides
of its rules. Again, the derivation tree skeletons of �′ and � coincide. Hence, in particu-
lar, ψ ′(L (�′)) = ψ ′(L (�)). As mentioned above, it is known that the Parikh image of
hyperedge-replacement languages is semilinear (see, e.g., [14]), which completes the proof.

�
As a well-known, weaker but sometimes useful consequence, we obtain the result that the

size of graphs in L (�) grows only linearly, no matter whether we count nodes, edges, or
both.

Corollary 4.3 For a graph G, let |G| be either the number of nodes of G, the number of
edges of G, or the sum of both. For every contextual grammar �, if L (�) = {H1, H2, . . .}
with |H1| � |H2| � · · · , there is a constant k such that |Hi+1| − |Hi | � k for all i ∈ N.

The corollary shows, for example, that the language of all complete graphs cannot be
generated by any contextual grammar (because the number of edges grows quadratically in
this case).

Corollary 4.4 The language of all complete graphs is not in CHR.

123

522 F. Drewes, B. Hoffmann

CHR ASRC-edNCEHR

Fig. 11 Relation of languages generated by hyperedge replacement (HR), contextual hyperedge replacement
(CHR), adaptive star replacement (ASR), and confluent node replacement (C-edNCE)

Note that the set of all complete graphs is well known to be a C-edNCE graph language.
Hence, together with Observation 2.5, the corollary shows that contextual grammars and
C-edNCE grammars are incomparable with respect to generative power.

5 Conclusions

In this paper we have studied grammatical and algorithmic properties of contextual gram-
mars. It turned out that these properties are not fundamentally different from the properties
known for the context-free case. This indicates that contextual hyperedge replacement is a
modest generalization of hyperedge replacement that, to the extent onemight reasonably hope
for, has appropriate computational properties. In particular, contextual grammars have useful
normal forms, namely rules with at most one contextual node, grammars without empty and
chain rules, and reduced grammars. Indeed, they share certain algorithmic properties with
context-free grammars, (i.e., effective removability of empty and chain rules, decidability
of reducedness and emptiness, as well as an NP-complete membership problem) and their
languages exhibit at most linear growth. Nevertheless, contextual grammars are more pow-
erful than context-free ones, as illustrated in Fig. 11. Let HR, C-edNCE, ASR, and CHR
denote the classes of graph languages generated by hyperedge replacement [14], confluent
node replacement [13], adaptive star replacement [6], and contextual hyperedge replace-
ment, respectively. HR is properly included in C-edNCE [13, Section 4.3], as is C-edNCE
in ASR [6, Corollary 4.9]. The proper inclusion of HR in CHR and the non-inclusion of
CHR inC-edNCE are stated in Observation 2.5. AsC-edNCE does contain the language of
all complete graphs, this and Corollary 4.4 show thatCHR andC-edNCE are uncomparable.
5 We do not yet know whether ASR includes CHR. Example 2.6 indicates that contextual
grammars allow for a finer definition of structural properties of models than class diagrams.

5.1 Related work

Some work related to the concepts studied in this paper shall be mentioned here. Context-
exploiting rules [9] correspond to contextual rules with a positive application condition, and
are equivalent to the context-embedding rules used to define diagram languages in Dia-
Gen [22]. The context-sensitive hypergraph grammars discussed in [14, ChapterVIII] cor-
respond to context-free rules with a positive application condition. We are not aware of any
attempts to extend node replacement in order to define graph languages as they are discussed
in this paper. The graph reduction specifications of Bakewell et al. [2] are based on stan-
dard graph transformation rules (as considered in [12], but without application conditions),

5 As Dirk Janssens has pointed out in private communication, this is not sure for the relation of CHR and
non-confluent edNCE grammars, which do derive the language of all graphs, thanks to their ability to delete
terminal edges during derivations. Then the node replacement grammar generating complete graphs can be
extended by (non-confluent) rules that delete arbitrary sets of edges.

123

Contextual hyperedge replacement 523

and require the specifications to define confluent and terminating reductions. As these rules
may delete previously generated terminal nodes and edges, it is difficult to compare them to
contextual grammars with respect to generative power. It is clear, however, that all example
languages considered in this paper can be defined by graph reduction specifications as well.

Shape analysis aims at specifying pointer structures in imperative programming languages
(e.g., leaf-connected trees), and at verifying whether this shape is preserved by the operations
on the structures. Several logical formalisms have been proposed for this purpose [25]. The
graph grammars mentioned in the last paragraph can also be used for defining admissable
shapes of graphs, and for analyzing whether graph transformations do preserve shapes. In
their paper mentioned above, A. Bakewell, D. Plump, and C. Runciman have studied whether
standard graph transformation rules do preserve shapes defined by graph reduction specifi-
cations. For more expressive graph transformation rules wherein variables are placeholders
for graphs of varying size and shape, conditions for shape-preservation have been studied for
the case where the shape of the host graphs, of the pattern and replacements graphs of rules,
and of the substitutions of the variables are defined by context-free grammars [17], and by
adaptive star grammars [8], respectively.

5.2 Future work

Future work on contextual grammars shall clarify the open questions concerning their gen-
erative power, and continue the study of contextual rules with recursive application condi-
tions [15] that has been started in [20]. Furthermore, we aim at an improved parsing algorithm
for contextual grammars that are unambiguous modulo associativity and commutativity of
certain replicative rules. And, we want to study shape analysis for the even more expres-
sive graph transformation rules implemented in the grgen rewriting tool [3], which can be
recursively refined by applying contextual meta-rules [19]. We hope that we can then show
that refactoring operations on program graphs preserve the shape defined in the contextual
grammar of Example 2.7.

