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Abstract We use the by now well established setting of modal semirings to derive a modal
algebra for Petri nets. It is based on a relation-algebraic calculus for separation logic that
enables calculations of properties in a pointfree fashion and at an abstract level. Basically,
we start from an earlier logical approach to Petri nets that in particular uses modal box and
diamond operators for stating properties about the state space of such a net. We provide rela-
tional translations of the logical formulas which further allow the characterisation of general
behaviour of transitions in an algebraic fashion. From the relational structure an algebra for
frequently used properties of Petri nets is derived. In particular, we give connections to typi-
cal used assertion classes of separation logic. Moreover, we demonstrate applicability of the
algebraic approach by calculations concerning a standard example of a mutex net.
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1 Introduction

The formalism of Petri nets has been a major research topic for many decades and has a large
variety of applications. As a particular case of such nets there are so-called Signal Transition
Graphs to which Walter Vogler has contributed a multitude of papers (e.g. [24,42]). In earlier
papers he has been involved with questions of equivalence and refinement of Petri nets
(e.g. [18,41]). The present paper constructs an algebraic framework for some of the basic
aspects of Petri nets, such as transitions, markings, reachability and fairness. It is based on
the by now well established theory of modal semirings [12,13] as well as on earlier logical
approaches to Petri nets [15,35,36], where, in particular, connections to separation logic [38]
have been introduced. Separation logic was originally introduced to facilitate reasoning about
data structures involving pointers in a Hoare logic style. In [35,36] the logical approach to
Petri nets developed in [15] is reconsidered and extended with modal operators used to state
properties about reachable markings within such nets.

The goal of the present work is to develop from that approach a general modal algebraic
structure that allows abstract reasoning about reachability within Petri nets. As a starting
point, we use a general relational approach to separation logic developed in [9,10].

The paper is structured as follows. In Sect. 2 we define Petri nets. In Sect. 3 we present a
logic for them that allows reasoning with modal formulas about reachability of markings. In
Sect. 4 we introduce the basics of separation algebras and a relational semantics for commands
over them. In Sect. 5 we specialise that semantics to Petri nets viewed as a separation algebra
and extend it to the logic of Sect. 2. In Sect. 6 this is abstracted to give a Petri net algebra
based on well-known algebraic concepts. In Sect. 7 we enrich that algebra by the notions of
tests and modal operators. Moreover, we provide useful consequences of the algebraic laws
that, in particular, allow pointfree proofs of frequently used inference rules in Petri net logic.
In Sect. 8 we state properties of nets in an algebraic fashion. In Sect. 9 and Sect. 10 we show
how to express safety, fairness and liveness algebraically and illustrate this with concrete
calculations for a mutex net. Finally, we discuss some related work in Sect. 11 and conclude
with a summary and an outlook on future work in Sect. 12.

2 Petri nets

We repeat the basic notions of Petri nets as given in [15].

Definition 2.1 – A Petri net is a structure N = (P, T, pre(_), post(_)). The set P consists
of places and is disjoint from the set T of transitions .

– A marking is a function M : P → N, i.e., a mapping from places to natural numbers,
assigning a number of tokens to each place. The set of all markings is denoted by M.

– pre(_) and post(_) are functions of type T →M. For a transition t , the marking pre(t)
represents the number of tokens on each place required to enable firing t , while post(t)
denotes the number of tokens that t emits to each place once it fires.

– The addition of markings M, N is given by (M + N )(p) =df M(p) + N (p) for any
place p, and [] denotes the empty marking, i.e., [](p) = 0 for any p ∈ P . Moreover, for
a place p ∈ P we define the singleton marking Mp with Mp(p) = 1 and Mp(q) = 0
for all other places q �= p.

– The order � on M is the pointwise extension of ≤ on N, i.e., M � N ⇔df ∀ p ∈ P :
M(p) ≤ N (p).
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Fig. 1 An example of a mutex net

Definition 2.2 The behaviour of transitions t described above can be formalised by the
following firing relation [t〉 between markings:

M[t〉N ⇔df ∃M ′ ∈M : M = pre(t)+ M ′ ∧ N = post(t)+ M ′. (1)

This induces the one-step reachability relation given by

M � N ⇔df ∃ t ∈ T : M[t〉N .

Finally, we call N reachable from M if M �∗ N , where�∗ is the reflexive and transitive
closure of�.

As a standard example, consider the net depicted in Fig. 1. It illustrates two processes Pro1

and Pro2 that are synchronised by a semaphore represented by the place s (cf. [25]). Both
processes are separated graphically from each other by the semaphore, i.e., Pro1 denotes
the left subnet and Pro2 the right one. The components of the whole net are given by P =
{p1, p2, c1, c2, i1, i2, s} and T = {ti | i ∈ {1, . . . , 6}} where

– pi denotes a state where Proi is pending, i.e., Proi is waiting for the semaphore to be
available for entering its critical section;

– ii corresponds to an idle state where Proi does nothing;
– ci represents the critical section of each process.

The semaphore s works in the following way: The transitions t2 or t5 can only fire if a token is
available on s and process i is in its pending state, i.e., pi is marked. By firing t2 or t5 a token of
s and pi is consumed by the respective transition and a further token is produced in ci which
means that Proi is in its critical section. Hence, for the case of t2 we have pre(t2) = Mp1+Ms

and post(t2) = Mc1 . Analogous markings can be given for the transition t5.
Then we have (pre(t2)+Mp1)(p1) = 2, (pre(t2)+Mp1)(s) = 1 and (pre(t2)+Mp1)(p) =

0 on the remaining places p. It is not difficult to see that transition t2 satisfies (pre(t2) +
Mp1) [t2〉 (post(t2) + Mp1) by choosing M ′ = Mp1 in Definition 2.2. In particular, by
setting M ′ = [] we also have pre(t2) [t2〉 post(t2) since [] is neutral w.r.t.+ on markings and
(pre(t2) + Mp) [t2〉 (post(t2) + Mp) for any other marking Mp ∈ M. For this behaviour
of transitions in Petri nets we will later provide an algebraic formalisation that reflects the
described observation in a simple and abstract fashion.
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112 H.-H. Dang, B. Möller

3 A logic for petri nets

We continue by giving the syntax and semantics of a logic, presented in [35,36], for charac-
terising states, i.e., markings, and reachability conditions in Petri nets using modal operators.
The purpose of the logic is to define formulas that characterise sets of markings in a given
fixed Petri net. The syntax is as follows:

A ::= π | false | true | ¬ A | A ∨ A | A ∧ A |
A ∗ A | A−∗ A | I |
�+A | �−A | ♦+A | ♦−A.

The base case assertions π are taken from a set of atomic formulas. Frequently used examples
are pre(t) or post(t) that simply characterise the corresponding markings w.r.t. a transition t
or any p ∈ P which logically denotes the singleton marking Mp .

The remaining syntactic constructs in the first row are the same as in classical logic. In the
second row the assertions are built from operators that are well-known in separation logic,
i.e., separating conjunction ∗ and separating implication −∗.

Intuitively, the former corresponds to the sum of markings in the following sense: e.g., p∗q
means a singleton marking of each of the places p and q if they are different, while by p∗p one
would characterise that p carries two tokens (separating conjunction is not idempotent). By
contrast, the standard conjunction p ∧ q expresses that both p and q are marked, regardless
of whether they are the same or not. Note that p ∧ q might be unsatisfiable if p, q make
assumptions about different places. As an example consider p = c1 which asserts a marking
where exactly one token on the place c1 is available and nothing anywhere else. Similarly,
q = c2 asserts exactly one token in c2 and nothing elsewhere. Hence c1 and c2 can not hold
at the same time and therefore c1 ∧ c2 is unsatisfiable. Finally, p ∗ true requires at least p
to be marked.

