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Abstract We show how interface theories supporting pairwise component analysis can be
extended in a generic way to a multi-component environment. This leads to the abstract
framework of an assembly theory which captures notions of assembly refinement and
communication-safety in assemblies of interacting components. An assembly theory sup-
ports also encapsulation of assemblies into interfaces and hence hierarchical constructions.
We propose general rules that should be satisfied by any concrete assembly theory, like
compositional construction and refinement of communication-safe assemblies. We discuss
general procedures how to construct an assembly theory on top of a given interface theory
such that (some of) the laws of an assembly theory are automatically guaranteed by the prop-
erties of an underlying interface theory. As a proof of concept we consider two instances of
our approach. The first one starts from the (optimistic) interface theory of interface automata
proposed by de Alfaro and Henzinger, and the second one from the (pessimistic) inter-
face theory of modal I/O-interfaces. In the latter case, we propose a new notion of modal
assembly refinement which has all the required properties, in particular it preserves modal
communication-safety of assemblies. A small case-study illustrates how our concepts can be
methodologically applied.

Dedicated to Walter Vogler on the occasion of his 60th birthday.

This work has been partially sponsored by the European Union under the FP7-project ASCENS, 257414.

R. Hennicker
Ludwig-Maximilians-Universität München, Munich, Germany
e-mail: hennicke@pst.ifi.lmu.de

A. Knapp (B)
Universität Augsburg, Augsburg, Germany
e-mail: knapp@informatik.uni-augsburg.de

123



236 R. Hennicker, A. Knapp

1 Introduction

Reactive software components are commonly understood as encapsulated units which com-
municate with their environment via well-defined interfaces. Interface specifications provide
a means to describe the visible (i.e. black-box) behaviour of a component. They serve, on the
one hand, to express what is expected from the environment for a correct functioning of a
component, and, on the other hand, to specify what is offered by a component. For the devel-
opment of component systems on the basis of interfaces we can identify three key issues:
the ability to build larger specifications from smaller ones (by composition), the (stepwise)
refinement of interface specifications, and compatibility requirements ensuring safe com-
munication of components. Of course, it is important that the different aspects fit properly
together, i.e., that refinement is preserved by composition and that compatibility of interfaces
is preserved by refinement, thus guaranteeing independent implementability of components.
These crucial requirements, that any concrete interface theory should obey, are nicely for-
mulated by the rules of an “interface language” by de Alfaro and Henzinger [16]. It assumes
a domain F of interfaces, a (partial) composition operator ⊗ : F × F ⇀ F , a refinement
relation � ⊆ F × F relating concrete and abstract interface specifications, and a binary
compatibility relation ∼ ⊆ F × F . On this basis, [16] defines the principle of independent
implementability as follows:

Independent implementability: For all F1, F2, G1, G2 ∈ F ,
if G1 ∼ G2 and F1 � G1, F2 � G2,
then F1 ∼ F2 and (F1 ⊗ F2) � (G1 ⊗ G2).1

Particular frameworks satisfying these requirements are formulated for interface automata
in [14] and for modal I/O-transition systems in [6,24]. Some approaches go beyond that and
study further operators like conjunction and quotient. For instance, [29] considers conjunction
and quotient for modal languages. Lüttgen and Vogler introduce modal interface automata
in [27] allowing disjunctive must-transitions. They define parallel composition following
the optimistic approach to compatibility of [14], they define conjunction and disjunction
and establish compositionality results (which improve shortcomings of other approaches).
They also study the pessimistic case to compatibility in [28]. Other papers consider interface
theories with relational interfaces and show compositionality results for different kinds of
composition, like serial, parallel and feedback compositions; see [31].

Interface theories support the pairwise construction and analysis of components but they
do not consider n-ary component assemblies which is the standard case in practice. As a
consequence, complex systems can only be described by composing interfaces of their con-
stituent parts pairwise, one after the other, to larger interfaces. But this procedure does not
lead to a sufficiently rich representation of a component assembly. First, since interfaces are
supposed to describe the black-box behaviour of components, we lose architectural infor-
mation when interfaces are composed. Even more importantly, it is not clear whether a
pairwise analysis of components can lead to reliable results for n-ary component assemblies.
Indeed we will show, that for analysing compatibility of components this is in general not the
case. Concerning refinement of a component assembly, the pairwise approach leaves only
one option: Each single interface of an assembly must be separately refined and the single
refinements must be (successively) composed to obtain a refinement of the whole system.
This is guaranteed by the principle of independent implementability stated above. Though
independent implementability is clearly an important requirement, it should not be the only

1 It is assumed that the composition of compatible interfaces is defined.
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way to construct a refinement of an interface assembly. For instance, it is also important that
an implementation, say F , of a local interface G occurring in an assembly can be correctly
substituted by another local implementation, say F ′, even if F ′ is not an isolated refinement
of G, but works well in the context of the rest of the assembly. Such kinds of assembly
refinement are more flexible than interface-wise refinement and should also be supported.

In this paper we are interested in a rigorous method for extending the binary, two-
component approach of interface theories to a multi-component approach for assemblies.
We propose to do this in a generic way that is applicable to any concrete instantiation of an
interface theory. For that purpose we first set up general assumptions on interface theories
much in the line of the work of de Alfaro and Henzinger; cf. [15,16]. Then we show how an
assembly theory can be constructed on top of a given interface theory such that assemblies
are represented by families of interfaces. An assembly theory formalises basic requirements
for systems of interacting components. It comprises a communication-safety predicate for
expressing the absence of communication errors, a refinement relation for assemblies, and a
packing operation for encapsulating assemblies into components thus supporting hierarchical
system constructions. Any assembly theory must satisfy compositionality and compatibil-
ity laws for communication safety, encapsulation and refinement. We consider canonical
assemblies whose communication-safety predicate is uniquely determined by the underlying
compatibility relation for interfaces. We show that pairwise compatibility of the interfaces
belonging to an assembly is in general not sufficient. Therefore we define communication
safety of an assembly in a way which guarantees that any member, say Fj , of an assembly
〈Fi 〉i∈I can communicate in a proper way with the rest of the assembly 〈Fi 〉i∈I\{ j} forming
the environment of Fj . This idea has been spelled out already by Liu et al. in [26]: “When
we connect a set of components in a network, we need to check whether the types of inputs
match the types of outputs connected to them and whether each component’s assumptions
about the rest of the system have been met.” Formally, we use the interface compatibility
relation to require compatibility of each Fj with the rest of the assembly. We also consider
a simple variant of canonical assemblies where the assembly refinement notion is simply
obtained from interface-wise refinement of the members of an assembly. The disadvantage
of this simple approach is, however, that it does not support context-dependent substitution
of interface implementations. Therefore, when building up an assembly theory, we suggest
to use the communication-safety notion derived from interface compatibility and to use an
individual refinement notion for assemblies.

As a concrete instance of this approach we consider a canonical assembly theory for modal
I/O-interfaces and we define the behaviour of an assembly by a modal transition system with
distinguished communication labels (representing synchronous communication) and with
explicit error states representing erroneous communication. We show that any refinement
of an error-free assembly is error-free, which is similarly to Bujtor and Vogler [10] who
make error states explicit and require error-freeness for refinements of error-free interface
specifications. In our example we consider the so-called pessimistic approach to interaction
compatibility where communication safety must be ensured in any environment. As another
instance of our framework we consider interface automata which use an optimistic com-
patibility notion where two communicating partners can rely on a helpful environment that
avoids components to run into a communication error.

Relationship to [20] and [21]. Foundational ideas of this work have been developed in [20]
and [21]. In [20] we have studied the concrete case of modal assemblies with a simple form
of interface-wise assembly refinement. This has been improved in [21] to support context-
dependent refinement. Moreover, [21] proposes an abstract notion of an assembly theory and
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shows that modal assemblies are an instance. The new approach presented here is a significant
enhancement since it describes a method how to construct an assembly theory on top of a
given interface theory. It is driven by the idea that certain properties of an assembly theory,
like compositionality of communication safety, can be obtained for free from corresponding
properties of their underlying interface theory. The key for this development is the notion of
a canonical assembly theory. We consider also a default construction leading automatically
to a “simple” assembly theory on top of any existing instance of an interface theory.

Synopsis. In Sect. 2 we define the abstract notion of an interface theory and in Sect. 3
we consider two instances: interface automata and modal interfaces. Then, in Sect. 4, we
introduce the abstract notion of an assembly theory and we provide guidelines how to derive
an assembly theory from an arbitrary interface theory. How this works for interface automata
and for modal interfaces is shown in Sect. 5, where we also consider an assembly refinement
not based on component-wise refinement. A small case-study is presented in Sect. 6 showing
how our concepts can be methodologically applied. In Sect. 7 we discuss related work and
in Sect. 8 we finish with some concluding remarks pointing out future research directions.

Dedication. This piece of work is dedicated to Walter Vogler as an appreciation of his extra-
ordinary scientific achievements in the broad field of concurrency theory and distributed
systems. We would like to express our thanks to Walter for many, often intensive discussions
which brought new insights and led to scientific progress. We are sure that the scientific com-
munication with Walter will continue and we are looking forward to this. Congratulations to
your 60th birthday, Walter!

2 Interface theories

The abstract concept of an interface theory defines rudimentary properties that should be
satisfied by any formal framework for interface specifications. We assume a class F of
interface specifications (interfaces for short). Each interface is supposed to provide a black
box specification of a component which shows the functionality of the component for its
users. Interface theories provide typically a composition operator ⊗ that allows to combine
interfaces to larger ones. For two interfaces F and G, their composition F ⊗ G is again an
interface and therefore represents a black-box behaviour, more precisely it represents the
black-box behaviour of the composition of the two components specified by F and G.

The composition operator is, in general, a partial function since it is not always meaningful
to compose specifications. We say that two interfaces F and G are composable, if F ⊗
G is defined. Composability is often of syntactic nature. More interesting is the semantic
compatibility of two components (concerning, e.g., their interaction behaviour) which is
expressed by a binary compatibility predicate cp. The compatibility relation is not necessarily
symmetric. Thus it is possible to express by cp(F, G), when the communication requirements
of one interface F are met by another interface G.

An interface theory should support incremental design of compatible systems which is
expressed by property (F1) below. It is motivated by the following question: If an interface
F is compatible with an interface G, can we compose G with another interface, say H , such
that F is still compatible now with the larger context G ⊗ H? The property of incremental
design requires that this should indeed be possible, provided that the composition of F and G
is compatible with the additional interface H . We will show in Sect. 4, Theorem. 2, that this
property is crucial for the compositional construction of communication-safe assemblies.
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Finally, an interface theory should support stepwise refinement of interfaces. For this
purpose we require a reflexive and transitive refinement relation � which relates “concrete”
and “abstract” specifications. F � G means that interface F is a refinement of interface
G. For compatible interfaces, compatibility of interfaces must be preserved by refinement
(property (F2)) and refinement must be compositional, i.e., it must be preserved by the
composition operator (property (F3)).

