
Acta Informatica (2015) 52:5–33
DOI 10.1007/s00236-014-0207-9

ORIGINAL ARTICLE

Revisiting causality, coalgebraically

Roberto Bruni · Ugo Montanari · Matteo Sammartino

Received: 27 March 2014 / Accepted: 30 September 2014 / Published online: 24 October 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In this paper we recast the classical Darondeau–Degano’s causal semantics of
concurrency in a coalgebraic setting, where we derive a compact model. Our construction is
inspired by the one of Montanari and Pistore yielding causal automata, but we show that it is
instance of an existing categorical framework for modeling the semantics of nominal calculi,
whose relevance is further demonstrated. The key idea is to represent events as names, and
the occurrence of a new event as name generation. We model causal semantics as a coalgebra
over a presheaf, along the lines of the Fiore–Turi approach to the semantics of nominal
calculi. More specifically, we take a suitable category of finite posets, representing causal
relations over events, and we equip it with an endofunctor that allocates new events and
relates them to their causes. Presheaves over this category express the relationship between
processes and causal relations among the processes’ events. We use the allocation operator to
define a category of well-behaved coalgebras: it models the occurrence of a new event along
each transition. Then we turn the causal transition relation into a coalgebra in this category,
where labels only exhibit maximal events with respect to the source states’ poset, and we
show that its bisimilarity is essentially Darondeau–Degano’s strong causal bisimilarity. This
coalgebra is still infinite-state, but we exploit the equivalence between coalgebras over a
class of presheaves and History Dependent automata to derive a compact representation,
where states only retain the poset of the most recent events for each atomic subprocess, and
are isomorphic up to order-preserving permutations. Remarkably, this reduction of states is
automatically performed along the equivalence.

R. Bruni · U. Montanari ·M. Sammartino (B)
Dipartimento di Informatica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
e-mail: sammarti@di.unipi.it

R. Bruni
e-mail: bruni@di.unipi.it

U. Montanari
e-mail: ugo@di.unipi.it

123

6 R. Bruni et al.

1 Introduction

Causal trees [9] are a variant of Milner’s synchronization trees with enriched action labels,
specifying the set of causes for each edge. They can be used to provide process calculi with
a semantics that makes dependencies among actions explicit. In [9] the authors introduce a
technique for deriving a causal semantics from a labelled one. The basic idea is to explicitly
decorate each atomic subprocess with a set of causes. When one subprocess performs an
action, or two subprocesses synchronize, a new event is generated and the causes of the
involved processes are shown in the label, together with the original action. These causes,
updated with the new event, are then assigned to the continuations of the subprocess(es).

The key issue is that causal semantics is usually infinite state, because states keep track
of the whole history of events, which is enlarged at each transition. Moreover, observations
keep growing in size, while minimization would require a more succinct form of observation.
In this paper we aim at providing a technique for obtaining equivalent, but more compact
models for the causal semantics of concurrency. Our approach has the following two steps:

(i) Reduction of labels. Each causal process is equipped with a partial order over its events,
representing causal relations determined by past transitions. Then events that are not
maximal according to the ordering, i.e., all but the most recent ones, are removed from
labels.

(ii) Reduction of states. Only immediate causes of atomic subprocesses are kept, i.e., events
that are maximal in the ordering w.r.t. at least one of the subprocesses. Intuitively, we
keep causes for the most recent transitions. Then states are identified up to a suitable
order-preserving notion of isomorphism, and transitions are enriched with maps that
keep track of the original identity of events.

Our main source of inspiration is Montanari and Pistore [14], where the issue of providing a
minimization procedure for Petri Nets with a causal semantics is tackled by introducing causal
automata. However, an ordinary labelled transition system (LTS) is eventually recovered by
computing “active names” and minimization is performed with respect to ordinary LTS
bisimulation. This is an ad-hoc technique for special classes of Petri nets: in general, the
computation of active names is not decidable.

Following Montanari and Pistore, we first give a set-theoretical construction that performs
(i) and (ii) on causal transition systems. It is quite involved, due to its very concrete nature.
Then we recast it in a categorical setting, where it becomes much more natural and simple. We
will use: (a) coalgebras [1,16] over a presheaf category to represent causal transition systems;
(b) History dependent automata (HD-automata) [8,15] to achieve, in lots of practical cases, a
concrete model with a finite number of states, suitable for verification. The choice of (a) and
(b) is due to their intimate relationship: when they are defined over particular categories, the
latter can be automatically derived from the former through a general categorical construction
which has had, and possibly will have, several other similar instances. Proofs of all the results
can be found in “Appendix”. We now introduce our categorical framework.

1.1 A coalgebra for causality

Colgebras are convenient models of dynamic systems. Their theory is rich and well-
developed, and many kinds of systems have been characterized in this setting. Coalgebras are
also of practical interest: minimization procedures such as partition refinement [13], which
are essential for finite-state verification, have been formulated in coalgebraic terms (see, e.g.,

123

Revisiting causality, coalgebraically 7

[2]). This further motivates the coalgebraic framework: algorithms implemented at this level
of abstraction can be easily instantiated to many classes of systems.

Our coalgebraic model of causality is based on the idea of representing events as names,
that are atomic entities characterized only by their identity, and the occurrence of a new
event as name generation. This allows us to construct a coalgebra where states are equipped
with nominal structures, namely causal relations between events, and event generation is
explicit, along the lines of [11]. The key idea is to define coalgebras over presheaves, that
are functors from a certain index category C to Set, the category of sets and functions.
Presheaves formalize the association between collections of names, seen as objects of C, and
sets of processes within Set. Fresh name generation can be formalized as an endofunctor on
C, that is lifted to presheaves and used in the definition of coalgebras.

We take as index category for presheaves a suitable category of partially ordered finite
sets, representing causal relations between events. This category provides us with the needed
structure to model operations over causal relations. In fact, we use colimits to implement
a well-behaved functorial model of event generation, which augments a given poset with
fresh events and causal relations to their causes. Our definition ensures that its lifting to
presheaves, when used to define coalgebras, yields a category of coalgebras with a final
object and a final semantics in agreement with coalgebraic bisimilarity. This is essential for
a correct notion of minimal model. Then, we define a presheaf of processes, yielding, for
each poset, the set of causal processes whose causes are “compatible” with that poset. We
construct a causal coalgebra by translating the LTS produced by the reduction step (i). The
important result is that coalgebraic bisimulations on this coalgebra are equivalent to a class
of (strong Darondeau–Degano) causal bisimulations. In particular, the equivalence holds for
ordinary and coalgebraic bisimilarity.

1.2 An efficient operational model: HD-automata

The state space explosion issue still exists in the causal coalgebra, because the poset of a
causal process keeps growing along transitions. However, if the presheaf of states is “well-
behaved”, according to [7], it is always possible to recover the support of a causal process,
that is the minimal poset including all and only events that appear in the process. This is the
key condition for the equivalence between presheaf-based coalgebras and History Dependent
(HD) automata.

HD-automata are coalgebras with states in named-sets [8], that are sets whose elements
are equipped with a symmetry group over finite collections of names. They have two main
features:

– a single state can represent the whole orbit of its symmetry;
– the names of each state are local, related to those of other states via suitable mappings.

Both are important for applying finite state methods, such as minimization and model-
checking, to nominal calculi. In particular, the latter point captures deallocation: maps
between states can discard unused names and “compact” remaining ones, much like garbage
collectors do for memory locations. A minimization procedure for HD-automata for the
(finite-control) π-calculus have been shown and implemented in [10].

Interestingly, we are able to define the presheaf of processes in a way that the computation
of the support discards all but the immediate causes. Therefore, the aforementioned equiv-
alence implements the reduction step (ii) and gives an HD-automaton over a named set of
minimal causal processes, equipped with symmetry groups over their posets. This is similar
to Montanari and Pistore’s causal automata, but our category-theoretic version allows for the

123

8 R. Bruni et al.

further identification of states up to symmetries, as a state can be bisimilar to itself via an
order-preserving permutation of its poset. Symmetries are not present in causal automata.

1.3 Illustrative example

We give an example of how the reduction steps (i) and (ii) can be achieved. Consider two
atomic processes p1 and p2 that have the following transitions

p1
a−→ p1 p2

b−→ p2.

We assign cause 1 to p1 and 2 to p2, written {1} ⇒ p1 and {2} ⇒ p2. According to the
Darondeau–Degano LTS, these two causal processes separately have the following transitions

{1} ⇒ p1
a,{1}−−→ {1, 2} ⇒ p1 {2} ⇒ p2

b,{2}−−→ {1, 3} ⇒ p2.

States of this LTS, in general, are parallel compositions of atomic processes, each equipped
with its set of causes. Each transition generates a new event, canonically denoted 1. Causes of
an atomic process in the target state include: the causes of the corresponding source atomic
process, incremented by one; the new event 1, if the process is the continuation of one that
moved. The increment is needed in order to keep the new event distinct from the old ones.
For instance, 1 became 2 in the first transition shown above and 2 became 3 in the second
one.