Separating implication is the upper adjoint of separating conjunction, satisfying for any
assertions P, Q, R the relationship

(P ∗ Q)→ R ⇔ Q → (P −∗ R).

Basically, the formula P −∗ R characterises all markings M such that whenever a marking
N satisfying P is added to M then N + M will satisfy R.

The special assertion I denotes the empty marking and is the unit of ∗.
Finally, we deal with the modal operators in the third row above. As an example we again

consider the net of Fig. 1. The formula �+(s ∗ i1 ∗ i2) characterises all markings M where
every marking reachable from M is always only singly-marked in the semaphore s and the
idle states. Symmetrically, �−(s ∗ i1 ∗ i2) denotes the markings M where every marking
leading to M has to satisfy s ∗ i1 ∗ i2. The diamond operators are the De Morgan duals of
the box ones, i.e., ♦ϕ is equivalent to ¬�¬ϕ, and hence are existential quantifiers about
markings, whereas the boxes act as universal quantifiers.

In the formal semantics of the modal operators we follow the approach of [35,36] which
overcomes the drawbacks of the restrictive intuitionistic logic in [15] and yields a more
flexible and expressive logic for reasoning about reachability conditions within a Petri net.
Formally, a Kripke semantics for the logic is given as follows. We assume a valuation func-
tion i that assigns to each atomic formula π the set of markings for which this formula is
true.
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Modal algebra and Petri nets 113

M |� π ⇔df M ∈ i(π),
M |� I ⇔df M = [],
M |� false ⇔df false,
M |� A→ B ⇔df M |� A implies M |� B,
M |� A ∗ B ⇔df ∃ N1, N2 ∈M : M = N1 + N2 and N1 |� A and N2 |� B,
M |� A−∗ B ⇔df ∀ N ∈M : N |� A implies N + M |� B,
M |� �+A ⇔df ∀ N : M �∗ N implies N |� A,
M |� �−A ⇔df ∀ N : N �∗ M implies N |� A.

All remaining well-known connectives of classical and modal logic can be defined as follows:

¬A ⇔df A→ false, true ⇔df ¬false,

A ∨ B ⇔df ¬A→ B, A ∧ B ⇔df ¬(¬A ∨ ¬B),

♦+A ⇔df ¬�+¬A, ♦−A ⇔df ¬�−¬A.

4 Separation algebras and commands

In Definition 2.2 we have seen that every transition t induces a relation [t〉 between mark-
ings which then was lifted to the relation �. This is the motivation for tying in Petri nets
and their logic with the well established area of relational program semantics. We use the
general relational approach of [7,10] which also comprises the above-mentioned ∗ operator
of separation logic (SL). It is built using the concept of separation algebras [4] that provides
a general way to characterise the structure and properties of abstract resources.

In Petri nets the resources are the markings. The firing rule involves splitting (or
separating ) the token supply on a place, which is why separation logic is relevant to the
area of Petri nets. The converse combination operator is the sum of markings. An algebraic
abstraction of this is the following notion.

Definition 4.1 1. A partial monoid is a structure (Σ, •, u) with a set Σ of states (e.g.,
markings of Petri net places), a partial combination operator • : Σ × Σ → Σ and an
element e ∈ Σ such that the following properties hold:

– e is the neutral element w.r.t. •, i.e., for all σ ∈ Σ we have e • σ = σ = σ • e.
– • is associative, i.e., for all ρ, σ, τ ∈ Σ we have (ρ • σ) • τ = ρ •(σ • τ).

Here an equation t1 = t2 between terms t1, t2 means that both terms are defined and
equal or both terms are undefined.

2. A partial monoid is cancellative if σ1 • τ = σ2 • τ ⇒ σ1 = σ2 for all σ1, σ2, τ ∈ Σ .
3. A separation algebra is a partial monoid in which • is commutative and cancellative. It

induces a combinability relation # defined by

σ0 # σ1 ⇔df σ0 • σ1 is defined.

In the following, when writing σ • τ for states σ, τ we will implicitly assume σ # τ .

For a given Petri net the structure (M,+, []) forms a separation algebra in which the
combination operator • is total, i.e, M#M ′ holds for all states M, M ′ ∈ M. Splitting and
combining markings was already part of the semantic definition of the separating conjunction
operator ∗ in Sect. 3. The absence of a proper combinability relation means that there exist
no bounds on the capacity of the places, i.e., we are considering unbounded Petri nets.

The operator • is the basis for defining the central connective separating conjunction of
SL, see below. It allows splitting a resource, e.g., a program state, into disjoint parts about
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which one can assert separate properties conjunctively. In the case where states are markings,
• is just pointwise sum, which is even a total operator.

Definition 4.2 Assume a separation algebra (Σ, •, u). A command is a relation R ⊆ Σ×Σ .
Relational composition of commands is denoted by ;. Its unit skip =df {(σ, σ ) | σ ∈ Σ}
is the identity relation, while the universal relation is denoted by �. A test is a command
p with p ⊆ skip, i.e., p = {(σ, σ ) | σ ∈ S} for some S ⊆ Σ . Hence tests are in one-
to-one correspondence with subsets of Σ and will be used as an algebraic representation
of such subsets. We denote tests by p, q, r, . . . in the sequel. The relative complement of
a test p w.r.t. skip is denoted by ¬p. As particular tests we define emp =df {(u, u)} that
characterises the empty state u, �R =df {(σ, σ ) | ∃ τ ∈ Σ : σ R τ } that represents the domain
of a command R and dually R� that denotes the codomain of R, defined analogously. The
former is characterised by the universal property

�R ⊆ q ⇔ R ⊆ q ; R (2)

for all tests q . In particular, R ⊆ �R ; R and hence R = �R ; R. Moreover, we have
�R = (R ; �) ∩ skip and for relations R, S we have �(R ; S) = �(R ; �S). A characterisation
for codomain can be given symmetrically.

Note that tests form a Boolean algebra with skip as its greatest and ∅ as its least element
w.r.t. ⊆ . Moreover, on tests ∪ coincides with join and ; with meet. In particular, tests are
idempotent and commute under composition, i.e., p ; p = p and p ; q = q ; p.

Using domain and codomain we can define forward and backward modal diamond and
box operators. They are given for a command R and test q as follows:

|R〉q =df �(R ; q), |R]q =df ¬�(R ; ¬q),

〈R|q =df (q ; R)�, [R|q =df ¬(¬q ; R)�. (3)

Hence |R〉q characterises those states for which there exists an execution of R that ends in
a state in (the subset represented by) q while |R]q characterises those states for which all
executions of R will end in a state in q . The dual statements hold for the backward modal
operators.

Next we introduce a relational operator ∗ on commands that corresponds to the separating
conjunction of SL. It connects the actions of two commands by “running” them on separate
portions of the overall program state; this is indeed expressed by a logical conjunction.
Formally,

σ (R ∗ S) τ ⇔df ∃ σ1, σ2, τ1, τ2 : σ = σ1 • σ2 ∧ τ = τ1 • τ2 ∧ σ1#σ2 ∧ τ1#τ2 ∧
σ1 R τ1 ∧ σ2 S τ2.

Hence, separated composition of commands can be interpreted as their parallel execution on
combinable portions of states [9,10], i.e., σ (R ∗ S) τ iff σ can be split into states σ1, σ2 on
which R and S can act and produce results τ1, τ2 that are again combinable to τ = τ1 • τ2.
Another interpretation of R ∗ S is that it provides a possibility to characterise the structure
of commands, i.e., their behaviour on parts of a state. We will later give a characterisation of
a general behaviour of transitions in Petri nets.