Definition 1 (Interface theory) An interface theory F = (F,⊗, cp, �) consists of

– a class F of interface specifications;
– a partial composition operator ⊗ : F ×F ⇀ F which is commutative2 and associative3;

we call F and G composable if F ⊗ G is defined;
– a compatibility predicate cp ⊆ F × F such that cp(F, G) implies F ⊗ G defined;
– a reflexive and transitive refinement relation � ⊆ F × F ,

such that for all F, G, H, F1, F2, G1, G2 ∈ F the following properties are satisfied:

F1. Incremental design: If cp(F, G) and cp(F ⊗ G, H), then cp(F, G ⊗ H);
F2. Preservation of compatibility: If cp(G1, G2), F1 � G1, and F2 � G2, then cp(F1, F2);
F3. Compositional refinement for compatible interfaces: If cp(G1, G2), F1 � G1, and

F2 � G2, then F1 ⊗ F2 � G1 ⊗ G2.

Two interfaces F and G are equivalent, written F ≈ G, if F � G and G � F .

Preservation of compatibility (F2) together with compositional refinement for compatible
interfaces (F3) yield the law of independent implementability; see Sect. 1.

Some interface theories satisfy a stronger version of requirement (F3) such that refinement
is preserved by composition even without the assumption that the abstract interfaces are
compatible.

Definition 2 (Compositional refinement) An interface theory (F,⊗, cp, �) supports com-
positional refinement if for all F1, F2, G1, G2 ∈ F , if G1 ⊗ G2 is defined, F1 � G1, and
F2 � G2, then F1 ⊗ F2 is defined and F1 ⊗ F2 � G1 ⊗ G2.

Incremental design considers the situation in which larger systems are built from smaller
ones. But one may also consider the reverse direction and ask, whether compatibility of an
interface with an environment4 remains valid when the environment is reduced? This means
that the compatibility of an interface F with an environment G is ensured, i.e., cp(F, G),
if one can find an interface, say H , such that F is compatible with the larger environment
G⊗ H , i.e., cp(F, G⊗ H). Interface theories which satisfy this property are called optimistic.
They rely on the existence of a “helpful” environment.

Definition 3 (Optimistic interface theory) An interface theory (F,⊗, cp, �) is optimistic if
for all composable F, G ∈ F the following holds: If there exists an interface H ∈ F , which
is composable with F and with G, such that cp(F, G ⊗ H), then cp(F, G).

2 Commutativity means that for all F, G ∈ F , if F, G are composable then G, F are composable and
F ⊗ G = G ⊗ F , i.e., F ⊗ G and G ⊗ F are set-theoretically equal.
3 Associativity means that for all F, G, H ∈ F , if F, G and H are pairwise composable then (F ⊗ G) ⊗ H
and F ⊗ (G ⊗ H) are defined and (F ⊗ G) ⊗ H = F ⊗ (G ⊗ H).
4 In our considerations an environment for an interface F is just another interface, say E , which is composable
with F . We do not impose any closedness assumption on F ⊗ E , since this is not possible in the abstract
framework of an interface theory. This could be done, however, in the framework of “labelled interface theories”
considered in [5].
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2.1 Interface theories by de Alfaro and Henzinger

A formal notion of an interface theory was, to our knowledge, first proposed by de Alfaro
and Henzinger in [15]. In their work, an interface theory consists of an interface algebra
together with a component algebra thus distinguishing between interface specifications and
component implementations. Later, in [16], the authors have introduced the term interface
language which simplifies the approach by considering just interfaces with the requirements
that independent implementability and incremental design are supported. Our notion of an
interface theory is very close to an interface language in the sense of [16]. The differences
are the following: (1) We require that interface composition is commutative and associative
for pairwise composable interfaces. (2) Our compatibility predicate is not required to be
symmetric. Hence it can express the communication requirements from the perspective of
a single component and it is also applicable for serial compositions, like in [31], where
symmetry of compatibility is also not required. (3) Our notion of incremental design is looser
than the one of an interface language. This is possible since we can rely on commutativity
and associativity of interface composition. Finally, we introduce the notion of an optimistic
interface theory. It is inspired by the discussions in [16], based on the idea that compatibility
of interfaces should rely on the existence of a helpful environment.

3 Instances of interface theories

3.1 Interface automata

We show that the interface automata by de Alfaro and Henzinger [14,16] form an interface
theory that is optimistic. We first briefly recall the definition of interface automata, their com-
position, and their refinement in terms of alternating simulation. We follow [16] requiring
input determinism for interface automata which ensures associativity and compositionality
of alternating simulation for compatible interfaces. However, to distinguish syntactic com-
posability from semantic compatibility, we prefer the approach of [14], in which interface
compositions are always defined when they are composable. The composition of composable
but not compatible interfaces is empty.

3.1.1 Interface automata, products, and refinement

An interface automaton labelling L = (I, O, T ), or IA-labelling for short, consists of pair-
wise disjoint sets of input labels I , output labels O , and internal labels T . We write

⋃
L for

the set I ∪ O ∪ T of all labels of L .
An interface automaton P = (L , S, V0,→) consists of an IA-labelling L = (I, O, T ),

a set of states S, a set V0 ⊆ S of initial states with |V0| ≤ 1, and a transition relation
→ ⊆ S × ⋃

L × S that is input-deterministic, i.e., if (s, l, s1) ∈ → and (s, l, s2) ∈ → for
l ∈ I , then s1 = s2. The interface automaton P is empty if V0 = ∅. For an l ∈ ⋃

L , we write

s
l→ s′ for (s, l, s′) ∈ →. More generally, for an X ⊆ ⋃

L , we write s
X→ s′ if either s = s′

or there are s0, . . . , sn ∈ S and l0, . . . , ln−1 ∈ X such that s0 = s, sn = s′, and sk
lk→ sk+1

for all 0 ≤ k ≤ n − 1.
Two IA-labellings L1 = (I1, O1, T1) and L2 = (I2, O2, T2) are composable if they

overlap only on complementary types, i.e.
⋃

L1 ∩⋃
L2 = (I1 ∩ O2)∪ (I2 ∩ O1); these labels

are called shared. The product of two composable IA-labellings L1 = (I1, O1, T1) and
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Moving from interface theories to assembly theories 241

L2 = (I2, O2, T2) is given by the IA-labelling L1 ⊗ia L2 = ((I1\O2)∪ (I2\O1), (O1\I2)∪
(O2\I1), T1 ∪ T2 ∪ (

⋃
L1 ∩ ⋃

L2)). Two interface automata are composable if their IA-
labellings are composable.

The product P ⊗ia Q of two composable interface automata interleaves unshared and
internal labels and synchronises on shared labels [16, Def. 6]. Formally, the product of
P = (L P , SP , V0,P ,→P ) and Q = (L Q, SQ, V0,Q,→Q ), where P and Q are composable,

is given by the interface automaton P ⊗ia Q = (L P ⊗ia L Q, SP × SQ, V0,P × V0,Q,→)

with ((sP , sQ), l, (s′
P , s′

Q)) ∈ → if, and only if

– l ∈ (IP\OQ) ∪ (OP\IQ) ∪ TP and sP
l→P s′

P and sQ = s′
Q ; or

– l ∈ (IQ\OP ) ∪ (OQ\IP ) ∪ TQ and sQ
l→Q s′

Q and sP = s′
P ; or

– l ∈ ⋃
L P ∩ ⋃

L Q and sP
l→P s′

P and sQ
l→Q s′

Q .

The refinement P �ia Q of an interface automaton Q by an interface automaton P is
defined by means of an alternating simulation relation from P to Q which relates the initial
states of P and Q [16, Def. 11]. An alternating simulation relation from P to Q requires
that an input of Q is immediately matched by P; an output of P has to be matched by an
output in Q, but only after an arbitrary number of internal actions from Q; and an internal
action of P has to be matched by an arbitrary number of internal actions of Q. Formally,
for P = ((IP , OP , TP ), SP , V0,P ,→P ) and Q = ((IQ, OQ, TQ), SQ, V0,Q,→Q ) a binary
relation R ⊆ SP ×SQ is an alternating simulation relation from P to Q if for all (sP , sQ) ∈ R

– sQ
l→Q s′

Q ∧ l ∈ IQ ⇒ ∃s′
P ∈ SP . sP

l→P s′
P ∧ (s′

P , s′
Q) ∈ R;

– sP
l→P s′

P ∧ l ∈ OP ⇒ ∃s′
Q ∈ SQ . sQ

TQ→Q · l→Q s′
Q ∧ (s′

P , s′
Q) ∈ R;

– sP
l→P s′

P ∧ l ∈ TP ⇒ ∃s′
Q ∈ SQ . sQ

TQ→Q s′
Q ∧ (s′

P , s′
Q) ∈ R.

P �ia Q holds if IQ ⊆ IP and OP ⊆ OQ and there is an alternating simulation relation
R from P to Q such that there are s0,P ∈ V0,P and s0,Q ∈ V0,Q with (s0,P , s0,Q) ∈ R.

3.1.2 An optimistic interface theory of interface automata

Two composable, non-empty interface automata P and Q are compatible [16, Def. 8], written
as P ∼ia Q, if no error state of P ⊗ia Q can be reached autonomously from the initial state
of P ⊗ia Q: An error state of P ⊗ia Q is a state (sP , sQ) of the product where P offers
an output label in sP to Q or Q offers an output label in sQ to P , but the other interface
automaton does not provide a corresponding input label in sQ or sP , respectively; a state
(s′

P , s′
Q) is autonomously reachable from a state (sP , sQ) if there is a path from (sP , sQ) to

(s′
P , s′

Q) using only internal labels and unshared output labels. Obviously, ∼ia is a symmetric
relation.

The composition P ‖ia Q [14, Def. 10] of P and Q is defined by restricting the product
P ⊗ia Q to the set of those states from which no error state can be reached autonomously
(in [16, Def. 9], composition is restricted to compatible interface automata); in particular, if
an error state of the product is autonomously reachable from the initial state the composition
is an empty interface automaton.
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Example 1 Consider the composition of the following two interface automata where the
input and output labels of each interface automaton are shown on the surrounding borders
and we use a ! to indicate that a label is used as an output and a ? to indicate input uses:

IA P
a? b!

a b
IA Q

b

After receiving the unshared label a, the interface automaton P would send out the shared
label b to Q, but Q will not accept this input. But there exists a helpful environment, which
does not send a, such that the error state is not reachable in this environment. Therefore P and
Q are compatible and their composition P ‖ia Q just consists of an initial state without any
transitions. This example also shows that interface automata compatibility does not imply
deadlock freedom.

Composition of interface automata is obviously commutative (up to a bijection between
states). De Alfaro and Henzinger claim [14, Thm. 1] that composition is also associative,
i.e., (P ‖ia Q) ‖ia R = P ‖ia (Q ‖ia R) for pairwise composable interface automata P , Q,
and R. However, as has been observed by Bujtor and Vogler [10], this only holds for the
input-deterministic variant which we consider here and which is also considered in [16].