The reachable state-space from p1 and p2 is infinite, and so is the one of their parallel
composition, shown below

{1, 2, 3} ⇒ p1 ‖ {4} ⇒ p2

{1, 2} ⇒ p1 ‖ {3} ⇒ p2

a,{1,2} ������������������ b,{3} �� {2, 3} ⇒ p1 ‖ {1, 4} ⇒ p2

{1} ⇒ p1 ‖ {2} ⇒ p2

a,{1} �����������������

b,{2}
�����������������

{2} ⇒ p1 ‖ {1, 3} ⇒ p2
a,{2} ��
b,{1,3}

������������������ {1, 3} ⇒ p1 ‖ {2, 4} ⇒ p2

{3} ⇒ p1 ‖ {1, 2, 4} ⇒ p2

We get a more efficient representation by explicitly associating to each process the causal
relations determined by its transitions, in the form of a poset over causes, and then letting
labels contain only causes that are maximal elements of this poset. For instance we can
associate the discrete poset {1, 2} to the leftmost process, written

{1, 2} � {1} ⇒ p1 ‖ {2} ⇒ p2 (1)

Since 1 and 2 are both maximal elements, the labels for the leftmost transitions are kept, and
their continuations become

O1 � {1, 2} ⇒ p1 ‖ {3} ⇒ p2 O2 � {2} ⇒ p1 ‖ {1, 3} ⇒ p2 (2)

123

Revisiting causality, coalgebraically 9

where O1 and O2 are posets over {1, 2, 3} such that 2 ≺O1 1 and 3 ≺O2 1. Now, since 1 is
maximal in both cases, outgoing labels from these processes can be reduced as follows:

a, {1, 2} �−→ a, {1}
b, {1, 3} �−→ b, {1}

We got more compact labels, but the state space is still infinite. To solve this problem, we
also reduce processes by only keeping immediate causes, that are causes that are maximal
with respect to at least one of the atomic subprocesses. Under this reduction, (2) become

{1, 3} � {1} ⇒ p1 ‖ {3} ⇒ p2 {1, 2} � {2} ⇒ p1 ‖ {1} ⇒ p2 (3)

This transformation is not enough, as the LTS is still infinite-state. The key observation here
is that processes (3) are isomorphic, and so are their causal trees. Indeed, all the processes
in the figure above become isomorphic after the reduction. Therefore we can replace all of
them with a canonical representative for their isomorphism class. For instance, under the
isomorphisms φ1, φ2 defined as follows

φ1(1) = 1 φ1(3) = 2 φ2(1) = 2 φ2(2) = 1

processes (3) become the process (1), and this also affects their transitions. We can apply a
similar transformation to all the processes in the figure above, getting

{1, 2} � {1} ⇒ p1 ‖ {2} ⇒ p2

a,{1}
h1 ��

b,{2}
h2

��

The information about the original transitions is encoded in the history maps h1 = φ−1
1

and h2 = φ−2
2 : they translate events of the unique continuation to those of the original

continuations.
We gave a set-theoretic example for simplicity. Even if the result is already minimal in this

case, and in fact essentially equivalent to Montanari and Pistore construction, the category-
theoretic treatment will yield more compact models in some cases, thanks to the presence of
symmetry groups for each state.

2 Background

2.1 Functor categories

Definition 1 (Functor category) Let C and D be two categories. The functor category DC

has functors C→ D as objects and natural transformations between them as morphisms.

Functors from any category C to Set are called (covariant) presheaves. Hereafter we assume
that the domain category C for presheaves is small, i.e., its collection of objects is actually
a set. A presheaf P can be intuitively seen as a family of sets indexed over the objects of C
plus, for each σ : c→ c′, an action of σ on Pc, which we write

p[σ]P := Pσ(p) (p ∈ Pc),

123

10 R. Bruni et al.

omitting the subscript P in [σ]P when clear from the context. This notation intentionally
resembles the application of a renaming σ to a process p, namely pσ : it will, in fact, have
this meaning in later sections. The set

∫
P of elements of a presheaf P is

∫
P :=

∑

c∈|C|
Pc

where the sum symbol denotes the coproduct in C, and we denote by c � p a pair belonging
to

∫
P . Presheaf categories have the following nice property.

Property 1 For any C, SetC has all limits and colimits, both computed pointwise.

2.2 Coalgebras

The behavior of systems can be modeled in a categorical setting through coalgebras [1,16].
Given a behavioral endofunctor B : C → C, describing the “shape” of a class of systems,
we have a corresponding category of coalgebras.

Definition 2 (B-Coalg) The category B-Coalg is defined as follows: objects are B-
coalgebras, i.e., pairs (X, h) of an object X ∈ |C|, called carrier, and a morphism
h : X → B X , called structure map; B-coalgebra homomorphisms f : (X, h) → (Y, g)

are morphisms f : X → Y in C making the following diagram commute

X
h ��

f

		

B X

B f

		
Y g

�� BY

For instance, consider the functor

B f lts := P f (L ×−)

where P f : Set → Set is the finite powerset functor, defined on a set A and on a function
h : A→ A′ as follows

P f A := {B ⊆ A | B finite} P f h(B) := {h(b) | b ∈ B}
B f lts-coalgebras are finitely-branching labelled transition systems, with labels in L , and their
homomorphisms are functions that preserve and reflect transitions.

Many notions of behavioral equivalence can be defined for coalgebras (see [18]). We
adopt the one by Hermida and Jacobs and we simply call it B-bisimulation. We need some
preliminary notions. A relation on X ∈ |C| is a jointly-monic span X ← R → X in C. An
image of a morphism f : A→ C is a monomorphism m : B � C through which f factors,
such that if f factors through any other mono B ′ � C , then B is a subobject of B ′. The
factoring morphism A→ B is called cover. In Set all these notions become the usual ones:
a relation R is a binary relation on X and the span is made of projections; the image of f is
f (A) ↪→ C , and its cover is f with restricted codomain f (A). Given a relation R on X , the
relation lifting B R is the image of the morphism B R → B(X × X)→ B X × B X , taking
R to a relation on B X .

123

Revisiting causality, coalgebraically 11

Definition 3 (B-bisimulation) Given a B-coalgebra (X, h), a B-bisimulation on it is a rela-
tion R on X such that there is r making the following diagram commute

X

h

		

R

 ��

r
		

X

h

		
B X B R

 �� B X

The greatest such relation is called B-bisimilarity.

A B f lts-bisimulation R on a B f lts-coalgebra is an ordinary bisimulation on the corresponding
transition system. In fact, B R is the set of pairs (X1, X2) ∈ B X × B X such that (l, x ′) ∈ X1

only if there is some (l, (x ′, y′)) ∈ B R, but then we also have (l, y′) ∈ X2 and (x ′, y′) ∈
R (the symmetric statement holds if (l, x ′) ∈ X2). Clearly r exists if and only if R is a
bisimulation, and is given by (x, y) ∈ R �→ (h(x), h(y)).

An important property of categories of coalgebras is the existence of the terminal object;
the unique morphism from each coalgebra to it assigns to each state its abstract semantics.
The ideal situation is when the induced equivalence, relating all the states with the same
abstract semantics, agrees with B-bisimilarity. A sufficient condition for this is when B
covers pullbacks.

Property 2 (B covers pullbacks) Consider a cospan X1 → X3 ← X2, and the morphism m
from the image of the pullback (the left square below) to the pullback of the image

X1

�����
�

P

������

�
��

� X3

X2

������

B X1

����
��

B P
m ��

Bπ1 ��

Bπ2
��

P ′

��				

��

B X3

B X2

������

Then B covers pullbacks if m is always a cover.

For the best-known Aczel-Mendler bisimulations, defined as spans of coalgebras, the con-
dition on B that guarantees the agreement of behavioral equivalences is more demanding:
B should preserve weak pullbacks. The finite powerset functor on Set preserves weak pull-
backs, but other finite powerset functors do not, for instance the one on presheaves that we
will use, which instead covers pullbacks. This motivates our preference of Hermida-Jacobs
bisimulations over Aczel-Mendler ones (another important reason for this will be explained
in Sect. 5).

A sufficient condition for the existence of the final coalgebra is that B is an accessible
functor on a locally finitely presentable category (see [1,3,21] for details). A category C is
filtered if each finite diagram is the base of a cocone in C; filtered categories generalize the
notion of directed preorders, that are sets such that every finite subset has an upper bound.
For any category D, a filtered colimit in D is the colimit of a diagram of shape C, i.e., a
functor C→ D, such that C is a filtered category.

Definition 4 (Locally finitely presentable category) An object c of a category C is finitely
presentable if the functor HomC(c,−) : C→ Set preserves filtered colimits. A category C
is locally finitely presentable if it has all colimits and there is a set of finitely presentable
objects X ⊆ |C| such that every object is a filtered colimit of objects from X .

123

12 R. Bruni et al.

For instance, locally finitely presentable objects in Set are precisely finite sets. Set is locally
finitely presentable: every set is the filtered colimit, namely the union, of its finite subsets and
the whole Set is generated by the set containing one finite set of cardinality n for all n ∈ N.

For functor categories we have the following.

Proposition 1 For each locally finitely presentable category C and small category D, the
functor category CD is locally finitely presentable.

In particular, since Set is locally finitely presentable, we have that the presheaf category SetD

is locally finitely presentable as well.

Definition 5 (Accessible functor) Let C and D be locally finitely presentable categories. A
functor F : C→ D is accessible if it preserves filtered colimits.

Here are some useful properties of accessible functors: their products, coproducts and com-
position is accessible as well; adjoint functors between locally finitely presentable categories
are accessible. Moreover, it is a well-known fact that the finite powerset functor P f introduced
in Sect. 2.2 is accessible.

2.3 Coalgebras over presheaves

Coalgebras for functors B : SetC → SetC are pairs (P, ρ) of a presheaf P : C→ Set and a
natural transformation ρ : P → B P . The naturality of ρ imposes a constraint on behavior

c

f

		

p ∈ Pc�

[f]P
		

 ρc �� beh(p)�

[f]B P

		
c′ p[f]P ∈ P(c′)

ρc′
�� beh(p)[σ]B P

Intuitively, this diagram means that, if we take a state, apply a function to it and then compute
its behavior, we should get the same thing as first computing the behavior and then applying
the function to it. In other words, behavior must be preserved and reflected by the index
category morphisms.

B-bisimulations have a similar structure. A B-bisimulation R is a presheaf in SetC and
all the legs of the bisimulation diagram in Definition 3 are natural transformations. In par-
ticular, the naturality of projections implies that, given (p, q) ∈ Rc and f : c → c′ in C,
(p[f], q[f]) ∈ R(c′), i.e., B-bisimulations are closed under the index category morphisms.

3 Causal processes

We recall the Darondeau–Degano causal semantics of concurrency. We denote atomic
processes by p, q, Consider processes generated by the grammar

t ::= ε | p | t1 ‖ t2

where ε is a distinguished inactive atomic process and the operator ‖ is the parallel compo-
sition of processes, which is associative and has unit ε.