Note that for tests p, q the command p ∗ q is also a test and, in particular,

skip ∗ skip = skip. (4)

Additionally,∗ is associative and commutative and has emp as its unit. Moreover, it distributes
through arbitrary unions from both sides.
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5 A command semantics for petri nets

Using the definitions for Petri nets of the previous sections we can now give a denotational
model for such nets based on the relational structure from Sect. 5. Later on we will abstract
from the concrete relational setting to a modal Kleene algebraic approach.

Definition 5.1 Given a fixed Petri net, a net command is a relation R ⊆M×M, considering
markings as states. The set of all net commands is denoted by C. We assign to each formula
A the test command

[[A]] =df {(M, M) |M |� A},
where validity |� is as in the Kripke semantics of Sect. 3.

As is well known, by this the logical operators ∨ and ∧ correspond to ∪ and ∩ ,
respectively. Moreover, since M1#M2 ⇔ true, we have

[[A ∗ B]] = {(M1 + M2, M1 + M2) |M1 |� A, M2 |� B}
= {(M1 + M2, M1 + M2) |M1 ∈ [[A]], M2 ∈ [[B]]}
= {(M1 + M2, M1 + M2) |M1 ∈ [[A]], M2 ∈ [[B]], M1#M2}
= [[A]] ∗ [[B]].

A direct consequence of the definition of ∗ is that the reverse exchange law [10], which
provides an interplay of relation composition ; and separating conjunction ∗, holds uncon-
ditionally in the relational setting of this section. The law reads for any net commands
R1, R2, S1, S2 over a separation algebra with a total combination operator as follows:

(R1 ; R2) ∗ (S1 ; S2) ⊆ (R1 ∗ S1) ; (R2 ∗ S2). (5)

By interpreting the operator ; as sequential composition and ∗ as interference-free concurrent
composition of transitions in Petri nets, one sees that the parallel execution of the sequentially
composed transitions R1 ; R2 and S1 ; S2 can be reordered to the sequential execution of the
parallely composed transitions R1 ∗ S1 and R2 ∗ S2. Moreover, in the case of an underlying
total separation algebra, the domain and codomain operators distribute over ∗, i.e, we have
for relations R, S

�(R ∗ S) = �R ∗ �S and (R ∗ S)� = R� ∗ S�. (6)

Proofs of (5) and (6) can be found in [10]. We mention that in general only the ⊆ - directions
hold for arbitrary separation algebras. An example of a partial separation algebra that does not
satisfy the above (in)equations for any relations is given by safe Petri nets N which satisfy
for all M ∈M and p ∈ P the inequation M(p) ≤ 1 (cf. [4]). In that separation algebra we
have M#M ′ ⇔ ∀ p ∈ P : (M + M ′)(p) ≤ 1. In this work we mainly consider unbounded
Petri nets; bounded ones can be handled by imposing a corresponding safety condition. This
will be shown in an example later.

Finally, we immediately infer that the modal �+ operator can be interpreted as a forward
box operator |_] (cf. Eq. (3)) in the relational structure using the defined abstractions:

[[�+A]] = {(M, M) | ∀ N : M �∗ N ⇒ N |� A}
= {(M, M) | ∀ N : (M, N ) ∈�∗ ⇒ (N , N ) ∈ [[A]]}
= {(M, M) | ¬(∃ N : (M, N ) ∈�∗ ∧ (N , N ) �∈ [[A]])}
= ¬{(M, M) | ∃ N : (M, N ) ∈�∗ ∧ (N , N ) ∈ ¬[[A]]}
= ¬{(M, M) | ∃ N : (M, N ) ∈ (�∗ ; ¬[[A]])}
= ¬(�∗ ; ¬[[A]])�
= |�∗][[A]],
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116 H.-H. Dang, B. Möller

where |�∗] is the forward box operator associated with the transition relation�∗.
Clearly, by analogous calculations we immediately get

[[�−A]] = [�∗|[[A]], [[♦+A]] = |�∗〉[[A]], and [[♦−A]] = 〈�∗|[[A]].
Now we turn to a pointfree treatment of transitions.

Definition 5.2 For a transition t we define the semantics [[ t ]] to be the one-step reachability
relation [t〉 considered as a net command, i.e.,

[[ t ]] =df {(M, N ) |M[t〉N } = [t〉.
As mentioned in Sect. 2 after Fig. 1, the transitions come with a special behaviour.

Definition 5.3 A net command R is local [10] if it satisfies R ∗ skip = R.

Intuitively, this characterises the ability of R to perform its task with a possibly smaller
substate of the overall state.

Theorem 5.4 For every transition t the relational abstraction [[ t ]] is local.

Applying the above intuitive explanation of local commands, we obtain that if t can fire on
some marking M then it will also be able to fire on any larger marking N � M . Conversely,
any execution of an enabled transition t starting from a marking N can be tracked back to a
possibly smaller marking M � N .

Proof First, we show the (⊇ ) part of the locality equation. By neutrality of emp and isotony,

[[ t ]] = [[ t ]] ∗ emp ⊆ [[ t ]] ∗ skip.

For the converse (⊆ ) we calculate

(M, N ) ∈ [[ t ]] ∗ skip
⇔ {[ definition of ∗ ]}
∃M1, M2, N1, N2 : (M1, N1) ∈ [[ t ]] ∧ (M2, N2) ∈ skip ∧ M = M1 + M2 ∧
N = N1 + N2

⇔ {[ definition of skip ]}
∃M1, M2, N1, N2 : (M1, N1) ∈ [[ t ]] ∧ M2 = N2 ∧ M = M1 + M2 ∧
N = N1 + N2

⇒ {[ logic ]}
∃M1, M2, N1 : (M1, N1) ∈ [[ t ]] ∧ M = M1 + M2 ∧ N = N1 + M2

⇔ {[ definition of [[ t ]] ]}
∃M1, M2, M ′, N1 : M1 = pre(t)+ M ′ ∧ N1 = post(t)+ M ′ ∧
M = M1 + M2 ∧ N = N1 + M2

⇒ {[ logic ]}
∃M2, M ′ : M = pre(t)+ M ′ + M2 ∧ N = post(t)+ M ′ + M2

⇒ {[ setting M ′′ = M ′ + M2 ]}
∃M ′′ : M = pre(t)+ M ′′ ∧ N = post(t)+ M ′′

⇔ {[ definition of [[ t ]] ]}
(M, N ) ∈ [[ t ]].

��
We will show later in a more abstract setting that locality of a net command lifts to its

reflexive and transitive closure.
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6 Applying algebra to petri nets

In this section we abstract the net command semantics algebraically to elements of special
algebraic structures known as a quantales; these, in turn are special cases of idempotent
semirings.

Definition 6.1

1. An idempotent semiring is a structure (A,+, 0, ·, 1) such that (A,+, 0) is a commutative
monoid with idempotent addition, that is, a+ a = a for all a ∈ A, (A, ·, 1) is a monoid,
multiplication distributes over addition, that is, for all a, b, c ∈ A,

a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c,
and 0 is a left and right annihilator for multiplication, that is, for all a ∈ A,

a · 0 = 0 = 0 · a.

2. Every idempotent semiring is partially ordered by

a ≤ b ⇔df a + b = b.

Then + and · are isotone w.r.t. ≤ and 0 is the least element. Moreover, a + b is the
supremum of a, b ∈ A.

3. A semiring is Boolean if it has a complement operator : A → A and satisfies
Huntington’s axiom:

x = x + y + x + y.