Moreover, de Alfaro and Henzinger show the properties of preservation of compatibil-
ity and compositional refinement for compatible interfaces [16, Thm. 4]. Our notion of
incremental design (F1) follows from the associativity of composition: If P ∼ia Q and
P ‖ia Q ∼ia R, then P ‖ia Q and R are non-empty interface automata, since otherwise
compatibility cannot hold. By P ‖ia Q ∼ia R, (P ‖ia Q) ‖ia R is also not empty. From asso-
ciativity, (P ‖ia Q)‖ia R = P ‖ia (Q ‖ia R), we get that P ‖ia (Q ‖ia R) is not empty, and hence
P ∼ia Q ‖ia R , since otherwise an error state of P ⊗ia (Q ‖ia R) would be autonomously
reachable from its initial state and thus P ‖ia (Q ‖ia R) would be empty (cf. [16, Thm. 3,
fn. 2]).

Proposition 1 F ia = (F ia, ‖ia,∼ia, �ia) with F ia the class of interface automata5 is an
interface theory.

Moreover, this interface theory F ia of interface automata is also optimistic: Let P , Q,
and R be pairwise composable interface automata with P ∼ia Q ‖ia R. Then P and Q ‖ia R
are both not empty. Moreover, P ∼ia Q ‖ia R implies that P ‖ia (Q ‖ia R) is not empty. From
associativity, P ‖ia (Q ‖ia R) = (P ‖ia Q) ‖ia R, we get that (P ‖ia Q) ‖ia R is not empty,
and thus, in particular, that P ‖ia Q is not empty. Hence, P ∼ia Q.

3.2 Modal interfaces

We show that a notion of modal interfaces, based on the modal transition systems by Hüttel
and Larsen [24,25], give rise to an interface theory. In contrast to interface automata, modal
interface distinguish between transitions which are optional (may) or mandatory (must) and
thus yield proper support for loose specifications and refinements.

5 More precisely, we consider interface automata as representatives of their isomorphism classes w.r.t. bijec-
tions on states.
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3.2.1 Modal interfaces, products, and refinement

A modal interface labelling L = (I, O), or MI-labelling for short, consists of two disjoint
sets of input labels I and output labels O , such that the invisible action τ is not an element
of I ∪ O . We write

⋃
L for the set I ∪ O of all labels of L .

A modal interface M = (L , S, s0,→,→) consists of an MI-labelling L = (I, O), a set
of states S, an initial state s0 ∈ S, a may-transition relation → ⊆ S × (

⋃
L ∪ {τ }) × S,

and a must-transition relation→⊆ →, i.e., any must-transition is also a may-transition. For

l ∈ ⋃
L ∪{τ }, we write s

l→ s′ for (s, l, s′) ∈ →and s
l→s′ for (s, l, s′) ∈ →. For denoting

sequences of transitions that abstract from silent transitions, we use the following notation:

1. We write s
τ̂→ s′ if there is a (possibly empty) sequence of may-transitions from s to s′

all labelled by τ , and likewise for must-transitions. For l ∈ ⋃
L , we write s

l̂→ s′ for

s
τ̂→· l→· τ̂→ s′, and likewise for must-transitions.

2. To express that a sequence of transitions is obtained by an arbitrary order of single
transitions involving only labels of a given set X ⊆ ⋃

L or the invisible action τ , we

write s
X̂→ s′ for s

τ̂→· l̂1→· · · l̂n→· τ̂→ s′ with n ≥ 0 and l1, . . . , ln ∈ X , and likewise
for must-transitions.

The set of states that are reachable from the initial state s0 is denoted by R(M).
Two MI-labellings L1 = (I1, O1) and L2 = (I2, O2) are composable if I1 ∩ I2 = ∅ =

O1 ∩ O2. The labels in
⋃

L1 ∩⋃
L2 = (I1 ∩ O2)∪ (I2 ∩ O1) are called shared. The product

of two composable MI-labellings L1 = (I1, O1) and L2 = (I2, O2) is given by the MI-
labelling L1 ⊗mi L2 = ((I1\O2) ∪ (I2\O1), (O1\I2) ∪ (O2\I1)). Two modal interfaces are
composable if their MI-labellings are composable.

The product M ⊗mi N of two composable modal interfaces M and N is defined analogous
to the product of interface automata (see Sect. 3.1) such that transitions with shared actions
are performed (only) simultaneously, but here after composition the shared labels become τ .
Additionally, a synchronisation transition in M ⊗mi N is a must-transition only if both of
the single synchronising transitions are must-transitions. This product of composable modal
interfaces is commutative and associative (up to a bijection between states).

The refinement M �mi N of a modal interface N by a modal interface M expresses that
required (must) transitions of the abstract specification N must also occur in the concrete
specification M , and, conversely, that allowed (may) transitions of the concrete specification
M must be allowed by the abstract specification N , but can be omitted in the concrete one [23].
Formally, for M = (L M , SM , s0,M ,→M ,→M ) and N = (L N , SN , s0,N ,→N ,→N ) a binary
relation R ⊆ SM ×SN is a weak modal simulation relation from M to N if for all (sM , sN ) ∈ R
and for all lM ∈ ⋃

L M and lN ∈ ⋃
L N the following holds:

R1. sN
lN→N s′

N ⇒ ∃s′
M ∈ SM . sM

l̂N→M s′
M ∧ (s′

M , s′
N ) ∈ R;

R2. sN
τ→A s′

N ⇒ ∃s′
M ∈ SM . sM

τ̂→M s′
M ∧ (s′

M , s′
N ) ∈ R;

R3. sM
lM→M s′

M ⇒ ∃s′
N ∈ SN . sN

l̂M→N s′
N ∧ (s′

M , s′
N ) ∈ R;

R4. sM
τ→M s′

M ⇒ ∃s′
N ∈ SN . sN

τ̂→N s′
N ∧ (s′

M , s′
N ) ∈ R.
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MI

w?

x!

z!

y?

w

z

x

y

MI

x?

y!

x

y

MI

w?

τ

z!

τ

w

z

MI

w?

z!

w

z

⊗mi

=

≈mi

Fig. 1 Product and refinement of modal interfaces

M �mi N holds if L M = L N and there is a weak modal simulation relation R from M to N
such that (s0,M , s0,N ) ∈ R. M and N are equivalent, written as M ≈mi N if both M �mi N
and N �mi M hold.

An example of the product and the refinement of modal interfaces is shown in Fig. 1:
The shared labels x and y are turned into τ in the product, which in this case can be skipped
yielding an equivalent modal interface.

The refinement of modal interfaces is reflexive and transitive, and it is preserved by the
product of modal interfaces [20]: For i ∈ {1, 2}, let Mi , Ni be modal interfaces such that
Mi �mi Ni and let M1 and M2 be composable. Then M1 ⊗mi M2 �mi N1 ⊗mi N2. In fact,
this refinement is witnessed by the weak modal simulation relation6 {((s1, s2), (t1, t2)) ∈
(SM1 × SM2) × (SN1 × SN2) | (s1, t1) ∈ R1 ∧ (s2, t2) ∈ R2} for weak modal simulation
relations Ri from Mi to Ni witnessing Mi �mi Ni for i ∈ {1, 2} [20, Lem. 2].

3.2.2 An interface theory of modal interfaces

For modal interfaces, we use a notion of compatibility inspired by weak modal compatibility
in [6]. This compatibility notion, as well as the (strong) compatibility notions in [14,16]
and [24], are based on the idea that outputs are autonomous and must be accepted by a
communication partner while inputs are subject to external choice and need not to be served.
Hence, outputs express assumptions of an interface that must be satisfied by corresponding
inputs of the environment. For instance, the modal interface M1 shown in Fig. 2a assumes
that the output x! will always be accepted by the modal interface M2. This is indeed the case
and therefore M1 is compatible with its environment M2. In Fig. 2b, however, the interface
M′

2 does not match the assumptions of M′
1, since M′

1 can autonomously decide to output y!
which cannot be accepted by the interface M′

2. In both figures we have directly connected the
labellings of the modal interfaces to exhibit shared labels.

Strong modal compatibility, pursued by [14,16] and [24], is based on the idea that when-
ever one component wants to send an output it finds the communication partner in a state,
in which it must take the corresponding input immediately. Weak modal compatibility [6]
is more liberal since it is sufficient if the communication partner must accept the message
possibly after performing first some silent must-transitions. But simple examples show, see

6 We refer to the different parts of modal interfaces by subscripting, such that, e.g., SM1 denotes the states of
the modal interface M1.
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MI M1

x!

MI M2

x? y?

x

y

(a)

MI M1

x! y!

MI M2

x?

x

y

(b)

Fig. 2 Autonomy of outputs. a Compatible modal interfaces. b Incompatible modal interfaces

e.g. Example 2 below, that this requirement is still too strong and would fail in many practical
applications. Therefore we generalise weak compatibility further and allow the communica-
tion partner to take the input only after performing silent must-transitions and/or mandatory
open (i.e. non-shared) outputs. This works well because these open outputs are again guar-
anteed to be taken (possibly after a delay) when further interfaces, meeting the assumptions
of the open outputs, are added. A formal justification of this fact will be given in the proof
of Theorem 1 below.

Definition 4 (Modal compatibility) Let M and N be composable modal interfaces. M is
modally compatible with N , written as cpmi(M, N ), if for each (sM , sN ) ∈ R(M ⊗mi N )

and each l ∈ OM ∩ IN the following holds with X = ON \IM :

∃s′
M ∈ SM . sM

l→M s′
M ⇒ ∃s′

N ∈ SN . sN
X̂→N · l→N s′

N .

Note that modal compatibility is in general not symmetric; e.g., in Fig. 2b, ¬cpmi(M′
1, M′

2)

but cpmi(M′
2, M′

1).

Example 2 The two interfaces on top of Fig. 1 are modally compatible in both directions.
For instance, if the right-hand-side interface is in the state in which it wants to issue y!, it finds
the other interface either in the state before it must issue z! or before it must accept y?. In the
latter case, the communication assumptions of the right-hand-side interface are immediately
met. But also in the first case, the left-hand-side interface must accept y? after it has sent
the open output z! (which cannot be dropped in any refinement, since it is a must-transition).
This situation would neither be captured by strong nor by weak compatibility.

Modal compatibility is not the same as deadlock-freedom. Indeed deadlock-freedom is
neither necessary nor sufficient. For instance, the interfaces in Fig. 2b are not compatible but
their composition is deadlock-free. Deadlock-freedom does not take into account here the
violation of the communication assumptions of M′

1. In this case, deadlock analysis would not
suffice to detect the communication error. On the other hand, the two interfaces in Fig. 3 are
trivially compatible. Due to lacking outputs none of the two interfaces has proper assumptions
on its environment. There is, however, an immediate deadlock in the composition of the two
interfaces, since none of the inputs is served. (Of course one can also imagine other variants
of communication correctness where inputs must be served.) As a conclusion, deadlock
behaviour of a composed system can, in general, not be identified with the satisfaction of
local communication assumptions (of the single components within the system).

Theorem 1 F mi = (Fmi,⊗mi, cpmi, �mi) with Fmi the class of modal interfaces7 is an
interface theory supporting compositional refinement.

7 More precisely, we consider modal interfaces as representatives of their isomorphism classes w.r.t. bijections
on states.
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Fig. 3 Deadlocking modal
interfaces

MI M1

x?