Let Act be a set of actions such that, for each a ∈ Act , there is also a ∈ Act (we let
a = a). We assume a set of basic transitions for non-ε atomic processes

Δ = {p a−→ t | a ∈ Act}

123

Revisiting causality, coalgebraically 13

Fig. 1 Inference rules for the Darondeau–Degano LTS

such that the subset Δp = {p a−→ t ∈ Δ} is finite, for all p. Notice that continuations from
an atomic process need not be atomic.

Let N
+ be the set of all positive integers. Causal processes are process terms whose

constants are decorated with finite subsets of N
+, representing their causes. For instance

K1⇒ p1 ‖ · · · ‖ Kn⇒ pn

where K1, . . . , Kn ⊆ N
+ are finite. We will use k, k′, . . . to denote these processes. We

assume that atomic processes have an initial cause, i.e., for all p there is a unique e such
that {e} ⇒ p. We write K ⇒ t for the causal process obtained by giving causes K to every
atomic subprocess in t and K (k) for the set of all causes appearing in k. For example, given
k = {1, 3} ⇒ p1 ‖ {1, 2} ⇒ p2, we have K (k) = {1, 2, 3}. The following operators are
needed for the LTS:

– δ(K) increments all the causes in K by one, in order to “make room” for the new event
1; we let δ(K ⇒ p) = δ(K)⇒ p

– η(K1, K2) joins K1 and K2 only if 1 ∈ K2, otherwise returns K2; we let η(K1, K2⇒p) =
η(K1, K2)⇒ p.

These operators are assumed to distribute over parallel composition, i.e.,

δ(k1 ‖ k2) = δ(k1) ‖ δ(k2) η(K , k1 ‖ k2) = η(K , k1) ‖ η(K , k2).

Definition 6 (Darondeau–Degano LTS) The Darondeau–Degano LTS (LTSDD) is the small-
est one generated by the rules in Fig. 1. We assume that equivalent processes, obtained by
applying structural axioms, have the same transitions.

Definition 7 (Causal bisimulation) Causal bisimulations are ordinary bisimulations on
LTSDD. The greatest one, namely causal bisimilarity, is denoted by ∼DD.

4 Two partial order LTSs for causal processes

In this section we present two refinements of LTSDD. The goal is obtaining a compact LTS,
where labels are more succinct and states only keep track of the most recent events. The
crucial idea is equipping causal processes with a poset that keeps track of causal relations
determined by transitions. Given a poset O , in the following we write |O| for the underlying
set of O , and ≺O to denote the relation of O in infix notation.

Definition 8 (Poset-indexed causal processes) A poset-indexed causal process, P-process in
short, is a pair

O � k

123

14 R. Bruni et al.

of a causal process k and a poset O over N
+ such that K (k) ⊆ |O| and, for all K ⇒ p in k,

K is downward closed w.r.t. O , namely

∀e, e′ ∈ |O| : e ∈ K ∧ e′ ≺O e �⇒ e′ ∈ K .

Downward closure requires the set of causes of each atomic supbrocess to contain the whole
“history” of each event, as described by O . Nevertheless, O may contain events that are
unrelated to or caused by those of K (k), but are not among them.

The poset of a P-process can be enlarged by adding causes for existing events, but a closure
operation must be applied, in order to retain downward closure of atomic subprocesses’
causes. Given a P-process O � k and a poset O ′ including O , we define a closure operator
k↓O ′ as follows

(K ⇒ p)↓O ′ =
⋃

e∈K

{e′ ∈ |O ′| | e′ ≺O ′ e} ⇒ p

distributing over parallel composition. Then it can be easily checked that O ′ � k↓O ′ is a
proper P-process.

4.1 Poset-indexed LTS

We introduce the first LTS, namely the poset-indexed LTS, whose states are P-processes and
transitions only show maximal events, according to the poset of the source process. This
construction is justified by the fact that, for finite posets, downward closed sets, such as
causes of transitions, are completely determined by their maximal elements.

Definition 9 (Poset-indexed LTS) The poset-indexed LTS (LTSPO) is generated from the
LTSDD by the following rule

k
a,K−−→DD k′ M = maxO (K)

O � k
a,M−−→PO δM (O) � k′

where

– maxO(K) is the subset of K containing only maximal causes according to O;
– δK (O), for any set of causes K , is the transitive and reflexive closure of

{(n + 1, m + 1) | (n, m) ∈ |O|} ∪ K × {1}.
The key operation here is δM (O): it acts similarly to {1} ∪ δ(O) defined in Sect. 3, but,

besides adding a new event, it also establishes connections with its causes. One can easily see
that δM (O) � k′ is a proper P-process: all the causes of the only new event in k′ are already
in k′, by construction (see Fig. 1).

The behavioral equivalence for LTSPO is the following.

Definition 10 (Poset-indexed causal bisimulation) Poset-indexed causal bisimulations are
families of binary relations {RO }, where O is a poset on a finite subset of N

+, such that, for

each (O � k, O � k′) ∈ RO , if O � k
a,K−−→PO O ′ � k′′ then there is O � k′ a,K−−→PO O ′ � k′′′

with (O ′ � k′′, O ′ � k′′′) ∈ RO ′ . The greatest poset-indexed causal bisimulation is denoted
by ∼PO.

Proposition 2 Given O � k and O � k′, O � k ∼PO O � k′ if and only if k ∼DD k′.

123

Revisiting causality, coalgebraically 15

The intuition is that, even if labels in LTSPO just show the most recent events, posets contain
the full history of these events. This information is taken into account in ∼PO, because only
processes indexed with the same poset are related.

We list some closure properties, which will be important in the following. We say that a
monotone function σ : O → O ′ is poset-reflecting whenever

∀x, y ∈ |O| : σ(x) ≺O ′ σ(y) �⇒ x ≺O y. (4)

That is, it does not introduce spurious causal relations between (images of) existing events.
We introduce the following notation: given a process k and a set of events K , kσ and Kσ

denotes the application of σ to each event in k and K , respectively.

Proposition 3 Transitions of LTSPO are preserved and reflected by injective poset-reflecting
functions σ : O → O ′, that is:

(i) If O � k
a,K−−→PO δK (O) � k′ then O ′ � (kσ)↓O ′

a,Kσ−−−→PO δKσ (O ′) � (k′σ+)↓δKσ (O ′)
(preservation);

(ii) If O ′ � (kσ)↓O ′
a,K ′−−→PO δK ′(O ′) � k′ then there are K and k′′ such that Kσ = K ′,

(k′′σ+)↓δK ′ (O ′) = k′ and O � k
a,K−−→PO δK (O) � k′′ (reflection);

where σ+ is an injective poset-reflecting function δK (O)→ δKσ (O ′) given by

σ+(n) =
{

1 n = 1

σ(n − 1)+ 1 otherwise

The definition of preservation and reflection are quite involved, due to the presence of event
allocation and the necessity of applying the closure operator to compute proper continuations.
In particular, we need to introduce σ+, a version of σ that takes into account the shift of
events along transitions. We will see that the categorical counterparts of these properties will
be remarkably simpler.

Example 1 We motivate the requirement of poset-reflection by showing that transitions of
LTSPO are not reflected by functions without such property. Take the process {1, 2}� {1}⇒
p1 ‖ {2} ⇒ p2 and suppose it has the following transition

{1, 2} � {1} ⇒ p1 ‖ {2} ⇒ p2
τ,{1,2}−−−−→PO O ′ � {1, 2, 3} ⇒ p1 ‖ {1, 2, 3} ⇒ p2

where O ′ is a poset over {1, 2, 3} with 1 greater than 2 and 3. Consider the function
σ : {1, 2} → O , where O has two elements such that 2 ≺O 1. Clearly σ is not poset-
reflecting. If we apply σ and then closure ↓O to the source process, we get

O � {1, 2} ⇒ p1 ‖ {2} ⇒ p2

but its τ transition is

O � {1, 2} ⇒ p1 ‖ {2} ⇒ p2
τ,{2}−−→PO O ′′ � {1, 2, 3} ⇒ p1 ‖ {1, 2, 3} ⇒ p2

because only 2 is maximal for p1, according to O . However, this transition cannot be obtained
from the one of {1, 2} � {1} ⇒ p1 ‖ {2} ⇒ p2 via an application of σ .

The following theorem is a consequence of Proposition 3.

Theorem 1 ∼PO is closed under injective poset-reflecting functions. Explicitly: given O �
k ∼PO O � k′ and σ : O → O ′ injective and poset-reflecting, we have O ′ � (kσ)↓O ′ ∼PO
O ′ � (k′σ)↓O ′ .

123

16 R. Bruni et al.

4.2 Immediate causes LTS

We now introduce a further refinement of the LTSPO, called immediate causes LTS (LTSIC):
we keep only immediate causes, i.e., causes that are maximal w.r.t at least one of the atomic
subprocesses, and we identify isomorphic states. Given a causal process k, its immediate
causes w.r.t. a poset O are given by

icO(K ⇒ p) = maxO (K)

icO (k1 ‖ k2) = icO (k1) ∪ icO(k2)

The notion of isomorphism we adopt is the following one

O � k ∼= O ′ � k′ ⇐⇒ σ : O ∼= O ′ ∧ kσ = k′

where σ is an order isomorphism. We denote by [O � k]∼= a canonical representative of the
∼=-class of O � k and by [O]∼= its poset.

Definition 11 (Minimal P-process) A minimal P-process O � k is a P-process such that:

– O contains all and only the events in K (k);
– for each K ⇒ p in k, K ⊆ icO(k);
– it is the canonical representative of a ∼=-equivalence class.

Given O � k, let Oi be O restricted to icO(k); the corresponding minimal P-process is

�O � k� = [Oi � normOi (k)]∼=
where normO(K⇒ p) = K ∩|O|⇒ p and distributes over parallel. We denote by μO�k the
map [Oi]∼= → O obtained by composing the isomorphism [Oi] → Oi and the embedding
Oi ↪→ O .