In this case one defines the meet operator as

x � y =df x + y.

4. A Kleene algebra is a structure (A,+, ·, ∗, 0, 1) such that (A,+, ·, 0, 1) is an idempotent
semiring and the star operator ∗ satisfies the unfold and induction laws

1+ a · a∗ ≤ a∗, 1+ a∗ · a ≤ a∗, (7)

c + a · b ≤ b ⇒ a∗ · c ≤ b, c + b · a ≤ b ⇒ c · a∗ ≤ b. (8)

The star here should not be confused with the separation operator ∗ above.
5. An idempotent semiring (A,+, 0, ·, 1) is called a quantale [34,39] or standard Kleene

algebra [5] if ≤ induces a complete lattice on A and multiplication distributes over
arbitrary suprema. The infimum and the supremum of a subset B ⊆ A are denoted
by

�
B and

⊔
B, respectively. Their binary variants are a � b and a � b (the latter

coinciding with a + b). Every quantale can be made into a Kleene algebra by defining
a∗ =df μx . 1+ a · x , where μ is the least fixed point operator.

6. A bi-semiring is a structure (A,+, 0, ·, 1, ∗, u) such that both (A,+, 0, ·, 1) and
(A,+, 0, ∗, u) are idempotent semirings with commutative ∗. Note that u here is the
abstraction of the command emp and not the neutral element of a separation algebra as
in Definition 4.1.

7. A concurrent net semiring is a bi-semiring in which the operators are connected by the
following additional axioms:

1 ∗ 1 ≤ 1, (9)

(a · b) ∗ (c · d) ≤ (a ∗ c) · (b ∗ d). (r-exchange)
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The second of these is the generalised form of the reverse exchange law (cf. Eq. 5). The
first one was stated in equational form in (4); in fact the direction ≥ follows from the
reverse exchange axiom.

8. A concurrent net quantale is a concurrent net semiring in which both component semi-
rings are quantales.

In a concurrent net quantale one could also define an iteration operator w.r.t. to the ∗
composition operator, but we will not need that here.

Our concurrent net semirings/quantales are quite similar to the concurrent semi-
rings/Kleene algebras of [19,20]. The main difference is that our exchange axiom is order-
reverse to the one in those structures, which reflects a bias towards relation-like models.

Commands provide a model in the following way.

Theorem 6.2 The structure (C,∪,∅, ;, skip, ∗, emp) forms a Boolean concurrent net quan-
tale.

Proof The quantale property of (C,∪,∅, ;, skip) is well known (e.g. [40]). The semiring
property of (C,∪,∅, ∗, emp) has been shown in [10]. Since there ∗ is defined in terms of ;
as

R ∗ S = � ; (R × S) ; �,

� and � are constant relations and ; and × distribute over arbitrary unions, the quantale
property of (C,∪,∅, ∗, emp) also holds. The remaining axioms of concurrent net semirings
were again shown in [10], as mentioned in Sect. 2. ��
Lemma 6.3 In every concurrent net semiring the following inequations hold.

1. u ≤ 1.
2. a ≤ a ∗ 1.

Proof

1. By neutrality of u w.r.t. ∗, neutrality of 1 w.r.t. ·, reverse exchange and neutrality of u
w.r.t. ∗ again,

u = u ∗ u = (u · 1) ∗ (1 · u) ≤ (u ∗ 1) · (1 ∗ u) = 1 · 1 = 1.

2. By neutrality of u w.r.t. ∗, Part 1 and isotony,

a = a ∗ u ≤ a ∗ 1.

��
We distinguish some special properties.

Definition 6.4 An element a of a concurrent net semiring is called

reflexive if 1 ≤ a, (reflexivity)

transitive if a · a ≤ a, (transitivity)

local if a ∗ 1 ≤ a. (locality)

Since the semiring elements are abstractions of relations, we call a reflexive and transitive
element a preorder. A preorder with locality is called a transition element .
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By our axioms, 1 is a transition element.

Lemma 6.5 For a local element a and arbitrary elements b, c the reverse small exchange
laws hold:

1. b ∗ (c · a) ≤ (b ∗ c) · a,
2. b ∗ (a · c) ≤ a · (b ∗ c).

Proof We only give a proof of the first result since the second can be proved analogously.
Using neutrality of 1, the reverse exchange law and locality of a, we calculate:

b ∗ (c · a) = (b · 1) ∗ (c · a) ≤ (b ∗ c) · (1 ∗ a) = (b ∗ c) · a.

��

As a first application of our algebraic structures we deal with the behaviour of local
elements under iteration.

Lemma 6.6 If an element a of a concurrent net quantale is local then so is a∗.

Proof We use the principle of least-fixed-point sub-fusion (e.g. [1]): Let f, g, h : L → L
be isotone functions on a complete lattice (L ,≤) with least element 0. Suppose that g is
continuous, i.e., preserves suprema of non-empty chains, and assume g(0) ≤ μh. Then

g ◦ h ≤ f ◦ g ⇒ g(μh) ≤ μ f. (10)

This allows fusing the application of g into the recursion described by h.
To prove our claim we need to show a∗ ∗ 1 ≤ a∗. We set f (x) = h(x) = 1 + a · x

and g(x) = x ∗ 1. Then μ f = μh = a∗ and our claim is shown if the premises of least-
fixed-point sub-fusion are satisfied. By the global assumption g is continuous. Moreover,
g(0) = 0 ≤ μh. So it remains to check g ◦ h ≤ f ◦ g. We calculate:

g(h(x))

= {[ definitions ]}
(1+ a · x) ∗ 1

= {[ distributivity of ∗ ]}
1 ∗ 1+ (a · x) ∗ 1

≤ {[ locality of 1 (Eq. (9)) ]}
1+ (a · x) ∗ 1

≤ {[ small reverse exchange, since a is assumed as local ]}
1+ a · (x ∗ 1)

= {[ definitions ]}
f (g(x)).

��

Apart from this, the iteration operator of Kleene algebra is used in calculating the transition
elements corresponding to concrete nets. However, we will have no need to refer to it in our
further proofs, since they all just deploy reflexivity, transitivity and sometimes locality.
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7 Tests and modal semirings

Next we introduce some further algebraic concepts that abstract tests and the domain/codo-
main operators � and � as presented in Definition 4.2 and give some useful consequences.

Definition 7.1 A test [26,28] in an idempotent semiring A is an element p ≤ 1 that has
a complement relative to 1, i.e., an element ¬p that satisfies p + ¬p = 1 and p · ¬p =
0 = ¬p · p. The set of tests of A is denoted by test(A). Test implication is defined by
p→ q =df ¬p + q .

It is not hard to show that test(A) forms a Boolean subalgebra in which+ coincides with
the binary supremum� and ·with the binary infimum�. We always have 0, 1 ∈ test(A), with
0 corresponding to the predicate false and 1 to true. In a Boolean semiring, every element
p ≤ 1 is a test with relative complement ¬p = p � 1 (e.g. [13]).

Definition 7.2 – A modal semiring is a structure (A,+, 0, ·, 1, �, �) where (A,+, 0, ·, 1)

is an idempotent semiring and the operators �, � : A → test(A) satisfy the following
axioms for arbitrary element a and test p:

a ≤ �a · a, �(p · a) ≤ p, �(a · b) = �(a · �b),

a ≤ a · a�, (a · p)� ≤ p, (a · b)� = (a� · b)�.

