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Abstract We introduce a linear temporal logic and a first-order logic in the weighted setup
of the max-plus semiring with discounting parameters in [0, 1). Furthermore, we define ω-d-
star-free series and counter-free weighted Büchi automata. We show that the classes of series
definable in fragments of the weighted linear temporal logic and first-order logic, the class
of ω-d-star-free series, and a subclass of ω-d-counter-free series coincide. This extends a
fundamental result, for first-order logic theory, to series over the max-plus semiring with
discounting.

1 Introduction

Linear temporal logic (LTL for short) and its variations play an important role in model check-
ing, especially for practical applications (cf. for instance [2,19,30]). LTL definable languages
are known to coincide with languages definable by first-order (FO for short) logic, star-free
languages, aperiodic languages and counter-free languages. More interestingly, this result
holds for finitary languages, i.e., languages over finite words, as well as for infinitary lan-
guages (over infinite words). These different characterizations of the same class of languages
were proved by several authors; the results for infinite words required more sophisticated
techniques than the ones for finite words. In order to avoid a long list of relative references,
we refer the reader to the excellent survey of Diekert and Gastin [7] (and the references of
that paper).

Research of the first author has been co-financed by the European Union (European Social Fund—ESF) and
Greek national funds through the Operational Program “Education and Lifelong Learning” of the National
Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in
knowledge society through the European Social Fund.

E. Mandrali · G. Rahonis (B)
Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
e-mail: grahonis@math.auth.gr

E. Mandrali
e-mail: elemandr@gmail.com

123



62 E. Mandrali, G. Rahonis

Here, we establish the above result (excluding the aperiodic characterization) in the
weighted setup of the max-plus semiring. Our motivation lies in the last years’ increas-
ing interest in the development of model checking tools incorporating quantitative features.
This need, but also the deep theoretical interest, led several researchers to consider quanti-
tative versions of logics. The first achievement was done by Droste and Gastin in [8] (cf.
also [9]), where they introduced a weighted MSO logic over finite words and established the
expressive equivalence of a fragment of weighted MSO sentences and weighted automata
over semirings, i.e., an Elgot and Büchi type result. Weighted versions of MSO logics were
investigated also for other structures like infinite words, trees, pictures, traces, texts. For the
corresponding results and/or references, we suggest Chapters 5, 9, 10, 12 of [10]. Another
extension, of weighted MSO logics, concerns the algebraic structure where the weights are
taken from. More precisely, in [14] the authors considered arbitrary bounded lattices and
recently, in [12], a weighted MSO logic was investigated over structures with operations like
average, limit superior, limit inferior, limit average or discounting.

A quantitative version of the LTL appeared for the first time in [18]. In that paper, the
authors considered a weighted LTL and weighted automata over De Morgan algebras and
presented the translation of such an LTL formula to a weighted automaton. Then, in [14], the
authors considered weighted MSO and FO logic, and weighted LTL over arbitrary bounded
lattices and they showed the aforementioned equivalence for FO and LTL definable, star-free,
and aperiodic series. The considered underlying structure provides an important property:
every recognizable (resp.ω-recognizable) series is a recognizable (resp.ω-recognizable) step
function. Similarly, any aperiodic series is an aperiodic step function. The “step function”
characterization, on the positive side, permits elegant proofs, but on the other side, restricts
the series to a finite image. In [21] the author introduced a weighted LTL with discounting over
the max-plus semiring Rmax = (R+∪{−∞},max,+,−∞, 0) and established the translation
of weighted LTL formulas to weighted Büchi automata with discounted behavior. The max-
plus semiring has important practical applications, especially to dynamic programming and
discrete event systems (cf. for instance [1,17]). On the other hand, the discounting method
has been incorporated in automata and tree automata theory [3,5,13,22], in model checking
[6,15], in game theory [27] as well as in equational theories [16].

In this paper, we consider the weighted LTL of [21] and a slight expansion of the weighted
FO logic with discounting (the discounting parameters will be numbers in [0, 1)), as it is
obtained by [13], by adding a discounted first-order existential quantifier. Moreover, we
introduce d-star-free and ω-d-star-free series, and counter-free weighted automata as well
as counter-free weighted Büchi automata. The main result of the paper shows that series
definable by formulas in a fragment of our weighted LTL, series definable in a fragment
of our weighted FO logic, ω-d-star-free series and a subclass of ω-d-counter-free series
coincide. Though we present our results and proofs for infinitary series, one can transform
them, using even simpler constructions, to the finitary case.

In the sequel, we present the structure of our paper. Except of this section, and the prelim-
inary notions in Sect. 2, we introduce the weighted LTL in Sect. 3. As it is already mentioned,
it is the one from [21] but we add a new next operator called boolean since it does not use the
discounting parameters in its semantics. Then, we define the semantics of the weighted LTL
formulas and introduce the fragments of U -nesting and restricted LTL formulas; the first one
is included into the latter. An infinitary series definable by a weighted LTL formula in the U -
nesting (resp. restricted) fragment is calledω-ULTL-d-definable (resp. ω-rLTL-d-definable).

In Sect. 4, we introduce the weighted FO logic with discounting. In comparison to [13],
we add a new existential quantifier. This in fact gives discounted values of the semantics of
the formula under the quantifier and it is mostly needed for technical reasons. We show in
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On weighted first-order logics with discounting 63

Sect. 8, that the addition of this quantifier it is not “too much”, in the sense that its addition to
the weighted MSO logic with discounting of [13], does not change the expressive equivalence
of weighted Büchi automata and weighted MSO logic formulas. We consider a fragment of
our weighted FO logic whose formulas are called weakly quantified and the series definable
by such formulas ω-wqFO-d-definable. The main result of this section states that every ω-
rLTL-d-definable series is also ω-wqFO-d-definable. In fact, the weakly quantified FO logic
formula corresponding to a restricted LTL formula uses at most three variables.

In Sect. 5, we deal with the notion of star-freeness in the weighted setup. It is well-known
(cf. for instance [7,20,24,28]) that the class of star-free languages over an alphabet A is the
smallest family of languages over A which contains ∅, the singleton {a} for every a ∈ A,
and which is closed under finite union, complementation and concatenation. Furthermore,
the class of ω-star-free languages over A is the closure of the empty set under the opera-
tions of union, complement and concatenation with star-free languages on the left. In our
case, for series, we faced the problem of how to determine a corresponding class which
captures the aforementioned features. To be precise, the problem is that the application of
the star-operation (whenever it is permitted) to star-free languages is implemented by the
other operations. But in the setup of series over the max-plus semiring (or over an arbitrary
semiring) the complement operation is not “too strong”. This means, that we had to involve
somehow the +-iteration operation, of course under restrictions. Hence, we defined the class
of d-star-free series as the least class of series which contains the monomials and is closed
under the operations of maximum, sum, Cauchy sum (+d), complement, and +-iteration
applied to series of the form maxa∈A

((
ka
)

a

)
where ka ∈ Rmax. We could extend the appli-

cation of the +-iteration operation to series whose support is a finite pure code (cf. [26]) but
then we could not prove the equivalence to the other characterizations. There is an alternative
definition for the class of star-free languages, using the concept of bounded synchronization
delay (instead of complementation) (cf. [24] and our Sect. 7). But a corresponding definition
for series is not convenient for our scope. In our main result of this section, we show that the
class of ω-wqFO-d-definable series is contained into the class of ω-d-star-free series.

Section 6 contains the theory of counter-free weighted and counter-free weighted Büchi
automata. Our models are nondeterministic. Recall that a finite (resp. Büchi) automaton is
counter-free if for every state q , finite wordw, and n ≥ 1, the existence of a path from q to q
with labelwn implies the existence of a path from q to q with labelw. In our weighted models
we had also to take care of the weights of the paths. Hence, we assumed that the maximum
weight of the paths from q to q with labelwn is the same with the weight of the path from q to
q with labelwn using n-times thew-labelled loop from q to q with the maximum weight. We
consider also simple counter-free weighted (resp. Büchi) automata whose initial distribution
assigns only one weight �= −∞, and for every a ∈ A there is at most one weight �= −∞
assigned to every a-labelled transition. An infinitary series is called almost simple if it is of

the form max1≤i≤n

(
r (i)1 +d . . .+d r (i)mi

)
where, for every 1 ≤ i ≤ n, r (i)1 , . . . , r (i)mi −1 are

simple d-counter-free series and r (i)mi is a simple ω-d-counter-free series. We show that the
class of ω-d-star-free series is contained into the class of almost simple ω-d-counter-free
series.

In Sect. 7, we close the cycle, namely we show that the class of almost simpleω-d-counter-
free series is contained into the class ofω-ULTL-d-definable series. For this result, we needed
some technical matter on our weighted LTL.

Finally, in Sect. 8 we show that the addition of the discounted first-order quantifier to the
weighted MSO logics of [13] does not change the expressive power of the weighted restricted
MSO sentences.
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64 E. Mandrali, G. Rahonis

We assume the reader to be familiar with the concepts of FO logic, LTL, star-freeness,
and counter-freeness and their expressive equivalence (cf. for instance [7,24]).

2 Preliminaries

Let A be an alphabet, i.e., a finite non-empty set. As usually, we denote by A∗ the set of
all finite words over A and A+ = A∗ \ {ε}, where ε is the empty word. The set of all
infinite sequences with elements in A, i.e., the set of all infinite words over A, is denoted
by Aω. A finite word w = a0 . . . an−1, where a0, . . . , an−1 ∈ A (n ≥ 1), is written also as
w = w(0) . . . w(n − 1) where w(i) = ai for every 0 ≤ i ≤ n − 1. For every 0 ≤ i ≤ n − 1,
we denote by w<i (resp. w≤i ) the prefix w(0) . . . w(i − 1) (resp. w(0) . . . w(i)) of w and
by w>i (resp. w≥i ) the suffix w(i + 1) . . . w(n − 1) (resp. w(i) . . . w(n − 1)) of w. For
every infinite word w = a0a1 . . . which is written also as w = w(0)w(1) . . ., the words
w<i , w≤i , w>i , w≥i are defined in the same way, with the suffixes w>i , w≥i being infinite
words.

A semiring (K ,+, ·, 0, 1) is an algebraic structure such that (K ,+, 0) is a commutative
monoid, (K , ·, 1) is a monoid, 0 �= 1, · is both left- and right-distributive over +, and
0 · k = k · 0 = 0 for every k ∈ K . We denote the semiring simply by K if no confusion
arises. The semiring K is called commutative if the monoid (K , ·, 1) is commutative. We shall
denote, as usual, by B = ({0, 1},+, ·, 0, 1) the Boolean semiring. In this paper we deal with
the max-plus or arctic semiring Rmax = (R+ ∪{−∞},max,+,−∞, 0)where R+ = [0,∞)

and −∞+k = −∞ for every k ∈ R+∪{−∞}. Note that Rmax is commutative. We extend the
multiplication of real numbers in R+ ∪{−∞} by letting k(−∞) = (−∞)k = −∞ for every
k ∈ R+ ∪ {−∞}. In the following, sometimes, we shall identify Rmax with R+ ∪ {−∞}. For
every p ∈ R+ the mapping p : Rmax → Rmax given by x �−→ p · x is an endomorphism of
Rmax. Conversely, every endomorphism of Rmax is of this form (cf. [11]). The set End(Rmax)

of all endomorphisms of Rmax is a monoid with the usual composition mapping as operation
and the identity mapping id on Rmax as unit element. We shall alternatively denote the
multiplication of Rmax and the composition operation of End(Rmax) also by concatenation.

Let A be an alphabet. A family d = (
da
)

a∈A of endomorphisms of Rmax with 0 ≤ da < 1
for every a ∈ A is called a d -discounting over A. For every finite wordw = a0a1 . . . an−1 ∈
A+ we shall denote by dw the morphism da0 da1 . . . dan−1 and by dε the identity mapping

id on Rmax. We put dw = ∏
a∈Ad

|w|a
a where |w|a denotes the number of a’s in w. Clearly,

dw(x) = dwx for every x ∈ Rmax and the mapping w �→ dw induced by d is a monoid
morphism d : A∗ → End(Rmax).

Throughout the paper A will denote an alphabet and d = (da)a∈A a d-discounting
over A.

Let Q be a set. A formal series (or simply series) over Q and Rmax is a mapping s : Q →
Rmax. For every v ∈ Q we write (s, v) for the value s(v) and refer to it as the coefficient of
s at v. The support of s is the set supp(s) = {v ∈ Q | (s, v) �= −∞}. The series s is called
bounded if there is a number K ∈ Rmax such that (s, v) ≤ K for every v ∈ Q. The constant
series k̃ (k ∈ Rmax) is defined, for every v ∈ Q, by (̃k, v) = k. The characteristic series
0P of a set P ⊆ Q is given by (0P , v) = 0 if v ∈ P and −∞ otherwise. We denote by
Rmax 〈〈Q〉〉 the class of all series over Q and Rmax.

Let s, r ∈ Rmax 〈〈Q〉〉 and k ∈ Rmax. The maximum max(s, r) of s and r , the scalar
sum k + s of s with k, and the sum s + r of s and r are series in Rmax 〈〈Q〉〉 which are
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On weighted first-order logics with discounting 65

defined elementwise by (max(s, r), v) = max((s, v), (r, v)), (k + s, v) = k + (s, v), and
(s + r, v) = (s, v) + (r, v) for every v ∈ Q. Abusing notations, if P ⊆ Q, then we shall
identify the restriction s|P of s on P with the series s + 0P . It is a folklore result that the

structure
(
Rmax 〈〈Q〉〉 ,max,+, −̃∞, 0̃

)
is a commutative semiring. In our paper, we work

with the semirings Rmax 〈〈A∗〉〉 and Rmax 〈〈Aω〉〉 of finitary and infinitary series over A and
Rmax, respectively.

Let B be another alphabet and h : A∗ → B∗ a strict alphabetic homomorphism, i.e.,
h (a) ∈ B for every a ∈ A. Then h can be extended, in the natural way, to a mapping
h : Aω → Bω by letting h(w) = (h(w(i)))i≥0 for every w ∈ Aω. Moreover, h is extended
to a mapping h : Rmax 〈〈A∗〉〉 → Rmax 〈〈B∗〉〉 as follows. For every s ∈ Rmax 〈〈A∗〉〉
the series h(s) ∈ Rmax 〈〈B∗〉〉 is given by (h(s), u) = maxw∈h−1(u)((s, w)) for every u ∈
B∗. Similarly, h is extended to partial mapping h : Rmax 〈〈Aω〉〉 → Rmax 〈〈Bω〉〉 which is
defined for every bounded series s ∈ Rmax 〈〈Aω〉〉 by h(s) ∈ Rmax 〈〈Bω〉〉 with (h(s), u) =
supw∈h−1(u)((s, w)) for every u ∈ Bω. If r ∈ Rmax 〈〈B∗〉〉 (resp. r ∈ Rmax 〈〈Bω〉〉), then the
series h−1(r) ∈ Rmax 〈〈A∗〉〉 (resp. h−1(r) ∈ Rmax 〈〈Aω〉〉) is determined by (h−1(r), w) =
(r, h(w)) for every w ∈ A∗ (resp. w ∈ Aω).

3 Weighted LTL with discounting

The weighted linear temporal logic (weighted LTL for short) with discounting was introduced
by Mandrali in [21]. In this paper, we consider a slightly extended version of that logic,
namely, we equip the logic of [21] with an alternative next operator which does not involve
the discounting parameter. For every letter a ∈ A we consider a proposition pa and we let
AP = {pa | a ∈ A}. As usually, for every p ∈ AP we identify ¬¬p with p.

Definition 1 The syntax of formulas of the weightedLTL with discounting over A and Rmax

is given by the grammar

ϕ ::= k | pa | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ©bϕ | ©ϕ | ϕUϕ | �ϕ

where k ∈ Rmax and pa ∈ AP.

We shall denote by LTL(Rmax, A) the set of all such weighted LTL formulas ϕ. We rep-
resent the semantics ‖ϕ‖ of formulas ϕ ∈ LTL(Rmax, A) as infinitary series in Rmax 〈〈Aω〉〉.
Definition 2 Let ϕ ∈ LTL(Rmax, A). The d-semantics of ϕ is a series ‖ϕ‖ ∈ Rmax 〈〈Aω〉〉
which is defined inductively as follows. For every w ∈ Aω we set

– (‖k‖ , w) = k,

– (‖pa‖ , w) =
{

0 if w(0) = a
−∞ otherwise

,

– (‖¬ϕ‖ , w) =
{

0 if (‖ϕ‖ , w) = −∞
−∞ otherwise

,

– (‖ϕ ∨ ψ‖ , w) = max ((‖ϕ‖ , w) , (‖ψ‖ , w)) ,
– (‖ϕ ∧ ψ‖ , w) = (‖ϕ‖ , w)+ (‖ψ‖ , w) ,
– (‖©bϕ‖ , w) = (‖ϕ‖ , w≥1

)
,

– (‖©ϕ‖ , w) = dw(0)
(‖ϕ‖ , w≥1

)
,

– (‖ϕUψ‖ , w) = supi≥0

(∑
0≤ j<i dw< j

(‖ϕ‖ , w≥ j
)+ dw<i

(‖ψ‖ , w≥i
))
,

– (‖�ϕ‖ , w) = ∑
i≥0dw<i

(‖ϕ‖ , w≥i
)
.
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It is not difficult to see, that all the above suprema and infinite sums exist due to the
involvement of the discounting parameters.