Definition 12 (Immediate causes LTS) The immediate causes LTS (LTSIC) is the smallest
LTS on minimal P-processes generated by the following rule

O � k
a,K−−→PO O ′ � k′

O � k
a,K−−−−→

μO′�k′ IC
�O ′ � k′�

This rule replaces the continuation with its minimal version and, in order to keep track of
the original identity of events, equips the transition with a “history map”, mapping canonical
events to the original ones. In particular, the one with image 1 is the fresh event generated by
the original transition. Notice that the continuation poset may contain non-maximal events,
for instance

O � {1, 2} ⇒ p1 ‖ {2} ⇒ p2

with 2 ≺O 1 cannot be further reduced.
The notion of bisimilarity for LTSIC is more involved: while, given two P-processes,

we may find a common poset for them (if any), which enables them to be compared w.r.t.
∼PO, this is not possible in LTSIC, because its states must have minimal posets. In other
words: posets have a meaning local to states. Therefore, we have to introduce an explicit
correspondence between posets.

Definition 13 (Immediate causes bisimilarity) An immediate causes bisimulation R is a set
of triples (O � k, σ, O ′ � k′) such that σ is a partial monotone bijection from O and O ′
and:

123

Revisiting causality, coalgebraically 17

(i) if O � k
a,K−−→

h
IC O ′′ � k′′ then σ is defined on K , and there are O ′ � k′ a,Kσ−−−→

h′ IC

O ′′′ � k′′′ and σ ′ such that (O ′′ � k′′, σ ′, O ′′′ � k′′′) ∈ R and σ ′(n) = m implies
h(n) = h′(m) = 1 or σ(h(n)− 1) = h′(m)− 1;

(ii) if O ′ � k′ a,K−−→
h′ IC O ′′′ � k′′′ then σ is defined on K , and there are O � k

a,Kσ−1−−−−→
h

IC

O ′′ � k′′ and σ ′ as in the previous item.

The greatest such bisimulation is denoted ∼IC. We write O � k ∼σ
IC O ′ � k′ to mean

(O � k, σ, O ′ � k′) ∈∼IC.

Notice that states should be able to simulate each other only up to σ . The continuations are
again related by a partial bijection σ ′ between O ′′ and O ′′′, which should act consistently on
names by “commuting” with history maps h, h′ and σ . In the case h(n) �= 1 �= h′(m), since
h and h′ have codomain δK (O ′) and δσ(K)(O ′′) respectively, where names in O and O ′ have
been shifted by one, we should subtract one in order to recover the counterparts of h(n) and
h(m) in O and O ′.

We have the following correspondence between ∼IC and ∼PO.

Theorem 2 ∼IC is fully abstract w.r.t. ∼PO in the following sense:

(i) If O � k ∼PO O � k′ then �O � k� ∼IC �O � k′�;
(ii) If O � k ∼σ

IC O ′ � k′ then for all Ô � k̂ and Ô � k̂′ such that:

(a) �Ô � k̂� = O � k and �Ô � k̂′� = O ′ � k′;
(b) μÔ�k̂ |dom(σ) = μÔ�k̂′ ◦ σ ;

we have Ô � k̂ ∼PO Ô � k̂′.

Remark 1 The transition system LTSIC is derived in a similar way as Montanari and Pistore
causal automata. However, their derivation removes causal relations from states, keeping
only the underlying set of events. This also affects the notion of bisimulation, where partial
bijections are between sets of names. We have chosen to keep causal relations, and to give
a compatible notion of bisimulation. This seems a natural choice, and it reflects what will
produced, in a completely automatic and standard way, by our categorical construction.

5 Coalgebraic semantics

In this section we construct a coalgebra for causal semantics, equivalent to LTSPO. Since
we work in a more abstract setting, we do not need to concretely represent events as natural
numbers to implement event generation. The notions introduced in the previous section are
instances of our categorical machinery.

Definition 14 (Categories FinPos, P and Pm) Let FinPos be the category of finite posets
and monotone functions, and let P its skeletal category, i.e., a full subcategory of FinPos such
that each object is isomorphic to one of FinPos, but no two distinct objects are isomorphic.
The category Pm is the subcategory of P with only injective and poset-reflecting morphisms.

We recall that for locally finitely presentable categories, such as FinPos, a skeletal category
can always be constructed. The category P can be seen as a full subcategory of Graph,
the category of graphs and graph homomorphisms. Its objects are isomorphism class repre-
sentatives of a particular class of graphs, namely directed acyclic graphs with all reflexive

123

18 R. Bruni et al.

and transitive edges. Its subcategory Pm will be our index category for presheaves. We now
describe its structure.

Proposition 4 The category Pm is small and has pullbacks, computed as in Graph.

The category Pm lacks colimits, but the ones we are interested in can be computed in P. We
will be more precise when presenting such colimits.

We introduce some notation for particular objects and morphisms of Pm : we denote by [k]
the discrete poset with k elements and by [k]� the same poset plus a top element; bk : [k] →
[k]� is the embedding of [k] into [k]� picking its bottom elements; and �k : [1] → [k]�
picks the top element in [k]�.

In P we can model the operator δK of Definition 9 as a pushout. Given O ∈ |P|, let
K : [k] ↪→ O be the subobject in Pm picking K within O . Then we have

[k] K ��

bk

		

O

old K
O

		
[k]�

newK
O

�� δK (O)

(5)

Explicitly, δK (O) is constructed as follows: the disjoint union of O and [k]� is made, and
then the bottom elements of [k]� and the causes K are identified, resulting in O plus a fresh
top event for K ; the transitive closure of this relation gives δK (O). Notice that, since K
reflects posets, causes of the fresh event must be incomparable, i.e., maximal events in O .
This agrees with Definition 9.

For instance, let {e1, e2} be the discrete poset [2]. Then δ{e1,e2}([2]) is given by

e1 ≺δ{e1,e2}([2]) �2 e2 ≺δ{e1,e2}([2]) �2

Lemma 1 The diagram (5) is a square in Pm.

We remark that (5) is not a pushout in Pm , but we are not interested in its mediating morphisms.
Now we want to turn δK into an endofunctor on Pm . However, δK does not define a

proper functor, because K depends on the specific poset fed to δK . Therefore, we make δ

independent from K by adding a new event for each possible set of independent causes, i.e.,
each discrete subposet of O .

This idea is formalized as follows. Let K k
1 , . . . , K k

nk
: [k] ↪→ O be all subposets of O

with k elements. Notice that, by (4), the image of each K k
i must be a discrete poset, in other

words: K k
i only picks events that are not already related. Suppose O has cardinality o. Then

all the spans [k]� [k]bk

K k

i �� O , namely those involved in (5), can be combined in the
following colimit in P

[1]
b1

����
��

��
�� K 1

1

�
��

��
��

�
. . . [o]

K o
no

����
��

��
�� bo

����
��

��
��

[1]�

new
K 1

1
O ����������������� O

oldO

		

[o]�

new
K o

no
O�����������������

O�

123

Revisiting causality, coalgebraically 19

Given a morphism σ : O → O ′, let σ� : O∗ → O ′� be the corresponding morphism induced
by the universal property of the above colimit. It can be easily verified that if σ is a morphism
of Pm then so is σ�. Roughly, σ� acts as σ on old elements in O�, i.e., those in the image
of oldO , and maps injectively each fresh top event for a set of causes K to the top event for
Kσ , preserving and reflecting the new causal relations involving that event. Therefore we
can define the following allocation endofunctor δ : Pm → Pm

δ(O) = O� δ(σ) = σ�

For instance, δ([2]) is given by

e1 ≺δ([2]) �1 e2 ≺δ([2]) �′1 e1 ≺δ([2]) �2 e2 ≺δ([2]) �2

Remark 2 Our allocation operator δ may seem inefficient: it generates a new event for each
possible set of causes, but only one of them will appear in the continuation after a transition.
However, having a functor on Pm allows us to lift it to presheaves in a way that ensures the
existence of both left and right adjoint (giving Kan extensions along δ) for the lifted functor,
and then preservation of both limits and colimits, which is essential for coalgebras employing
such functor. Generation of unused events is not really an issue: as we will see later, it is
always possible to recover the support of a process, i.e., the poset formed by events actually
appearing in it.

Now we look at the category SetPm of presheaves on posets. Since Pm is small it follows that
SetPm is locally finitely presentable and has all limits and colimits, in particular products and
coproducts. The following constructs are relevant for us.

Presheaf of event names. E : Pm → Set gives the set of event names occurring in O ∈ |Pm |;
formally:

E = HomP([1],−)

Explicitly, E sends O ∈ |Pm | to Pm[[1], O], which is isomorphic to |O|, and σ : O → O ′ in
Pm to the function λe ∈ Pm[[1], O].σ ◦ e, which renames the event e according to σ .

Finite powerset. P f : SetPm → SetPm , defined as P f ◦ (−), where P f is the finite powerset
on Set.

Event allocation operator. Δ : SetPm → SetPm , given by (−) ◦ δ. Explicitly, for P : Pm →
Set and O ∈ |Pm |, ΔP(O) = P(δ(O)). Intuitively, it generates processes with additional
fresh events.

Presheaf of labels. L : Pm → Set given by

L(O) = (Act ∪ {τ })×P f E(O)

For each O ∈ |Pm |, this functor gives pairs (a, K) of an action a and a set of causes K ,
selected among events in O .

We use these operators to define our behavioral endofunctor.

Definition 15 (Behavioral functor) The behavioral functor B : SetPm → SetPm is

B P =P f (L×ΔP).

123

20 R. Bruni et al.

To understand this definition, consider a B-coalgebra (P, ρ). Given O ∈ |Pm | and p ∈
P(O), ρO(p) is a finite set of triples (a, K , p′), telling that p′ is the continuation of p after
observing a, K . The continuation always belongs to ΔP(O), i.e., to P(δ(O)), because every
transition allocates a new event.

The category B-Coalg is well-behaved: it has a final B-coalgebra, and the behavioral
equivalence it induces coincides with B-bisimilarity. This is thanks to the following proper-
ties.

Proposition 5 B is accessible and covers pullbacks.