– A modal concurrent net semiring is a structure (A,+, 0, ·, 1, ∗, u, �, �) in which
(A,+, 0, ·, 1, �, �) is a modal semiring such that the ∗-distributivity laws for domain
and codomain (cf. Eq. 6) hold:

�(a ∗ b) ≥ �a ∗ �b and (a ∗ b)� ≥ a� ∗ b� (11)

Since, by the above axioms, (r-exchange) and the above axioms again,

a ∗ b ≤ (�a · a) ∗ (�b · b) ≤ (�a ∗ �b) · (a ∗ b) ⇒ �(a ∗ b) ≤ �a ∗ �b,

and symmetrically for�, these inequations strengthen to equalities by antisymmetry of
≤.

– A modal concurrent net quantale is a modal concurrent net semiring that forms a
concurrent net quantale.

– In any of the above modal structures forward and backward diamond and box operators
can be defined as in Eq. (3):

|a〉p =df �(a · p), 〈a|p =df (p · a)�,
|a]p =df ¬|a〉¬p, [a|p =df ¬〈a|¬p.

Forward diamond |a〉 and backward diamond |a〉 respectively correspond to the preimage
and image operators as discussed after (3) for binary relations. The notation is a combination

of standard modal notation and transition relation notation: if one writes
a�→ q for the set of

all predecessors of q-states under transition relation a and omits the horizontal line so that a

“drops to the bottom” one obtains |a〉q . Symmetrically p
a�→ denotes the set of all successors

of p-states under a; to make the modal operators compose more easily we flip sides and
write 〈a|q . The result |a]p of applying the forward box |a] to a test p is another test that
represents the set of all states from which every transition under a leads inevitably into the
subset represented by the test p. An analogous interpretation can be given for the backward
box. When the direction of the operators does not matter we will write 〈a〉 and [a] for them.

By Theorem 6.2 and the results mentioned in Sect. 2 we have the following result.
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Theorem 7.3 The structure (C,∪,∅, ;, skip, ∗, emp, �,�) forms a modal Boolean concur-
rent net quantale.

The modal operators satisfy a rich set of laws; for proofs see [13,30,32,33].
First, De Morgan duality gives the swapping rules

|a〉p ≤ |b]q ⇔ |b〉¬q ≤ |a]¬p, 〈a|p ≤ [b|q ⇔ 〈b|¬q ≤ [a|¬p. (12)

They correspond to the Schröder rules of relation algebra.
Strictness of · w.r.t. 0 and De Morgan yield what is known as axiom (M) of modal logic:

〈a〉0 = 0, [a]1 = 1. (M)

By distributivity, the modalities are homomorphic w.r.t. + :

〈a + b〉p = 〈a〉p + 〈b〉p, [a + b]p = ([a]p) · ([b]p). (13)

Hence box is antitone and diamond is isotone in the first argument:

a ≤ b ⇒ 〈a〉p ≤ 〈b〉p ∧ [a]p ≥ [b]p. (14)

Moreover, both box and diamond are isotone in their second arguments:

p ≤ q ⇒ 〈a〉p ≤ 〈a〉q ∧ [a]p ≤ [a]q. (15)

Isotony entails interactions of the operators with subtraction and implication, since every
additive endofunction f and every multiplicative endofunction g on a Boolean algebra satisfy,
for all elements p and q ,

f (p)− f (q) ≤ f (p − q), g(p→ q) ≤ g(p)→ g(q). (16)

Instantiating g with the box operators we obtain the normality laws, also known as axiom
(K) of modal logic:

[a](p→ q) ≤ [a](p)→ [a](q). (K)

For tests p the forward and backward modalities behave as follows:

〈p〉q = p · q, [p]q = p→ q. (17)

Hence, 〈1〉 = [1] is the identity function on tests. Moreover, 〈0〉p = 0 and [0]p = 1.
Moreover, the modal operators are homomorphic w.r.t. · as well:

〈a · b〉p = |a〉|b〉p, [a · b]p = |a]|b]p. (18)

We have the exchange laws

p ≤ |a]q ⇔ 〈a|p ≤ q, p ≤ [a|q ⇔ |a〉p ≤ q, (19)

which establish Galois connections between diamonds and boxes.
The Galois connections have interesting consequences. In particular, diamonds (boxes)

commute with all existing suprema (infima) of the test algebra.
The modal structures allow abstract and pointfree proofs of a large set of inference rules of

the logical approach to Petri nets given in [35,36]. Moreover, they avoid tedious inductions
over transition sequences, which is a gain for manual proving as well as for partially automated
proof support.
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We start with a proof rule stating an interplay between the diamond operator and separating
conjunction, i.e.,

♦(A ∗ ♦B) � ♦(A ∗ B)
. (Monotonicity)

Note that this law holds for both past and future diamond operators ♦− and ♦+. Intuitively,
in the case of ♦+ this rule states that if there is a reachable marking M for which one part
satisfies A and a further distinct part that ensures that B is reachable, then one can also reach
from M a marking for which A and B hold on distinct parts. The entailment operator � can
be interpreted as the partial order ≤ of a quantale or, in the case of the concrete relational
structure, by the subset inclusion order.

In the abstract setting of a modal concurrent net quantale the above rule can be translated,
for a transitive and local element a and tests p, q , into

〈a〉(p ∗ 〈a〉q) ≤ 〈a〉(p ∗ q). (20)

We only give a proof for the backward diamond, since the forward case is analogous. By
definition of 〈a|, p being a test, distributivity of _� over ∗, modality, Lemma 6.5, transitivity
of a with isotony of �, and definition of 〈a| again:

〈a|(p ∗ 〈a|q)

= ((p ∗ (q · a)�) · a)�
= ((p� ∗ (q · a)�) · a)�
= ((p ∗ (q · a))� · a)�
= ((p ∗ (q · a)) · a)�
≤ ((p ∗ q) · a · a)�
≤ ((p ∗ q) · a)�
= 〈a|(p ∗ q).

As evidence of adequacy of our algebraic semantics we provide some further validity
proofs of the inference rules given in [35,36]. Since they do not mention the ∗ operator, they
do not need a concurrent net semiring; a modal semiring is sufficient. Therefore these rules
and their proofs apply to a much wider class of structures and temporal logics such as LTL,
CTL/CTL∗ (cf. [14]) or STL [27]. It has been shown in [31] how to give quantale semantics
for some of these logics.

Lemma 7.4 The following proof rules are valid, where � A is short for true � A:

(R1)
� ¬¬A

� A , (R2) �A � A , (R3)
� A

� �A , (R4) �A � ��A ,

(R5)
♦+A � B

A � �−B , (R6)
♦−A � B

A � �+B .

Proof For the proof it is sufficient to assume that the underlying element a is a preorder, i.e.,
reflexive and transitive; locality is not needed.

(R1) translates for test p to 1 ≤ ¬¬p ⇒ 1 ≤ p which is clear, since tests form a Boolean
algebra.

For (R2) − (R6) we give all calculations in terms of |_] and |_〉, since the proofs for [_|
and 〈_| are analogous.

For (R2) we calculate by reflexivity of a, anti-disjunctivity of |_] in its first argument and
isotony |a]p = |1+ a]p = |1]p · |a]p = p · |a]p ≤ p.
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Rule (R3) translates into 1 ≤ p ⇒ 1 ≤ |a]p. For this we have 1 = |a]1 ≤ |a]p by (M),
isotony and the assumption.

(R4) means |a]p ≤ |a · a]p, which holds by transitivity of a and antitony of |_] in its first
argument, while (R5) and (R6) follow from the exchange laws in (19). ��

We conclude with an exchange property between diamond and separating conjunction.

Lemma 7.5 For all elements a, b and tests p, q we have (〈a〉p) ∗ (〈b〉q) ≤ 〈a ∗ b〉(p ∗ q).