MI M2

y?

x

y

Proof We have to prove conditions (F1) and (F2) of interface theories and that F mi supports
compositional refinement, since support for compositional refinement implies condition (F3)
and all other requirements, like transitivity of refinement, are obvious. The preservation of
refinement by the product of modal interfaces, i.e., that M1 ⊗mi M2 �mi N1 ⊗mi N2

is implied by M1 �mi N1 and M2 �mi N2 for composable modal interfaces N1 and N2,
corresponds to the support of compositional refinement in F mi.

For (F1), incremental design, let M , N , and P be pairwise composable modal interfaces,
let cpmi(M, N ), and let cpmi(M ⊗mi N , P). We have to show that cpmi(M, N ⊗mi P). Let

l ∈ OM ∩ IN⊗mi P and let (sM , (sN , sP )) ∈ R(M ⊗mi (N ⊗mi P)) such that sM
l→M s′

M .
We have to prove that there are (s′

N , s′
P ), (s′′

N , s′′
P ) ∈ SN⊗mi P such that

(sN , sP )
X̂→N⊗mi P (s′′

N , s′′
P )

l→N⊗mi P (s′
N , s′

P ),

with X = ON⊗mi P\IM . Since M , N , and P are pairwise composable, l is either an input of
N or of P .

Let l be an input of N . We have (sM , sN ) ∈ R(M ⊗mi N ) by disregarding communication

with P . Since cpmi(M, N ), there is an s′
N ∈ SN with sN

Ŷ→N s′′
N

l→N s′
N for some s′′

N ∈ SN

where Y = ON \IM which, in particular, does not show any labels for communication with
M . Using cpmi(M ⊗mi N , P), we demonstrate by induction on the length n of the path for

sN
Ŷ→N s′′

N that also

(sN , sP )
X̂→N⊗mi P (s′′

N , s′
P )

for some s′
P ∈ SP from which the claim follows since l is an input of N .

If n = 0, we may choose s′
P = sP . Now let sN

Ŷ→N s′′′
N

m→N s′′
N be a path of length n + 1

with m ∈ Y ∪ {τ }. By the induction hypothesis, there is an s′′
P ∈ SP with

(sN , sP )
X̂→N⊗mi P (s′′′

N , s′′
P ).

If m ∈ {τ }∪(ON \(IM ∪ IP )), then the claim is obvious by choosing s′
P = s′′

P . If m ∈ ON ∩ IP ,

then by cpmi(M ⊗mi N , P) it follows that there are s′
P , s′′′

P ∈ SP such that s′′
P

Ẑ→P s′′′
P

m→P s′
P

with Z = OP\IM⊗mi N , that is, without communication to M ⊗mi N , and thus

(s′′′
N , s′′

P )
X̂→N⊗mi P (s′′′

N , s′′′
P )

τ→N⊗mi P (s′′
N , s′

P ),

since Z ⊆ X and m ∈ ON ∩ IP , and we have established the inductive claim.
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MI M
x? y!

MI NMI P yx

Fig. 4 Counter example to optimistic modal interface theory

Let now l be an input of P . By that sP
Ẑ→P s′′

P
l→P s′

P with Z = OP\IM⊗mi N , that is,
without communication to M ⊗mi N . Thus also

(sN , sP )
Ẑ→N⊗mi P (sN , s′′

P )
l→N⊗mi P (sN , s′

P )

establishing the claim since Z ⊆ X .
For condition (F2), preservation of compatibility, let M1, M2, N1, N2 be modal interfaces

with cpmi(N1, N2) and M1 �mi N1, M2 �mi N2. Let (s1, s2) ∈ R(M1 ⊗mi M2) and

l ∈ OM1 ∩ IM2 with s1
l→M1

s′
1 for some s′

1 ∈ SM1 . Since M1 �mi N1 and M2 �mi N2,

compositional refinement implies M1 ⊗mi M2 �mi N1 ⊗mi N2. Thus there is a (t1, t2) ∈
R(N1 ⊗mi N2) such that s1 and t1 are related by the weak modal simulation relation from

M1 to N1. Since s1
l→M1

s′
1 and M1 �mi N1, using (R3) of weak modal simulation, there are

transitions t1
τ̂→N1

t ′1 and t ′1
l→N1

t ′′1 for some t ′1, t ′′1 ∈ SN1 . In particular, (t ′1, t2) ∈ R(N1 ⊗mi

N2). Since cpmi(N1, N2), there is a t ′2 ∈ SN2 with t2
Ŷ→N2

· l→N2
t ′2 with Y = ON2\IN1 . But

this path of must-transitions is preserved, up to silent must-transitions, under the weak modal
simulation relation for M2 �mi N2 using (R1) and (R2). Hence cpmi(M1, M2). ��

The modal interface theory is not optimistic; cf. Definition 3. A counter example is given
in Fig. 4. Obviously, cpmi(M, N ⊗mi P), since in the composition of the three interfaces M
will never reach the state in which it wants to send y!, because P will never send x! to M.
Also cpmi(N, M ⊗mi P), since N does not show any requirements. However, if we omit P
and want to check cpmi(M, N), then x? is an open input in the composition of M and N and
therefore M will reach the state in which it wants to send y!. But N does not accept y?; thus
M is not compatible with N and cpmi(M, N) does not hold.

4 From interface theories to assembly theories

4.1 Assembly theories

We extend the abstract concept of an interface theory F = (F,⊗, cp, �) by introducing,
additionally to the domain F of interfaces, a domain A of assemblies. For this purpose, we
assume that each assembly A ∈ A consists of a family A = 〈Fi 〉i∈I of pairwise composable
interfaces Fi ∈ F with I finite.

To address behavioural compatibility of the (interacting) components which constitute
an assembly, we introduce a communication-safety predicate cs ⊆ A on assemblies. We
require that an assembly theory must offer a (partial) packing operation pack : A ⇀ F ,
which allows us to encapsulate a communication-safe assembly into a component interface
by hiding the internals of the assembly. Thus hierarchical assemblies can be constructed
by using packed assemblies as their components. Finally, we distinguish between interface
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and assembly refinement, expressed by the binary relations � ⊆ F × F for interfaces and
� ⊆ A × A for assemblies.

Some crucial properties relating the formation of assemblies, encapsulation, communi-
cation safety, and refinement are required for any concrete assembly theory. Property (A1)
below requires that assemblies can be constructed hierarchically by packing sub-assemblies
into interfaces. (A2) deals with compositionality of communication-safety. If an assembly
A is formed by the union of several sub-assemblies, then we can check the communication
safety of A by showing (i) that each sub-assembly is itself communication-safe, and (ii)
that on the boundaries between the sub-assemblies no communication errors can occur. (The
latter is formally expressed by requiring communication safety for the assembly obtained
by the packed sub-assemblies). Hence, once the sub-assemblies are locally “fine”, it only
remains to consider the interactions on the boundaries between them. This important prop-
erty supports also efficient communication-safety checking, since in concrete applications it
is often possible to consider minimised versions of the packed sub-assemblies. Property (A3)
implies that such efficient strategies can also be applied for packing assemblies in a composi-
tional way. Another important property is expressed by (A4) guaranteeing that refinements of
communication-safe assemblies are communication-safe. (A5) is straightforward requiring
that encapsulation of communication-safe assemblies which are in the assembly refinement
relation leads to interfaces which are in interface refinement relation. Finally, (A6) formu-
lates a compositionality requirement for the refinement of communication-safe assemblies.
It says that under the same assumptions used for (A2), local refinements of sub-assemblies
propagate to global assembly refinement.

Definition 5 (Assembly theory) Let F = (F,⊗, cp, �) be an interface theory. An assembly
theory (A, cs, pack,�) over F consists of

– the class A = {〈Fi 〉i∈I | 0 < |I | < ∞ and Fi , Fj ∈ F composable for i �= j ∈ I }8 of
assemblies;

– a communication-safety predicate cs ⊆ A such that 〈F〉 ∈ cs for all F ∈ F ; we write
cs(A) for A ∈ cs;

– a partial encapsulation operation pack : A ⇀ F , such that pack(A) is defined if cs(A)

holds, and pack(〈F〉) = F for all F ∈ F ;
– a reflexive and transitive assembly refinement relation � ⊆ A × A with 〈F〉 � 〈G〉 if

F � G, for all F, G ∈ F ,

such that for all A, B, A1, . . . , An, B1, . . . , Bn ∈ A the following conditions are satisfied:

A1. Hierarchical construction: if A = A1 � . . .� An and cs(Ak) for all k ∈ {1, . . . , n}, then
〈pack(A1), . . . , pack(An)〉 ∈ A.

A2. Compositionality of communication-safety: if A = A1 � . . . � An , cs(Ak) for all k ∈
{1, . . . , n}, and cs(〈pack(A1), . . . , pack(An)〉), then cs(A).

A3. Compositionality of encapsulation: if A = A1 � . . .� An , cs(Ak) for all k ∈ {1, . . . , n},
and cs(〈pack(A1), . . . , pack(An)〉), then pack(A) = pack(〈pack(A1), . . . , pack(An)〉).

A4. Preservation of communication-safety by refinement: If A � B and cs(B), then cs(A).
A5. Preservation of refinement by encapsulation: If A � B and cs(B), then pack(A) �

pack(B).

8 Hence for each A ∈ A, any non-empty sub-family of A is also in A.
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A6. Compositional refinement of communication-safe assemblies: if A = A1 � . . . � An ,
B = B1 � . . . � Bn , cs(〈pack(B1), . . . , pack(Bn)〉), and cs(Bk) and Ak � Bk for all
k ∈ {1, . . . , n}, then A � B.

Two assemblies A and B are equivalent, written A ≡ B, if A � B and B � A.

From the laws of an assembly theory it follows that communication-safe assemblies can
be constructed in an incremental manner, i.e., by enlarging the assembly by one interface at
a time, each time checking that the packed assembly up to now is communication-safe with
the additional interface. In fact, we get from (A2):

Incremental design: Let A ∈ A be an assembly and let F ∈ F such that A ∪ 〈F〉 ∈ A.
If cs(A) and cs(〈pack(A), F〉), then cs(A ∪ 〈F〉).

Similarly, the following law of independent implementability is also a consequence of the
properties (A5) and (A6) of an assembly theory.

Independent implementability: Let A, B ∈ A such that A � B and let F, G ∈ F such
that F � G and B ∪ 〈G〉 ∈ A. If cs(B) and cs(〈pack(B), G〉), then A ∪ 〈F〉 � B ∪ 〈G〉.

Moreover, in each assembly theory interface-wise refinement induces an assembly refine-
ment:

Lemma 1 Let (A, cs, pack,�) be an assembly theory over the interface theory (F,⊗,

cp, �). Let 〈Fi 〉i∈I , 〈Gi 〉i∈I ∈ A, cs(〈Gi 〉i∈I ), and Fi � Gi for all i ∈ I . Then 〈Fi 〉i∈I �
〈Gi 〉i∈I .

Proof We can apply (A6) since cs(〈Gi 〉), pack(〈Gi 〉) = Gi , and 〈Fi 〉 � 〈Gi 〉 for each i ∈ I .
��

In correspondence with optimistic interface theories, we may also consider optimistic
assembly theories.

Definition 6 (Optimistic assembly theory) An assembly theory (A, cs, pack,�) over an
interface theory (F,⊗, cp, �) is optimistic, if cs(〈Fi 〉i∈I ) implies cs(〈Fi 〉i∈J ) for each ∅ �=
J ⊆ I .