B-coalgebras can be regarded as particular LTSs whose states are elements of presheaves,
i.e., pairs O � p.

Definition 16 (Pm-ILTS) A Pm-indexed labelled transition system (Pm-ILTS) is a pair (P,�⇒)

of a presheaf P : Pm → Set and a finitely-branching transition relation�⇒⊆ ∫
P×∫ L×∫

P
of the form:

O � p
a,K��⇒ δ(O) � p′ (a, K) ∈ L(O)

such that, for each morphism σ : O → O ′ in Pm :

(i) if O � p
l�⇒ δ(O) � p′ then O ′ � t[σ] l[σ]��⇒ δ(O ′) � p′[δσ] (transitions are preserved

by σ);

(ii) if O ′ � t[σ] l�⇒ δ(O ′) � p′ then there are l ′ and δ(O) � p′′ such that l ′[σ] = l,

p′′[δσ] = p′ and O � p
l ′�⇒ δ(O) � p′′ (transitions are reflected by σ);

Proposition 6 Pm-ILTSs are in bijection with B-coalgebras.

The natural notion of bisimulation for these transition systems is Pm-indexed bisimulation.

Definition 17 (Pm-indexed bisimulation) A Pm-indexed bisimulation on a Pm-ILTS (P,�⇒)

is an indexed family of relations {RO ⊆ P(O)× P(O)}O∈|Pm | such that, for all (p, q) ∈ RO

(i) if O � p
a,K��⇒ O ′ � p′ then there is O ′ � q ′ such that O � q

a,K��⇒ O ′ � q ′ and
(p′, q ′) ∈ RO ′ ;

(ii) for all σ : O → O ′, (p[σ], q[σ]) ∈ RO ′ .

This definition closely resembles that of poset-indexed causal bisimulation (Definition 10).
We have an additional condition (ii), requiring closure under morphisms of Pm . This is not
satisfied by all poset-indexed causal bisimulation, but it holds for the greatest one (Theorem 1).

We have the following correspondence.

Proposition 7 Let (P, ρ) be a B-coalgebra. Then B-bisimulations on (P, ρ) are in bijection
with Pm-indexed bisimulations on the induced Pm-ILTS.

Notice that, unlike Aczel-Mendel bisimulations, a B-bisimulation (namely, a Hermida-Jacobs
one) needs not be the carrier of a B-coalgebra in order to be a bisimulation. This strong
requirement is the reason why some Pm-indexed bisimulations cannot be turned into Aczel-
Mendler ones (see [17, 3.3, Anomaly]).

We now show that LTSPO can be represented as a Pm-ILTS. We form a presheaf from
states of LTSPO as follows.

123

Revisiting causality, coalgebraically 21

Definition 18 (Presheaf of P-processes) The presheaf of P-processes C : Pm → Set is given
by

C (O) = {k | O � k is a state of LTSPO}
C (σ : O → O ′) = λO � k.O ′ � kσ↓O ′

The action of C on morphisms needs to apply the closure operator, after renaming the process:
this guarantees that the result is a proper P-process. Notice that elements of C are defined
over events with an abstract identity, which may not be natural numbers. More precisely, we
implicitly assume the following translation from states of LTSPO. For each finite poset O
over natural numbers, take the isomorphism ϕO : O → [O]within FinPos, where [O] is the
object of Pm canonically representing the isomorphism class of O . Then [O]� kϕ gives the
proper element of C corresponding to O � k.

We have the following property.

Lemma 2 C preserves pullbacks.

We are ready to translate LTSPO to a Pm-ILTS.

Definition 19 (Poset Pm-ILTSPO) The Poset Pm-ILTS (Pm-ILTSPO) is the smallest one gen-
erated by the rule

O � k
a,K−−→PO O ′ � k′

O � k
a,K��⇒PO δ(O) � k′[newK

O (�#K)
/

1, oldO]
The rule in this definition computes a casual process with poset δ(O) from O ′ � k′. This is
done by replacing 1, the concrete fresh event in k′, with the abstract fresh event associated
to K in δ(O), via the corresponding colimit map. All the other events are renamed accord-
ingly. This definition gives a proper Pm-ILTS: transitions are clearly of the required form,
and preservation and reflection of transition follows from analogous properties of LTSPO
(Proposition 3).

We call causal coalgebra the B-coalgebra equivalent to (C ,�⇒PO). We have the following
theorem, which collects the results of this section, instantiated to the causal coalgebra.

Theorem 3 Pm-indexed bisimulations on (C ,�⇒PO) are equivalent to:

– B-bisimulations on the causal coalgebra;
– poset-indexed causal bisimulations closed under injective and poset-reflecting renam-

ings.

In particular, we have that the greatest Pm-indexed bisimulation, B-bisimilarity on the causal
coalgebra and ∼PO are all equivalent, thanks to Theorem 1. These, by Proposition 5, are
equivalent to the kernel of the unique morphism from the causal coalgebra to the final one.

Remark 3 The carrier of the final B-coalgebra can be intuitively described as follows. It is a
presheaf whose elements are pairs O � T of a poset and a tree T . When O � T is the image
of a P-process O � k via the final morphism, then T is similar to a (strong) causal tree for
k, but its edges only exhibit the most recent events. The “missing information”, i.e., the full
history of events, is provided by O .

123

22 R. Bruni et al.

6 From coalgebras to HD-automata

In order to give a characterization of the causal coalgebra in terms of named sets, we employ
the results of [7]. Here authors define a symmetry group over a category C to be a collection
of morphisms in C[c, c], for any c ∈ |C|, which is a group w.r.t. composition of morphisms.
Then they take families of such groups as their notion of generalized named sets. A first
result establishes the equivalence between these families and coproducts of symmetrized
representables, that are functors of the form

∑

i∈I

HomC(ci , _)/Φi

where Φi is a symmetry group over C with domain ci , and the quotient identifies morphisms
that are obtained one from the other by precomposing elements of Φi . These functors, in turn,
are shown to be isomorphic to wide-pullback-preserving presheaves on C, a wide pullback
being the limit of a diagram with an arbitrary number of morphisms pointing to the same
object (pullbacks are a special case, with two such morphisms). The following theorem
summarizes the described results.

Theorem 4 Let C be a category that is small, has wide pullbacks, and such that all its
morphisms are monic and those in C[c, c] are isomorphisms, for every c ∈ |C|. Then every
wide-pullback-preserving P ∈|SetC| is equivalent to a coproduct of symmetrized representa-
bles.

Our category Pm satisfies the hypothesis of this theorem: it is small and has wide pullbacks due
to the existence of pullbacks. In fact, the diagram of a wide pullback in Pm is formed by a finite
number of morphisms, because a finite poset always has a finite number of ingoing poset-
reflecting monomorphisms, so its limit can be computed via binary pullbacks. Moreover,
Pm has only monos, by definition, and Pm[O, O] clearly has only isomorphisms, for each
O ∈ |Pm |. Finally, our presheaf of processes C preserves (wide) pullbacks, so there exists
an equivalent coproduct of symmetrized representables.

Theorem 4 indeed describes an equivalence between pullback-preserving presheaves and
families, which induces one on coalgebras. We shall now investigate this point. Let SetPm� be
the full subcategory of SetPm formed by pullback-preserving presheaves. We have that our
behavioral endofunctor B indeed defines an endofunctor on SetPm� .

Proposition 8 All the endofunctors on SetPm in Definition 15 can be restricted to endofunc-
tors on SetPm� .

Let B� : SetPm� → SetPm� be the restricted behavioral endofunctor. The causal coalgebra is
clearly a B�-coalgebra. Restricting to SetPm� does not affect the final coalgebra: B-Coalg
and B�-Coalg have the same final object and final morphisms from common objects. In fact,
the terminal sequence starts from the final presheaf 1, pointwise defined as the singleton set,
which trivially preserves pullbacks, and goes through Bn(1) = Bn� (1), for any n.

Corollary 1 (of Theorem 4) Let B̃ the behavioral endofunctor on families defined by lifting
all functors in Definition 15 along the equivalence. Then the category B�-Coalg is equivalent
to B̃-Coalg.

In particular, the equivalence relates the final B�-coalgebra and the final B̃-coalgebra, and
their final morphisms. Moreover, since kernels are preserved by equivalence, identifications

123

Revisiting causality, coalgebraically 23

made by the final morphisms are preserved, hence behavioral equivalence is preserved too.
A concrete, automata-theoretic characterization of B̃ has been provided in simpler cases (see
[8,15]). Our case is more complex and we leave its treatment for future work.

Now that we have proved that our categorical setting is suitable for HD-automata, we can
translate the causal coalgebra to a HD-automaton. We work in a more concrete setting: we
introduce a notion of named set closer to a more traditional one, but indeed equivalent to the
families mentioned above. Given a set S of morphism and a morphism σ in Pm , we write
S ◦ σ for the set {τ ◦ σ | τ ∈ S} (analogously for σ ◦ S).

Definition 20 Let Sym(Pm) be the category defined as follows:

– objects are sets Φ ⊆ Pm[O, O] that are groups w.r.t. composition in Pm ;
– morphisms Φ1 → Φ2 are sets of morphisms σ ◦Φ1 such that σ : dom(Φ1)→ dom(Φ2)

and Φ2 ◦ σ ⊆ σ ◦Φ1.

Definition 21 The category Pm-Set is defined as follows:

– objects are Pm-named sets, that are pairs N = (QN ,GN) of a set QN and a function
GN : Q → |Sym(Pm)|. The local poset of q ∈ QN , denoted ‖q‖, is dom(σ), for any
σ ∈ GN (q).

– morphisms f : N → M are Pm-named functions, that are pairs (h,Σ) of a function
h : QN → QM and a function Σ mapping each q ∈ QN to a morphism GM (h(q)) →
GN (q) in Sym(Pm).

In the rest of this section we give an explicit description of the Pm-named set produced
from C by the equivalence. Its elements will be minimal P-processes: we will show that the
translation from P-processes to minimal ones is achieved via categorical constructions. We
need the notions of support, seed and orbit.