Proof We show the property for the forward diamond; for the backward one it is symmetric.

(|a〉p) ∗ (|b〉q)

= {[ definition of diamond ]}
�(a · p) ∗ �(b · q)

= {[ by (11) ]}
�((a · p) ∗ (b · q))

≤ {[ by (r-exchange) and isotony of domain ]}
�((a ∗ b) · (p ∗ q))

= {[ definition of diamond ]}
|a ∗ b〉(p ∗ q).

��

8 Further properties and characterisations

As further ingredients for the algebraic setting we continue with some pointfree character-
isations that describe special classes of assertions in separation logic. Since they have been
given in abstract algebraic terms in [7], they can easily be interpreted also in the particu-
lar application of the present paper. We start with so-called intuitionistic assertions which
are closely related to assertions used in the early paper [15]. These authors additionally
assumed a downward closure condition w.r.t. reachability on markings, i.e., for assertions A
and markings M, N :

(N � A ∧ M �∗ N ) ⇒ M � A.

This restriction was replaced in [35,36] by the use of modal operators, which makes formulas
more expressive than using just standard intuitionistic logic. In the algebraic setting such a
closure condition could be stated as |a〉p ≤ p.

In separation logic, local tests play an important role; for historical reasons they are called
intuitionistic assertions there. Such a test p shows the behaviour that if p holds for some
state σ then it is also valid for any larger state τ � σ .

A concrete example w.r.t. the running mutex example in Fig. 1 can be given by the test
s ∗ 1 which describes markings where at least the place s is marked. In the concrete case of
relations the test s ∗ 1 coincides with {(M, M) |M(s) ≥ 1, p �= s ⇒ M(p) ≥ 0}. Hence,
local tests allow an imprecise description of states in the sense that parts of the states may be
arbitrary.

Next we consider another class of tests that, contrary to local tests, describe a set of
marked places in a precise fashion, i.e., states in which no part can be arbitrary. An algebraic
characterisation can be given as follows [4].
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Definition 8.1 A test p is called precise iff for all q, r ∈ test(S)

p ∗ q � p ∗ r ≤ p ∗ (q � r).

We formulate the property using � rather than ·, since then a generalisation to infinite sets
of tests is possible, see (21) below.

Obviously, the above inequation can be strengthened to an equation by isotony of � and
∗. Moreover, it was shown in [7] that precise tests are closed under ∗. In the above form the
property is also called determinacy , as known from relation algebras (e.g., [11]). An example
of such a test is c1 ∗ s ∗ c2 which characterises a state where exactly one token is available in
the places c1, c2 and s, whereas the test c1 + s + c2 is not precise, since it describes states
where a token is available in c1, c2 or s.

Since in a Boolean quantale the test algebra is complete, it is also possible to extend
Definition 8.1 to distributivity over arbitrary non-empty infima, like in [4], i.e.,

X �= ∅ ⇒ �{p ∗ q | q ∈ X} ≤ p ·� X. (21)

We state a useful property of precise tests.

Lemma 8.2 p is precise iff p ∗ ¬q ≤ ¬(p ∗ q) for all tests q.

A proof can be found in [11]. This lemma gives a characterisation of preciseness using
test negation. For precise tests it is therefore possible to state an interaction of separating
conjunction and Boolean test negation.

Corollary 8.3 For precise test p and arbitrary test q we have

〈a〉(p ∗ ¬q) ≤ ¬[a](p ∗ q) and p ∗ 〈a〉¬q ≤ ¬(p ∗ [a]q).

Proof First, 〈a〉(p∗¬q) ≤ 〈a〉¬(p∗q) = ¬¬〈a〉¬(p∗q) = ¬[a](p∗q) which follows from
Lemma 8.2, Boolean algebra and diamond/box duality. Second, p ∗ 〈a〉¬q = p ∗ ¬[a]q ≤
¬(p ∗ [a]q) holds by Lemma 8.2 and diamond/box duality. ��

9 Treating safety

In the following three sections we show how safety, liveness and fairness can be dealt with
in our algebraic setting. For illustration we use again the mutex example (cf. [25]).

First, as a further ingredient of our algebraic approach we introduce a characteristic inequa-
tion for the particular test ¬u that represents all non-empty markings. The Petri net model
of the modal algebra satisfies the inequation

¬u ∗ ¬u ≤ ¬u (non-emp)

which means that any composition M + N of non-empty markings M and N is non-empty
again. An immediate consequence of this is the following.

Lemma 9.1 ¬u ∗ 1 = ¬u and u ≤ ¬(¬u ∗ ¬u).

Proof First, by Boolean algebra, distributivity, neutrality and (non-emp) with the definition
of ≤,

¬u ∗ 1 = ¬u ∗ (u +¬u) = ¬u ∗ u +¬u ∗ ¬u = ¬u +¬u ∗ ¬u = ¬u.

The second inequation follows from (non-emp) by contraposition. ��
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Hence, assuming (non-emp), the test ¬u becomes local. In particular, the empty marking
[] is contained in the test ¬(¬u ∗ ¬u).

In the literature, the test ¬(¬e ◦ ¬e), where ◦ denotes a multiplicative operator and e its
neutral element, has also been used for the multiplicative operator · in the concrete context of
temporal logics [21,31,43], where it is called step. While it is interpreted there by progress in
time, it provides a spatial resource interpretation for the application of Petri nets by choosing
∗ and u for ◦ and e. Intuitively, the element ¬(¬u ∗ ¬u) represents the set of all singleton
markings Ms for places s together with the empty marking []. The former are the atoms in
the set of markings w.r.t. the submarking order �.

Therefore we define single_mark =df ¬u � ¬(¬u ∗ ¬u) and abstractly characterise
sets of such states by tests p with

p ≤ single_mark.

If we further assume p to be a precise test, it represents in an abstract fashion a state where
only a single token is available in one place, which we denote again by p. We write Msp for
the set of such tests and further assume, for arbitrary tests p ∈Msp ,

¬(p ∗ 1) ∗ ¬(p ∗ 1) ≤ ¬(p ∗ 1), (22)

single_mark ≤ p +¬(p ∗ 1). (23)

Inequation (22) states that if the place p is not marked in disjoint parts of a state then it is
not marked in the whole state. Inequation (23) expresses that in any single_mark state every
place p is either marked with a single token or unmarked.

As an application of this we can formulate a condition when a net N is safe , i.e., every
place p of the net contains at most one token. For this we assume an initial marking of a net
N that we denote by p0 and a preorder a that abstracts the reflexive transitive closure of the
firing relation of the net and define

N is safe ⇔df 〈a|p0 ≤
�

q ∈Msp

¬(q ∗ q ∗ 1).

By 〈a|p0 we only consider markings reachable from the initial marking p0. For every par-
ticular test q ∈ Msp , the composed test ¬(q ∗ q ∗ 1) in the right-hand side excludes any
occurrences of two or more markings in the place q . Taking the infimum over all tests
q ∈Msp corresponds to a universal quantification.

For an example we consider again the mutex net of Fig. 1. We use the initial marking
p0 =df i1 ∗ s ∗ i2 shown in that figure. Now, the test representing all reachable markings is
given by

〈a|p0 = i1 ∗ s ∗ i2 + p1 ∗ s ∗ i2 + c1 ∗ i2 + i1 ∗ s ∗ p2

+ i1 ∗ c2 + p1 ∗ s ∗ p2 + c1 ∗ p2 + p1 ∗ c2.
(24)

The states in that sum and the possible transitions between them are depicted in the reacha-
bility graph [25] of Fig. 2.