The eventually operator is defined as in the classical LTL, i.e., by ♦ϕ := 0Uϕ, and then
we have (‖♦ϕ‖ , w) = supi≥0

(
dw<i

(‖ϕ‖ , w≥i
))

for every w ∈ Aω.
The syntactic boolean fragment bLTL(Rmax, A) of LTL(Rmax, A) is given by the grammar

ϕ ::= −∞ | 0 | pa | ¬ϕ | ϕ ∨ ϕ | ©bϕ | ϕUϕ

where pa ∈ AP. For every formula ϕ ∈ bLTL(Rmax, A) it is easily obtained, by structural
induction on ϕ, that ‖ϕ‖ gets only values in {−∞, 0}. By identifying −∞ with 0 and 0 with 1
it is trivially concluded that ‖ϕ‖ coincides with the semantics in the boolean semiring B. The
conjunction and always operators are defined, respectively, by the macros ϕ∧ψ := ¬(¬ϕ ∨
¬ψ) and �ϕ := ¬♦¬ϕ. Trivially, we get

∥
∥ϕ∧ψ∥∥ = ‖ϕ ∧ ψ‖ and

∥
∥�ϕ

∥
∥ = ‖�ϕ‖ for every

ϕ,ψ ∈ bLTL(Rmax, A). On the other hand, the application of the operators ∧ and � coincides
semantically with the application of the classical operators ∧ and � respectively, to boolean
formulas.

In the sequel, we define two fragments of LTL(Rmax, A). In fact, the first one is included
into the latter. For this we need some preliminary notions.

An atomic-step formula is an LTL(Rmax, A) formula of the form
∨

a∈A (ka ∧ pa) where
ka ∈ Rmax and pa ∈ AP for every a ∈ A. An LTL-step formula is an LTL(Rmax, A)
formula of the form

∨
1≤i≤n (ki ∧ ϕi ) where ki ∈ Rmax and ϕi ∈ bLTL(Rmax, A) for every

1 ≤ i ≤ n. We shall denote by stLTL (Rmax, A) the class of LTL-step formulas over A and
Rmax. Furthermore, we shall denote by abLTL (Rmax, A) the class of almost boolean LTL
formulas over A and Rmax, i.e., formulas of the form

∧
1≤i≤n ϕi with ϕi ∈ bLTL (Rmax, A)

or ϕi = ∨
a∈A (ka ∧ pa), for every 1 ≤ i ≤ n.

Definition 3 The fragment ULTL (Rmax, A) of U-nesting LTL formulas over A and Rmax

is the least class of formulas in LTL (Rmax, A) which is defined inductively in the following
way.

– k ∈ ULTL (Rmax, A) for every k ∈ Rmax.
– abLTL (Rmax, A) ⊆ ULTL (Rmax, A).
– If ϕ ∈ ULTL (Rmax, A), then ¬ϕ ∈ ULTL (Rmax, A).
– If ϕ,ψ ∈ ULTL (Rmax, A), then ϕ ∧ ψ, ϕ ∨ ψ ∈ ULTL (Rmax, A).
– If ϕ ∈ ULTL (Rmax, A), then ©ϕ ∈ ULTL (Rmax, A).
– If ϕ ∈ bLTL (Rmax, A) or ϕ is an atomic-step formula, then �ϕ ∈ ULTL (Rmax, A).
– If ϕ ∈ abLTL (Rmax, A) and ψ ∈ ULTL (Rmax, A), then ϕUψ ∈ ULTL (Rmax, A).

A series r ∈ Rmax 〈〈Aω〉〉 is called ω-ULTL-d-definable if there is a formula ϕ ∈
ULTL (Rmax, A) such that r = ‖ϕ‖. We shall denote by ω-ULTL (Rmax, A, d) the class
of all ω-ULTL-d-definable series over A and Rmax.

Definition 4 The fragment RLTL (Rmax, A) of restricted LTL formulas over A and Rmax is
the least class of formulas in LTL (Rmax, A) which is defined inductively in the following
way.

– ULTL (Rmax, A) ⊆ RLTL (Rmax, A).
– If ϕ,ψ ∈ RLTL (Rmax, A), then ϕ ∧ ψ, ϕ ∨ ψ ∈ RLTL (Rmax, A).
– If ϕ ∈ stLTL (Rmax, A), then ©bϕ ∈ RLTL (Rmax, A).

A series r ∈ Rmax 〈〈Aω〉〉 is called ω-rLTL-d-definable if there is a formula ϕ ∈
RLTL (Rmax, A) such that r = ‖ϕ‖. We shall denote by ω-rLTL (Rmax, A, d) the class of all
ω-rLTL-d-definable series over A and Rmax.
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4 Weighted FO logic with discounting

In this section, we introduce the weighted first-order logic (weighted FO logic, for short) with
discounting, and we show that the class of semantics in a fragment of this logic contains the
class ω-rLTL (Rmax, A, d). In comparison to weighted MSO logic with discounting of [13],
our FO logic here is enriched with an alternative first-order existential quantification which
employs the discounting parameters. As we show in Sect. 8, the addition of the new existential
quantification does not increase the power of the sentences, in the fragment of the weighted
MSO logic of [13], which we will prove to be expressively equivalent to ω-d-recognizable
series.

Definition 5 The syntax of formulas of the weighted FO logic with discounting over A and
Rmax is given by the grammar

ϕ ::= k | Pa(x) | x ≤ y | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x � ϕ | ∃d x � ϕ | ∀x � ϕ

where k ∈ Rmax and a ∈ A.

We shall denote by FO(Rmax, A) the set of all weighted FO logic formulas over A and
Rmax. In order to define the semantics of FO(Rmax, A) formulas, we recall the notions of
extended alphabet and valid assignment (cf. for instance [29]). Let V be a finite set of first-
order variables. For an infinite wordw ∈ Aω we let dom(w) = ω. A (V, w)-assignment σ is a
mapping associating variables from V to elements ofω. For every x ∈ V and i ∈ ω, we denote
byσ [x → i] the (V, w)-assignment which associates i to x and acts asσ on V\{x}.We encode
pairs (w, σ ) for every w ∈ Aω and (V, w)-assignment σ , by using the extended alphabet
AV = A ×{0, 1}V . Each pair (w, σ ) is a word in AωV wherew is the projection over A and σ
is the projection over {0, 1}V . Then σ is called a valid (V, w)-assignment whenever for every
x ∈ V the x-row contains exactly one 1. In this case, we identifyσ with the (V, w)-assignment
so that for each first-order variable x ∈ V, σ (x) is the position of the 1 on the x-row. It is well-
known (cf. [7]) that the set NV = {(w, σ ) | w ∈ Aω, σ is a valid (V, w) -assignment } is an
ω-star-free language over AV . The set free(ϕ) of free variables in a formulaϕ ∈ FO(Rmax, A)
is defined as usual.

Definition 6 Let ϕ ∈ FO(Rmax, A) and V be a finite set of variables with free(ϕ) ⊆ V . The
d-semantics of ϕ is a series ‖ϕ‖V ∈ Rmax

〈〈
AωV
〉〉
. Consider an element (w, σ ) ∈ AωV . If σ

is not a valid assignment, then we put (‖ϕ‖V , (w, σ )) = −∞. Otherwise, we inductively
define (‖ϕ‖V , (w, σ )) ∈ Rmax as follows.

– (‖k‖V , (w, σ )) = k,

– (‖Pa(x)‖V , (w, σ )) =
{

0 if w(σ(x)) = a
−∞ otherwise

,

–
(‖x ≤ y‖V , (w, σ )

) =
{

0 if σ(x) ≤ σ(y)
−∞ otherwise

,

– (‖¬ϕ‖V , (w, σ )) =
{

0 if (‖ϕ‖V , (w, σ )) = −∞
−∞ otherwise

,

–
(‖ϕ ∨ ψ‖V , (w, σ )

) = max
(
(‖ϕ‖V , (w, σ )) ,

(‖ψ‖V , (w, σ )
))
,

–
(‖ϕ ∧ ψ‖V , (w, σ )

) = (‖ϕ‖V , (w, σ ))+ (‖ψ‖V , (w, σ )
)
,

– (‖∃x � ϕ‖V , (w, σ )) = supi≥0
((‖ϕ‖V∪{x} , (w, σ [x → i]))) ,

– (‖∃d x � ϕ‖V , (w, σ )) = supi≥0
(
dw<i

(‖ϕ‖V∪{x} , (w, σ [x → i]))) ,
– (‖∀x � ϕ‖V , (w, σ )) = ∑

i≥0dw<i

(‖ϕ‖V∪{x} , (w, σ [x → i])) .
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As in our weighted LTL, all the above suprema and infinite sums exist due to the involve-
ment of the discounting parameters. If V = free(ϕ), then we simply write ‖ϕ‖ for ‖ϕ‖free(ϕ).
Moreover, with similar arguments, as in Proposition 3.3 in [8], we can show that

(‖ϕ‖V , (w, σ )) = (‖ϕ‖ , (w, σ |free(ϕ)
))

for every (w, σ ) ∈ NV .
The syntactic boolean fragment bFO(Rmax, A) of FO(Rmax, A) is defined by the grammar

ϕ ::= − ∞ | 0 | Pa(x) | x ≤ y | ¬ϕ | ϕ ∨ ϕ | ∃x � ϕ

where a ∈ A. For every formula ϕ ∈ bFO(Rmax, A) it is easily obtained, by structural
induction on ϕ, that ‖ϕ‖ gets only values in {−∞, 0}. By identifying −∞ with 0 and 0
with 1 it is trivially concluded that ‖ϕ‖ coincides with the semantics in the boolean semiring
B. The conjunction and universal quantification are defined, respectively, by the macros
ϕ∧ψ := ¬(¬ϕ ∨ ¬ψ) and ∀x � ϕ :=¬∃x � ¬ϕ. Trivially, we get

∥
∥ϕ∧ψ∥∥ = ‖ϕ ∧ ψ‖ and∥

∥∀x � ϕ
∥
∥ = ‖∀x � ϕ‖ for every ϕ,ψ ∈ bFO(Rmax, A). On the other hand, the application of

the operators ∧ and ∀ coincides semantically with the application of the classical operators
∧ and ∀ respectively, to boolean formulas.

Next, we define a fragment of our logic. For this, we recall the notion of an FO-step formula
from [4]. More precisely, a formula ϕ ∈ FO(Rmax, A) is called an FO-step formula if ϕ =∨

1≤i≤n (ki ∧ ϕi ) with ϕi ∈ bFO(Rmax, A) and ki ∈ Rmax for every 1 ≤ i ≤ n. Moreover, a
formula ϕ ∈ FO(Rmax, A) is called a letter-step formula whenever ϕ = ∨

a∈A (ka ∧ Pa(x))
with ka ∈ Rmax for every a ∈ A. We shall need also the following macros:

– first(x) := ∀y � x ≤ y,
– x = y := x ≤ y ∧ y ≤ x,
– x < y := x ≤ y ∧ ¬(x = y),
– z ≤ x < y := z ≤ x ∧ x < y,
– y ≤ x → ϕ := ¬ (y ≤ x) ∨ ((y ≤ x) ∧ ϕ) ,
– z ≤ x < y → ϕ := ¬(z ≤ x < y) ∨ ((z ≤ x < y) ∧ ϕ) .

Definition 7 A formula ϕ ∈ FO(Rmax, A)will be called weakly quantified if (i) whenever ϕ
contains a subformula of the form ∃d x � ψ , then ψ is an FO-step formula, and (ii) whenever
ϕ contains a subformula of the form ∀x �ψ , thenψ is either a boolean or a letter-step formula
or a formula of the form z ≤ x < y → ψ ′, or a formula of the form y ≤ x → ψ ′, where ψ ′
is a letter-step formula with free variable x .

We denote by WQFO(Rmax, A) the set of all weakly quantified FO(Rmax, A) formulas
over A and Rmax. A series s ∈ Rmax 〈〈Aω〉〉 is called ω-wqFO-d-definable if there is a
sentence ϕ ∈ WQFO(Rmax, A) such that s = ‖ϕ‖. We write ω-wqFO(Rmax, A, d) for the
class of all ω-wqFO-d-definable series in Rmax 〈〈Aω〉〉.

We aim to show that every ω-rLTL-d-definable series over A and Rmax is also ω-wqFO-
d-definable over A and Rmax. For this, we will prove that for every ϕ ∈ RLTL (Rmax, A)
there exists a sentence ϕ′ ∈ WQFO(Rmax, A) such that ‖ϕ‖ = ∥∥ϕ′∥∥, using the subsequent
technical results below.

Lemma 8 Let ϕ ∈ ULTL (Rmax, A) such that there exists ϕ′ (y) ∈ WQFO (Rmax, A)
with

(∥∥ϕ′ (y)
∥∥ , (w, [y → i])

) = dw<i

(‖ϕ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0. Then(∥∥¬ϕ′ (y)
∥∥ , (w, [y → i])

) = dw<i

(‖¬ϕ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0.
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Proof Let ϕ ∈ ULTL (Rmax, A) such that there exists ϕ′ (y) ∈ WQFO (Rmax, A) with(∥∥ϕ′ (y)
∥
∥ , (w, [y → i])

) = dw<i

(‖ϕ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0. Then, for
every w ∈ Aω, i ≥ 0, in case

(‖ϕ‖ , w≥i
) = −∞ we get, by our assumption,(∥∥ϕ′ (y)

∥
∥ , (w, [y → i])

) = −∞. By Definitions 2 and 6, we obtain
(‖¬ϕ‖ , w≥i

) = 0 and(∥∥¬ϕ′ (y)
∥
∥ , (w, [y → i])

) = 0, respectively. If
(‖ϕ‖ , w≥i

) �= −∞, again by our assump-
tion we have

(∥∥ϕ′ (y)
∥
∥ , (w, [y → i])

) �= −∞ and by Definitions 2 and 6
(‖¬ϕ‖ , w≥i

) =
−∞ and

(∥∥¬ϕ′ (y)
∥
∥ , (w, [y → i])

) = −∞, as required. ��
Lemma 9 Letϕ,ψ ∈ULTL (Rmax, A) such that there existϕ′ (y) , ψ ′ (x)∈WQFO(Rmax, A)
with

(∥∥ϕ′ (y)
∥
∥ , (w, [y → i])

) = dw<i

(‖ϕ‖ , w≥i
)

and
(∥∥ψ ′ (x)

∥
∥ , (w, [x → i])

) =
dw<i

(‖ψ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0. Then, there exist ξ1 (x) , ξ2 (x) ∈
WQFO (Rmax, A) with

(‖ξ1 (x)‖ , (w, [x → i])) = dw<i

(‖ϕ ∧ ψ‖ , w≥i
)

and

(‖ξ2 (x)‖ , (w, [x → i])) = dw<i

(‖ϕ ∨ ψ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0.

Proof Without any loss, we assume that the variable x does not occur in ϕ′ (otherwise we
apply a renaming). We replace every occurrence of y with x in ϕ′, and we let ξ1 (x) =
ϕ′ (x) ∧ ψ ′ (x) and ξ2 (x) = ϕ′ (x) ∨ ψ ′ (x) which trivially satisfy our claim. ��
Lemma 10 Let ϕ ∈ Rmax ∪ abLTL (Rmax, A)∪ stLTL (Rmax, A). Then, the following state-
ments hold.

(i) There exists ϕ′ (x)∈WQFO (Rmax, A) such that
(∥∥ϕ′ (x)

∥∥ , (w, [x → i])
)=(‖ϕ‖ , w≥i

)

for every w ∈ Aω, i ≥ 0.
(ii) There exists ϕ′′ (x) ∈ WQFO (Rmax, A) such that

(∥∥ϕ′′ (x)
∥∥ , (w, [x → i])

) =
dw<i

(‖ϕ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0.

Proof (i) Let ϕ = k ∈ Rmax. Then we set ϕ′(x) = k. Next, let ϕ ∈ abLTL (Rmax, A),
i.e., ϕ = ∧

1≤ j≤n ψ j with ψ j ∈ bLTL (Rmax, A) or ψ j = ∨
a∈A (ka ∧ pa), for every

1 ≤ j ≤ n. If ψ j ∈ bLTL(Rmax, A), then it is well-known that there exists a for-
mula ψ ′

j (x j ) ∈ bFO(Rmax, A) with one free variable x j , such that (
∥∥ψ j

∥∥ , w≥i ) =
(∥∥∥ψ ′

j (x j )

∥∥∥ , (w, [x j → i])
)

for every w ∈ Aω, i ≥ 0. Without any loss, we can

assume that the variable x j (1 ≤ j ≤ n) does not occur in any ψ ′
k (whenever

ψk ∈ bLTL (Rmax, A)) with k �= j (if this is not the case, then we apply a renam-
ing of variables). Therefore, we can replace x j in ψ ′

j with a new variable x . In
case ψ j = ∨

a∈A (ka ∧ pa), then we consider the WQFO (Rmax, A) letter-step for-
mula ψ ′

j (x) = ∨
a∈A (ka ∧ Pa(x)). Now it is a routine matter to show that the

WQFO (Rmax, A) formula ϕ′(x) = ∧
1≤ j≤n ψ

′
j (x) satisfies our claim. The remaining

case ϕ ∈ stLTL (Rmax, A) is treated similarly.
(ii) Again, let first ϕ = k ∈ Rmax. We set ϕ′′ (x) = ∃d y. ((x = y) ∧ k) , and we get

(∥∥ϕ′′ (x)
∥∥ , (w, [x → i])

) = (‖∃d y. ((x = y) ∧ k)‖ , (w, [x → i]))

= sup
j≥0

(
dw< j (‖(x = y) ∧ k‖ , (w, [x → i, y → j]))

)

= dw<i k = dw<i

(‖k‖ , w≥i
)
,

for every w ∈ Aω, i ≥ 0.
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Next let ϕ ∈ abLTL (Rmax, A) with ϕ = ∧
1≤ j≤n ψ j and ψ j ∈ bLTL (Rmax, A)

or ψ j = ∨
a∈A (ka ∧ pa), for every 1 ≤ j ≤ n. By Statement (i) we get that(∥∥

∥ψ ′
j (x)

∥
∥
∥ , (w, [x → i])

)
= (∥∥ψ j

∥
∥ , w≥i

) = dw<i (
∥
∥ψ j

∥
∥ , w≥i ), for every ψ j ∈

bLTL(Rmax, A) and w ∈ Aω, i ≥ 0. Therefore, we let ψ ′′
j (x) = ψ ′

j (x). In case
ψ j = ∨

a∈A (ka ∧ pa) we set ψ ′′
j (x) = ∨

a∈A(∃d y. ((x = y) ∧ ka) ∧ Pa(x)) and we
have

(∥∥
∥ψ ′′

j (x)
∥
∥
∥ , (w, [x → i])

)
=
(∥∥
∥
∥
∥

∨

a∈A

(∃d y. ((x = y) ∧ ka) ∧ Pa(x))

∥
∥
∥
∥
∥
, (w, [x → i])

)

= max
a∈A

((‖∃d y. ((x = y) ∧ ka) ∧ Pa(x)‖ , (w, [x → i])))
= max

a∈A
((‖∃d y. (x = y) ∧ ka‖ , (w, [x → i]))
+ (‖Pa(x)‖ , (w, [x → i])))

= max
a∈A

(
dw<i

(‖ka‖ , w≥i
)+ (‖pa‖ , w≥i

))

= dw<i

(∥∥
∥∥∥

∨

a∈A

(ka ∧ pa)

∥∥
∥∥∥
, w≥i

)

= dw<i

(∥∥ψ j
∥∥ , w≥i

)

for every w ∈ Aω, i ≥ 0.
Then, we let ϕ′′(x) = ∧

1≤ j≤n ψ
′′
j (x) and trivially

(∥∥ϕ′′ (x)
∥∥ , (w, [x → i])

) =
dw<i

(‖ϕ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0.
Finally, let ϕ = ∨

1≤ j≤n

(
k j ∧ ψ j

)
where k j ∈ Rmax and ψ j ∈ bLTL(Rmax, A) for

every 1 ≤ j ≤ n. By our arguments in (i), there exist ψ ′
j (x) ∈ bFO(Rmax, A) such that

(∥∥∥ψ ′
j (x)

∥∥∥ , (w, [x → i])
)

= (∥∥ψ j
∥∥ , w≥i

) = dw<i (
∥∥ψ j

∥∥ , w≥i ) for every 1 ≤ j ≤ n

and w ∈ Aω, i ≥ 0. We set ϕ′′ (x) = ∨
1≤ j≤n

(
∃d y.