4.2 Canonical assembly theories

To state the general requirements for an assembly theory over a given interface theory F =
(F,⊗, cp, �), we have used in Def. 5 the underlying class F of interfaces to define assemblies
and the interface refinement notion � to formulate the requirement (A5). In this section we
show that we can use the interface composition operator ⊗ and the interface compatibility
relation cp, first to derive a communication-safety predicate for assemblies, and then to define
an encapsulation operator for packing communication-safe assemblies. For this purpose, we
extend the binary operator for interface composition to an n-ary composition operator on
non-empty, finite families 〈Fi 〉i∈I of pairwise composable interfaces, i.e., to a composition
operator on assemblies, by the following inductive definition:

–
⊗〈F〉 = F ,

–
⊗〈Fi 〉i∈I�{ j} = ⊗〈Fi 〉i∈I ⊗ Fj .
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MI M1

x! z?

MI M2

y! x?

MI M3

z! y?

assembly A

x

yz

Fig. 5 An assembly of modal interfaces which is not communication-safe

The order of the composition is irrelevant, since the binary composition of interfaces is
commutative and also associative for pairwise composable interfaces.

We are now interested in the definition of an appropriate communication-safety predicate
for assemblies by using the compatibility relation cp for interfaces. A first obvious idea would
be to consider an assembly A = 〈Fi 〉i∈I communication-safe if all pairs of interfaces in A are
compatible, i.e., if cp(Fi , Fj ) holds for all i �= j . While this may work for some particular
compatibility notions, the next two examples show that this idea is in general not applicable.

Example 3 Consider the following assembly of interface automata:

IA P
a!

IA Q
a? b!

IA R

assembly I

ba

Then (trivially) P ∼ia Q, Q ∼ia R (since interface automata compatibility is optimistic),
and also (trivially) P ∼ia R. But P �∼ia Q‖iaR and Q �∼ia P‖iaR and also R �∼ia P‖iaQ. Hence,
for P, the composition Q ‖ia R of the rest of the assembly is not a valid environment since it
does not satisfy the environment assumptions of P. (Note that, as illustrated in Example 1,
Q ‖ia R consists only of the initial state without any transitions.) Similarly, also for the other
interfaces the rest of the assembly is not a valid environment. Thus the assembly I should be
rejected because it is not communication-safe.

Example 4 Consider the assembly A′ of modal interfaces in Fig. 5. The modal interfaces
M1, M2, and M′

3 are pairwise compatible (in each direction). For instance, cpmi(M2, M′
3)

holds since M′
3 will accept the output y! of M2 after it has issued its own open output z!.

But ¬cpmi(M2, M1 ⊗mi M′
3), since there is a circular wait. Hence, M1 ⊗mi M′

3 is not a valid
environment for M2 and therefore the assembly A′ cannot be considered communication-safe.
Again pairwise checking of compatibility does not suffice to show the communication safety
of the assembly.

Another attempt for the definition of communication-safe assemblies could use the incre-
mental construction idea. For instance, one could say that an assembly A = 〈F, G, H〉 is
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communication-safe if it can be constructed by first forming a communication-safe sub-
assembly of A and then checking that the remaining interface is compatible with the sub-
assembly. This definition would, however, not work for pessimistic compatibility as illustrated
by the next example. The example shows that there can be communication-safe assemblies
for which no incremental construction is possible. Therefore, incremental design should just
be a sufficient condition to obtain communication safety but not a necessary one.

Example 5 Let us consider the following assembly of modal interfaces:

MI N

x!

MI M

x?

y?

MI P

y!

assembly B

yx

Following the idea of modal compatibility, this assembly is communication-safe since
for each of its members the rest of the assembly satisfies the communication requirements.
For instance, P wants to issue y! which is accepted by the rest of the assembly, since after a
communication x between M and N, M is ready to receive y?. Similarly the communication
requirements of N are fulfilled by the rest of the assembly (and M has anyway no output).
Now let us try to construct the assembly incrementally. We cannot start with N and M since
¬cpmi(N, M) and therefore the sub-assembly 〈N, M〉 cannot be considered communication-
safe. Similarly, we can also not start with P and M since ¬cpmi(P, M). However, we could
start with 〈N, P〉 since their labels are disjoint and therefore no communication error can
occur. Incremental design would then require to check that the sub-assembly 〈N, P〉 works
well with M. But 〈N, P〉 might issue y! and M is not able to receive y? after performing
autonomous actions.

We will follow now the idea of Liu et al. [26] stated in the introduction: “When we connect a
set of components in a network, we need to check […] whether each component’s assumptions
about the rest of the system have been met.” In our setting this means: For each interface Fj

occurring in an assembly 〈Fi 〉i∈I the rest of the assembly, given by E j = 〈Fi 〉i∈I\{ j}, plays the
role of the environment for Fj . An assembly is communication-safe if each Fj is compatible
with its environment E j . For the representation of the behaviour of the environment E j , which
is relevant for the communication with Fj , we use the n-ary composition of the interfaces in
E j and require that Fj is compatible with

⊗〈Fi 〉i∈I\{ j}. This leads to the following definition
of communication safety:

C1. cs(〈Fi 〉i∈I ) if, and only if, for all j ∈ I , cp(Fj ,
⊗〈Fi 〉i∈I\{ j}).

For an assembly A = 〈Fi 〉i∈I , the composition
⊗〈Fi 〉i∈I is an interface. For

communication-safe assemblies it represents the black box behaviour of the composition
of the members of the assembly. Therefore the n-ary composition is well-suited to define the
encapsulation of communication-safe assemblies into interfaces:

C2. pack(〈Fi 〉i∈I ) = ⊗〈Fi 〉i∈I , if cs(〈Fi 〉i∈I ), and undefined otherwise.

Theorem 2 (Canonical assembly theory) Let F = (F,⊗, cp, �) be an interface theory.
Let A = (A, cs, pack,�) such that A is defined as in Def. 5, cs is defined by (C1), pack
is defined by (C2) and � ⊆ A × A is an assembly refinement relation according to Def. 5.
Then A is an assembly theory over F which we call a canonical assembly theory over F .
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Proof We have to show that the conditions (A1), (A2), and (A3) in Definition 5 follow from
the definitions of cs and pack. Let A = 〈Fi 〉i∈I , I = I1 � . . .� In , Ak = 〈Fi 〉i∈Ik and cs(Ak)

for k ∈ {1, . . . , n}.
For (A1), hierarchical construction, we obviously have

〈pack(A1), . . . , pack(An)〉 = 〈⊗〈Fi 〉i∈I1 , . . . ,
⊗〈Fi 〉i∈In 〉 ∈ A.

For (A2), compositionality of communication-safety, let also cs(〈pack(A1), . . . ,

pack(An)〉) hold. We have to prove cp(Fj ,
⊗〈Fi 〉i∈I\{ j}) for all j ∈ I . Without loss of gen-

erality let j ∈ I1. By definition of cs, cp(Fj ,
⊗〈Fi 〉i∈I1\{ j}) and cp(pack(A1),

⊗〈pack(A2),

. . . , pack(An)〉) hold. Since pack(A1) = ⊗〈Fi 〉i∈I1 , we get cp(Fj , 〈Fi 〉i∈I1\{ j} ⊗⊗〈pack(A2), . . . , pack(An)〉), i.e., cp(Fj ,
⊗〈Fi 〉i∈I\{ j}) by incremental design (F1).

For (A3), compositionality of encapsulation, let again also cs(〈pack(A1), . . . , pack(An)〉)
hold. Then by (A2) cs(A) also holds and we have

pack(〈pack(A1), . . . , pack(An)〉) = pack(〈⊗〈Fi 〉i∈I1 , . . . ,
⊗〈Fi 〉i∈In 〉)

= ⊗〈⊗〈Fi 〉i∈I1 , . . . ,
⊗〈Fi 〉i∈In 〉 = ⊗〈Fi 〉i∈⋃

1≤k≤n Ik = pack(〈Fi 〉i∈I ). ��

Proposition 2 Let F = (F,⊗, cp, �) be an optimistic interface theory and A = (A, cs,
pack,�) a canonical assembly theory over F . Then A is optimistic.

Proof Let cs(〈Fi 〉i∈I ) hold, i.e., cp(Fj ,
⊗〈Fi 〉i∈I\{ j}) for all j ∈ I , and let ∅ �= J ⊆ I . If

|J | = 1, then cs(〈Fi 〉i∈J ) holds, since A is an assembly theory. Let thus |J | > 1 and j ∈ J .
Then cp(Fj ,

⊗〈Fi 〉i∈J\{ j}) by the definition of
⊗

and the optimism of F . ��
4.3 Simple assembly theories

Let us now turn to assembly refinement. The question is whether we can also derive a mean-
ingful assembly refinement relation � from the interface refinement relation �. There are two
obvious options. The first one is to define assembly refinement A � B by requiring cs(A),
cs(B), and that pack(A) � pack(B) is an interface refinement between the packed assemblies.
We consider this option not as meaningful, because packaging assemblies abstracts away all
architectural and interaction information that is relevant for an assembly and therefore should
be taken into account by an assembly refinement. Another option is to require component-
wise refinement of the interfaces of assemblies, i.e., for two assemblies A = 〈Fi 〉i∈I and
B = 〈G j 〉 j∈J we define:

C3. A � B ⇐⇒ I = J ∧ ∀i ∈ I . Fi � Gi .

This definition works, see Theorem 3 below, but, in general, it is not flexible enough. The
reason is that within the context of an assembly A, a single interface F may be replaced
by another interface F ′ and the resulting assembly can still be a valid refinement of the
former one, even if F ′ is not an interface refinement of F . This is not surprising since
interfaces considered in isolation may substantially differ, but in certain contexts this may be
resolved. This observation was, e.g., the motivation for studying component substitutability
in component-interaction automata in [13].

Example 6 Consider the following automata F, G and G′ which may either be interpreted as
interface automata or as modal interfaces:
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interface F

a!

interface G

a?

a

interface F

a!

interface G

a?
a

In fact, since the product in both interpretations is closed, ‖ia = ⊗mi. Obviously, F‖ia G′ ≤
F ‖ia G with ≤ either interface automata or modal refinement. But G′ is neither an interface
automata refinement of G nor a modal refinement of G.

As a consequence of these considerations we are interested in assembly refinement rela-
tions which do not require component-wise refinement. Following the general rules of an
assembly theory we must, however, respect a range in which assembly refinement must
be located: Let (A, cs, pack,�) be a canonical assembly theory over the interface theory
(F,⊗, cp, �). Then for any assemblies 〈Fi 〉i∈I and 〈Gi 〉i∈I in A with cs(〈Gi 〉i∈I ) we have
the following chain of implications:

(∀i ∈ I . Fi � Gi ) ⇒ 〈Fi 〉i∈I � 〈Gi 〉i∈I ⇒ ⊗〈Fi 〉i∈I �
⊗〈Gi 〉i∈I .

In fact, the upper bound for the assembly refinement 〈Fi 〉i∈I � 〈Gi 〉i∈I in the implication
to the left is the proposition of Lem. 1. The lower bound in the implication to the right
follows from property (A5) in Definition 5 and from property (C2) using transitivity of
interface refinement.