For the mutex net we have Msp = {s, i1, p1, c1, i2, p2, c2}. This yields
�

q ∈Msp

¬(q ∗ q ∗ 1) = ¬(s ∗ s ∗ 1) � ¬(i1 ∗ i1 ∗ 1) � ¬(p1 ∗ p1 ∗ 1) �
¬(c1 ∗ c1 ∗ 1) � ¬(i2 ∗ i2 ∗ 1) � ¬(p2 ∗ p2 ∗ 1) �
¬(c2 ∗ c2 ∗ 1).

To show safety of the mutex net we use the supremum property of +, viz., p + q ≤ r ⇔
p ≤ r ∧ q ≤ r and the dual one for infima � , viz., p ≤ q � r ⇔ p ≤ q ∧ p ≤ r
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i1 ∗ s ∗ i2

p1 ∗ s ∗ i2

c1 ∗ i2

c1 ∗ p2

p1 ∗ s ∗ p2

i1 ∗ s ∗ p2

p1 ∗ c2

i1 ∗ c2

t3

t3

t1

t2

t4

t5

t6

t6

t4 t1

t4 t1t2 t5

Fig. 2 The reachability graph of the mutex example

for arbitrary tests p, q, r . Using this we can individually show that each part of the sum in
Eq. (24) needs to be included in all parts of the meet. We exemplify a part of the calculation
showing i1 ∗ s ∗ i2 ≤ ¬(s ∗ s ∗ 1) :

i1 ∗ s ∗ i2 � s ∗ s ∗ 1 ≤ s ∗ (i1 ∗ i2 � s ∗ 1).

Now, i1 ∗ i2 ≤ ¬(s ∗ 1), since from Eq. (23) with p = s, we can infer by distributivity,
Boolean algebra and isotony that ¬s � single_mark ≤ ¬(s ∗ 1). Moreover, i1, i2 ≤ ¬s
and i1, i2 ≤ single_mark imply i1, i2 ≤ ¬(s ∗ 1). Hence, by Eq. (22) and isotony we have
i1 ∗ i2 ≤ ¬(s ∗ 1) ∗ ¬(s ∗ 1) ≤ ¬(s ∗ 1). Therefore, i1 ∗ s ∗ i2 � s ∗ s ∗ 1 ≤ 0 which is
equivalent to i1 ∗ s ∗ i2 ≤ ¬(s ∗ s ∗ 1) by contraposition.

As a further frequently used property of Petri nets we can extend the formulation for
safeness to an arbitrary bound k on the places of a net:

N is k-bounded ⇔df 〈a|p0 ≤
�

q ∈Msp

¬(qk+1 ∗ 1).

Here qk+1 = q ∗ · · · ∗ q
︸ ︷︷ ︸

k+1

, i.e., a (k + 1)-fold iteration of separating conjunction, and hence

qk+1 ∗ 1 is the set of all markings where q carries at least k + 1 tokens.
For a further proof of correct behaviour in the mutex net (cf. [25]) consider Fig. 3. The

process Pro1 enters its critical section by firing transition t2. Note that Pro2 cannot enter its
critical section even when p2 is marked, since there is no token available on s. When Pro1

leaves its critical section, transition t3 fires and leaves tokens in the places i1 and s. Note that
the whole scenario can symmetrically be applied to Pro2. In any such state either c1, c2 or s
is marked, i.e., we cannot reach a state where more than two of these places are marked. This
can also be seen in the reachability graph of Fig. 2. This behaviour represents an invariant of
the net and is required to guarantee that both processes do not enter their critical sections at
the same time. Formally, a test p is an invariant of an element a if p ≤ |a]p.

In a logical fashion we can describe the invariant, that either c1, c2 or s is marked, e.g.,
by the assertion �+(c1 ∨ s ∨ c2) which means that for all states of net only one of the
mentioned places is singly-marked. Algebraically this is stated by the inequation

〈a|p0 ≤ |a](c1 + s + c2) (25)
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t1

i1

p1

•
t2

t3

c1

s

• c2

t5

t6 i2

•
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Fig. 3 The process Pro1 is its pending state and the semaphore s is available

for a transition element a and initial state p0. By the explanation of the modal operators after
Definition 7.1, this means that all states reachable from p0 have a-transitions only to states
where c1, c2 or s are marked, and hence satisfy the invariant.

Next we give a proof showing that we cannot reach a state where both c1 and c2 are
marked.

Lemma 9.2 |a](c1+ s+c2) ≤ |a]¬(c1 ∗c2 ∗1). Informally, states which have a-transitions
only to states where c1, c2 or s are marked are guaranteed to have no a-transitions to states
in which at least c1 and c2 are marked.

Proof First, we know that ci ≤ ¬u and s, ci ≤ ¬(¬u ∗¬u). This implies by isotony of ∗ and
Lemma 9.1 that c1 ∗ c2 ∗ 1 ≤ ¬u ∗ ¬u ∗ 1 = ¬u ∗ ¬u. By contraposition this is equivalent
to ¬(¬u ∗ ¬u) ≤ ¬(c1 ∗ c2 ∗ 1). Now, since by assumption s, ci ≤ ¬(¬u ∗ ¬u), we have
that s, ci ≤ ¬(c1 ∗ c2 ∗ 1).

By this we can easily infer from isotony of box in its second argument and idempotence
of + that |a](c1 + s + c2) ≤ |a]¬(c1 ∗ c2 ∗ 1). ��

Again it is an easy task to infer from this lemma and Eq. (25) that

〈a|p0 ≤ |a]¬(c1 ∗ c2 ∗ 1),

meaning that in no reachable state both processes are in their critical sections.

10 Liveness and fairness

For describing progress and fairness of particular transitions in the mutex net we need a
further temporal concept which is called the leadsto operator (e.g. [27,37]) and defined for
formulas A, B by A � B = �+(A → ♦+B). The corresponding algebraic formulation of
the leadsto operator for tests p, q and preorder a is

p � q =df |a](p→ |a〉q).

This operator again only needs a modal semiring to be well defined; the ∗ operator does not
appear in it. Therefore our laws concerning it and their proofs carry over to LTL, CTL/CTL∗
and STL etc.

We stipulate that � binds weaker than · and ∗.
Before proving properties of � we present two auxiliary results.
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Lemma 10.1 The implication operator→ on tests (Def. 7.1) is reflexive and transitive and
satisfies an exchange law, i.e., for all tests p, q, r, s we have

1 ≤ p→ p,

(p→ q) · (q → r) ≤ (p→ r),

(p→ q) · (r → s) ≤ (p + r)→ (q + s).

Proof Reflexivity is obvious. For transitivity we calculate

(p→ q) · (q → r) = (¬p + q) · (¬q + r) = ¬p · q +¬p · r + q · ¬q +¬q · r
≤ ¬p +¬p + r = p→ r

which follows from the definition of→, distributivity, Boolean algebra and isotony. Using a
similar argumentation we infer

(p→ q) · (r → s) = (¬p + q) · (¬r + s) = ¬p · ¬r + q · ¬r +¬p · s + q · s
≤ ¬(p + r)+ q + s + q = (p + r)→ (q + s).

��
The following proof principle (see e.g. [27]) will be handy in the next lemma.

Lemma 10.2 Starting in a state σ that is guaranteed to reach a state p while maintaining
q guarantees that from σ a state in p · q can be reached. Formally,

〈a〉p · [a]q ≤ 〈a〉(p · q).