(
(x = y) ∧ k j

) ∧ ψ ′
j

)
and with a

similar computation as in the previous case, we conclude that ϕ′′ (x) satisfies our claim.
��

Lemma 11 Let ϕ ∈ ULTL (Rmax, A) such that there exists a formula ϕ′ (y) ∈ WQFO
(Rmax, A) with

(∥∥ϕ′ (y)
∥∥ , (w, [y → i])

) = dw<i

(‖ϕ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0.
Then, there exists a WQFO (Rmax, A) formula ψ (x) such that (‖ψ (x)‖ , (w, [x → i])) =
dw<i

(‖©ϕ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0.

Proof We let ψ (x) = ∃y.
(
y = x + 1 ∧ ϕ′ (y)

)
and we have

(‖ψ (x)‖ , (w, [x → i])) = (∥∥∃y.
(
y = x + 1 ∧ ϕ′ (y)

)∥∥ , (w, [x → i])
)

= sup
j≥0

((∥∥y = x + 1 ∧ ϕ′ (y)
∥∥ , (w, [x → i, y → j])

))

= (∥∥y = x + 1 ∧ ϕ′ (y)
∥∥ , (w, [x → i, y → i + 1])

)

= (∥∥ϕ′ (y)
∥∥ , (w, [y → i + 1])

)

= dw<i+1

(‖ϕ‖ , w≥i+1
) = dw<i

(
dw(i)

(
‖ϕ‖ , (w≥i

)
≥1

))

= dw<i

(‖©ϕ‖ , w≥i
)
.

for every w ∈ Aω, i ≥ 0. ��
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Lemma 12 Let ϕ ∈ bLTL (Rmax, A) or ϕ be an atomic-step formula. Then, there exists
ψ (y) ∈ WQFO (Rmax, A) such that (‖ψ (y)‖ , (w, [y → i])) = dw<i

(‖�ϕ‖ , w≥i
)

for
every w ∈ Aω, i ≥ 0.

Proof If ϕ ∈ bLTL(Rmax, A), then �ϕ ∈ bLTL(Rmax, A), and thus there exists a formula
ψ (x) ∈ bFO(Rmax, A) with one free variable x , such that (‖ψ (x)‖ , (w, [x → i])) =(‖�ϕ‖ , w≥i

) = dw<i

(‖�ϕ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0. If ϕ = ∨
a∈A (ka ∧ pa),

then we consider the WQFO (Rmax, A) letter-step formula ϕ′(x) = ∨
a∈A (ka ∧ Pa(x)). We

also consider the WQFO (Rmax, A) formula ψ (y) = ∀x .
(
y ≤ x → ϕ′(x)

)
. Then, for every

w ∈ Aω, j ≥ 0 we have

(‖ψ (y)‖ , (w, [y → i])) =
∑

j≥0

dw< j

(∥∥y ≤ x → ϕ′(x)
∥
∥ , (w, [y → i, x → j])

)

=
∑

i≤ j

dw< j

(∥∥y ≤ x ∧ ϕ′(x)
∥
∥ , (w, [y → i, x → j])

)

=
∑

i≤ j

dw< j

(∥∥ϕ′(x)
∥
∥ , (w, [x → j])

)

=
∑

i≤ j

dw< j

(‖ϕ‖ , w≥ j
)

= dw<i

∑

0≤ j

d(w≥i)< j

(
‖ϕ‖ , (w≥i

)
≥ j

)

= dw<i

(‖�ϕ‖ , w≥i
)

where in the right-handside of the second equality the sum is taken over j, and the fourth
equality holds by Lemma 10(i). ��
Lemma 13 Let ϕ ∈ abLTL (Rmax, A) and ψ ∈ ULTL (Rmax, A) such that there
exists ψ ′ (y) ∈ WQFO (Rmax, A) with

(∥∥ψ ′ (y)
∥∥ , (w, [y → i])

) = dw<i

(‖ψ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0. Then, there exists ξ (z) ∈ WQFO (Rmax, A) such that
(‖ξ (z)‖ , (w, [z → i])) = dw<i

(‖ϕUψ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0.

Proof Letϕ = ∧
1≤l≤m ϕl . Then, by the proof of Lemma 10(i), there exists a formulaϕ′ (x) =∧

1≤l≤m ϕ
′
l (x) where for every 1 ≤ l ≤ m, ϕ′

l (x) ∈ bFO (Rmax, A) or it is a letter-step
formula with (

∥∥ϕ′
l (x)

∥∥ (w, [x → i])) = (‖ϕl‖ , w≥i
)

for every w ∈ Aω, i ≥ 0. Moreover,
we have

(∥∥ϕ′ (x)
∥∥ , (w, [x → i])

) = (‖ϕ‖ , w≥i
)

for every w ∈ Aω, i ≥ 0. We consider the
FO (Rmax, A) formula ξ ′ (z) = ∃y.

(∀x .
(
(z ≤ x < y) → ϕ′ (x)

) ∧ (z ≤ y) ∧ ψ ′ (y)
)
. For

every w ∈ Aω, i ≥ 0 we compute
(∥∥ξ ′ (z)

∥∥ , (w, [z → i])
)

= sup
j≥0

((∥∥∀x .
(
(z ≤ x < y) → ϕ′ (x)

) ∧ (z ≤ y) ∧ ψ ′ (y)
∥∥ , (w, [z → i, y → j])

))

= sup
j≥0

((∥∥∀x .
(
(z ≤ x < y) → ϕ′ (x)

) ∧ ψ ′ (y)
∥∥ , (w, [z → i, y → i + j])

))

= sup
j≥0

⎛

⎝
∑

0≤k< j

dw<i+k

(∥∥ϕ′ (x)
∥∥ , (w, [x → i + k])

)+ (∥∥ψ ′ (y)
∥∥ , (w, [y → i + j])

)
⎞

⎠

= sup
j≥0

⎛

⎝
∑

0≤k< j

dw<i+k

(‖ϕ‖ , w≥i+k
)+ dw<i+ j

(‖ψ‖ , w≥i+ j
)
⎞

⎠
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= dw<i sup
j≥0

⎛

⎝
∑

0≤k< j

d(w≥i)<k

(‖ϕ‖ , w≥i+k
)+ d(w≥i)< j

(‖ψ‖ , w≥i+ j
)
⎞

⎠

= dw<i

(‖ϕUψ‖ , w≥i
)
.

Now, we consider the formula ξ (z) = ∃y.
(∧

1≤l≤m

(∀x .
(
(z ≤ x< y)→ϕ′

l (x)
)) ∧ (z ≤ y)

∧ψ ′ (y)
)

and we get (‖ξ (z)‖ , (w, [z → i])) = (∥∥ξ ′ (z)
∥
∥ , (w, [z → i])

) = dw<i (‖ϕUψ‖ ,
w≥i

)
for every w ∈ Aω, i ≥ 0. Since ξ (z) ∈ WQFO (Rmax, A), we conclude our proof. ��

Lemma 14 For every ULTL (Rmax, A) formula ϕ we can construct a WQFO (Rmax, A) for-
mulaϕ′ (x) such that

(∥∥ϕ′ (x)
∥
∥ , (w, [x → i])

) = dw<i

(‖ϕ‖ , w≥i
)

for everyw ∈ Aω, i ≥ 0.

Proof We use Lemmas 8, 9, 10(ii), 11, 12, and 13. In fact, we apply a partial structural
induction, since in the proof of Lemmas 12 and 13 we use Lemma 10(i) for the formula ϕ. ��
Proposition 15 For every ϕ ∈ ULTL (Rmax, A) we can construct a WQFO (Rmax, A) sen-
tence ϕ′ with

∥
∥ϕ′∥∥ = ‖ϕ‖.

Proof Let ϕ ∈ ULTL (Rmax, A). By the previous lemma, there exists a WQFO (Rmax, A)
formula ψ (x) such that (‖ψ (x)‖ , (w, [x → i])) = dw<i

(‖ϕ‖ , w≥i
)
, for every w ∈

Aω, i ≥ 0. We consider the WQFO (Rmax, A) sentence ϕ′ = ∃x � (first (x) ∧ ψ (x)) and we
get

(∥∥ϕ′∥∥ , w
) = (‖ψ (x)‖ , (w, [x → 0])) = dw<0

(‖ϕ‖ , w≥0
) = (‖ϕ‖ , w) for every

w ∈ Aω, i.e.,
∥∥ϕ′∥∥ = ‖ϕ‖, as required. ��

Proposition 16 For every ϕ ∈ RLTL (Rmax, A) we can construct a WQFO(Rmax, A) sen-
tence ϕ′ such that

∥∥ϕ′∥∥ = ‖ϕ‖.

Proof We prove our claim by structural induction on ϕ. If ϕ ∈ ULTL (Rmax, A), then our
claim holds by the previous proposition.

Let ψ1, ψ2 ∈ RLTL(Rmax, A) and ψ ′
1, ψ

′
2 ∈ WQFO (Rmax, A) be their corresponding

sentences. We prove our claim for ψ1 ∨ ψ2 and ψ1 ∧ ψ2. Consider the WQFO(Rmax, A)
sentence ψ ′

1 ∨ ψ ′
2. Then, for every w ∈ Aω, we have

(‖ψ1 ∨ ψ2‖ , w) = max ((‖ψ1‖ , w) , (‖ψ2‖ , w))
= max

((∥∥ψ ′
1

∥∥ , w
)
,
(∥∥ψ ′

2

∥∥ , w
))

= (∥∥ψ ′
1 ∨ ψ ′

2

∥∥ , w
)
.

By replacing, ∨ with ∧ and max with +, in the above computation, we get (‖ψ1 ∧ ψ2‖ , w) =(∥∥ψ ′
1 ∧ ψ ′

2

∥∥ , w
)
.

We proceed with the boolean next operator, therefore let ϕ = ©bψ with ψ ∈
stLTL (Rmax, A). By Lemma 10(i) we get a WQFO (Rmax, A) formula ψ ′(y) and consider
the WQFO (Rmax, A) sentence ϕ′ = ∃x �

(
first(x) ∧ ∃y � ((y = x + 1) ∧ ψ ′(y))

)
. Then, for

every w ∈ Aω, we compute

(‖©bψ‖ , w) = (‖ψ‖ , w≥1
)

= (∥∥ψ ′(y)
∥∥ , (w, [y → 1]))

= sup
j≥0

((∥∥(y = x + 1) ∧ ψ ′(y)
∥∥ , (w, [x → 0, y → j])))

= (∥∥∃y � ((y = x + 1) ∧ ψ ′(y))
∥∥ , (w, [x → 0]))

= (∥∥∃x �
(

f irst (x) ∧ ∃y � ((y = x + 1) ∧ ψ ′(y))
)∥∥ , w

)

= (∥∥ϕ′∥∥ , w
)
,

as required. ��
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Example 17 Let A = {a, b} and da = 1/4, db = 1/2. We consider the weighted LTL
formula

ϕ = (pa ∧ 2)U (� (pb ∧ 3)) .

Clearly ϕ ∈ ULTL (Rmax, A). Furthermore supp(‖ϕ‖) = a∗bω and
(‖ϕ‖ , anbω

) =
∑

0≤i≤n−1

(1/4)i 2 + (1/4)n
∑

j≥0

(1/2) j 3

for every n ≥ 0, anbω ∈ Aω.
By Proposition 15, we get that

∥
∥ϕ′∥∥ = ‖ϕ‖ where

ϕ′ = ∃z � (first (z) ∧ ψ (z))
is a WQFO (Rmax, A) formula with

ψ (z) = ∃y � ((z ≤ y) ∧ ∀x � (z ≤ x < y → (2 ∧ Pa(x))) ∧ ∀x � (y ≤ x → (3 ∧ Pb(x)))) .

By Proposition 16, we get the main result of this section.

Theorem 18 ω-rLTL (Rmax, A, d) ⊆ ω-wqFO(Rmax, A, d).

By the constructive proofs of this section’s Lemmas and Propositions, we obtain the
following corollary.

Corollary 19 For every ϕ ∈ RLTL (Rmax, A) we can construct a WQFO(Rmax, A) sentence
ϕ′, that uses at most three different names of variables, such that

∥∥ϕ′∥∥ = ‖ϕ‖ .

5 Star-free series

In this section, we introduce the notions of d-star-free and ω-d-star-free series over A and
Rmax, and we show that the class of ω-wqFO-d-definable series is contained into the class
of ω-d-star-free series.

Let L ⊆ A∗ (resp. L ⊆ Aω). As usually, we denote by 0L the characteristic series of L .
If L is a singleton, i.e., L = {w}, then we simply write 0w for 0{w}. Furthermore, we simply
denote by kL the series k + 0L for k ∈ Rmax. The monomials over A and Rmax are series
of the form (ka)a for a ∈ A and ka ∈ Rmax. For simplicity reasons, we shall consider also
the series of the form kε with k ∈ Rmax as monomials. A series s ∈ Rmax 〈〈A∗〉〉 is called
a letter-step series if s = maxa∈A

(
(ka)a

)
where a ∈ A and ka ∈ Rmax for every a ∈ A.

The complement s of a series s is given by (s, w) = 0 if (s, w) = −∞ and −∞ otherwise.
Let r, s ∈ Rmax 〈〈A∗〉〉. The (Cauchy) sum +d of r and s is the series r +d s ∈ Rmax 〈〈A∗〉〉
defined for every w ∈ A∗ by

(r +d s, w) = max
{
(r, u)+ du(s, v) | u, v ∈ A∗, w = uv

}
.

The nth-iteration rn ∈ Rmax 〈〈A∗〉〉 (n ≥ 0) of a series r ∈ Rmax 〈〈A∗〉〉 is defined
inductively by

r0 = 0ε and rn+1 = r +d rn for n ≥ 0.

Then, we have (rn, w) = max
{∑

1≤i≤n du1...ui−1(r, ui ) | ui ∈ A∗, w = u1 . . . un
}

for every
w ∈ A∗. A series r ∈ Rmax 〈〈A∗〉〉 is called proper if (r, ε) = −∞. If r is proper, then for
every w ∈ A∗ and n > |w| we have (rn, w) = −∞. The iteration r+ ∈ Rmax 〈〈A∗〉〉 of a

123



74 E. Mandrali, G. Rahonis

proper series r ∈ Rmax 〈〈A∗〉〉 is defined by r+ = max (rn | n > 0). Thus, for everyw ∈ A+
we have

(
r+, w

) = max {(rn, w) | 1 ≤ n ≤ |w|} and
(
r+, ε

) = −∞.

Example 20 Let A = {a, b}, k ∈ R+, and consider the series r ∈ Rmax 〈〈A∗〉〉 given by

(r, w) =
{∑

0≤i≤n−1 (dab)
i k if w = (ab)n for n > 0

−∞ otherwise.

Clearly supp(r+) = {(ab)n | n > 0}. Furthermore, for every n ≥ m > 0 we can easily
show, by induction on m, that (rm, (ab)n) = (r, (ab)n), whereas (rm, (ab)n) = −∞ for
every m > n > 0. Hence we get r+ = r .

Definition 21 The class of d-star-free series over A and Rmax, denoted by SF(Rmax, A, d),
is the least class of series containing the monomials (over A and Rmax) and being closed
under maximum, sum, complement, +d , and iteration restricted to letter-step series.

By structural induction we get that series in SF(Rmax, A, d) are bounded.
Next, let r ∈ Rmax 〈〈A∗〉〉 be a finitary and s ∈ Rmax 〈〈Aω〉〉 an infinitary series. We

assume that both r and s are bounded. Then, the (Cauchy) sum +d of r and s is the infinitary
series r +d s ∈ Rmax 〈〈Aω〉〉 defined for every w ∈ Aω by

(r +d s, w) = sup
{
(r, u)+ du(s, v) | u ∈ A∗, w = uv

}
.