Finally, let us point out that definition (C3) would indeed always lead to an assembly
theory provided that the underlying interface theory supports compositional refinement or is
optimistic.

Theorem 3 (Simple assembly theory) Let F = (F,⊗, cp, �) be an interface theory which
either supports compositional refinement or is optimistic (or both). Let A = (A, cs, pack,�)

be a canonical assembly theory over F such that � is defined by (C3). Then A is an assembly
theory over F which we call the simple assembly theory over F .

Proof We have to show that � is a reflexive and transitive assembly refinement relation
with 〈F〉 � 〈G〉 if F � G and satisfying (A4), (A5), and (A6) of Definition 5. Reflexivity
and transitivity follow from the corresponding assumptions for �, and that F � G implies
〈F〉 � 〈G〉 holds by definition.

For the requirements of preservation of communication-safety (A4) and refinement encap-
sulation (A5), let A = 〈Fi 〉i∈I and B = 〈G j 〉 j∈J be assemblies with A � B, i.e., I = J
and Fi � Gi for all i ∈ I , and let cs(B) hold, i.e., cp(G j ,

⊗〈Gi 〉i∈I\{ j}) for all j ∈ I . We
have to prove cs(A), i.e., cp(Fj ,

⊗〈Fi 〉i∈I\{ j}) for all j ∈ I in order to obtain (A4), and
pack(A) � pack(B), i.e.,

⊗〈Fi 〉i∈I �
⊗〈Gi 〉i∈I for (A5).

If F supports compositional refinement, then
⊗〈Fi 〉i∈I �

⊗〈Gi 〉i∈I immediately
follows. If F is optimistic, then cs(B) implies cp(Gi ,

⊗〈G j 〉 j∈J ) for all i ∈ I and
∅ �= J ⊆ I\{ j}, and thus inductively

⊗〈Fi 〉i∈I �
⊗〈Gi 〉i∈I by compositional refine-

ment of compatible interfaces (F3). Hence, in both cases we get (A5). We also have in both
cases

⊗〈Fi 〉i∈I\{ j} �
⊗〈Gi 〉i∈I\{ j} for all j ∈ I . Since cp(G j ,

⊗〈Gi 〉i∈I\{ j}) for all j ∈ I ,
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preservation of compatibility (F2) induces cp(Fj ,
⊗〈Fi 〉i∈I\{ j}). Hence, we obtain (A4) in

both cases.
For compositional refinement of communication-safe assemblies (A6), let A = 〈Fi 〉i∈I ,

I = I1 � . . .� In , let B = 〈G j 〉 j∈J , J = J1 � . . .� Jn , cs(〈pack(〈G j 〉 j∈J1 , . . . , 〈G j 〉 j∈Jn )〉),
and cs(〈G j 〉 j∈Jk ) and 〈Fi 〉i∈Ik � 〈G j 〉 j∈Jk for all k ∈ {1, . . . , n}. Then Ik = Jk for all
k ∈ {1, . . . , n} and Fj � G j for all j ∈ J = J1 ∪ . . . ∪ Jn . Hence I = J and Fj � G j for
all j ∈ J follows. ��

5 Instances of assembly theories

5.1 The simple assembly theories of interface automata and modal interfaces

According to Theorem 3, we get immediately a simple assembly theory A ia of interface
automata over the interface theory F ia = (F ia, ‖ia,∼ia, �ia), since this interface theory is
optimistic, cf. Sect. 3.1. In detail, this simple assembly theory A ia = (Aia, csia, packia,�ia)

reads as follows:

– Aia = {〈Pi 〉i∈I | 0 < |I | < ∞ and Pi , Pj ∈ Fmi composable for i �= j ∈ I }
– csia(〈Pi 〉i∈I ) if, and only if, Pj ∼ia

∥
∥ia〈Pi 〉i∈I\{ j} for all j ∈ I

– packia(〈Pi 〉i∈I ) = ∥
∥ia〈Pi 〉i∈I

– 〈Pi 〉i∈I �ia 〈Q j 〉 j∈J if, and only if, I = J and Pi �ia Qi for all i ∈ I

The assembly theory A ia is optimistic by Proposition 2.
We also can construct a simple assembly theory A mi of modal interfaces over the

modal interface theory F mi = (Fmi,⊗mi, cpmi, �mi), since this interface theory sup-
ports compositional refinement, cf. Theorem 1. Spelled out, this simple assembly theory
A mi = (Ami, csmi, packmi,�mi) consists of

– Ami = {〈Mi 〉i∈I | 0 < |I | < ∞ and Mi , M j ∈ Fmi composable for i �= j ∈ I }
– csmi(〈Mi 〉i∈I ) if, and only if, cpmi(M j ,

⊗mi〈Mi 〉i∈I\{ j}) for all j ∈ I
– packmi(〈Mi 〉i∈I ) = ⊗mi〈Mi 〉i∈I

– 〈Mi 〉i∈I �mi 〈N j 〉 j∈J if, and only if, I = J and Mi �mi Ni for all i ∈ I

Figure 6 shows the pictorial representation of a modal assembly consisting of three pair-
wise composable modal interfaces M1, M2, and M3 which is modally communication-safe,
i.e., csmi(〈M1, M2, M3〉).

The assembly A′ in Fig. 5, which is a slight variant of the assembly in Fig. 6 such that
the order of the input y? and output z! in M3 is reversed, is not communication-safe, since
¬cpmi(M2, M1 ⊗mi M′

3), cf. Example 4. The product
⊗mi A′ would just consist of the initial

state without transitions. This shows, that if an assembly A is not (modally) communication-
safe, the product

⊗mi A does not reflect this serious issue, as dangling outputs are simply
ignored. In this sense, the product

⊗mi A is not a proper representation of the full behaviour
of the assembly. Also communications within members of the assembly are not shown in⊗mi A, since the product turns communication labels into the silent, invisible action τ .
For understanding the semantics of an assembly we need, however, a faithful behaviour
representation with visible communications which will be considered in the next section.
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MI M1

x! z?

MI M2

y! x?

MI M3

y? z!

assembly A

x

yz

Fig. 6 A communication-safe modal assembly

5.2 A modal assembly theory based on assembly behaviours

We now build another canonical assembly theory over the interface theory (Fmi,⊗mi, cpmi,

�mi) of modal interfaces, which keeps the notion of assemblies Ami, communication-safety
csmi, and encapsulation packmi of the simple modal assembly theory A mi, but replaces
the refinement relation �mi by a more flexible notion based on an explicit definition of
the behaviour of modal assemblies. This notion of behaviour on the one hand indeed shows
communication errors and also keeps communication labels separated from the silent action τ .

5.2.1 Modal I/O-transition systems

Modal I/O-transition systems, or MIOs for short, slightly generalise the notion of modal
interfaces in Sect. 3.2 by extending the possible labellings to include communication labels.

Thus a MIO-labelling L = (I, O, C) consists of pairwise disjoint sets of input labels
I , output labels O , and communication labels C such that the invisible action τ is not an
element of I ∪ O ∪ C . The definition of a MIO is the same as the one of a modal interface
only changing the labellings. Two MIO-labellings are composable if they are composable in
the sense of IA-labellings the communication labels playing the role of internal labels. The
product M ⊗m N of two composable MIOs is the same as the product of modal interfaces,
but, like in interface automata, shared labels are not turned into τ but become communication
labels. Also the refinement M �m N of a MIO N by a MIO M is defined just as the refinement
of modal interfaces; in particular, and in contrast to interface automata, communication labels
are not abstracted away in the refinement, but have to be preserved. Finally, we introduce
a hiding operator ξ from MIO-labellings to MI-labellings that forgets the communication
labels, i.e., (I, O, C)ξ = (I, O), and lift this hiding to an operator from MIOs to modal
interfaces such that Mξ has L Mξ as its labelling and all communication labels occurring in
the MIO M are turned into τ . Obviously, M �m N implies Mξ �mi Nξ .

5.2.2 Communication errors in modal assemblies

Based on MIOs, we consider an explicit notion of communication errors in a modal assembly.
We extend MIOs by error states and define the behaviour of a modal assembly as such a MIO
with error states which record these communication errors. For a modal assembly A we define⊗m A inductively by

⊗m〈M〉 = M9 and
⊗m〈Mi 〉i∈I�{ j} = ⊗m〈Mi 〉i∈I ⊗m M j .

9 The modal interface M is considered as a MIO with no communication labels and the same holds for M j
in the subsequent case.
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Definition 7 (Communication errors) Let A = 〈Mi 〉i∈I be a modal assembly. If |I | = 1,
then the set of communication errors E (A) = ∅. Otherwise, for each j ∈ I , let E j =⊗m〈Mi 〉i∈I\{ j}. Then the communication errors E (A) are given by the set of pairs ((si )i∈I , l)
such that (si )i∈I ∈ R(

⊗m A) and there is j ∈ I with l ∈ OM j ∩ IE j , a state s′
j ∈ SM j with

s j
l→M j

s′
j but there are no transitions

(si )i∈I\{ j}
X̂ j→E j

· l→E j
(s′

i )i∈I\{ j}

with X j = CE j ∪ (OE j \IM j ).
10

A communication error shows two pieces of information: in which state and for which
output an offered communication has no corresponding input. Note that only communication
errors occurring in the reachable part of

⊗m A are considered.
Comparing the definition of communication errors of a modal assembly with the definition

of the communication-safety predicate for modal assemblies in Sect. 5.1, we immediately
get.

Lemma 2 Let A ∈ Ami. Then csmi(A) if, and only if, E (A) = ∅.

Definition 8 (MIOs with error states) A MIO with error states (EMIO) is a pair (M, E)

consisting of a MIO M and a set of error states E ⊆ SM . The reachable states of (M, E) are
the reachable states of M , i.e. R(M, E) = R(M).

The error composition of MIOs is obtained by taking their product enriched by error states
(if there are any) which are then reached by the unsuccessful communication labels l. The
idea is similar to the consent operator introduced in [1] to compose languages by indicating
communication errors in traces.

Definition 9 (Error composition of MIOs) Let A = 〈Mi 〉i∈I be a modal assembly and let
P = ⊗m A. The error composition of A is given by the EMIO

⊗err A = ((L P , SP ∪ E (A), s0,P ,→,→P ), E (A))

with may-transition relation →= →P ∪ {(p, l, (p, l)) | (p, l) ∈ E (A)}.
The behaviour of a modal assembly is given by the error composition of the modal inter-

faces of the assembly. It may also be considered as the semantics of the assembly. If no
communication error is reachable in the assembly behaviour, the assembly is communication-
safe.

Definition 10 (Behaviour of a modal assembly) The behaviour of a modal assembly A ∈ Ami

is given by beh(A) = ⊗err A.

As an example, consider the assembly A in Fig. 6 and its (reachable) behaviour shown
in Fig. 7, where we indicate communication labels at the lower border. The assembly is
communication-safe since there is no reachable error state. In fact all interfaces will be able
to send their messages, possibly after a delay. For instance, M1 can send x to M2 after M2 has
communicated the message y to M3.