Definition 22 (Support and seed) Given O � k, its support, denoted supp(k), is the wide-
pullback-object of the following morphisms

{σ : O ′ ↪→ O | ∃O ′ � k′ : k′[σ] = k}
Let Σk be the embedding supp(k) ↪→ O given by the pullback. Then the seed of k, denoted
seed(k), is the unique element of C (supp(k)) such that seed(k)[Σk] = k.

As shown in [7,12], preservation of pullbacks is essential to ensure existence and unique-
ness of seeds. The seed operation achieves the first two properties of minimal P-processes
(see Definition 11): seed(k) just contains immediate causes for each of its components and
supp(O) contains all and only those causes. This is illustrated by the following example.

Example 2 Consider the following P-process

O � {1, 2, 3} ⇒ p1 ‖ {2} ⇒ p2

where O is a poset over {1, 2, 3, 4} with

2 ≺O 1 3 ≺O 1 2 ≺O 4 3 ≺O 4.

Then the set of morphisms of Definition 22 has two elements f1 : O1 → O and f2 : O2 → O
where O1 is a poset over {1, 2, 3} with 2 ≺O1 1 and 3 ≺O1 1, and O2 is a poset over {1, 2}
such that 2 ≺O2 1. These morphisms just map events preserving their names. We have

O1 � {1, 2, 3} ⇒ p1 ‖ {2} ⇒ p2
 [f1] �� O � {1, 2, 3} ⇒ p1 ‖ {2} ⇒ p2

O2 � {1, 2} ⇒ p1 ‖ {2} ⇒ p2
 [f2] �� O � {1, 2, 3} ⇒ p1 ‖ {2} ⇒ p2

123

24 R. Bruni et al.

It is easy to check that the pullback object of f1 and f2 is O2, so the corresponding seed is
O2 � {1, 2} ⇒ p1 ‖ {2} ⇒ p2. Notice that the event 4 has been discarded, because it does
not syntactically appear in the process, but also 3, because it is not an immediate cause for
either p1 or p2.

Definition 23 (Orbit) The orbit of O � k is

orb(k) = {k[σ] | σ ∈ Pm[O, O]}
We denote by [k]o a canonical choice of an element of orb(k).

The orbit of k is the set of elements obtained by applying to it all functions induced by
poset automorphisms. The representative [k]o plays the same role as [O � k]∼= defined in the
previous section. However, each∼=-equivalence class may contain P-processes with different,
but isomorphic, posets. These posets all become the same one in Pm , due to skeletality, so it
is enough to consider automorphisms, which are always iso in Pm .

Definition 24 The Pm-named set of minimal P-processes is (C,GC), where

C =
{

supp(k) � [seed(k)]o | O � k ∈
∫

C

}

GC = λO � k.{Φ ∈ |Sym(Pm)| | dom(Φ) = O ∧ ∀σ ∈ Φ : k[σ] = k}
Let us explain this definition. The set C is produced from elements of C : for each of these,
we compute the seed, and then we only take the canonical representative for the seed’s orbit.
The former operation achieves the third requirement for minimal P-processes. The symmetry
group for a process is the set of poset automorphisms fixing the process.

The HD-automaton on (C,GC) in B̃-Coalg, equivalent to the causal coalgebra, is the
category-theoretic counterpart of LTSIC: states are minimal P-processes, and transitions
have history maps. In B̃-Coalg, history maps come from the fact that coalgebra structure
maps are Pm-named functions, so they are equipped with backward morphisms towards the
poset of the source state. However, there is a crucial difference: states of the HD-automaton
have symmetries, which allow for further identifications of states. For instance, the process

[2] � {1} ⇒ p ‖ {2} ⇒ p

can be associated the symmetry {id[2], (1 2), (1 2)−1}, because swapping 1 and 2 yields
bisimilar processes.

7 Conclusions

In this paper we have given a construction for obtaining compact models of causal seman-
tics. In order to do this, we have equipped causal processes with nominal structures, namely
posets over event names, representing causal relations. We have presented a first, set-theoretic
version of our construction, along the lines of [14], and then a category-theoretic one that
employs standard constructs and results for nominal calculi, namely presheaf-based coalge-
bras and their equivalence with HD-automata. The categorical version is much more concise
and natural. In particular, reducing the state-space and showing that this operation preserves
the semantics require some technical effort in the set-theoretic version, whereas the categor-
ical version employs a general construction that automatically performs this reduction in a
semantics-preserving way.

123

Revisiting causality, coalgebraically 25

This paper is mainly related to [14]. While the definition of causal automata should be
attributed to the ingenuity of their authors, the derivation of HD-automata we show in this
paper is due to a general categorical construction. The main difference between the two
notions of automata is in the information each state keeps: causal automata keep events, but
discard their causal relations; our HD-automata retain causal relations, in the form of posets,
and, in addition, there are symmetry groups over them. This allows for a further reduction of
states. How this difference affects bisimulations has yet to be investigated.

A representation of events in terms of names, with the aim of capturing Darondeau–
Degano causal semantics, can also be found in [5], even if in the different context of tile
systems. We can cite [6] for the introduction of transitions systems for causality whose states
are elements of presheaves, intended to model the causal semantics of the π-calculus as
defined in [4]. However, the index of a state is a set of names, without any information about
events and causal relations. The advantage of our index category is that it allows reducing the
state-space in an automatic way, exploiting a standard categorical construction. This cannot
be done in the framework of [6]. Finally, an HD-automaton for causality has been described
in [8], but it is derived as a direct translation of causal automata and its states do not take into
account causal relations.

Other related works are [19,20], where event structures have been characterized as (con-
travariant) presheaves on posets. While the meaning of presheaves is similar, the context is
different: we consider the more concrete realm of process algebras, coalgebras and nominal
automata. A more precise correspondence with such models should be worked out.

Acknowledgments The research for this paper has been partially funded by the EU Integrated Project 257414
ASCENS and by the Italian MIUR Project CINA (PRIN 2010), Grant Number 2010LHT4KM. We are very
grateful to Sam Staton for his clarifications about Hermida Jacobs bisimulations. We thank the anonymous
reviewers for their useful comments and suggestions.

Appendix: Proofs

Proof (of Proposition 2)

(�⇒) We prove that the following relation is a causal bisimulation

R = {(k, k′) | ∃O : O � k ∼PO O � k′}

Suppose O � k
a,K−−→PO O ′� k′′ and the simulating transition is O � k′ a,K−−→PO O ′� k′′′.

Then we can recover simulating transitions in LTSDD as follows

k
a,K↓O−−−−→DD k′′ k′ a,K↓O−−−−→DD k′′′

where ↓ is extended to sets of causes by performing their closure. Since O ′ � k′′ ∼PO
O ′ � k′′′, we have (k′′, k′′′) ∈ R.
(⇐�) We prove that the following relation is a poset-indexed causal bisimulation

RO = {(O � k, O � k′) | k ∼DD k′}

Suppose k
a,K−−→DD k′′ and k′ a,K−−→DD k′′′. Then the rule in Definition 9, applied to

both transitions, gives transitions in LTSPO with the same label, and the same source
and target posets. If the the target poset is δM (O), then from k′′ ∼DD k′′′ it follows
(δM (O) � k′′, δM (O) � k′′′) ∈ RδM (O). ��

123

26 R. Bruni et al.

Proof (of Proposition 3) We show (i), the other point is analogous. We rely on the following
properties of LTSDD, which can be easily checked by induction on the inference via rules
Fig. 1: for all O � k, σ : O → O ′ injective and poset-reflecting, and O ′′ such that O is a
subposet of O ′′, we have

k
a,K−−→DD k′ �⇒ kσ

a,Kσ−−−→DD k′σ+ (6)

k
a,K−−→DD k′ �⇒ k↓O ′′

a,K↓O′′−−−−→DD k′↓δK↓O′′ (O ′′) (7)

Property (7) is the least obvious: the idea is that, since labels of LTSDD show the whole history
of causes for an action, the additional ones in O ′′, preceding those in K , should be shown as
well; the continuation is closed accordingly.

Now, take O � k
a,K−−→PO δK (O) � k′ and σ : O → O ′ injective and poset-reflecting. By

the rule in Definition 9 there is a transition in LTSDD

k
a,K ′−−→DD k K = maxO(K ′);

If we apply (6) and then (7) to this transition, we get

(kσ)↓O ′
a,K ′σ↓O′−−−−−→DD (k′σ+)↓δK ′σ↓O′ (O ′). (8)

Observe that

maxO ′(K ′σ↓O ′) = maxO ′(K ′σ)

= maxO(K ′)σ
= Kσ (9)

The first equation holds because ↓O ′ only adds to K ′σ events that are smaller w.r.t. ≺O ′ .
The second equation holds because σ is poset-reflecting: this prevents some maximal, thus
unrelated, events in K ′ to become non-maximal in K ′σ due to additional causal relations
involving them in O ′.

From (9) it follows

δK ′σ↓O′ (O ′) = δmaxO′ (K ′σ↓O′)(O ′)
= δKσ (O ′) (10)

where the first equation comes from transitivity: adding causal relations from 1 to K ′σ and
its past causes in O ′ is equivalent to adding relations to only maximal events in K ′σ , because
transitivity will take care of adding the missing ones.

We conclude by applying (10) to the continuation of (8), which becomes of the required
form, and then the rule of Definition 9 to infer the required transition. The computation of
the maximal causes yields the desired result, thanks to (9). ��

In order to prove Theorem 2, we need the following lemmata, whose proofs are straight-
forward.

Lemma 3 For each O � k, μO�k is injective and poset-reflecting.

Lemma 4 Let �O � k� = O ′ � k′, then (k′μO�k)↓O = k.

An immediate consequence is the following one.

123

Revisiting causality, coalgebraically 27

Lemma 5 O � k
a,K−−→

h
IC O ′ � k′ is generated by O � k

a,K−−→PO δK (O) � (k′h)↓δK (O) via

the rule in Definition 12.