The ω-iteration of a proper bounded finitary series r ∈ Rmax 〈〈A∗〉〉 is the infinitary series
rω ∈ Rmax 〈〈Aω〉〉 which is defined by

(rω,w) = sup

⎧
⎨

⎩

∑

i≥1

du1...ui−1(r, ui ) | ui ∈ A∗, w = u1u2 . . .

⎫
⎬

⎭

for every w ∈ Aω.

Example 22 Let r = maxa∈A
(
(ka)a

) ∈ Rmax 〈〈A∗〉〉 be a letter-step series. We will show

that
(
r+)+ = r+. Moreover, for every w ∈ Aω we have (rω,w) = ∑

i≥0 dw<i (r, w (i)).
Let w = w (0) . . . w (n − 1) ∈ A+. Then

(
r+, w

) = max

⎧
⎨

⎩

∑

1≤ j≤k

du1...u j−1

(
r, u j

) | w = u1 . . . uk, 1 ≤ k ≤ n

⎫
⎬

⎭

=
∑

0≤ j≤n−1

dw< j (r, w ( j)) .

Furthermore, we get
((

r+)+ , w
)

= max

⎧
⎨

⎩

∑

1≤ j≤k

du1...u j−1

(
r+, u j

) | w = u1 . . . uk, 1 ≤ k ≤ n

⎫
⎬

⎭

= max

⎧
⎨

⎩

∑

1≤ j≤k

du1...u j−1

⎛

⎝
∑

0≤i j ≤|u j |−1

d(u j)<i j

(
r, u j

(
i j
))
⎞

⎠ | w = u1 . . . uk, 1 ≤ k ≤ n

⎫
⎬

⎭

123



On weighted first-order logics with discounting 75

= max

⎧
⎨

⎩

∑

1≤ j≤k

⎛

⎝
∑

0≤i j ≤|u j |−1

du1...u j−1(u j)<i j

(
r, u j

(
i j
))
⎞

⎠ | w = u1 . . . uk, 1 ≤ k ≤ n

⎫
⎬

⎭

=
∑

0≤ j≤n−1

dw< j (r, w ( j)) = (
r+, w

)
.

Similarly, we can show that (rω,w) = ∑
i≥0 dw<i (r, w (i)), for every w ∈ Aω.

Definition 23 The class of ω-d-star-free series over A and Rmax, denoted by ω-SF(Rmax,

A, d), is the least class of infinitary series generated by the monomials (over A and Rmax) by
applying finitely many times the operations of maximum, sum, complement, +d , iteration
restricted to letter-step series, and ω-iteration restricted to letter-step series.

Remark 24 We could assume the application of theω-iteration, in the definition above, being
applied to bounded series r ∈ ω-SF(Rmax, A, d)with r+ = r . This induces a greater class of
infinitary series (cf. Example 20) which, by Example 22, contains the classω-SF(Rmax, A, d)
as defined above. Then, all of our results in this section can be established for this greater
class. But we could not show that this class is contained in a fragment of ourω-d-counter-free
series (cf. Sect. 6).

The next result is trivially proved by Definitions 21, 23 and standard arguments.

Lemma 25 Let r ∈ SF(Rmax, A, d) (resp. r ∈ ω-SF(Rmax, A, d)) and supp(r) ⊆ B∗ (resp.
supp(r) ⊆ Bω) where B ⊆ A. Then r ∈ SF(Rmax, B, d) (resp. r ∈ ω-SF(Rmax, B, d)).

In the sequel, we state several properties of the classes SF(Rmax, A, d) and ω-SF(Rmax,

A, d).

Lemma 26 If r ∈ SF(Rmax, A, d) (resp. r ∈ ω-SF(Rmax, A, d)) and k ∈ Rmax, then
k + r ∈ SF(Rmax, A, d) (resp. k + r ∈ ω-SF(Rmax, A, d)).

Proof We have k + r = kε +d r , hence we get the proof of our claim. ��
Lemma 27 Let L , L ′ ⊆ A∗ and K , K ′ ⊆ Aω. Then

– 0L∪L ′ = max(0L , 0L ′), 0K∪K ′ = max(0K , 0K ′)
– 0L∩L ′ = 0L + 0L ′ , 0K∩K ′ = 0K + 0K ′
– 0L L ′ = 0L +d 0L ′ , 0L K = 0L +d 0K

– 0L+ = (0L)
+ whenever ε /∈ L

– 0Lω = (0L)
ω whenever ε /∈ L .

Proof Trivial by standard arguments. ��
The two subsequent results are shown by induction on the structure of star-free (resp.

ω-star-free) languages and series using Lemma 27.

Lemma 28 For every L ⊆ A∗ the following statements are equivalent.

(i) L is a star-free language.
(ii) 0L ∈ SF (Rmax, A, d).

Lemma 29 For every L ⊆ Aω the following statements are equivalent.

(i) L is an ω-star-free language.
(ii) 0L ∈ ω-SF (Rmax, A, d).
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Since for every L ⊆ A∗ (resp. L ⊆ Aω) and k ∈ Rmax we have kL = kε +d 0L , by
Lemmas 28 and 29, we get Lemma 30 below.

Lemma 30 Let L ⊆ A∗ (resp. L ⊆ Aω) and k ∈ Rmax. If L is star-free (resp. ω-star-free),
then kL ∈ SF (Rmax, A, d) (resp. kL ∈ ω-SF (Rmax, A, d)).

A series r ∈ Rmax 〈〈A∗〉〉 (resp. r ∈ Rmax 〈〈Aω〉〉) is called a star-free (resp. an ω-star-
free) step function if r = max1≤i≤n

(
(ki )Li

)
where ki ∈ Rmax and Li is a star-free (resp. an

ω-star-free) language for every 1 ≤ i ≤ n. The class of star-free (resp.ω-star-free) languages
is closed under intersection and complement, hence we can assume that the family (Li )1≤i≤n
is a partition of A∗ (resp. Aω).

Since the class of d-star-free (resp. ω-d-star-free) series is closed under maximum, by
Lemma 30 we get that every star-free (resp. ω-star-free) step function is a d-star-free (resp.
an ω-d-star-free) series.

Proposition 31 The class of star-free (resp. ω-star-free) step functions over A and Rmax is
closed under the operations of maximum and sum.

Proof Let r1 = max1≤i≤n
(
(ki )Li

)
and r2 = max1≤ j≤m

((
l j
)

Fj

)
be star-free (resp. ω-star-

free) step functions. Closure under maximum is obvious. Moreover, for every 1 ≤ i ≤ n and
1 ≤ j ≤ m the language Li ∩ Fj is star-free (resp. ω-star-free), hence the series r1 + r2 =
max1≤i≤n,1≤ j≤m

((
ki + l j

)
Li ∩Fj

)
is a star-free (resp. an ω-star-free) step function. ��

Lemma 32 If s ∈ SF (Rmax, A, d) (resp. s ∈ ω-SF (Rmax, A, d)), then supp(s) is a star-free
language (resp. an ω-star-free) language over A.

Proof Using standard arguments, we state the proof by induction on the structure of s. ��
Lemma 33 (i) Let L ⊆ A∗ be a star-free language and B, � ⊆ A with B ∩ � = ∅.

Then 0L |B∗�B∗ = max1≤i≤n

(
0Ki +d

(
0γi +d 0K ′

i

))
where for every 1 ≤ i ≤ n,

Ki , K ′
i ⊆ B∗ are star-free languages, and γi ∈ �.

(ii) Let L ⊆ Aω be anω-star-free language and B, � ⊆ A with B∩� = ∅. Then 0L |B∗�Bω =
max1≤i≤n

(
0Ki +d

(
0γi +d 0K ′

i

))
where for every 1 ≤ i ≤ n, Ki ⊆ B∗ is star-free,

K ′
i ⊆ Bω is ω-star-free, and γi ∈ �.

Proof We prove only (ii); Statement (i) is shown with the same arguments. By the split-
ting lemma for ω-star-free languages (cf. Lemma 3.2. in [7]), we get L ∩ B∗�Bω =⋃

1≤i≤n Kiγi K ′
i where for every 1 ≤ i ≤ n, Ki ⊆ B∗ is star-free, γi ∈ �, and K ′

i ⊆ Bω is
ω-star-free. Since 0L |B∗�Bω = 0L∩B∗�Bω , we complete our proof using Lemma 27. ��

Now, we are ready to prove a splitting lemma for star-free and ω-star-free series as well
as the closure of these classes under inverse strict alphabetic epimorphisms.

Proposition 34 (Splitting lemma for finitary series) Let s ∈ SF (Rmax, A, d) and B, � ⊆ A

with B ∩ � = ∅. Then s|B∗�B∗ = max1≤i≤n

(
s(i)1 +d

(
s(i)2 +d s(i)3

))
where for every 1 ≤

i ≤ n, s(i)1 , s(i)3 ∈ SF (Rmax, B, d) and s(i)2 = (ki )γi
with γi ∈ �, ki ∈ Rmax.

Proof We use induction on the structure of s. Let s = (ka)a , a ∈ A, be a monomial. Then, if

a ∈ �, we have s|B∗�B∗ = 0ε+d
(
(ka)a +d 0ε

)
, otherwise s|B∗�B∗ = 0∅ +d

((
kγ
)
γ

+d 0∅
)

123



On weighted first-order logics with discounting 77

for an arbitrary γ ∈ �. If s = kε , then again s|B∗�B∗ = 0∅ +d

((
kγ
)
γ

+d 0∅
)

for an arbitrary

γ ∈ �.
Let s, r ∈ SF (Rmax, A, d) satisfying the induction hypothesis. This means that s|B∗�B∗ =

max1≤i≤n

(
s(i)1 +d

(
s(i)2 +d s(i)3

))
and r |B∗�B∗ = max1≤ j≤m

(
r ( j)

1 +d

(
r ( j)

2 +d r ( j)
3

))

where for every 1 ≤ i ≤ n and 1 ≤ j ≤ m, we have s(i)1 , s(i)3 , r ( j)
1 , r ( j)

3 ∈ SF (Rmax, B, d) ,

s(i)2 = (ki )γi
, r ( j)

2 = (
l j
)
γ ′

j
, γi , γ

′
j ∈ �, ki , l j ∈ Rmax. Obviously, max (s, r) |B∗�B∗ has

the required form.
Next let w ∈ B∗�B∗ and 0 ≤ k ≤ |w| − 1 with w(k) ∈ �. Then w<k, w>k ∈ B∗ and we

have

(s|B∗�B∗ , w) =
(

max
1≤i≤n

(
s(i)1 +d

(
s(i)2 +d s(i)3

))
, w

)

= max
1≤i≤n

((
s(i)1 +d

(
s(i)2 +d s(i)3

)
, w
))

= max
1≤i≤n

((
s(i)1 , w<k

)
+ dw<k

((
s(i)2 , w(k)

)
+ dw(k)

(
s(i)3 , w>k

)))

= max
1≤i≤n

((
s(i)1 , w<k

)
+ dw<k

(
s(i)2 , w(k)

)
+ dw<k+1

(
s(i)3 , w>k

))

where the third equality holds since for every 1 ≤ i ≤ n and every decomposition w =
u1u2u3 with u2 �= w(k) we have

(
s(i)2 , u2

)
= −∞.

Similarly

(r |B∗�B∗ , w) =
(

max
1≤ j≤m

(
r ( j)

1 +d

(
r ( j)

2 +d r ( j)
3

))
, w

)

= max
1≤ j≤m

((
r ( j)

1 , w<k

)
+ dw<k

(
r ( j)

2 , w(k)
)

+ dw<k+1

(
r ( j)

3 , w>k

))
.

Hence,

((s + r) |B∗�B∗ , w) = (s|B∗�B∗ , w)+ (r |B∗�B∗ , w)

= max
1≤i≤n

((
s(i)1 , w<k

)
+ dw<k

(
s(i)2 , w(k)

)
+ dw<k+1

(
s(i)3 , w>k

))

+ max
1≤ j≤m

((
r ( j)

1 , w<k

)
+ dw<k

(
r ( j)

2 , w(k)
)

+ dw<k+1

(
r ( j)

3 , w>k

))

= max
1≤i≤n
1≤ j≤m

⎛

⎝
(

s(i)1 + r ( j)
1 , w<k

)
+ dw<k

⎛

⎝

(
s(i)2 + r ( j)

2 , w(k)
)

+dw(k)
(

s(i)3 + r ( j)
3 , w>k

)

⎞

⎠

⎞

⎠

=
⎛

⎜
⎝ max

1≤i≤n
1≤ j≤m

((
s(i)1 + r ( j)

1

)
+d

((
s(i)2 + r ( j)

2

)
+d

(
s(i)3 + r ( j)

3

)))
, w

⎞

⎟
⎠ .

Since s(i)1 + r ( j)
1 , s(i)3 + r ( j)

3 ∈ SF (Rmax, B, d) , and s(i)2 + r ( j)
2 = (

ki + l j
)
γi

if γi = γ ′
j ,

and s(i)2 + r ( j)
2 = −∞γ for an arbitrary γ ∈ � otherwise, our claim is true for sum.

Furthermore,

((s +d r) |B∗�B∗ , w)

= max

{
max {(s|B∗�B∗ , u)+ du (r, v) | u ∈ B∗�B∗, v ∈ B∗, w = uv} ,
max {(s, u)+ du (r |B∗�B∗ , v) | u ∈ B∗, v ∈ B∗�B∗, w = uv}

}
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where

max
{
(s|B∗�B∗ , u)+ du (r, v) | u ∈ B∗�B∗, v ∈ B∗, w = uv

}

= max

{(
max

1≤i≤n

(
s(i)1 +d

(
s(i)2 +d s(i)3

))
, u

)
+ du (r, v) | u ∈ B∗�B∗, v ∈ B∗, w = uv

}

= max

{(
max

1≤i≤n

(
s(i)1 +d

(
s(i)2 +d s(i)3

))
, u

)
+ du (r |B∗ , v) | u, v ∈ A∗, w = uv

}

=
(

max
1≤i≤n

(
s(i)1 +d

(
s(i)2 +d s(i)3

))
+d r |B∗ , w

)

=
(

max
1≤i≤n

((
s(i)1 +d

(
s(i)2 +d s(i)3

))
+d r |B∗

)
, w

)

=
(

max
1≤i≤n

(
s(i)1 +d

(
s(i)2 +d

(
s(i)3 +d r |B∗

)))
, w

)

where r |B∗ = r + 0B∗ ∈ SF (Rmax, B, d), and

max
{
(s, u)+ du (r |B∗�B∗ , v) | u ∈ B∗, v ∈ B∗�B∗, w = uv

}

= max

{
(s, u)+ du

(
max

1≤ j≤m

(
r ( j)

1 +d

(
r ( j)

2 +d r ( j)
3

))
, v

)
| u ∈ B∗, v ∈ B∗�B∗, w = uv

}

= max

{
(s|B∗ , u)+ du

(
max

1≤ j≤m

(
r ( j)

1 +d

(
r ( j)

2 +d r ( j)
3

))
, v

)
| u, v ∈ A∗, w = uv

}

=
(

s|B∗ +d max
1≤ j≤m

(
r ( j)

1 +d

(
r ( j)

2 +d r ( j)
3

))
, w

)

=
(

max
1≤ j≤m

(
s|B∗ +d

(
r ( j)

1 +d

(
r ( j)

2 +d r ( j)
3

)))
, w

)

=
(

max
1≤ j≤m

((
s|B∗ +d r ( j)

1

)
+d

(
r ( j)

2 +d r ( j)
3

))
, w

)
.

Thus,

((s +d r) |B∗�B∗ , w) = max

⎧
⎪⎪⎨

⎪⎪⎩

(
max

1≤i≤n

(
s(i)1 +d

(
s(i)2 +d

(
s(i)3 +d r |B∗

)))
, w

)
,

(
max

1≤ j≤m

((
s|B∗ +d r ( j)

1

)
+d

(
r ( j)

2 +d r ( j)
3

))
, w

)

⎫
⎪⎪⎬

⎪⎪⎭
.

Therefore, the series (s +d r) |B∗�B∗ has the required form.

Now, let s be a letter-step series. Then, s|B∗�B∗ = s|� = maxγ∈�
((

kγ
)
γ

)
. Let w ∈

supp(s+) ∩ B∗�B∗, which implies that there is an index 0 ≤ k ≤ |w| − 1 such that
w<k, w>k ∈ B∗ and w(k) ∈ �. Then

((
s+) |B∗�B∗ , w

) = max
{(

sm |B∗�B∗ , w
) | 1 ≤ m ≤ |w|} =

(
s|w||B∗�B∗ , w

)

=
∑

0≤ j≤|w|−1

dw< j (s, w( j))

=
∑

0≤ j≤k−1

dw< j (s, w( j))+ dw<k (s, w(k))+
∑

k< j≤|w|−1

dw< j (s, w( j))
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= (
(s|B∗)+ +d

(
s|� +d (s|B∗)+

)
, w
)

=
(

max
γ∈�

(
(s|B∗)+ +d

((
kγ
)
γ

+d (s|B∗)+
))
, w

)

and this concludes the induction for letter-step series.
Finally, let s ∈ SF (Rmax, A, d). Then s = 0supp(s). Since supp(s) is a star-free language,

we get that supp(s) is also star-free. Hence, by Lemma 33(i) we conclude our proof. ��
Proposition 35 (Splitting lemma for infinitary series) Let s ∈ ω-SF (Rmax, A, d) and

B, � ⊆ A with B ∩ � = ∅. Then s|B∗�Bω = max1≤i≤n

(
s(i)1 +d

(
s(i)2 +d s(i)3

))
where

for every 1 ≤ i ≤ n, s(i)1 ∈ SF (Rmax, B, d) , s(i)3 ∈ ω-SF (Rmax, B, d), and s(i)2 = (ki )γi

with γi ∈ �, ki ∈ Rmax.