10 Recall that CE j are the communication labels of E j and (OE j \IM j ) the output labels of E j unshared
with the input labels of M j , i.e., not used for communication between E j and M j . The silent must-transitions

of E j are anyway subsumed in the notation
X̂ j→E j

; see Sect. 3.2.
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Fig. 7 Behaviour of the
assembly A in Fig. 6

EMIO beh(A)
y x z

x y z

Fig. 8 Behaviour of the
assembly A′ in Fig. 5

EMIO beh(A )

x y z

x y z

EMIO beh(Ā)
y! x z?

z y

x

(a)

MI packmi(Ā)
y! τ z?

z y

(b)

EMIO beh(C̄)
y τ z

y z

(c)

Fig. 9 Modal behaviours for assembly A in Fig. 6. a Behaviour of assembly Ā. b Modal interface packmi(Ā).
c Behaviour of assembly C̄

Reconsider now the assembly A′ of Fig. 5. The EMIO representing the (reachable) behav-
iour of A′ is shown in Fig. 8; it contains three reachable error states. These are induced by the
cyclic wait of the single interfaces in A′. Hence the assembly A′ is not communication-safe.

The encapsulation of a modal assembly A that shows no communication errors amounts
to hiding the communication labels in the behaviour of A.

Lemma 3 Let A ∈ Ami be a modal assembly and (M, E) = beh(A). Then E = ∅ implies
packmi(A) = Mξ .

Let us demonstrate how the principle of incremental design (see Sect. 4), which is a
consequence of (A2), works for the example assembly A in Fig. 6 in terms of behaviours. We
start with the assembly Ā = 〈M1, M2〉. The behaviour of this assembly is shown in Fig. 9a.
Obviously, Ā is communication-safe. We now want to add the interface M3 to Ā. First, we
pack the assembly Ā which yields the modal interface packmi(Ā) shown in Fig. 9b. Then we
consider the assembly C̄ = 〈packmi(Ā), M3〉 whose behaviour is shown in Fig. 9c. Obviously
C̄ is communication-safe and therefore, by the law of incremental design, the assembly
A = 〈M1, M2, M3〉 is also communication-safe. The incremental communication-safety check
would, in general, be much more efficient if we would minimise packed assemblies w.r.t.
silent transitions. This would be sound due to the laws for (weak) modal assembly refinement
considered below.

Consider once more the assembly A′ in Fig. 5 and assume that we want to construct it in
an incremental way. Then we could start again with the assembly Ā = 〈M1, M2〉 which is
communication-safe. But now, for adding the interface M′

3, we have to consider the assembly

123



258 R. Hennicker, A. Knapp

Fig. 10 Behaviour of assembly
C̄

′ EMIO beh(C̄ )

y z

y z

MI N
y!

MI M
x! y?

MI P
x?

assembly C1

y x

(a)

EMIO beh(C1)

x y

x y

(b)

MI packmi( )N, P

y! x?

x? y!

x y

(c)

Fig. 11 Counter-example for (i). a Modal assembly C1. b Behaviour of assembly C1. c Modal interface
packmi(〈N, P〉)

MI N
y!

MI M
x? y?

MI P
x!

assembly C2

y x

Fig. 12 Counter-example for (ii)

C̄
′ = 〈packmi(Ā), M′

3〉 and to check communication-safety. The behaviour of C̄
′

is shown in
Fig. 10; it has two error states. Hence, the incremental design step would not succeed and
anyway, as we know from before, the assembly A′ is not communication-safe.

Conversely, we cannot deduce from the communication safety of an assembly A ∪ B
that (i) 〈packmi(A), packmi(B)〉 is communication-safe and we can also not deduce that (ii)
the sub-assemblies A, B are communication-safe. Hence the converse direction of (A2) does
not hold. A counter-example for (i) is shown in Fig. 11a. We can observe that the assembly
C1 is communication-safe; its (reachable) behaviour, see Fig. 11b, contains no reachable
error states. If we pack the sub-assembly 〈N, P〉 we obtain the modal interface shown in
Fig. 11c. But the assembly 〈M, packmi(〈N, P〉)〉 is not communication-safe. The reason is
that packmi(〈N, P〉) has an output y! in its initial state, but the interface M can never accept
this particular output as an input. It can only perform an x-communication with packmi(〈N, P〉)
and then accept “another” y! output of packmi(〈N, P〉) issued in another state.

A counter-example for (ii) is shown in Fig. 12. The whole assembly C2 is communication-
safe, but the sub-assembly 〈N, M′〉 is not. The reason is that N has an output y! in its initial
state, but M′ has an open input x? before it can accept y? which is not allowed. (Inputs are not
subject to internal choice and we cannot be sure that an environment will serve this input.)
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5.2.3 Behaviour refinement of modal assemblies

For the refinement of modal assemblies we compare their behaviours. Since assembly behav-
iours are MIOs with error states, we first extend the refinement notion for MIOs to EMIOs,
such that error states are respected by the refinement relation.

Definition 11 (Refinement of MIOs with error states) Let (MA, E A) and (MB , EB) be two
EMIOs. (MA, E A) is a refinement of (MB , EB), if MA �m MB witnessed by a weak modal
simulation relation R ⊆ ((SMA\E A) × (SMB \EB)) ∪ (E A × EB) with (s0,MA , s0,MB ) ∈ R.

Definition 12 (Behaviour refinement of modal assemblies) A modal assembly A behav-
iourally refines a modal assembly B, written as A �m B, if beh(A) is a refinement of
beh(B).

This behavioural refinement of modal assemblies is not restricted to interface-wise refine-
ment, as motivated in Ex. 6. Still, it yields a canonical assembly theory over the modal
interface theory:

Theorem 4 (Ami, csmi, packmi,�m) is a canonical assembly theory over F mi.

Proof It remains to check that the conditions (A4), (A5) and (A6) of an assembly theory are
satisfied, since that M �mi N implies 〈M〉 �m 〈N 〉 is obvious.

(A4): Let A �m B and csmi(B). Let (MA, E A) = beh(A) = ⊗err A and (MB , EB) =
beh(B) = ⊗err B. If an error state in E A would be reachable in MA, then A �m B would
imply that some error state in EB is also reachable in MB since error states must be related
to error states by a refinement. Thus csmi(A) holds by Lemma 2.

(A5): Let A �m B and csmi(B). Let (MA, E A) = beh(A) and (MB , EB) = beh(B).
Then csmi(B) implies EB = ∅, and thus E A = ∅ since A �m B. Furthermore, MA �m MB

implies MAξ �mi MBξ , i.e., packmi(A) �mi packmi(B) by Lemma 3.
(A6): By Lemma 2, Lemma 3, and (A2) it suffices to prove the following: Let A = 〈Mi 〉i∈I

and B = 〈N j 〉 j∈J be modal assemblies. Let I = I1 � . . . � In and J = J1 � . . . � Jn . Let
Ak = 〈Mi 〉i∈Ik , Bk = 〈N j 〉 j∈Jk , E (Ak) = ∅, E (Bk) = ∅ for all k ∈ {1, . . . , n}. Let Pk =⊗m Ak , Qk = ⊗m Bk , and Pk �m Qk for k ∈ {1, . . . , n}. Let E (〈Q1ξ, . . . , Qnξ 〉) = ∅.
Then E (〈P1ξ, . . . , Pnξ 〉) = ∅.

Let j ∈ {1, . . . , n}. Assume for a contradiction that there is a communication error
((pk)1≤k≤n, l) ∈ E (〈P1ξ, . . . , Pnξ 〉) with l ∈ OPj ξ ∩ IE j with E j = ⊗m〈Pkξ 〉1≤k �= j≤n . Let
X j = CE j ∪(OE j \IPj ξ ). Without loss of generality, we can assume that j = 1. By Pk �m Qk

and consequently Pkξ �mi Qkξ for all k ∈ {1, . . . , n}, we have that
⊗m〈Pkξ 〉1≤k≤n �m

⊗m〈Qkξ 〉1≤k≤n and thus there is a state (qk)1≤k≤n ∈ S⊗m〈Qkξ〉1≤k≤n
which is related to

(pk)1≤k≤n in the weak modal simulation relation. In particular, the may-output l is also

present at (qk)1≤k≤n and thus (qk)2≤k≤n
Ŷ j→Fj

· l→Fj
(q ′

k)2≤k≤n with Fj = ⊗m〈Qkξ 〉2≤k≤n

and Y j = CFj ∪ (OFj \IQ j ξ ). But this series of must-transitions is also available in E1. ��

6 Case-study: a modal cash desk assembly

We illustrate how our techniques for modal interfaces and modal assemblies work for the
development of a (small) component system. We consider a simple cash desk application,
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MI
CashDeskGUI

MI
CashDeskController

MI
ClearingCompany

assembly CashDeskAssembly

MI
CashDeskGUI

MI
CashDeskController’

MI
ClearingCompany’

assembly CashDeskAssemblyRef

m(2)

packmi MI
packmi(CashDeskAssembly)

packmi MI
packmi(CashDeskAssemblyRef)

m
i

(3)

MI
CashDesk

m
i

(1)

Fig. 13 Overview of top-down development of the cash desk application

inspired by [30]: At a cash desk, all the sale items of a customer are registered and their data
printed out on the cash register roll; afterwards the grand total is printed and the customer
may pay in cash or by credit card.

Figure 13 gives an overview of the different steps in a top-down development of such
a cash desk system. We first capture the abstract requirements of the whole system in a
modal interface CashDesk. In the next step, we develop an architecture as a modal assembly
CashDeskAssembly and show its modal communication-safety. In order to verify the correct-
ness of the chosen architecture w.r.t. the requirements we have to prove that its encapsulated
modal interface refines the modal interface CashDesk (proof obligation (1) in Fig. 13). Now
we replace two of the modal interfaces inside of CashDeskAssembly, namely CashDeskCon-
troller by CashDeskController’ and ClearingCompany by ClearingCompany’, and prove that
the resulting modal assembly CashDeskAssemblyRef is a refinement of CashDeskAssem-
bly (proof obligation (2)). From this we infer two properties: First, since assembly refinement
preserves communication-safety, CashDeskAssemblyRef is also communication-safe. Sec-
ondly, by preservation of refinement by encapsulation, the modal interface obtained by pack-
ing CashDeskAssemblyRef is a modal interface refinement of the packed original assembly,
i.e. (3) holds. By transitivity of refinement, (1) and (3) compose to a refinement of CashDesk
by the packed assembly CashDeskAssemblyRef.