Proof 〈a〉p · [a]q ≤ 〈a〉(p · q)

⇔ {[ tests form a Boolean algebra ]}
〈a〉p ≤ ¬[a]q + 〈a〉(p · q)

⇔ {[ def. box ]}
〈a〉p ≤ 〈a〉(¬q)+ 〈a〉(p · q)

⇔ {[ additivity of diamond ]}
〈a〉p ≤ 〈a〉(¬q + p · q)

⇐ {[ isotony of diamond ]}
p ≤ ¬q + p · q

⇔ {[ tests form a Boolean algebra ]}
p · q ≤ p · q

⇔ {[ reflexivity of ≤ ]}
TRUE.

��
Lemma 10.3 The operator � is reflexive and transitive and satisfies an exchange law, i.e.,
for all tests p, q, r, s we have

1 ≤ p � p,

(p � q) · (q � r) ≤ (p � r),

(p � q) · (r � s) ≤ (p + r) � (q + s).

Proof Reflexivity follows from reflexivity of a, isotony of diamond and (M) via |a〉(¬p +
|a〉p) ≥ |a](¬p + p) = |a]1 = 1. The exchange law follows immediately from (13) and
Lemma 10.1.

Transitivity can be shown as follows.
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|a](p→ |a〉q) · |a](q → |a〉r)

= {[ a a preorder, hence a = a · a, modality ]}
|a](p→ |a〉q) · |a]|a](q → |a〉r)

= {[ conjunctivity of diamond ]}
|a]((p→ |a〉q) · |a](q → |a〉r))

= {[ def.→ ]}
|a]((¬p + |a〉q) · |a](q → |a〉r))

= {[ distributivity ]}
|a]((¬p · |a](q → |a〉r)+ |a〉q · |a](q → |a〉r))

≤ {[ |a](p→ |a〉q) ≤ 1, Lemma 10.2 ]}
|a](¬p + |a〉(q · (q → |a〉r)))

= {[ Boolean algebra ]}
|a](¬p + |a〉(q · |a〉r))

≤ {[ q ≤ 1, isotony of diamond ]}
|a](¬p + |a〉|a〉r)

= {[ a a preorder ]}
|a](¬p + |a〉r)

= {[ def.→ ]}
|a](p→ |a〉r).

��

Using � we are now able to algebraically state the property that the net is fair in the sense
that whenever Proi has requested the semaphore s, i.e., is pending, it will eventually enter
its critical section. This is formalised by

〈a|p0 ≤ (pi ∗ 1) � (ci ∗ 1). (26)

Note that we use local tests to ensure that some place is marked, while the remaining part
of the state can be characterised imprecisely, since we do not need to impose any further
restriction on it. For a proof of Eq. (26) we need some further assumptions (cf. [25]) about
the behaviour of the mutex net. First, we need to state that whenever one of the places ci

representing the critical sections is marked then also the semaphore will eventually become
marked again. This means that neither Pro1 nor Pro2 will stay in its critical section forever.
Using the � operator we describe this behaviour algebraically as follows:

〈a|p0 ≤ (ci ∗ 1) � (s ∗ 1). (27)

Next, we infer from the invariant in (25), isotony, definition of→, reflexivity of a and the
definition of �,

〈a|p0 ≤ |a](c1 + s + c2)

≤ |a](¬(pi ∗ 1)+ c1 ∗ 1+ s ∗ 1+ c2 ∗ 1)

= |a]((pi ∗ 1)→ (c1 ∗ 1+ s ∗ 1+ c2 ∗ 1))

≤ |a]((pi ∗ 1)→ |a〉(c1 ∗ 1+ s ∗ 1+ c2 ∗ 1))

= (pi ∗ 1) � (c1 ∗ 1+ s ∗ 1+ c2 ∗ 1).
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Moreover, by idempotence of test w.r.t. ·, disjunctivity, reflexivity of � in Corollary 10.3 and
the assumptions in (27) we have

〈a|p0 ≤ (c1 ∗ 1 � s ∗ 1) · (c2 ∗ 1 � s ∗ 1) · (s ∗ 1 � s ∗ 1)

= (c1 ∗ 1+ c2 ∗ 1+ s ∗ 1) � (s ∗ 1).

In sum, we can further infer from transitivity of � that

〈a|p0 ≤ (pi ∗ 1) � (s ∗ 1), (28)

which means that any reachable state where at least pi is marked will lead to a state where s
is marked so that the corresponding process is able to enter its critical region.

As a final ingredient to prove (26) we need to additionally assume further behaviour for
the mutex net. For this we state that whenever the semaphore s becomes marked then the
transition t2, respectively t5, will eventually fire and therefore produce a token on ci . For
transition t2 this is formalized by

〈a|p0 ≤ |a](|a〉(s ∗ 1)→ |a · t2〉(c1 ∗ 1)). (29)

A similar formula can be given for t5. Note that a · t2 states that finally t2 will fire, yielding
a state that contains at least a token on c1. From (29) we obtain by antitony of→ in its first
argument, reflexivity of a, isotony and transitivity of a, that

〈a|p0 ≤ |a]((s ∗ 1)→ |a〉(c1 ∗ 1)) = (s ∗ 1) � (c1 ∗ 1). (30)

Finally, transitivity of � and Eq. (28) show the goal 〈a|p0 ≤ (pi ∗ 1) � (ci ∗ 1).

11 Related work

The concept of locality for transitions in Petri nets has already been discussed in other papers
(e.g. [17]). However, algebraic treatments yielding simple and pointfree characterisations
have not been widely investigated. A similar abstract approach that builds a formal model
for Petri nets based on predicate transformers, i.e., mappings between sets of states, that also
introduces a notion of locality, can be found in [44].

A further work where also a Petri net algebra is developed can be found in [3]. That
approach basically uses a process algebraic approach to such nets that is called the Petri Box
calculus. In particular, an abstract approach called the Box Algebra is discussed of which
the Petri Box calculus and other process algebras can be seen as instances. Compared to that
work we rather focus on general algebraic structures involving especially modal operators
for reasoning about the concrete application of Petri nets.

In [2,16], a relation-algebraic approach to Petri nets is considered that introduces rela-
tional formulas for frequently used properties such as enabledness or liveness in such nets.
This allows in particular mechanised reasoning and visualisations by the graphical system
RelView. Compared to the present approach formulas become quite complex and difficult
to read. Moreover, they are not as general as the formulas provided in the present paper.
Mechanisation or automation can be obtained in parts for the first-order fragment of the
algebra with theorem proving tools like Prover9/Mace4 [29]. Such tools have already been
successfully instantiated for the algebras used here (e.g. [6,22,23]).
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12 Conclusion and outlook

We have shown that algebraic structures like modal concurrent net quantales can be used for
abstract reasoning about the behaviour of Petri nets. In particular, we have been able to avoid
any inductive arguments about transition sequences in favour of just invoking transitivity, and
presented several pointfree formulas that allowed algebraic correctness proofs of inference
rules given in the logic of [35,36]. Additionally, we demonstrated practicality of the approach
within the example of a standard mutex net in calculating with safety, liveness and fairness
properties.

As future work, it would be interesting to investigate concrete connections to the work
on relational system support to the analysis of Petri nets in [2,16]. This might yield wider
applicability for the present algebraic approach and, in turn, might help to facilitate the
relational approach there.

A further interesting topic concerns so-called Signal Transition Graphs (e.g. [42]) which
are central to a large part of Walter Vogler’s papers. Since such graphs are basically Petri
nets, we hope that our modal Petri net algebra can be also applied to such nets.

Finally, it is worth investigating whether the algebraic structures we have introduced can
be used for automated proofs using Prover9/Mace4 or similar systems, along the lines of
earlier case studies (e.g. [8,22,23]).
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