Proof Taking into account the definition of ω-d-star-free series, firstly we embed the proof
of Lemma 34. Furthermore, we use arguments of that proof as follows. For the operations of
maximum and sum we let s, r ∈ ω-SF (Rmax, A, d), and for +d we let s ∈ SF (Rmax, A, d)
and r ∈ ω-SF (Rmax, A, d). For the complement operation, we let s ∈ ω-SF (Rmax, A, d)
and we use the corresponding argument for ω-star-free languages and Lemma 33(ii). Finally,

let s be a letter-step series. Then, s|B∗�B∗ = s|� = maxγ∈�
((

kγ
)
γ

)
. Let w ∈ supp(sω) ∩

B∗�Bω, i.e., there exists an index k ≥ 0 such that w<k ∈ B∗, w>k ∈ Bω, and w(k) ∈ �.
Then we get

((
sω
) |B∗�Bω , w

) = sup

⎧
⎨

⎩

∑

i≥1

du1...ui−1(s, ui ) | ui ∈ A∗, w = u1u2 . . .

⎫
⎬

⎭

=
∑

j≥0

dw< j (s, w( j))

=
∑

0≤ j≤k−1

dw< j (s, w( j))+ dw<k (s, w(k))+
∑

j>k

dw< j (s, w( j))

= (
(s|B∗)+ +d

(
s|� +d (s|B∗)ω

)
, w
)

=
(

max
γ∈�

(
(s|B∗)+ +d

((
kγ
)
γ

+d (s|B∗)ω
))
, w

)

i.e.,
(
sω
) |B∗�Bω = max

γ∈�

(
(s|B∗)+ +d

((
kγ
)
γ

+d (s|B∗)ω
))

and this completes our proof. ��
Proposition 36 Let A, B be two alphabets and h : A → B a bijection. Furthermore, let

d =
(

da

)

a∈A
be a discounting over A and Rmax, and d ′ =

(
d ′

b

)

b∈B
a discounting over B

and Rmax determined for every b ∈ B by d ′
b = dh−1(b). Then, s ∈ SF (Rmax, A, d) (resp.

s ∈ ω-SF (Rmax, A, d)) implies h(s) ∈ SF
(
Rmax, B, d ′) (resp. h(s) ∈ ω-SF

(
Rmax, B, d ′)).

Proof Since h is a bijection, the morphism h : A∗ → B∗ (resp. the mapping h : Aω → Bω),
that is derived by h in the usual way, is an isomorphism (resp. a bijection). Therefore, h
defines a one-to-one correspondence between the words of A∗ and B∗ (resp. the words of
Aω and Bω). Then, we can easily state our proof by induction on the structure of d-star-free
(resp. ω-d-star-free) series. ��
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Proposition 37 Let A, B be alphabets and h : A∗ → B∗ a strict alphabetic epimorphism.

Furthermore, let d =
(

da

)

a∈A
be a discounting over A and Rmax such that da = da′

whenever h(a) = h(a′) for every a, a′ ∈ A, and d ′ =
(

d ′
b

)

b∈B
a discounting over B

and Rmax determined for every b ∈ B by d ′
b = da for a ∈ A with h(a) = b. Then s ∈

SF
(
Rmax, B, d ′) (resp. s ∈ ω-SF

(
Rmax, B, d ′)) implies h−1(s) ∈ SF (Rmax, A, d) (resp.

h−1(s) ∈ ω-SF (Rmax, A, d)).

Proof We prove our claim by induction on the structure of d ′-star-free (resp. ω-d ′-star-free)
series. Let s = (kb)b be a monomial over B and Rmax. Then, h−1(s) is a letter-step series and
thus a d-star-free series over A and Rmax. If s = kε , then h−1(s) = kε since h is strict. Next let
s1, s2 ∈ SF

(
Rmax, B, d ′) (resp. s1, s2 ∈ ω-SF

(
Rmax, B, d ′)) such that h−1 (s1) , h−1 (s2) ∈

SF (Rmax, A, d) (resp. h−1 (s1) , h−1 (s2) ∈ ω-SF (Rmax, A, d)). Trivially h−1 (s1 + s2) =
h−1 (s1)+ h−1 (s2) and h−1 (max (s1, s2)) = max

(
h−1 (s1) , h−1 (s2)

)
.

Furthermore, for every w ∈ A∗ we have

(
h−1 (s1 +d ′ s2) , w

)
= (s1 +d ′ s2, h (w))

= max
{
(s1, u1)+ d ′

u1
(s2, u2) | u1, u2 ∈ B∗, u1u2 = h (w)

}

= max
{
(s1, h (w1))+ d ′

h(w1)
(s2, h (w2)) | w1, w2 ∈ A∗, w1w2 = w

}

= max
{(

h−1 (s1) , w1

)
+ dw1

(
h−1 (s2) , w2

)
| w1, w2 ∈ A∗, w1w2 =w

}

=
(

h−1 (s1)+d h−1 (s2) , w
)

where the third equality holds since h is strict alphabetic. Hence h−1 (s1 +d ′ s2) =
h−1 (s1) +d h−1 (s2). If s1 ∈ SF

(
Rmax, B, d ′) , s2 ∈ ω-SF

(
Rmax, B, d ′), and w ∈ Aω,

then we use the same with above argument, where we write sup for max, u2 ∈ Bω, and
w2 ∈ Aω.

Assume now that s is a letter-step series over B and Rmax. Then, the series h−1(s) is a
letter-step series over A and Rmax, hence h−1(s) ∈ SF (Rmax, A, d). For every w ∈ A+ we
get

(h−1(s+), w) = (s+, h(w)) =
∑

0≤ j≤|h(w)|−1

d ′
h(w)< j

(s, h(w)( j))

=
∑

0≤ j≤|h(w)|−1

d ′
h(w)< j

(s, h(w( j))) =
∑

0≤ j≤|w|−1

dw< j (h
−1(s), w( j))

= ((h−1(s))+, w),

i.e., h−1(s+) = (h−1(s))+ ∈ SF (Rmax, A, d).
Next, let s ∈ SF

(
Rmax, B, d ′). Then, s = 0supp(s) and supp(s) is, by Lemma 28, a star-free

language over B. Moreover, the language h−1
(

supp(s)
)

⊆ A∗ is star-free (cf. for instance

[25]) hence, the series h−1 (s) = h−1
(

0supp(s)

)
= 0

h−1
(

supp(s)
) is d-star-free by Lemma 28.

The case s ∈ ω-SF
(
Rmax, B, d ′) is treated similarly.

Finally, assume that s is a letter-step series over B and Rmax. Then, h−1(s) is a letter-step
series over A and Rmax. Moreover, for every w ∈ Aω we have
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(h−1(sω),w) = (sω, h(w)) =
∑

j≥0

d ′
h(w)< j

(s, h(w)( j))

=
∑

j≥0

d ′
h(w)< j

(s, h(w( j))) =
∑

j≥0

dw< j (h
−1(s), w( j))

= ((h−1(s))ω,w),

i.e., h−1 (sω) = (
h−1(s)

)ω ∈ ω-SF (Rmax, A, d), and our proof is completed. ��
Our next task is to show that everyω-wqFO-d-definable series over A and Rmax is anω-d-

star-free series, i.e., ω-wqFO (Rmax, A, d) ⊆ ω-SF (Rmax, A, d). For this, we use induction
on the structure of W Q F O (Rmax, A) formulas.

Let V be a finite set of first-order variables and AV = A × {0, 1}V . We define the dis-
counting d̃ = (

d̃(a, f )
)
(a, f )∈AV by setting d̃(a, f ) = da for every (a, f ) ∈ AV . Clearly for

every (w, σ ) ∈ A∗
V it holds d̃(w,σ ) = dw. In the sequel, for simplicity we identify d̃ by d.

We shall need the following auxiliary result.

Lemma 38 Let ϕ ∈ FO (Rmax, A) and V be a finite set of first-order variables containing
f ree (ϕ). If ‖ϕ‖ is an ω-d-star-free series (resp. an ω-star-free step function), then ‖ϕ‖V is
an ω-d-star-free series (resp. an ω-star-free step function).

Proof Let ‖ϕ‖ be an ω-d-star-free series and h : AV → Afree(ϕ) be the strict alphabetic
epimorphism erasing the x-row for every x ∈ V \ f ree (ϕ). It holds ‖ϕ‖V = h−1 (‖ϕ‖) +
0NV .Then by Proposition 37 we get that h−1 (‖ϕ‖) ∈ ω-SF (Rmax, AV , d), and thus ‖ϕ‖V ∈
ω-SF (Rmax, AV , d) as wanted. Assume now that ‖ϕ‖ = max1≤i≤n

(
(ki )Li

)
where for every

1 ≤ i ≤ n, ki ∈ Rmax and Li is an ω-star-free language over Afree(ϕ). Then for every
k ∈ Rmax, if k �= −∞ we get ‖ϕ‖−1

V (k) = h−1
(‖ϕ‖−1 (k)

) ∩ NV and for k = −∞ we get
‖ϕ‖−1

V (−∞) = h−1
(‖ϕ‖−1 (−∞)

)∪ (AωV \ NV
)
. Hence, for every k ∈ Rmax the language

‖ϕ‖−1
V (k) is ω-star-free if the language h−1

(‖ϕ‖−1 (k)
)

is ω-star-free. Since ω-star-free
languages are preserved by inverse strict alphabetic epimorphisms (cf. [25]) we are done. ��
Lemma 39 Let ϕ ∈ FO (Rmax, A) be an atomic formula. Then, ‖ϕ‖ is an ω-star-free step
function.

Proof If ϕ = k ∈ Rmax, then ‖ϕ‖ = kAω . Next, if ϕ = Pa (x) or x < y, then ϕ is a boolean
first-order formula, hence L(ϕ) is an ω-star-free language and ‖ϕ‖ = 0L(ϕ) is an ω-star-free
step function. ��
Lemma 40 Let ϕ ∈ FO (Rmax, A) such that ‖ϕ‖ is an ω-d-star-free series. Then ‖¬ϕ‖ is
also an ω-d-star-free series.

Proof By definition, we have ‖¬ϕ‖ = ‖ϕ‖. ��
Lemma 41 Let ϕ,ψ ∈ FO (Rmax, A). If ‖ϕ‖ , ‖ψ‖ are ω-d-star-free series (resp. ω-star-
free step functions), then ‖ϕ ∧ ψ‖ , ‖ϕ ∨ ψ‖ are ω -d-star-free series (resp. ω-star-free step
functions).

Proof Let V = free (ϕ) ∪ f ree (ψ). We have ‖ϕ ∧ ψ‖ = ‖ϕ‖V + ‖ψ‖V and ‖ϕ ∨ ψ‖ =
max

(‖ϕ‖V , ‖ψ‖V
)
, hence our claim follows by definition of ω-d-star-free series (resp.

Proposition 31) and Lemma 38. ��
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Lemma 42 Let ϕ ∈ FO (Rmax, A) such that ‖ϕ‖ is an ω-d-star-free series. Then ‖∃x .ϕ‖ is
also an ω-d-star-free series.

Proof Let W =free (ϕ) ∪ {x} and V = free(∃x .ϕ) = W \ {x}. We define two subalphabets
B, � of AW by letting B = {(a, f ) ∈ AW | f (x) = 0} and� = {(a, f ) ∈ AW | f (x)=1}.
Since ‖ϕ‖W ∈ ω-SF (Rmax, AW , d) (by Lemma 38, in case x /∈ free(ϕ)), by Proposition 35
we get

‖ϕ‖W |B∗�B∗ = max
1≤i≤n

(
s(i)1 +d

(
s(i)2 +d s(i)3

))

with s(i)1 ∈ SF (Rmax, B, d) , s(i)3 ∈ ω-SF (Rmax, B, d) , and s(i)2 = (ki )γi
, where ki ∈

Rmax, γi ∈ � for every 1 ≤ i ≤ n. We show that

‖∃x .ϕ‖ = max
1≤i≤n

(
h|B

(
s(i)1

)
+d

(
(ki )h(γi )

+d h|B

(
s(i)3

)))
+ 0NV

where h : AW → AV is the strict alphabetic epimorphism assigning (a, f |V ) to (a, f ) for
every (a, f ) ∈ AW .

Let (w, σ ) ∈ NV . Then we have

(‖∃x .ϕ‖ , (w, σ ))
= sup

j≥0
((‖ϕ‖W , (w, σ [x → j])))

= sup
j≥0

((‖ϕ‖W |B∗�Bω , (w, σ [x → j])))

= sup
j≥0

((
max

1≤i≤n

(
s(i)1 +d

(
s(i)2 +d s(i)3

))
, (w, σ [x → j])

))

= sup
j≥0

⎛

⎝ max
1≤i≤n

⎛

⎝

(
s(i)1 , (w, σ [x → j])< j

)
+ dw< j

(
s(i)2 , (w, σ [x → j]) ( j)

)

+dw≤ j

(
s(i)3 , (w, σ [x → j])> j

)

⎞

⎠

⎞

⎠

= max
1≤i≤n

⎛

⎝sup
j≥0

⎛

⎝

(
s(i)1 , (w, σ [x → j])< j

)
+ dw< j

(
s(i)2 , (w, σ [x → j]) ( j)

)

+dw≤ j

(
s(i)3 , (w, σ [x → j])> j

)

⎞

⎠

⎞

⎠

= max
1≤i≤n

⎛

⎝sup
j≥0

⎛

⎝

(
h|B

(
s(i)1

)
, (w, σ )< j

)
+ dw< j

(
(ki )h(γi )

, (w, σ ) ( j)
)

+dw≤ j

(
h|B

(
s(i)3

)
, (w, σ )> j

)

⎞

⎠

⎞

⎠

= max
1≤i≤n

((
h|B

(
s(i)1

)
+d

(
(ki )h(γi )

+d h|B

(
s(i)3

))
, (w, σ )

))

=
(

max
1≤i≤n

(
h|B

(
s(i)1

)
+d

(
(ki )h(γi )

+d h|B

(
s(i)3

)))
, (w, σ )

)

where the sixth equality holds since h
(
kγi

) = kh(γi ) and h|B : B → AV is a bijection. On
the other hand, for every (w, σ ) ∈ AωV \ NV we have

(
max

1≤i≤n

(
h|B

(
s(i)1

)
+d

(
(ki )h(γi )

+d h|B

(
s(i)3

)))
+ 0NV , (w, σ )

)
= −∞.

Hence, ‖∃x .ϕ‖ = max1≤i≤n

(
h|B

(
s(i)1

)
+d

(
(ki )h(γi )

+d h|B

(
s(i)3

)))
+ 0NV . By Propo-

sition 36, for every 1 ≤ i ≤ n, we get that h|B
(
si

1

) ∈ SF (Rmax, AV , d) , h|B

(
s(i)3

)
∈

ω-SF (Rmax, AV , d). Therefore ‖∃x .ϕ‖ is an ω-d-star-free series. ��
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Lemma 43 Let ϕ ∈ FO (Rmax, A) be an FO-step formula. Then ‖∃d x .ϕ‖ is anω-d-star-free
series.

Proof Let W = f ree (ϕ) ∪ {x}, V = W \ {x}, and ϕ = ∨
1≤i≤n (ki ∧ ϕi ) where ϕi ∈

bFO (Rmax, A) for every 1 ≤ i ≤ n. Then Li = L(ϕi ) is an ω-star-free language over AW
and ‖ϕ‖W = max1≤i≤n

(
(ki )Li

)
, i.e., ‖ϕ‖W is an ω-star-free-step function (by Lemma 38,

in case x /∈ f ree(ϕ)). We consider the subalphabets B, � of AW as in the proof of the
previous lemma. Then, for every 1 ≤ i ≤ n, by Lemma 33(ii), we get

(
0Li

) |B∗�Bω = max
1≤li ≤mi

(
0Lli

+d

(
0γli

+d 0L ′
li

))

where 0Lli
∈ SF (Rmax, B, d) , 0L ′

li
∈ ω-SF (Rmax, B, d), and γli ∈ � for every 1 ≤ li ≤

mi . Thus

‖ϕ‖W |B∗�Bω = max
1≤i≤n

(
ki + max

1≤li ≤mi

(
0Lli

+d

(
0γli

+d 0L ′
li

)))

= max
1≤i≤n

(
max

1≤li ≤mi

(
ki +

(
0Lli

+d

(
0γli

+d 0L ′
li

))))
.

We show that

‖∃d x .ϕ‖ = max
1≤i≤n

(
max

1≤li ≤mi

(
0h|B

(
Lli

) +d

(
(ki )h

(
γli

) +d 0
h|B

(
L ′

li

)
)))

+ 0NV

where h : AW → AV is the strict alphabetic epimorphism of Lemma 42. For every (w, σ ) ∈
NV we have

(‖∃d x .ϕ‖ , (w, σ ))
= sup

j≥0

(
dw< j (‖ϕ‖W , (w, σ [x → j]))

)

= sup
j≥0

(
dw< j (‖ϕ‖W |B∗�Bω , (w, σ [x → j]))

)

= sup
j≥0

(
dw< j

(
max

1≤i≤n

(
max

1≤li ≤mi

(
ki +

(
0Lli

+d

(
0γli

+d 0L ′
li

))))
, (w, σ [x → j])

))

= sup
j≥0

⎛

⎜⎜
⎜
⎝

dw< j

⎛

⎜⎜
⎜
⎝

max
1≤i≤n

⎛

⎜⎜
⎜
⎝

max
1≤li ≤mi

⎛

⎜⎜
⎜
⎝

ki +
(

0Lli
, (w, σ [x → j])< j

)

+dw< j

(
0γli

, (w, σ [x → j]) ( j)
)

+dw≤ j

(
0L ′

li
, (w, σ [x → j])> j

)

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟
⎟
⎠

= max
1≤i≤n

⎛

⎜
⎝ max

1≤li ≤mi

⎛

⎜
⎝sup

j≥0

⎛

⎜
⎝

dw< j ki +
(

0h|B
(
Lli

), (w, σ )< j

)

+
(

0h
(
γli

), (w, σ ) ( j)
)

+
(

0
h|B

(
L ′

li

), (w, σ )> j

)

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

= max
1≤i≤n

⎛

⎜
⎝ max

1≤li ≤mi

⎛

⎜
⎝sup

j≥0

⎛

⎜
⎝

(
0h|B

(
Lli

), (w, σ )< j

)

+
(

dw< j (ki )h
(
γli

) , (w, σ ) ( j)
)

+
(

0
h|B

(
L ′

li

), (w, σ )> j

)

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

=
(

max
1≤i≤n

(
max

1≤li ≤mi

(
0h|B

(
Lli

) +d

(
(ki )h

(
γli

) +d 0
h|B

(
L ′

li

)
)))

, (w, σ )

)
.
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Hence, as in previous lemma, we get

‖∃d x .ϕ‖ = max
1≤i≤n

(
max

1≤li ≤mi

(
0h|B

(
Lli

) +d

(
(ki )h

(
γli

) +d 0
h|B

(
L ′

li

)
)))

+ 0NV .