Requirements specification. We start by an abstract requirements specification of the whole
system which is given by the modal interface CashDesk in Fig. 14. The specification is
rather loose having only a single must-transition requiring cash payment to be possible in
any system implementation whenever a printTotal! has been performed before. The other
transitions are may-transitions. At the start of a sale arbitrarily many items may be taken
and printed; note that only as many printItem!s should be performed as item?s have been
taken before, but this cannot be specified with finite state. Also a saleFinish? request may
be accepted, possibly followed by printing items (that have not been printed yet) and then
printing the total. As an alternative to cash payment, also payment by credit card may be
offered by an implementation.
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Fig. 14 Interface CashDesk
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newSale

itemReady

finish

verify verified

Fig. 15 Cash desk assembly with contained interfaces

System architecture. In the next step, we specify an architecture for the intended sys-
tem, which is given by the modal assembly CashDeskAssembly in Fig. 15. The assem-
bly CashDeskAssembly consists of three interfaces, CashDeskGUI, CashDeskController
and ClearingCompany. The CashDeskGUI interface behaviour waits for a newSale?
from the environment, then reacts to incoming item?s by issuing corresponding itemReady!s
until a saleFinish? arrives, upon which it signals finish!. The CashDeskController interface
behaviour starts each sale by issuing newSale! and then answers each itemReady? by print-
Item! until a finish? arrives, upon which a printTotal! is issued and either cash? or creditCard?
is accepted. Only creditCard? is a may-transition, such that in a refinement of CashDeskCon-
troller it may be absent or turned into a must-transition. The ClearingCompany waits for a
verify? and then reacts with a verified!. For simplicity of presentation we have only spec-
ified the positive case where a credit card is validated. The interface ClearingCompany is
input-enabled. The input verify? is always accepted but no reaction is performed if it occurs
directly after a previous verify?.
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finish itemReady newSale verify verified

Fig. 16 Behaviour of CashDeskAssembly in Fig. 15

Communication-safety. We now want to check that CashDeskAssembly is modally commun-
ication-safe. For this purpose we compute the behaviour of the assembly which is given
by the EMIO in Fig. 16. It shows not only the possible inputs and outputs, but also the
communications happening in the assembly. If there would be an output request of one
component to another component in the assembly which can not be taken (even after a
delay with autonomous must-transitions of the rest of the assembly), an error state would be
reachable in the EMIO which is not the case here. Hence, by Lem. 2, CashDeskAssembly
is modally communication-safe. Let us convince ourselves that indeed no output possible
in one of the assembly’s modal interfaces is lost. Crucial states are the states A and B. In
state A the CashDeskGUI has reached its lowest state in Fig. 15 where it wants to send
out itemReady! and has already communicated an itemReady to the CashDeskController
before. In the assembly state A the CashDeskController has also reached its lowest state in
Fig. 15 where it can perform an open output printItem!. Only after this output it can input,
as requested, itemReady?. But this is fine with our liberal notion of communication-safety
which allows to delay a reception after performing first some autonomous must-transitions.
A similar situation occurs in state B of the assembly, where the CashDeskController accepts
an output finish! of the CashDeskGUI only if it has performed an output of printItem! before.

Alternatively, we could also check the communication-safety of CashDeskAssembly by
incremental design; see Sect. 4.

Packing the assembly. As the result of assembly encapsulation yields an interface, packing an
assembly is a decisive step for hierarchical system development. Packing the modal assembly
CashDeskAssembly results in the modal interface shown in Fig. 17. Figure 18 shows an
equivalent but “smaller” interface11.

11 In order to prove the equivalence one has to check that packmi(CashDeskAssembly) �mi min(packmi

(CashDeskAssembly)) and vice versa. Both directions have been verified with the MIO-Workbench [6]. We
believe that the interface min(packmi(CashDeskAssembly)) is indeed minimal. Whether minimal behaviours
for modal interfaces always exist and how they can be computed is an open question.

123



Moving from interface theories to assembly theories 263

τ
saleFinish? τ

printTotal!

cash?
creditCard?

τ

τ

item?

τ

item?

printItem!

printItem!

printItem!

saleFinish?

MI packmi(CashDeskAssembly)

item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 17 Packed CashDeskAssembly
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Fig. 18 Interface equivalent to the one in Fig. 17

Correctness of the assembly. We now want to show that the visible behaviour of
CashDeskAssembly fits to the abstract requirements specification of the system given by
the interface CashDesk. This means that we must verify the proof obligation (1) in Fig. 13.
Due to the equivalence of the modal interfaces in Figs. 17 and 18, it suffices to prove
min(packmi(CashDeskAssembly)) �mi CashDesk. We have verified this statement with
the MIO-Workbench [6].

Assembly refinement. CashDeskAssembly introduces architectural and behavioural require-
ments, the latter given by the assembly behaviour in Fig. 16. In the next step we
refine CashDeskAssembly by the assembly CashDeskAssemblyRef where the inter-
face CashDeskController is replaced by the interface CashDeskController’ and the inter-
face ClearingCompany is replaced by ClearingCompany’; see Fig. 19. In the interface
CashDeskController’ the previous may-transition for creditCard? is turned into a must-
transition such that any implementation must support credit card payment as an alternative
to cash payment. In contrast to ClearingCompany, the new interface ClearingCompany’ is
not input-enabled. The behaviour of the new assembly is simply obtained from the EMIO
in Fig. 16 by turning the may-transition with label creditCard? into a must-transition which
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Fig. 19 Cash desk assembly refinement with contained interfaces

yields obviously an EMIO refinement. Hence, by Definition 12, CashDeskAssemblyRef �m

CashDeskAssembly, i.e., we have verified proof obligation (2). Since CashDeskAssembly is
communication-safe, preservation of communication-safety by assembly refinement implies
that CashDeskAssemblyRef is communication-safe as well. Moreover, encapsulation of
assemblies turns assembly refinement into interface refinement, and therefore we obtain
proof obligation (3) in Fig. 13. Now we can utilise that interface refinement is transitive to
be sure that the visible behaviour of the encapsulated assembly CashDeskAssemblyRef is
conform to the system’s interface specification.

Let us point out that the interface ClearingCompany’ is not a modal interface refinement of
ClearingCompany since the (looping) must-transition for the input verifyPin? in the second
state of ClearingCompany is not preserved by ClearingCompany’. Hence component-wise
refinement would not work in this case. On the other hand the assembly refinement is intu-
itively correct since the cash desk controller is a context for the clearing company which
never sends verifyPin! twice, one after the other.

7 Related work

Several examples in the literature show that the transition from theories considering only two
components at a time to a multi-component environment is not trivial. Such transformations
have been studied, e.g., when moving from binary session types to multi-party (asynchronous)
session types in [22], or when moving from pairwise system analysis in [11] to team automata
considered in [12]. We are, however, not aware of any approach that does the transformation
in a generic way on the basis of abstract laws for interface and assembly theories.

The idea to consider assemblies as sets of components, automata, or interfaces is obviously
present in many approaches in the literature; see e.g. CFSMs [9], the BIP framework [4,17],
team automata [12], component-interaction automata [13], and modal assemblies [20]. So it
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is an interesting question to what extent our concepts and laws for assembly theories appear
in the different frameworks. In [9] communication protocols are studied based on collections
of communicating finite state machines. Communication is asynchronous via queues and the
focus there is particularly on communication properties, like specified reception (and how to
check this), which could be used as a communication-safety predicate in our sense. In the BIP
framework systems of components are considered together with particular interaction mod-
els, which are not incorporated into our notion of an assembly. BIP provides, as required for an
assembly theory, a composition operator, it deals with certain properties of systems, like inter-
action safety, and focuses on compositionality results much in the spirit of an assembly theory.
Compositionality results are also studied in [12] for systems of reactive transition systems
(playing the role of interfaces). Our notion of an assembly could be instantiated by the concept
of a composable system, and communication-safety by the notion of a compatible system
in [12]. Different synchronisation strategies are applicable and interpreted via team automata.
For the case of the synchronous product, Cor. 9 in [12] states a compositionality result, which
is very similar to compositionality of communication-safety required for assembly theories
in property (A2). Also the notion of a compatible system in [12] follows the suggestion of Liu
et al. explained in Sect. 1. In [13] systems of composable component-interaction automata
are used as assemblies. [13] focuses merely on substitutability of components which is also a
motivation for our notion of behavioural refinement of modal assemblies. Another possibility
to obtain a liberal refinement notion (taking into account contexts) is the use of contracts
specifying environment assumptions such that refinement can be relativised accordingly;
see [7] and [5].

8 Conclusions

Interface theories consider component interfaces pairwise while assemblies follow a multi-
component approach. One might think that the extension of an interface theory to a theory
of component assemblies is straightforward and rather trivial. We have shown that this is
not the case, neither for obtaining a sound notion of communication-safety for assemblies
nor for obtaining a powerful assembly refinement relation. Therefore, we have introduced
an explicit notion of an assembly theory and we have studied, on a generic basis, how an
assembly theory can be built over a given interface theory. We have considered the notion
of a canonical assembly theory, whose communication-safety predicate is derived from the
underlying (binary) interface compatibility relation, and a restricted version of it, called
simple assembly theory, which fixes assembly refinement to be pairwise interface refine-
ment. A simple assembly theory does, however, not support context-dependent component
substitutions. As an instance of a simple assembly theory we have considered assemblies
of interface automata and as an instance of a canonical assembly theory we have studied
assemblies of modal I/O-interfaces. The modal assembly theory offers a powerful assembly
refinement relation respecting inter-component communications. It relies on a formal notion
for assembly behaviours which makes communication errors explicit.

Future directions. The definitions of an interface theory and of an assembly theory were
guided by two goals: (1) to be abstract and hence instantiable by concrete formalisms, and
(2) to capture kernel requirements for systems of communicating components.

Concerning (1) we are interested in studying more instantiations of assembly theories, in
particular assemblies which rely on different communication styles, like asynchronous and/or
multi-cast communication. An assembly theory using modal I/O-Petri nets as interfaces
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and asynchronous communication via channel places could already be easily derived from
the results in [18]. This approach supports infinite state systems keeping the properties of
communication-safety and refinement decidable. Other interesting instantiations of assembly
theories could be studied for interface theories using relational interfaces; see [31] and [5,
Sect. 7]. It would be interesting to see to what extent the interface diagrams in [31] could be
considered as assemblies and how the binary compatibility notion for relational interfaces
could be extended to assemblies.

As stated in point (2) above, the focus of our work lies on rudimentary properties of
component systems and not on providing convenient syntactic means to specify system
architectures. For the latter architecture description languages (ADLs), like e.g. PADL [2,8]
and WRIGHT [3], have been designed. We believe, however, that assembly theories can pro-
vide a useful semantic layer for the interpretation of ADLs. How such an interpretation could
look like can be seen in [19] where we have designed a graphical (and algebraic) compo-
nent model supporting components with ports, connectors and assemblies (formed by local
component and connector declarations), as well as assembly encapsulation into composite
components. [19] uses I/O-transition systems for local behaviours on the specification level
and their parallel composition (involving relabelling), as well as hiding, for the interpretation
of composite components on the semantic level. We think that similarly we could provide an
interpretation of the PADL constructs in an assembly theory, whose interfaces would be given
by CSP processes equipped with an I/O-alphabet, and the outcome should be equivalent to
the current PADL semantics (at least if we restrict to synchronous communication). Then
it would be interesting to study which properties of PADL architectures would correspond
to communication-safety and assembly refinement. Currently PADL does not have a proper
refinement notion for architectures but it considers behavioural conformity of architectures
which relies on pairwise behavioural conformity of their underlying architectural elements.
Hence, using behavioural conformity for refinement, an assembly interpretation of PADL
would probably lead to a simple assembly theory in the sense of Sect. 4.3. Since our notion
of an assembly theory is generic, it could also be interesting to investigate a generic ADL
such that architectural concepts are fixed and interpreted in a generic assembly theory while
concrete formalisms for behavioural specifications can be injected later.
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