Proof (of Theorem 2)
Item (i). We prove that the following relation is an immediate causes bisimulation

R = {(�O � k�, σ, �O � k′�) | O � k ∼PO O � k′,
σ (n) = m ⇐⇒ μO�k(n) = μO�k′(m)}

We only show how the derivation of a simulating transition for one of �O �k�. The symmetric
case is analogous. Let �O � k� = Õ � k̃, and suppose it has the following transition

Õ � k̃
a,K−−→

h
IC Õ ′ � k̃1 (11)

Then, by Lemma 5, we have

Õ � k̃
a,K−−→PO δK (Õ) � k̃2 k̃2 = (k̃1h)↓

δK (Õ)
(12)

Now, let μ1 = μO�k : by Lemma 3, we can apply Proposition 3(i) to the last transition and
get

O � (k̃μ1)↓O = k
a,Kμ1−−−−→PO δKμ1(O) � k̃3 k̃3 = (k̃2μ1

+)↓δKμ1 (O) (13)

where (k̃μ1)↓O = k is due to Lemma 4. Therefore we have �δKμ1(O)� k̃3� = Õ ′ � k̃1, and
the associated map Õ ′ → δKμ1(O) is given by composing those applied to the continuations
of (12) and (13), namely

μ
δKμ1 (O)�k̃3

= μ1
+ ◦ h (14)

Suppose (13) can be simulated by O � k′ as follows

O � k′ a,Kμ1−−−−→PO δKμ1(O) � k′′. (15)

Let �O � k′� = Õ ′′ � k̃′ and μ2 = μO�k′ . Then, by Lemma 3, we can apply Proposi-
tion 3(ii) to (15) and μ2, obtaining

Õ ′′ � k̃′ a,K̃−−→PO δK̃ (Õ ′′) � k̃′′ (16)

such that K̃μ2 = Kμ1 and (k̃′′μ2
+)↓δKμ1 (O) = k′′. Let h′ = μ

δK̃ (Õ ′′)�k̃′′ . Applying the rule
of Definition 12 to (16) we get

Õ ′′ � k̃′ a,K̃−−→
h′ IC �δK̃ (Õ ′) � k̃′′� (17)

It is not difficult to check that �δK̃ (Õ ′′) � k̃′′� = �δKμ1(O) � k′′�: the intuition is that taking
immediate causes from O � k′, then adding a new event, and taking again immediate causes,
has the same result as adding the event straight away and then taking immediate causes.
Therefore μδKμ1 (O)�k′′ can be expressed as composition of the maps from the continuation
of (17) to that of (16), and from the latter to that of (15), namely

μδKμ1 (O)�k′′ = μ2
+ ◦ h′ (18)

123

28 R. Bruni et al.

Now we shall check that (11) and (17) are actually simulating transitions. From K̃μ2 =
Kμ1 and the definition of σ (recall that μ1 = μO�k and μ2 = μO�k′) it follows K̃ = Kσ .
Let σ ′ be defined by

σ ′(n) = m ⇐⇒ μ1
+(h(n)) = μ2

+(h′(m))

The right equation is equivalent to μδKμ1 (O)�k′′(n) = μ
δKμ1 (O)�k̃3

(m), by (14) and (18), so

(�δKμ1(O)�k′′�, σ ′, �δKμ1(O)� k̃3�) ∈ R. It remains to check that it is a proper bisimulation
triple. Take n, m such that σ ′(n) = m. We have

h(n) = 1 ⇐⇒ μ1
+(h(n)) = 1

⇐⇒ μ2
+(h′(m)) = 1

⇐⇒ h′(m) = 1

where the first and last implication follow from the definition of μ1
+ and μ2

+. For
h(n), h(m) > 1, expanding the definition of μ1

+ and μ2
+ we get μ1(h(n) − 1) =

μ2(h′(m)− 1), hence σ(h(n)− 1) = h′(m)− 1, by the definition of R.
Item (ii).We prove that the following family of relations is a poset-indexed causal bisim-

ulation

RÔ = {(Ô � k̂, Ô � k̂′) |O � k ∼σ
IC O ′ � k′, (ii.a) and (ii.b) hold}

To ease notation, let μ1 = μÔ�k̂ and μ2 = μÔ�k̂′ . We only show that each transition of

Ô � k̂ can be simulated by one of Ô � k̂′. The proof for the symmetric statement is analogous.
Suppose Ô � k̂ has the following transition

Ô � k̂
a,K−−→PO δK (Ô) � k̂′′ (19)

Then, by Proposition 3(ii) and Lemma 3, we can rename it via μ1 and get

O � k
a,K̃−−→PO δK̃ (O) � k̃′ k̃′ = (k̂′′μ1

+)↓δK̃ (O)

where K̃μ1 = K . Applying the rule in Definition 12, we get

O � k
a,K̃−−→

h
IC �δK̃ (O) � k̃′�

Now, suppose that this transition can be simulated by O ′ � k′ as follows

O ′ � k′ a,K̃σ−−−→
h′ IC O ′′ � k′′,

and �δK̃ (O) � k̃′� ∼σ
IC O ′′ � k′′. Applying Lemma 5 we get

O ′ � k′ a,K̃σ−−−→PO δK̃σ
(O ′) � k′′1 k′′1 = (k′′h′)↓δK̃σ

(O ′)

and then, from Proposition 3(i) with renaming μ2, and applying Lemma 4 to the resulting
source process, we get

Ô � k̂′ a,(K̃σ)μ2−−−−−→PO δ
(K̃σ)μ2

(O ′) � k̃′′ k̃′′ = (k′′1μ2
+)↓δ

(K̃σ)μ2
(O ′) (20)

From hypothesis (ii.b) and K̃ ⊆ dom(σ), by definition of∼σ
IC, we have (K̃σ)μ2 = K̃μ1 =

K , so (19) and (20) have the same label, and we must have δ
(K̃σ)μ2

(O ′) = δK (Ô). Finally,
we have to check (ii.a) and (ii.b) on continuations:

123

Revisiting causality, coalgebraically 29

(ii.a) We have �δK̃ (O) � k̃′� = �δK (Ô) � k̂′′� and �δK (Ô) � k̃′′� = O ′′ � k′′, as
already explained in Item (i) for analogous transitions;

(ii.b) Let μ̃1 = μ
δK̃ (O)�k̃′ and μ̃2 = μ

δK (Ô)�k̃′′ . We have to check μ̃1|dom(σ ′) = μ̃2 ◦ σ ′.
Take n ∈ dom(σ ′). Then, by the equivalence between continuations exhibited in the
proof of (ii.a), we have μ̃1 = μ1

+ ◦ h and μ̃2 = μ2
+ ◦ h′, so

μ̃1(n) = μ̃2(σ
′(n)) ⇐⇒ μ1

+(h(n)) = μ2
+(h′(σ ′(n)))

We have two cases, by the property relating σ ′ with h, h′ and σ :

– h(n) = h′(σ (n)) = 1, then μ1
+(h(n)) = 1 = μ2

+(h′(σ ′(n)));
– h(n), h′(σ (n)) > 1, then σ(h(n)− 1) = h′(σ ′(n))− 1, and so

μ2(σ (h(n)− 1)) = μ2(h
′(σ ′(n))− 1) (applying μ2 on both sides)

⇐⇒ μ1(h(n)− 1)=μ2(h
′(σ ′(n))−1) (by hypothesis μ1(n) = μ2(σ (n)))

⇐⇒ μ1
+(h(n))=μ2

+(h′(σ ′(n))) (by definition of μ1
+ and μ2

+,

adding 1 to both members)

��

We need the following lemma in order to prove Proposition 4.

Lemma 6 Let f, g, h morphisms of P such that f = h ◦ g. If f and h are injective and
poset-reflecting then so is g.

Proof Suppose f : O1 → O3, g : O1 → O2 and h : O2 → O3. Injectivity of g is straight-
forward to prove. As for poset-reflection, suppose g does not preserve posets, namely there
are x, y ∈ |O1| such that x �≺O1 y and g(x) ≺O2 g(y). Then h(g(x)) ≺O3 h(g(y)),
because h preserves posets, therefore f (x) ≺O3 f (y), but then f does not preserve posets,
a contradiction. ��

Proof (of Proposition 4) Smallness comes from the same property of P. We now show that
pullbacks exists and are computed as in Graph. Consider the following pullback in Graph

O ′

(1)m

q1

��

q2

��

O
p1 ��

p2

		

O1

σ1

		
O2 σ2

�� O3

where σ1, σ2, q1, q2 are morphisms in Pm . We have to show that O ∈ |Pm | and p1, p2, m
are morphisms in Pm . That O ∈ |Pm |, namely it is a dag with reflexive and transitive edges,
follows from analogous properties of O1, O2 and O3 and the fact that O has an edge iff each
graph among O1, O2 and O3 has a corresponding edge picked by the pullback morphisms,
by definition of pullback in Graph. From this last observation also follows that p1 and p2

preserve posets. They are also injective, because monos are stable under pullbacks, so they
belong to Pm . As for m, it belongs to Pm by Lemma 6 applied to the commutative triangle
(1). ��

123

30 R. Bruni et al.

We need some technical lemmata in order to prove Lemma 1. We fix the following span
in Pm

O2 O
σ2

 σ1 �� O1

Lemma 7 Consider the following pushout in Graph

O
σ1 ��

σ2

		

O1

p1

		
O2 p2

�� G

Then:

(i) p1 and p2 are injective and preserve posets;
(ii) G satisfies antisymmetry and reflexivity.

Proof (i) Injectivity follows from the fact that monomorphisms in Graph are stable under
pushouts. Suppose p1 does not reflect posets (the case of p2 is identical). Then there
are x, y ∈ |O1| such that x �≺O1 y and p1(x) ≺G p1(y). But then, by definition of
pushout in Graph, we must have x ′, y′ ∈ |O| such that σ1(x ′) = x , σ1(y′) = y and
σ2(x ′) ≺O2 σ2(y′) (otherwise p1(x) �≺G p1(y)). Since σ2 reflects posets, we must have
x ′ ≺O y′, but then σ1 does not reflect posets, a contradiction.