Since h : B → AV is a bijection, we get that h|B
(
Lli

)
is a star-free language and h|B

(
L ′

li

)

is an ω-star-free language for every 1 ≤ i ≤ n and 1 ≤ li ≤ mi . Thus ‖∃d x .ϕ‖ is an
ω-d-star-free series. ��
Lemma 44 Let ϕ ∈ FO (Rmax, A) be a boolean, or a letter-step formula, or ϕ = y ≤ x <
z → ψ , or ϕ = y ≤ x → ψ where ψ is a letter-step formula with free variable x. Then
‖∀x .ϕ‖ is an ω-d-star-free series.

Proof If ϕ ∈ bFO (Rmax, A), then ∀x .ϕ ∈ bFO (Rmax, A), hence the language L(∀x .ϕ) is
ω-star-free and the series ‖∀x .ϕ‖ = 0L(∀x .ϕ) is ω-d-star-free.

Next, assume that ϕ = ∨
a∈A (ka ∧ Pa(x)) is a letter-step formula with a ∈ A, ka ∈

Rmax. We consider the letter-step series r = maxa∈A
(
(ka)a

)
. Then for every word w ∈ Aω

we have

(‖∀x .ϕ‖ , w) =
∑

i≥0

dw<i (‖ϕ‖ , (w, [x → i]))

=
∑

i≥0

dw<i

(∥∥∥∥∥

∨

a∈A

(ka ∧ Pa(x))

∥∥∥∥∥
, (w, [x → i])

)

=
∑

i≥0

dw<i (r, w(i))

= (
rω,w

)

where the fourth equality holds by Example 22. Hence, we get ‖∀x .ϕ‖ = rω which implies
that ‖∀x .ϕ‖ is an ω-d-star-free series.

Next, let ϕ = (y ≤ x) → ∨
a∈A (ka ∧ Pa(x)). We consider the subset F = {(a, 0) |

a ∈ A} of A{y}. The language F∗ is star-free, hence, the series 0F∗ is d-star-free. Consider
the series s = maxa∈A

(
(ka)(a,0)

)
and s′ = maxa∈A

(
(ka)(a,1)

)
over A{y} and Rmax. Now for

every w ∈ Aω and l ≥ 0, we get

(‖∀x .ϕ‖ , (w, [y → l]))

=
∑

j≥0

dw< j

(∥∥∥∥∥
(y ≤ x) →

∨

a∈A

(ka ∧ Pa(x))

∥∥∥∥∥
, (w, [x → j, y → l])

)

=
∑

j≥l

dw< j

(∥∥∥∥∥

∨

a∈A

(ka ∧ Pa(x))

∥∥∥∥∥
, (w, [x → j])

)

= dw<l (s
′, (w(l), 1))+

∑

j>l

dw< j (s, (w( j), 0))

= (
0F∗ +d

(
s′ +d sω

)
, (w, [y → l])),

i.e., ‖∀x .ϕ‖ = 0F∗ +d
(
s′ +d sω

)
is an ω-d-star-free series.

Finally, let ϕ = (y ≤ x < z) → ∨
a∈A (ka ∧ Pa(x)). We consider the finite languages

F = {(a, 0, 0) | a ∈ A}, F1 = {(a, 1, 0) | a ∈ A}, F2 = {(a, 0, 1) | a ∈ A} and
F3 = {(a, 1, 1) | a ∈ A} over A{y,z}. The languages F, F1, F2, F3, F+, F∗ are star-free,
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hence the series 0F1 , 0F2 , 0F3 , 0F+ , 0F∗ are d-star-free. Since (F+)+ = F+ the languages
L = (F+)ω, L ′ = F2 L are ω-star-free and the infinitary series 0L , 0L ′ are ω-d-star-free.
We consider the series s = maxa∈A

(
k(a,0,0)

)
(a,0,0) and s′ = maxa∈A

(
k(a,1,0)

)
(a,1,0) over

A{y,z} and Rmax, where k(a,0,0) = k(a,0,1) = ka for every a ∈ A. Moreover, we let r1 =
0F∗ +d

(
s′ +d

(
max

(
0ε, s+)+d 0L ′

))
, r2 = 0F∗ +d

(
0F3 +d 0L

)
, and r3 = 0F∗ +d(

0F2 +d
(
0F∗ +d

(
0F1 +d 0L

)))
.

Now, for every w ∈ Aω and j, l ≥ 0 with j < l, we have (max (r2, r3) , (w, [y → j,
z → l])) = −∞, and

(‖∀x .ϕ‖ , (w, [y → j, z → l]))

=
∑

i≥0

dw<i

(∥∥
∥
∥
∥
(y ≤ x < z) →

∨

a∈A

(ka ∧ Pa(x))

∥
∥
∥
∥
∥
, (w, [x → i, y → j, z → l])

)

=
∑

j≤i<l

dw<i

(∥∥
∥
∥
∥

∨

a∈A

(ka ∧ Pa(x))

∥
∥
∥
∥
∥
, (w, [x → i])

)

= dw< j (s
′, (w( j), 1, 0))+

∑

j<i<l

dw<i (s, (w(i), 0, 0))

= (r1, (w, [y → j, z → l]))
= (max (r1,max (r2, r3)) , (w, [y → j, z → l])) .

Furthermore, for everyw ∈ Aω and j, l ≥ 0 with j ≥ l, we get (r1, (w, [y → j, z → l])) =
−∞, and

(‖∀x .ϕ‖ , (w, [y → j, z → l]))

=
∑

i≥0

dw<i

(∥∥∥∥∥
(y ≤ x < z) →

∨

a∈A

(ka ∧ Pa(x))

∥∥∥∥∥
, (w, [x → i, y → j, z → l])

)

=
∑

i≥0

dw<i (‖¬ (y ≤ x < z)‖ , (w, [x → i, y → j, z → l]))

= (max (r2, r3) , (w, [y → j, z → l]))
= (max (r1,max (r2, r3)) , (w, [y → j, z → l])) .

We conclude that ‖∀x .ϕ‖ = max (r1,max (r2, r3)), hence ‖∀x .ϕ‖ is an ω-d-star-free series,
as required. ��

Now, we are ready to state the main result of the section.

Theorem 45 ω-wqFO (Rmax, A, d) ⊆ ω-SF (Rmax, A, d).

Proof We combine Lemmas 39, 40, 41, 42, 43, and 44. ��
Example 46 We consider the WQFO (Rmax, A) sentence ϕ′ of Example 17 and the ω-d-star-
free series r = max

(
(2a)

+ +d (3b)
ω , (3b)

ω
)
. It should be clear that r = ∥∥ϕ′∥∥.

6 Counter-free series

In this section, we consider the concept of counter-freeness within weighted (resp. weighted
Büchi) automata over A and Rmax. Our models will be nondeterministic. Furthermore, for
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simplicity reasons, we equip our finitary models with a set of final states instead of a terminal
distribution. The main result of the section states that the class of ω-d-star-free series is
contained into a subclass of the behaviors of our counter-free weighted Büchi automata. First,
we recall the notions of weighted automata and weighted Büchi automata with discounted
behavior over A and Rmax [11,13].

A weighted automaton over A and Rmax is a quadruple A = (Q, in, wt, F) where Q is
the finite state set, in : Q → Rmax is the initial distribution, wt : Q × A × Q → Rmax is a
mapping assigning weights to the transitions of the automaton and F ⊆ Q is the final state
set.

Given a wordw = a0 . . . an−1 ∈ A∗, a path of A overw is a finite sequence of transitions
Pw := ((qi , ai , qi+1))0≤i≤n−1. The running weight of Pw is the value

rwt(Pw) :=
∑

0≤i≤n−1

dw<i wt ((qi , ai , qi+1))

and the weight of Pw is given by

weight(Pw) := in(q0)+ rwt(Pw).

The path Pw is called successful if qn ∈ F . Then, the d-behavior of A is the series ‖A‖ :
A∗ → Rmax which is defined, for every w ∈ A∗, by (‖A‖ , w) = maxPw succ (weight(Pw)).
A series r ∈ Rmax 〈〈A∗〉〉 is called d-recognizable if it is the d-behavior of a weighted
automaton over A and Rmax.

A weighted Büchi automaton A = (Q, in,wt, F) over A and Rmax is defined as a weighted
automaton. Given an infinite word w = a0a1 . . . ∈ Aω, a path of A over w is an infinite
sequence of transitions Pw := ((qi , ai , qi+1))i≥0. The running weight of Pw is the value

rwt(Pw) :=
∑

i≥0

dw<iwt ((qi , ai , qi+1))

and the weight of Pw is given by

weight(Pw) := in(q0)+ rwt (Pw)

where the infinite sum converges, since
∑

i≥0 dw<i wt ((qi , ai , qi+1)) ≤ m/(1 − Md) with
m = max

{
wt
((

q, a, q ′)) | (q, a, q ′) ∈ Q × A × Q
}

and Md = max {da | a ∈ A}.
A path Pw is called successful if at least one final state occurs infinitely often along Pw.

Then, the d-behavior of A is the infinitary series ‖A‖ : Aω → Rmax whose coefficients
are given by (‖A‖ , w) = supPw succ (weight(Pw)), for every w ∈ Aω. An infinitary series
r ∈ Rmax 〈〈Aω〉〉 is called ω-d-recognizable if it is the d-behavior of a weighted Büchi
automaton over A and Rmax.

It should be clear that d-recognizable and ω-d-recognizable series are bounded. We shall
need also the following notation. Given a weighted (resp. weighted Büchi) automaton A =
(Q, in,wt, F), a word w = a0 . . . an−1 ∈ A∗, and states q, q ′ ∈ Q, we shall denote by
P(q,w,q ′) a path of A over w starting at state q and terminating at state q ′, i.e., P(q,w,q ′) =
(q, a0, q1) ((qi , ai , qi+1))1≤i≤n−2

(
qn−1, an−1, q ′). Then

rwt
(
P(q,w,q ′)

) = wt ((q, a0, q1))+
∑

1≤i≤n−2

dw<i wt ((qi , ai , qi+1))

+ dw<n−1 wt
((

qn−1, an−1, q ′)) .

Now, we are ready to introduce our counter-free weighted and counter-free weighted
Büchi automata.
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Definition 47 A weighted automaton (resp. weighted Büchi automaton) A = (Q, in,wt, F)
over A and Rmax is called counter-free (cfwa, resp. cfwBa, for short) if for every q ∈
Q, w ∈ A∗, and n ≥ 1, the relation maxP(q,wn ,q)

(
rwt

(
P(q,wn ,q)

)) �= −∞ implies

maxP(q,wn ,q)

(
rwt

(
P(q,wn ,q)

)) = ∑
0≤i≤n−1 (dw)

i maxP(q,w,q)

(
rwt

(
P(q,w,q)

))
.

A series r ∈ Rmax 〈〈A∗〉〉 (resp. r ∈ Rmax 〈〈Aω〉〉) is called d-counter-free (resp. ω-d-
counter-free) if it is accepted by a cfwa (resp. cfwBa) over A and Rmax. We shall denote by
CF(Rmax, A, d) (resp.ω-CF(Rmax, A, d)) the class of all d-counter-free (resp.ω-d-counter-
free) series over A and Rmax.

A cfwa A = (Q, in,wt, F) over A and Rmax is called normalized if there are two states
q0, qt ∈ Q such that F = {qt } and for every q ∈ Q, a ∈ A, we have in(q) = 0 if q = q0

and −∞ otherwise, and wt((q, a, q0)) = −∞ = wt((qt , a, q)). We denote a normalized
cfwa A simply by A = (Q, q0,wt, qt ).

The following result has been proved for weighted automata in [11].

Lemma 48 For every cfwa A = (Q, in,wt, F) we can effectively construct a normalized
cfwa A′ = (Q ∪ {q0, qt }, q0, wt ′, qt ) such that

(∥∥A′∥∥ , w
) = (‖A‖ , w) for every w ∈ A+

and
(∥∥A′∥∥ , ε

) = −∞.

Proof We adapt the proof of Lemma 7 in [11]. In fact, it remains to show that the normalized
weighted automaton A′ is counter-free. Indeed, let q ∈ Q ∪ {q0, qt }, w ∈ A+, n ≥ 1, and
P ′
(q,wn ,q) be a path of A′ over w with rwt(P ′

(q,wn ,q)) �= −∞. Since A′ is normalized we get
that the states q0, qt do not occur in the path P ′

(q,wn ,q) hence P ′
(q,wn ,q) is also a path of A. This

implies that maxP(q,wn ,q)

(
rwt

(
P(q,wn ,q)

)) = ∑
0≤i≤n−1 (dw)

i maxP(q,w,q)

(
rwt

(
P(q,w,q)

))
,

and we are done. ��
A cfwBa A = (Q, in,wt, F) over A and Rmax is called initial weight normalized if there

is a state q0 ∈ Q such that for every q ∈ Q and a ∈ A we have in(q) = 0 if q = q0 and
−∞ otherwise, and wt((q, a, q0)) = −∞. We denote an initial weight normalized cfwBa A
simply by A = (Q, q0,wt, F).

Lemma 49 For every cfBwa A = (Q, in,wt, F) we can effectively construct an initial
weight normalized cfwBa A′ = (Q ∪ {q0}, q0,wt′, F) such that

∥∥A′∥∥ = ‖A‖.

Proof We use the same arguments, as in Lemma 48 for the modification of the initial
distribution. ��

In the sequel, we prove closure properties of the classes CF(Rmax, A, d) andω-CF(Rmax,

A, d). We shall need these properties in order to relate d-star-free and ω-d-star-free series
with d-counter-free and ω-d-counter-free series, nevertheless, these results have also their
own interest.

Proposition 50 The class CF(Rmax, A, d) contains the monomials and it is closed under
maximum, sum, complement, +d , and iteration restricted to letter-step series.

Proof The closure of CF(Rmax, A, d) under maximum, is shown by taking the disjoint union
of two cfwa. In this case, any “loop” belongs either to the first or to the second automaton,
hence the derived weighted automaton is also counter-free. Since monomials over A and Rmax

are obviously d-counter-free series, we get that letter-step series are also d-counter-free.
Closure under sum is proved by using the standard “product construction” of two cfwa.

More precisely, let A1=(Q1, in1,wt1, F1) and A2 =(Q2, in2,wt2, F2) be two cfwa over
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A and Rmax. Consider the weighted automaton A =(Q, in,wt, F) with Q = Q1 × Q2,
F = F1 × F2, and in((q1, q2)) = in1(q1) + in2(q2),wt(((q1, q2), a, (p1, p2))) =
wt1((q1, a, p1))+wt2((q2, a, p2)), for every (q1, q2), (p1, p2) ∈ Q, a ∈ A. Then, for every
w ∈ A∗ and path Pw of A overw, there are two unique paths P1,w of A1 overw, and P2,w of
A2 over w (obtained by projections of Pw on Q1 and Q2, respectively, in the obvious way)
and vice-versa. Furthermore, we have weight(Pw) = weight(P1,w) + weight(P2,w). Now
assume that for some (q1, q2) ∈ Q, w ∈ A∗, and n ≥ 1 there is a path P((q1,q2),wn ,(q1,q2))

with rwt
(
P((q1,q2),wn ,(q1,q2))

) �= −∞. Then
∑

0≤i≤n−1

(dw)
i max

P((q1q2),w,(q1,q2))

(
rwt

(
P((q1,q2),w,(q1,q2))

))

=
∑

0≤i≤n−1

(dw)
i max

P1,(q1,w,q1)
,P2,(q2,w,q2)

(
rwt

(
P1,(q1,w,q1)

)+ rwt
(
P2,(q2,w,q2)

))

=
∑

0≤i≤n−1

(dw)
i

(

max
P1,(q1,w,q1)

(
rwt

(
P1,(q1,w,q1)

))+ max
P2,(q2,w,q2)

(
rwt

(
P2,(q2,w,q2)

))
)

= max
P1,(q1,w

n ,q1)

(
rwt

(
P1,(q1,wn ,q1)

))+ max
P2,(q2,w

n ,q2)

(
rwt

(
P2,(q2,wn ,q2)

))

= max
P((q1q2),w

n ,(q1,q2))

(
rwt

(
P((q1,q2),wn ,(q1,q2))

))

which implies that A is counter-free, and by construction ‖A‖ = ‖A1‖ + ‖A2‖.
Next, let r ∈ CF(Rmax, A, d) and A = (Q, in,wt, F) be a cfwa accepting r . We consider

the nondeterministic finite automaton A′ = (Q, A, I,
, F) with I = {q ∈ Q | in(q) �=
−∞} and
 = {(q, a, q ′) ∈ Q × A × Q | wt((q, a, q ′)) �= −∞}. By construction of A′, we
get that for every q1, q2 ∈ Q andw ∈ A∗ the path P(q1,w,q2) exists in A′ iff rwt(P(q1,w,q2)) �=
−∞ in A. Therefore, A′ accepts the language supp(r) and it is trivially counter-free hence,
supp(r) is a counter-free language. Then, supp(r) is a counter-free language and let B be
a counter-free automaton accepting it. We convert B, in the obvious way, to a weighted
automaton B′ (with weights only 0 and −∞) over A and Rmax. Now, B′ trivially accepts
0supp(r) = r , and it is easily obtained that it is counter-free. We conclude that the series r is
d-counter-free, as required.