Acknowledgments Wewish to thank several people: Annegret Habel for numerous useful comments on the
contents of previous versions of this paper,MarkMinas for extensive discussions onmany aspects of this work,
in particular for his promise to re-join us when parsing of contextual grammars shall be considered at depth,
and the two anonymous referees who read the manuscript carefully and provided various useful comments.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science. Springer, New York
(1996)

2. Bakewell, A., Plump, D., Runciman, C.: Specifying pointer structures by graph reduction. In: Nagl,
M., Pfaltz, J., Böhlen, B. (eds.) Applications of Graph Transformation with Industrial Relevance
(AGTIVE’03), No. 3062 in Lecture Notes in Computer Science, pp. 30–44. Springer, Berlin (2004)

3. Blomer, J., Geiß, R.: GrGen.net: A generative system for graph-rewriting, user manual. www.grgen.net
(2006–2011)

4. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic—A Language-Theoretic
Approach, Encyclopedia of Mathematics and Its Applications, vol. 138. Cambridge University Press,
Cambridge (2012)

5. Drewes, F., Habel, A., Kreowski, H.J.: Hyperedge replacement graph grammars. In: Rozenberg, G. (ed.)
Handbook of Graph Grammars and Computing by Graph Transformation Vol. I: Foundations, chap. 2,
pp. 95–162. World Scientific, Singapore (1997)

6. Drewes, F., Hoffmann, B., Janssens, D., Minas, M.: Adaptive star grammars and their languages. Theor.
Comput. Sci. 411, 3090–3109 (2010)

123

www.grgen.net

524 F. Drewes, B. Hoffmann

7. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Adaptive star grammars. In: Cor-
radini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) 3rd International Conference on
Graph Transformation (ICGT’06), No. 4178 in Lecture Notes in Computer Science, pp. 77–91. Springer,
Berlin (2006)

8. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Shaped generic graph transforma-
tion. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) Applications of Graph Transformation with Industrial
Relevance (AGTIVE’07), No. 5088 in Lecture Notes in Computer Science, pp. 201–216. Springer, Berlin
(2008)

9. Drewes, F., Hoffmann, B., Minas, M.: Context-exploiting shapes for diagram transformation. Mach.
Graph. Vis. 12(1), 117–132 (2003)

10. Drewes, F., Hoffmann, B., Minas, M.: Adaptive star grammars for graph models. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) 4th International Conference on Graph Transformation (ICGT’08),
No. 5214 in Lecture Notes in Computer Science, pp. 201–216. Springer, Berlin (2008)

11. Drewes, F., Hoffmann, B., Minas, M.: Contextual hyperedge replacement. In: Schürr, A., Varró, D., Varró,
G. (eds.) Proceedings of Applications of Graph Transformation with Industrial Relevance 2011 (AGTIVE
2011), No. 7233 in Lecture Notes in Computer Science, pp. 182–197. Springer, Berlin (2012)

12. Ehrig,H., Ehrig,K., Prange,U., Taentzer, G.: Fundamentals ofAlgebraicGraphTransformation. Springer,
EATCS Monographs on Theoretical Computer Science (2006)

13. Engelfriet, J.: Context-free graph grammars. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal
Languages, vol. 3: Beyond Words, chap. 3, pp. 125–213. Springer, Berlin (1999)

14. Habel, A.: Hyperedge Replacement: Grammars and Languages. No. 643 in Lecture Notes in Computer
Science. Springer, Berlin (1992)

15. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. In: Electronic Communications
of the EASST 30 (2010). International Colloquium on Graph and Model Transformation (GraMoT’10)

16. Harary, F.: Graph Theory. Addison-Wesley, Reading, MA (1969)
17. Hoffmann, B.: Shapely hierarchical graph transformation. In: Proceedings of IEEE Symposia on Human-

Centric Computing Languages and Environments, pp. 30–37. IEEE Computer Press, Silver Spring, MD
(2001)

18. Hoffmann, B.: Conditional adaptive star grammars. Electronic Communications of the EASST 26 (2010)
19. Hoffmann, B.: More on graph rewriting with contextual refinement. In: A. Habel, M.Mosbah, R. Echahed

(eds.) Fifth InternationalWorkshop on Graph ComputationalModels (GCM2014) (2014). Downloadable
at http://gcm2014.imag.fr/proceedingsGCM2014.pdf

20. Hoffmann, B., Minas, M.: Defining models—meta models versus graph grammars. Elect. Comm. of
the EASST 29 (2010). In Proceedings of 6th Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT’10), Paphos, Cyprus

21. Lange, K.J., Welzl, E.: String grammars with disconnecting or a basic root of the difficulty in graph
grammar parsing. Discrete Appl. Math. 16, 17–30 (1987)

22. Minas, M.: Concepts and realization of a diagram editor generator based on hypergraph transformation.
Sci. Comput. Program. 44(2), 157–180 (2002)

23. Parikh, R.J.: On context-free languages. J. ACM 13, 570–581 (1966)
24. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. Object

Technology Series, 2nd edn. Addison Wesley, Reading, MA (2004)
25. Sagiv,M., Reps, T.,Wilhelm, R.: Solving shape-analysis problems in languageswith destructive updating.

ACM Trans. Program. Lang. Syst. 20(1), 1–50 (1998)
26. VanEetvelde,N.:A graph transformation approach to refactoring.Doctoral thesis, Universiteit Antwerpen

(2007)

123

http://gcm2014.imag.fr/proceedingsGCM2014.pdf

	Contextual hyperedge replacement
	Abstract
	1 Introduction
	2 Graphs, rules, and grammars
	3 Normal forms of contextual grammars
	3.1 Context-safety
	3.2 Removing empty rules
	3.3 Removing chain rules
	3.4 Reducedness

	4 Limitations of contextual grammars
	5 Conclusions
	5.1 Related work
	5.2 Future work

	Acknowledgments
	References