(ii) Reflexivity follows from self-loops of O1 and O2 being preserved by p1 and p2. Suppose
antisymmetry does not hold, namely there are x, y ∈ |G|, such that x ≺G y, y ≺G x
and x �= y. Then, since p1 and p2 reflect posets by (i), we can only have two cases:

– x ≺G y and y ≺G x , with x �= y, are images of edges in Oi via pi (i ∈ {1, 2}): then
Oi would not satisfy the antisymmetric property, a contradiction;

– x ≺G y and y ≺G x are images of one edge x1 ≺O1 y1 in O1 and one y2 ≺O2 x2 in
O2 via p1 and p2 respectively, with xi �= yi : then there must be x ′, y′ ∈ |O|, with
x ′ �= y′, such that σi (x ′) = xi and σi (y′) = yi ; but then x ′ ≺O y′ and y′ ≺O x ′,
because σ1 and σ2 reflect posets, i.e., O does not satisfy the antisymmetric property,
a contradiction.

��
Lemma 8 If the square on the left is a pushout in Graph then the one on the right is a
pushout in P and a square in Pm

O
σ1 ��

σ2

		

O1

p1

		
O2 p2

�� G

O
σ1 ��

σ2

		

O1

cl◦p1

		
O2 cl◦p2

�� G+

where G+ is the transitive closure of G and cl = G ↪→ G+.

Proof Transitive closure defines a functor Graph→ Cat, where Cat is the category of small
categories, left adjoint to the functor sending a category to its underlying graph, therefore
it preserves pushouts. It is easy to see that P is equivalent to a full subcategory of Cat,
and that the left pushout is sent to a pushout in this subcategory, corresponding to the right

123

Revisiting causality, coalgebraically 31

square. In fact, transitive closure does not affect O2 O
σ2

 σ1 �� O1 , by idempotency, and

Lemma 7(ii) says that G+ is indeed an object of P. The right square is indeed a pushout:
mediating morphisms towards objects in P correspond, along the equivalence, to those in
Cat.

Finally, in order to show that the right square is in Pm , we have to prove that cl ◦ p1 and
cl ◦ p2 are injective and reflect posets. Injectivity follows from Lemma 7(i) and injectivity of
cl. By Lemma 7(ii) we know that p1 and p2 reflect posets. Suppose cl ◦ p1 does not (cl ◦ p2

is treated analogously). Then there are x, y ∈ |O1|, with x �= y, such that x �≺O1 y and
cl(p1(x)) ≺G+ cl(p1(y)). We have two cases:

– cl(p1(x)) ≺G+ cl(p1(y)) is added by the transitive closure. Then there is z ∈ |G| such
that p1(x) ≺G z ≺G p1(y). If z is the image via p1 of some z′ ∈ |O1|, since p1 reflects
posets we must have x ≺O1 z′ ≺O1 y, but x �≺O1 y by assumption, which is absurd
because O1 would not be transitively closed. If z′ = p2(z) then, by definition of pushout,
we must have x ′, y′ ∈ |O2| sent by p2 to p1(x) and p1(y), respectively. Since p2 reflects
posets, we must have x ′ ≺O2 z′ ≺O2 y′ and x ′ �≺O2 y′, by p1(x) �≺G p1(y), but then O2

is not transitively closed, a contradiction.
– p1(x) ≺G p1(y). Then p1 would not reflect posets.

��
Proof (of Lemma 1) This is just a corollary of Lemma 8. ��
Proof (of Proposition 5) For accessibility: P f is known to be accessible; L is accessible,
because it can be regarded as a constant endofunctor on SetPm ; Δ is accessible, because it
has a right adjoint, namely the functor computing right Kan extensions along δ. The thesis
follows from accessibility being preserved by composition and products.

In order to show that B covers pullbacks, we will show that it has the form P f ◦ B ′, with
B ′ a pullback preserving endofunctor on SetPm . The thesis will follow from P f covering
pullbacks (see [18]). Δ has a left adjoint, namely the functor computing left Kan extensions
along δ, then it preserves pullbacks; L can be seen as a constant, hence pullback-preserving,
endofunctor on SetPm . B ′ is the product of these two functors, so it preserves pullbacks. ��
Proof (of Proposition 6) The transition relation can be turned into a natural transformation
in SetPm : (i) and (ii) guarantee that such relation obeys the naturality condition. The other
direction clearly holds. ��
Proof (of Proposition 7) Requirement (ii) of Definition 17 corresponds to the fact that a B-
bisimulation R is a functor with action on σ given by (p, q) �→ (p[σ], q[σ]). Requirement
(i) corresponds to the fact that RO is “almost” an ordinary bisimulation, because computing
B R(O) essentially amounts to computing B f lts(RO) (see Sect. 2.2) for each O ∈ |Pm |, as
images in SetPm are computed pointwise in Set, with the difference that continuations are
not in RO , but in R(δO). ��
Proof (of Proposition 8) Let P be a pullback-preserving presheaf. It is well-known that the
finite powerset P f in Set preserves pullbacks of monos, thus so does P f ◦ P .

The presheaf of label can be seen as an endofunctor on SetPm with constant action L, so
we have to show that L preserves pullbacks: it is obtained by combining, via product and
composition, the covariant hom functor E , which is known to preserve pullbacks, the finite
powerset and the constant presheaf Act ∪ {τ }, which trivially preserves pullbacks; therefore
L preserves pullbacks.

123

32 R. Bruni et al.

The interesting case is Δ. We have to show that δ preserves pullbacks, which implies that
P ◦ δ, i.e., ΔP , has the same property. Consider the following squares in Pm , where the left
one is a pullback

O
p1 ��

p2

		

O1

σ1

		
O2 σ2

�� O3

δ(O)
δ(p1) ��

δ(p2)

		

δ(O1)

δ(σ1)

		
δ(O2)

δ(σ2)
�� δ(O3)

The left diagram can be embedded into the right one using old maps. This gives the action of
the right diagram’s morphisms on elements that are not generated by δ, and tells that the right
diagram indeed behaves like a pullback on such elements. Now, consider any element added
by δ to O . This is the top element for a set of incomparable events K ⊆ |O|. Since pullbacks
are constructed as in Graph (Proposition 4), K is incomparable in O if and only if p1(K)

and p2(K) are incomparable in O1 and O2, respectively, and have the same image in O3,
again formed by incomparable events. By definition of the action of δ on morphisms, δ(pi)

maps the fresh top element for K to the ones for pi (K) (i = 1, 2), and these are mapped by
δ(σ1) and δ(σ2) to the same one in δ(O3). Therefore δ(O) is indeed a pullback object, with
pullback maps δ(p1) and δ(p2). ��

References

1. Adámek, J.: Introduction to coalgebra. Theory Appl. Categ. 14(8), 157–199 (2005)
2. Adámek, J., Bonchi, F., Hülsbusch, M., König, B., Milius, S., Silva, A.: A coalgebraic perspective on

minimization and determinization. In: FoSSaCS, pp. 58–73 (2012)
3. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press,

Cambridge (1994)
4. Boreale, M., Sangiorgi, D.: A fully abstract semantics for causality in the π -calculus. Acta Inf. 35(5),

353–400 (1998)
5. Bruni, R., Montanari, U.: Dynamic connectors for concurrency. Theor. Comput. Sci. 281(1–2), 131–176

(2002)
6. Cattani, G.L., Sewell, P.: Models for name-passing processes: interleaving and causal. Inf. Comput.

190(2), 136–178 (2004)
7. Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models of resource binding.

Electr. Notes Theor. Comput. Sci. 264(2), 63–81 (2010)
8. Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation of names. Inf. Comput.

208(12), 1349–1367 (2010)
9. Darondeau, P., Degano, P.: Causal trees: Interleaving + causality. In: Semantics of Systems of Concurrent

Processes, pp. 239–255 (1990)
10. Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-automata for the π -calculus

using polymorphic types. Theor. Comput. Sci. 331(2–3), 325–365 (2005)
11. Fiore, M.P, Turi, D.: Semantics of name and value passing. In: LICS, pp. 93–104 (2001)
12. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras, (pre)sheaves and named sets.

Higher-Order Symb. Comput. 19(2–3), 283–304 (2006)
13. Kanellakis, P.C., Smolka, S.A.: Ccs expressions, finite state processes, and three problems of equivalence.

Inf. Comput. 86(1), 43–68 (1990)
14. Montanari, U., Pistore, M.: Minimal transition systems for history-preserving bisimulation. In: STACS,

pp. 413–425 (1997)
15. Montanari, U., Pistore, M.: Structured coalgebras and minimal HD-automata for the π -calculus. Theor.

Comput. Sci. 340(3), 539–576 (2005)
16. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000)
17. Staton, S.: Name-Passing Process Calculi: Operational Models and Structural Operational Semantics.

Technical Report 688, University of Cambridge (2007)

123

Revisiting causality, coalgebraically 33

18. Staton, S.: Relating coalgebraic notions of bisimulation. Logical Methods Comput. Sci. 7(1), 1–21 (2011)
19. Staton, S., Winskel, G.: On the expressivity of symmetry in event structures. In: LICS, pp. 392–401 (2010)
20. Winskel, G.: Event structures as presheaves—two representation theorems. In: CONCUR, pp. 541–556

(1999)
21. Worrell, J.: Terminal sequences for accessible endofunctors. Electr. Notes Theor. Comput. Sci. 19, 24–38

(1999)

123

	Revisiting causality, coalgebraically
	Abstract
	1 Introduction
	1.1 A coalgebra for causality
	1.2 An efficient operational model: HD-automata
	1.3 Illustrative example

	2 Background
	2.1 Functor categories
	2.2 Coalgebras
	2.3 Coalgebras over presheaves

	3 Causal processes
	4 Two partial order LTSs for causal processes
	4.1 Poset-indexed LTS
	4.2 Immediate causes LTS

	5 Coalgebraic semantics
	6 From coalgebras to HD-automata
	7 Conclusions
	Acknowledgments
	Appendix: Proofs
	References