Let now A1=(Q1, in1,wt1, F1) and A2 = (Q2, in2,wt2, F2) be two cfwa over A and
Rmax. Using Lemma 48 we consider the normalized cfwa A′

1=(Q1 ∪ {q0,1, qt,1}, q0,1,wt′1,
qt,1) and A′

2=(Q2 ∪ {q0,2, qt,2}, q0,2,wt′2, qt,2) such that
∥∥A′

i

∥∥ coincides with ‖Ai‖ on A+
for i = 1, 2. Without any loss, we assume that (Q1 ∪ {q0,1, qt,1})∩ (Q2 ∪ {q0,2, qt,2}) = ∅.
We construct the weighted automaton A =(Q, q0,1,wt, qt,2) with Q = Q1 ∪ {q0,1} ∪ Q2 ∪
{q0,2, qt,2} where we identify the states qt,1 and q0,2, and define the weight assignment
mapping wt for every q, q ′ ∈ Q, a ∈ A as follows:

wt((q, a, q ′)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt′1((q, a, q ′)) if q, q ′ ∈ Q1 ∪ {q0,1}
wt′2((q, a, q ′)) if q, q ′ ∈ Q2 ∪ {q0,2, qt,2}
wt′1((q, a, qt,1)) if q ∈ Q1 ∪ {q0,1} and q ′ = q0,2

−∞ otherwise.

It is a routine matter to formally state that ‖A‖ = ∥∥A′
1

∥∥ +d
∥∥A′

2

∥∥ . Furthermore, the
weighted automaton A is counter-free since, by construction, any “loop” with weight
�= −∞ belongs either to A′

1 or to A′
2. Now we let ki = (‖Ai‖ , ε) for i = 1, 2. Then

‖A1‖ +d ‖A2‖ = max(
∥∥A′

1

∥∥+d
∥∥A′

2

∥∥ , (k1)ε +d
∥∥A′

2

∥∥ ,
∥∥A′

1

∥∥+d (k2)ε , (k1)ε +d (k2)ε).
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One can trivially construct cfwa accepting (k1)ε and (k2)ε and using simplifications of our pre-
vious construction1 for A can easily show that the series (k1)ε+d

∥
∥A′

2

∥
∥ ,

∥
∥A′

1

∥
∥+d (k2)ε , and

(k1)ε+d (k2)ε are d-counter-free which implies, by what we have shown, that ‖A1‖+d ‖A2‖
is a d-counter-free series.

Finally, let r = maxa∈A
(
(ka)a

)
be a letter-step series with ka ∈ Rmax for every a ∈ A.

We consider the cfwa A = ({q0, qt }, q0,wt, qt ) with wt ((q0, a, qt )) = wt ((qt , a, qt )) = ka

for every a ∈ A, and the weight of any other transition is −∞. Obviously r+ = ‖A‖, and
we are done. ��
Proposition 51 The class ω-CF(Rmax, A, d) is closed under maximum, complement, +d

and ω-iteration restricted to letter-step series.

Proof The closure under maximum and complement is shown as in Proposition 50. Espe-
cially, for the complement we use the fact that the class of counter-free Büchi recognizable
(i.e., ω-star-free) languages is closed under complement (cf. [7]).

Next, let s1 ∈ CF(Rmax, A, d) and s2 ∈ ω-CF(Rmax, A, d), and A1 = (Q1, in1,wt1, F1),

A2 = (Q2, in2,wt2, F2) be a cfwa and a cfwBa over A and Rmax accepting s1 and s2,
respectively. Furthermore, let A′

1=(Q1 ∪{q0,1, qt }, q0,1,wt′1, qt ) be the normalized automa-
ton derived by A1 (cf. Lemma 48), and A′

2=(Q2 ∪ {q0,2}, q0,2,wt′2, F2) be the initial
weight normalized cfwBa derived by A2 (cf. Lemma 49). Without any loss, we assume that
(Q1∪{q0,1, qt })∩(Q2∪{q0,2}) = ∅. Consider the weighted automaton A = (Q, q0,1,wt, F2)

with Q = (Q1 ∪ {q0,1})∪
(
Q2 ∪ {q0,2}

)
where we have identified the states qt and q0,2. The

weight assignment mapping wt is defined for every q, q ′ ∈ Q and a ∈ A by

wt((q, a, q ′)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt′1((q, a, q ′)) if q, q ′ ∈ Q1 ∪ {q0,1}
wt′2((q, a, q ′)) if q, q ′ ∈ Q2 ∪ {q0,2}
wt′1((q, a, qt )) if q ∈ Q1 ∪ {q0,1} and q ′ = q0,2

−∞ otherwise.

Trivially, ‖A‖ = s1|A+ +d s2. Furthermore, the weighted Büchi automaton A is counter-free
since every “loop” with weight �= −∞ belongs either to A′

1 or to A′
2. Let (s1, ε) = k. Then

s1 +d s2 = max(s1|A+ +d s2, kε +d s2) which concludes our claim since kε +d s2 is trivially
ω-d-counter-free.

Finally, let r = maxa∈A
(
(ka)a

)
be a letter-step series with ka ∈ Rmax for every

a ∈ A. We consider the initial weight normalized cfwBa A = ({q0, qt }, q0,wt, {qt }) with
wt ((q0, a, qt )) = wt ((qt , a, qt )) = ka for every a ∈ A, and the weight of any other transition
is −∞. Obviously rω = ‖A‖, and our proof is completed. ��

Next, we introduce the subclass of almost simple d-counter-free (resp. almost sim-
ple ω-d-counter-free) series and we show that it contains the class SF(Rmax, A, d) (resp.
ω-SF(Rmax, A, d)).

Definition 52 A cfwa (resp. cfwBa) A = (Q, in,wt, F) over A and Rmax is called simple
if for every q, q ′, p, p′ ∈ Q, and a ∈ A, in(q) �= −∞ �= in(q ′) implies in(q) = in(q ′), and
wt((q, a, q ′)) �= −∞ �= wt((p, a, p′) implies wt((q, a, q ′)) = wt((p, a, p′)). Furthermore,
a series r ∈ Rmax 〈〈A∗〉〉 (resp. r ∈ Rmax 〈〈Aω〉〉) is simple if it is the d-behavior of a simple
cfwa (resp. cfwBa) over A and Rmax.

Proposition 53 If r, s ∈ Rmax 〈〈Aω〉〉 are simple infinitary series, then r + s is also simple.

1 In fact the cfwa for (k1)ε and (k2)ε cannot be normalized.
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Proof Let A,B be two simple cfwBa accepting r, s, respectively. By definition, the initial
distribution of A (resp. B) assigns to every state of A (resp. B) either −∞ or a value k �= −∞
(resp. l �= −∞). Similarly, the weight assignment mapping of A (resp. B) assigns to every
transition of A (resp. B) labelled by a ∈ A either −∞ or a value ka �= −∞ (resp. la �= −∞).
Without any loss, we assume that ka, la exist for every a ∈ A, otherwise we consider a subal-
phabet. Then the language L = supp (‖A‖) ∩ supp (‖B‖) is ω-counter-free (cf. the proof of
Proposition 51), and we easily get that ‖A‖+‖B‖ = 0L +(k + l + (

maxa∈A
(
(ka + la)a

))ω).
Let C = (Q, A, I,
, F) be a counter-free nondeterministic Büchi automaton accepting L
and consider the weighted Büchi automaton C′=(Q, in,wt, F) where for every q, q ′ ∈
Q, a ∈ A we let in (q) = k + l if q ∈ I and −∞ otherwise, and wt

((
q, a, q ′)) = ka + la if(

q, a, q ′) ∈ 
 and −∞ otherwise. By definition, C′ is simple, and since C is counter-free, we
can easily show that it is also counter-free. Moreover

∥
∥C′∥∥ = ‖A‖+‖B‖, and this concludes

our proof. ��
Definition 54 – A series r ∈ Rmax 〈〈A∗〉〉 is called almost simple if r = max1≤i≤n

(
r (i)1 +d

. . .+d r (i)mi

)
where, for every 1 ≤ i ≤ n, r (i)1 , . . . , r (i)mi are simple d-counter free series

over A and Rmax.

– A series r ∈ Rmax 〈〈Aω〉〉 is called almost simple if r = max1≤i≤n

(
r (i)1 +d . . .+d r (i)mi

)

where, for every 1 ≤ i ≤ n, r (i)1 , . . . , r (i)mi −1 are simple d-counter free series and r (i)mi is a
simple ω-d-counter-free series over A and Rmax.

From the above definition and Proposition 50 (resp. Proposition 51), we get that a finitary
(resp. infinitary) almost simple series is a d-counter-free (resp. an ω-d-counter-free) series2.
We shall denote by asCF(Rmax, A, d) the class of all almost simple d-counter-free series
and by ω-asCF(Rmax, A, d) the class of all almost simple ω-d-counter-free series over A
and Rmax. Now we are ready to state the first main result of this section.

Theorem 55 SF(Rmax, A, d) ⊆ asCF(Rmax, A, d).

Proof The class asCF(Rmax, A, d) trivially contains the monomials over A and Rmax. There-
fore, it suffices to show that it is closed under maximum, sum, complement, +d , and iteration
restricted to letter-step series.

Closure under maximum and +d is easily obtained by definition of the class of almost
simple d-counter-free series. For the closure under complement, let r ∈ asCF(Rmax, A, d),
i.e., r ∈ CF(Rmax, A, d). Then the weighted automaton B′ in the proof of Proposition 50
is simple and moreover accepts the complement r hence, r ∈ asCF(Rmax, A, d). Trivially,
we get that asCF(Rmax, A, d) contains the letter-step series. Furthermore, the automaton A
accepting r+ for a letter-step series r , in the proof of Proposition 50, is trivially simple, hence
the class asCF(Rmax, A, d) is closed under iteration restricted to letter-step series. Therefore,
it remains to prove the closure under sum. Since, sum distributes over maximum it suffices
to show that if Ai = (Qi , ini ,wti , Fi ),B j = (Pj , in′

j ,wt′j , Tj ) (for 1 ≤ i ≤ n, 1 ≤ j ≤ m)
are simple cfwa over A and Rmax, then the d-counter-free series (‖A1‖ +d . . .+d ‖An‖)+
(‖B1‖ +d . . . +d ‖Bm‖) is almost simple. We proceed by induction on m, hence, assume
firstly that m = 1. Without any loss, we suppose the state sets Qi (1 ≤ i ≤ n) to be
pairwise disjoint3. For every p, p′ ∈ P1 and 2 ≤ i ≤ n − 1, we consider the simple cfwa

2 In fact we can define an almost simple counter-free weighted (resp. Büchi) automaton, but we do not need
it here.
3 Here, we deal with the case n > 1. For n = m = 1 we consider the product automaton of two simple cfwa
which is trivially simple.
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C1,p = (Q1 × P1, in1,wt1, F1 × {p}), Ci,(p,p′) = (Qi × P1, ini,(p,p′),wti , Fi × {p′}), and
Cn,p = (Qn × P1, inn,p,wtn, Fn × T1) by

– in1
((

q(1), p1
)) = in1(q(1))+ in′

1(p1) for every q(1) ∈ Q1, p1 ∈ P1,

– wt1

((
(q(1)1 , p1), a, (q(1)2 , p2)

))
= wt1

((
q(1)1 , a, q(1)2

))
+ wt′1 ((p1, a, p2)) for every

q(1)1 , q(1)2 ∈ Q1, p1, p2 ∈ P1, a ∈ A, and

for every 2 ≤ i ≤ n − 1

– ini,(p,p′)
((

q(i), p1
)) = ini (q(i)) if p1 = p and −∞ otherwise, for every q(i) ∈ Qi , p1 ∈

P1,

– wti

((
(q(i)1 , p1), a, (q(i)2 , p2)

))
= wti

((
q(i)1 , a, q(i)2

))
+ wt′1((p1, a, p2)) for every

q(i)1 , q(i)2 ∈ Qi , p1, p2 ∈ P1, a ∈ A, and
– inn,p

((
q(n), p1

)) = inn(q(n)) if p1 = p and −∞ otherwise, for every q(n) ∈ Qn, p1 ∈
P1,

– wtn

((
(q(n)1 , p1), a, (q(n)2 , p2)

))
= wtn

((
q(n)1 , a, q(n)2

))
+ wt′1((p1, a, p2)), for every

q(n)1 , q(n)2 ∈ Qn, p1, p2 ∈ P1, a ∈ A.

We claim that

(‖A1‖ +d . . .+d ‖An‖)+ ‖B1‖
= max

p1,...,pn−1∈P1

(∥∥C1,p1

∥∥+d
∥∥C2,(p1,p2)

∥∥+d . . .+d
∥∥Cn−1,(pn−2,pn−1)

∥∥+d
∥∥Cn,pn−1

∥∥) .

Indeed, let w = a0a1 . . . am−1 ∈ supp((‖A1‖ +d . . .+d ‖An‖) + ‖B1‖) with a0, a1, . . . ,

am−1 ∈ A. This means that there is an analysis w = w1 . . . wn , and for every 1 ≤ i ≤ n
there is a successful path P(i)wi of Ai over wi , and a successful path Pw of B1 over w, such

that ((‖A1‖ +d . . . +d ‖An‖) + ‖B1‖ , w) = weight
(

P(1)w1

)
+ dw1 weight

(
P(2)w2

)
+ . . . +

dw1...wn−1 weight
(

P(n)wn

)
+ weight(Pw). Let us assume that

P(1)w1
:
(

q(1)0 , a0, q(1)1

) (
q(1)1 , a1, q(1)2

)
. . .
(

q(1)i1
, ai1 , q(1)i1+1

)
,

P(2)w2
:
(

q(2)i1+1, ai1+1, q(2)i1+2

) (
q(2)i1+2, ai1+2, q(2)i1+3

)
. . .
(

q(2)i2
, ai2 , q(2)i2+1

)
,

...

P(n)wn
:
(

q(n)in−1+1, ain−1+1, q(n)in−1+2

) (
q(n)in−1+2, ain−1+2, q(n)in−1+3

)
. . .
(

q(n)m−1, am−1, q(n)m

)
, and

Pw : (p0, a0, p1) (p1, a1, p2) . . . (pm−1, am−1, pm) .

Now, by definition of C1,pi1+1 , C2,(pi1+1,pi2+1), . . . , Cn,pin−1+1 , we can construct from

P(1)w1 , . . . , P(n)wn and Pw the paths Pw1 , . . . , Pwn of C1,pi1+1 , . . . , Cn,pin−1+1 over w1, . . . , wn ,
respectively, as follows

Pw1 :
((

q(1)0 , p0

)
, a0,

(
q(1)1 , p1

)) ((
q(1)1 , p1

)
, a1,

(
q(1)2 , p2

))

. . .
((

q(1)i1
, pi1

)
, ai1 ,

(
q(1)i1+1, pi1+1

))
,

Pw2 :
((

q(2)i1+1, pi1+1

)
, ai1+1,

(
q(2)i1+2, pi1+2

)) ((
q(2)i1+2, pi1+2

)
, ai1+2,

(
q(2)i1+3, pi1+3

))

. . .
((

q(2)i2
, pi2

)
, ai2 ,

(
q(2)i2+1, pi2+1

))
,
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...

Pwn :
((

q(n)in−1+1, pin−1+1

)
, ain−1+1,

(
q(n)in−1+2, pin−1+2

))

((
q(n)in−1+2, pin−1+2

)
, ain−1+2,

(
q(n)in−1+3, pin−1+3

))

. . .
((

q(n)m−1, pm−1

)
, am−1,

(
q(n)m , pm

))
.

Since weight
(
Pw1

)+ dw1 weight
(
Pw2

)+ . . .+ dw1...wn−1 weight
(
Pwn

) = weight
(

P(1)w1

)
+

dw1 weight
(

P(2)w2

)
+ . . .+ dw1...wn−1 weight

(
P(n)wn

)
+ weight(Pw), by definition of C1,pi1+1 ,

. . . , Cn,pin−1+1 , we get that
(∥∥
∥C1,pi1+1

∥
∥
∥+d . . .+d

∥
∥
∥Cn,pin−1+1

∥
∥
∥ , w

)
= weight

(
Pw1

) +
dw1 weight

(
Pw2

)+. . .+dw1...wn−1 weight
(
Pwn

)
which implies that ((‖A1‖ +d . . .+d ‖An‖)

+‖B1‖ , w) =
(∥∥
∥C1,pi1+1

∥
∥
∥+d . . .+d

∥
∥
∥Cn,pin−1+1

∥
∥
∥ , w

)
.

Conversely, keeping the previous notations, let pi1+1, . . . , pin−1+1 ∈ P1 such that w ∈
supp

(∥∥
∥C1,pi1+1

∥
∥
∥+d . . .+d

∥
∥
∥Cn,pin−1+1

∥
∥
∥
)

. Using similar arguments as above, we get that
(∥∥∥C1,pi1+1

∥
∥∥+d . . .+d

∥
∥∥Cn,pin−1+1

∥
∥∥ , w

)
≤ ((‖A1‖ +d . . .+d ‖An‖)+ ‖B1‖ , w) and this

concludes our claim for m = 1.
For the induction step, for simplicity, we prove our claim for m = 2. For every 1 ≤ i ≤ n

and q(i) ∈ Qi , we define the simple cfwa Ai,q(i) = (Qi , ini ,wti , {q(i)}) and A′
i,q(i)

=
(Qi , in′

i ,wti , Fi ) with in′
i (q) = 0 if q = q(i) and −∞ otherwise, for every q ∈ Qi . Then,

with similar as above arguments, we can show that (‖A1‖+d . . .+d ‖An‖)+(‖B1‖+d ‖B2‖)
equals

max
1≤i≤n

⎛

⎜
⎝max

⎛

⎜
⎝

((‖A1‖ +d . . .+d ‖Ai‖)+ ‖B1‖)+d ((‖Ai+1‖ +d . . .+d ‖An‖)+ ‖B2‖) ,

max
q(i)∈Qi

⎛

⎝

((
‖A1‖ +d . . .+d

∥∥
∥Ai,q(i)

∥∥
∥
)

+ ‖B1‖
)

+d((∥∥
∥A′

i,q(i)

∥∥
∥+d . . .+d ‖An‖

)
+ ‖B2‖

)

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠ .

Hence, by induction hypothesis we conclude our claim. ��
In our second main result below, we show that every ω-d-star-free series is an almost

simple ω-d-counter-free series.

Theorem 56 ω-SF(Rmax, A, d) ⊆ ω-asCF(Rmax, A, d).

Proof By Definition 23 and Theorem 55, it suffices to show that the classω-asCF(Rmax, A, d)
is closed under maximum, sum, complement,ω-iteration restricted to letter-step series, and if
s1 ∈ asCF(Rmax, A, d) and s2 ∈ ω-asCF(Rmax, A, d), then s1+d s2 ∈ ω-asCF(Rmax, A, d).
The last property as well as closure under maximum are easily obtained by Definition 54. For
the closure under complement, we use a similar argument as in the corresponding part of the
proof of Theorem 55. Furthermore, the automaton A accepting rω for a letter-step series r , in
the proof of Proposition 51, is trivially simple, hence the class ω-asCF(Rmax, A, d) is closed
under ω-iteration restricted to letter-step series. Again, the most complicated case is to prove
the closure under sum, i.e., to prove that if Ai = (Qi , ini ,wti , Fi ),B j = (Pj , in′

j ,wt′j , Tj )

(for 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1) are simple cfwa and An = (Qn, inn,wtn, Fn),Bm =
(Pm, in′

m,wt′m, Tm) are simple cfwBa over A and Rmax, then the ω-d-counter-free series
(‖A1‖ +d . . .+d ‖An‖)+ (‖B1‖ +d . . .+d ‖Bm‖) is almost simple. We state our proof by
induction on m, hence, let firstly m = 1, i.e., B1 = (P1, in′

1,wt′1, T1) be a simple cfwBa
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(again we assume n > 1, otherwise if n = m = 1 we get our result by Proposition 53). We
keep the notations of Theorem 55 and consider the simple cfwa C1,p, and Ci,(p,p′) for every
2 ≤ i ≤ n − 1. Furthermore, for every p ∈ P1 we define the weighted Büchi automaton
Cn,p = (

Qn × P1 × {0, 1, 2}, inn,p,wtn, Qn × P1 × {2}) with the initial distribution inn,p

given for every q(n) ∈ Qn, p1 ∈ P1, x ∈ {0, 1, 2} by

inn,p(q
(n), p1, x) =

{
inn(q(n)) if p1 = p, x = 0
−∞ otherwise

,

and the weight assignment mapping wtn defined for every q(n)1 , q(n)2 ∈ Qn, p1, p2 ∈ P1, a ∈
A, x, y ∈ {0, 1, 2} as follows.

wtn

(((
q(n)1 , p1, x

)
, a,

(
q(n)2 , p2, y

)))
= wtn

((
q(n)1 , a, q(n)2

))
+ wt′1 ((p1, a, p2)) if

(x = y = 0 or q(n)2 ∈ Fn, x = 0, y = 1 or p2 /∈ T1, x = y = 1 or p2 ∈ T1, x = 1, y = 2
or x = 2, y = 0), and −∞ otherwise. We note that, since An (resp. B1, Cn,p)4 is sim-
ple, for every w ∈ Aω, all the successful paths of An (resp. B1, Cn,p) over w with weight
�= −∞ have the same weight. Again we will show that (‖A1‖ +d . . .+d ‖An‖)+ ‖B1‖ =
maxp1,...,pn−1∈P1

(∥∥C1,p1

∥
∥+d

∥
∥C2,(p1,p2)

∥
∥+d . . .+d

∥
∥Cn−1,(pn−2,pn−1)

∥
∥+d

∥
∥Cn,pn−1

∥
∥). To

this end, let w = a0a1 . . . ∈ supp((‖A1‖ +d . . .+d ‖An‖) + ‖B1‖) with a0, a1, . . . ∈ A.
Then, there is an analysisw = w1 . . . wn−1wn (w1, . . . , wn−1 ∈ A∗, wn ∈ Aω), and for every
1 ≤ i ≤ n there is a successful path P(i)wi of Ai overwi , and a successful path Pw of B1 overw,

such that ((‖A1‖+d . . .+d ‖An‖)+‖B1‖ , w) = weight
(

P(1)w1

)
+dw1 weight

(
P(2)w2

)
+ . . .+

dw1...wn−1 weight
(

P(n)wn

)
+weight(Pw). We keep the notations, from the proof of Theorem 55,

for the paths P(i)wi (1 ≤ i ≤ n − 1), and let

P(n)wn
:
(

q(n)in−1+1, ain−1+1, q(n)in−1+2

) (
q(n)in−1+2, ain−1+2, q(n)in−1+3

)
. . . , and

Pw : (p0, a0, p1) (p1, a1, p2) . . . .

We consider the paths Pwi (1 ≤ i ≤ n − 1) as in the proof of Theorem 55, and let

Pwn :
((

q(n)in−1+1, pin−1+1, x1

)
, ain−1+1,

(
q(n)in−1+2, pin−1+2, x2

))

((
q(n)in−1+2, pin−1+2, x2

)
, ain−1+2,

(
q(n)in−1+3, pin−1+3, x3

))
. . .

where for every j ≥ 1 the choice of x j is done as follows. We have (x j = 0 and (nondeter-

ministically) x j+1 = 1 if q(n)in−1+ j+1 ∈ Fn) or (x j = 1 and x j+1 = 1 if pin−1+ j+1 /∈ T1) or
(x j = 1 and x j+1 = 2 if pin−1+ j+1 ∈ T1) or (x j = 2 and x j+1 = 0). Clearly, by definition
of C1,pi1+1 , . . . , Cn,pin−1+1 , the above paths are successful, and we get that

(∥∥∥C1,pi1+1

∥∥∥+d . . .+d

∥∥∥Cn,pin−1+1

∥∥∥ , w
)

= weight
(
Pw1

)+ dw1 weight
(
Pw2

)

+ . . .+ dw1...wn−1 weight
(
Pwn

)

hence,
(∥∥∥C1,pi1+1

∥∥∥+d . . .+d

∥∥∥Cn,pin−1+1

∥∥∥ , w
)

= ((‖A1‖ +d . . .+d ‖An‖)+ ‖B1‖ , w).
For the converse, we use similar arguments as in the corresponding part of the proof of

Theorem 55.
It remains to prove that the infinitary series

∥∥Cn,p
∥∥ is simple for every p ∈ P1. By

construction, we have
∥∥Cn,p

∥∥ = ‖An‖ + ∥∥Bp
∥∥, where Bp is the simple cfwBa derived by

4 Abusing the definition, we call the weighted Büchi automaton Cn,p simple though it is not counter-free.
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B1 by replacing the initial distribution, with the one assigning the value 0 to p and −∞ to
any other state. Since, An,Bp are simple, we conclude our claim by Proposition 53.

Next for the induction step, again for simplicity, we state our claim for m = 2. Now,
we consider, for every 1 ≤ i ≤ n − 1 and q(i) ∈ Qi , the simple cfwa Ai,q(i) =
(Qi , ini ,wti , {q(i)}) and A′

i,q(i)
= (Qi , in′

i ,wti , Fi )with in′
i (q) = 0 if q = q(i) and −∞ oth-

erwise. Moreover, for every q(n) ∈ Qn we consider the cfwa An,q(n) = (Qn, inn,wtn, {q(n)})
and the cfwBa A′

n,q(n)
= (Qn, in′

n,wtn, Fn)with in′
n(q) = 0 if q = q(n) and −∞ otherwise.

Then, we get that the sum (‖A1‖ +d . . .+d ‖An‖)+ (‖B1‖ +d ‖B2‖) equals

max
1≤i≤n

⎛

⎜
⎝max

⎛

⎜
⎝

((‖A1‖ +d . . .+d ‖Ai‖)+ ‖B1‖)+d ((‖Ai+1‖ +d . . .+d ‖An‖)+ ‖B2‖) ,

max
q(i)∈Qi

⎛

⎝

((
‖A1‖ +d . . .+d

∥∥∥Ai,q(i)

∥∥∥
)

+ ‖B1‖
)

+d((∥∥
∥A′

i,q(i)

∥∥
∥+d . . .+d ‖An‖

)
+ ‖B2‖

)

⎞

⎠

⎞

⎟
⎠

⎞

⎟
⎠ ,

and, by induction hypothesis and Theorem 55, we are done. ��
Example 57 We consider the ω-d-star-free series r = max

(
(2a)

+ +d (3b)
ω , (3b)

ω
)

of
Example 46. Let A1 = ({q0, q1, q2}, in1,wt1, {q2}) be a simple normalized cfwa deter-
mined by in1(q0) = 0, in1(q1) = in1(q2) = −∞ and wt1((q0, a, q1)) = wt1((q0, a, q2)) =
wt1((q1, a, q1)) = wt1((q1, a, q2)) = 2. It is easily seen that A1 accepts the series is (2a)

+.
Furthermore, the simple initial weight normalized cfwBa A2 = ({p0, p1}, in2,wt2, {p1})
with in2(p0) = 0, in2(p1) = −∞ and wt2((p0, b, p1)) = wt2((p1, b, p1)) = 3
accepts the series (3b)

ω. Then the cfwBa B = ({q0, q1, p0, p1}, in,wt, {p1}) determined
by in(q0) = 0, in(q1) = in(p0) = in(p1) = −∞ and wt((q0, a, q1)) = wt((q0, a, p0)) =
wt((q1, a, q1)) = wt((q1, a, p0)) = 2, wt((p0, b, p1)) = wt((p1, b, p1)) = 3 has behavior
‖B‖ = (2a)

+ +d (3b)
ω. Finally, the disjoint union of the cfwBa A2 and B recognizes the

series r .

7 Closing the cycle

In this section, we prove that the class of almost simple ω -d-counter-free series is included
into the class ω-ULTL (Rmax, A, d) and thus concluding the main result of our paper. For
this, we shall need some preliminary matter on our weighted LTL.

For every ϕ ∈ LT L (Rmax, A) and n ≥ 0 we denote by ©nϕ the n-th repetitive appli-
cation of the © operator on ϕ, i.e., ©nϕ := ©(© . . . (©

︸ ︷︷ ︸
n times

ϕ) . . .), and hence ©0ϕ = ϕ.

Then, for every w ∈ Aω we have (‖©nϕ‖ , w) = dw<n

(‖ϕ‖ , w≥n
)
. The external next

depth exnd (ϕ) of a formula ϕ ∈ LTL(Rmax, A) is defined inductively as follows. If
ϕ = ©ψ, then exnd (ϕ) = exnd (ψ) + 1. In any other case, we let exnd (ϕ) = 0.
For instance exnd (© (© (� (© (pa ∧ 2))))) = 2, and if ϕ ∈ LTL (Rmax, A) with
exnd (ϕ) = 0, then exnd (©nϕ) = n for every n ≥ 0. For every n ≥ 0, we denote by
stLTL (©, n,∧) the class of all LTL (Rmax, A) formulas of the form

∧
0≤ j≤m ©k jψ j with

m ≥ 0, max0≤ j≤m
(
k j
) = n, and ψ j ∈ stLTL (Rmax, A) for every 0 ≤ j ≤ m5. We let

stLTL (©,∧) = ⋃
n≥0 stLTL (©, n,∧). Furthermore, for every m ≥ 0, we let Um to be

the set of all (m + 1)-tuples of the form ((ϕ0, k0) , (ξ1, ϕ1, k1) , . . . , (ξm, ϕm, km)) where
ϕi ∈ stLTL (©, ki ,∧) and ξ j ∈ abLTL (Rmax, A) for every 0 ≤ i ≤ m and 1 ≤ j ≤ m.

5 By definition of stLTL(Rmax, A), it should be clear that exnd(ψ j ) = 0 for every 1 ≤ j ≤ m.
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Definition 58 Let T = ((ϕ0, k0) , (ξ1, ϕ1, k1) , . . . , (ξm, ϕm, km)) ∈ Um . For every w ∈ Aω

and j ≥ 0 we define the value 〈T ,w, j〉 ∈ Rmax as follows. If j ≤ k0 + . . . + km , we set
〈T ,w, j〉 = −∞. Otherwise, for every i1, i2, . . . , im ∈ N and 0 ≤ l ≤ m we define the sum
Sl = k0 + i1 + k1 + . . .+ il + kl with the restriction that Sm = j − 1. Then, we let

〈T ,w, j〉 = max
i1,i2,...,im∈N

Sm= j−1

⎛

⎝(‖ϕ0‖ , w)+
∑

1≤l≤m

⎛

⎝

∑

0≤ jl<il

dw<Sl−1+ jl

(‖ξl‖ , w≥Sl−1+ jl

)

+dw<Sl−1+il

(‖ϕl‖ , w≥Sl−1+il

)

⎞

⎠

⎞

⎠ .

Note that in case m = 0, the restriction S0 = j − 1, i.e., k0 = j − 1 implies that 〈T ,w, j〉 =
−∞ for every j > k0 + 1. Therefore, if m = 0, then 〈T ,w, j〉 = −∞ for every j �= k0 + 1,
and 〈T ,w, k0 + 1〉 = (‖ϕ0‖ , w).
Composition algorithm. Let T1 = ((ϕ0, k0) , (ξ1, ϕ1, k1) , . . . , (ξm, ϕm, km)) ∈ Um and
T2 = ((ψ0, l0) , (θ1, ψ1, l1) , . . . , (θn, ψn, ln)) ∈ Un with ψ0 = ∧

0≤ j≤h ©p j � j . We con-

sider the formula � ∈ stLTL (©, km + l0 + 1,∧) by � = ϕm ∧
(∧

0≤ j≤h ©km+p j +1 � j

)
.

Then, if m = 0 we let

T = ((�, km + l0 + 1) , (θ1, ψ1, l1) , . . . , (θn, ψn, ln)) ,

otherwise we let

T = ((ϕ0, k0) , (ξ1, ϕ1, k1) , . . . , (ξm, �, km + l0 + 1) , (θ1, ψ1, l1) , . . . , (θn, ψn, ln)) .

Clearly T ∈ Um+n , and we claim that

〈T, w, j〉 = max
0≤i≤ j

(〈T1, w, i〉 + dw<i

〈
T2, w≥i , j − i

〉)

for every w ∈ Aω, j ≥ 0. Assume firstly that m = n = 0. If j �= k0 + l0 +
2, then both sides of the above relation equal to −∞. If j = k0 + l0 + 2, then
〈T, w, j〉 = (‖�‖ , w) = (‖ϕ0‖ , w) + dw<k0+1

(‖ψ0‖ , w≥k0+1
) = 〈T1, w, k0 + 1〉 +

dw<k0+1

〈
T2, w≥k0+1, j − (k0 + 1)

〉 = max0≤i≤ j
(〈T1, w, i〉 + dw<i

〈
T2, w≥i , j − i

〉)
.

Next, assume that n �= 0 or m �= 0. Then, if j > k0 +k1 + . . .+km +1+l0 + . . .+ln there
exist i1, . . . , im, i ′1, . . . , i ′n ∈ N with k0+i1+k1+. . .+im+km+1+l0+i ′1+l1+. . .+i ′n+ln =
j − 1 such that 〈T, w, j〉 equals to
⎛

⎝(‖ϕ0‖ , w)+
∑

1≤l≤m

⎛

⎝

∑

0≤ jl<il

dw<Sl−1+ jl

(‖ξl‖ , w≥Sl−1+ jl

)

+dw<Sl−1+il

(‖ϕl‖ , w≥Sl−1+il

)

⎞

⎠

⎞

⎠

+dw<Sm +1

⎛

⎜
⎜
⎝
(‖ψ0‖ , w≥Sm+1

)+
∑

1≤h≤n

⎛

⎜
⎜
⎝

∑

0≤ jh<i ′h

d(w≥Sm +1)<S′
h−1+ jh

(
‖θh‖ , w≥Sm+1+S′

h−1+ jh

)

+ d(w≥Sm +1)<S′
h−1+i ′h

(
‖ψh‖ , w≥Sm+1+S′

h−1+i ′h

)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

Then, for i = Sm + 1, we get 〈T, w, j〉 ≤ 〈T1, w, i〉 + dw<i

〈
T2, w≥i , j − i

〉
, which implies

that 〈T, w, j〉 ≤ max0≤i≤ j
(〈T1, w, i〉 + dw<i

〈
T2, w≥i , j − i

〉)
. Similarly, we can show that

〈T1, w, i〉 + dw<i

〈
T2, w≥i , j − i

〉 ≤ 〈T, w, j〉 for every 0 ≤ i ≤ j , and we are done.
Finally, assume that j ≤ k0 + k1 + . . .+ km + 1 + l0 + . . .+ ln . Then, 〈T, w, j〉 = −∞,

and for every 0 ≤ i ≤ j at least one of the following is true: i ≤ k0 + . . .+ km which implies
that 〈T1, w, i〉 = −∞, or j − i ≤ l0 + . . .+ ln, which implies that

〈
T2, w≥i , j − i

〉 = −∞.

In the sequel, we recall an alternative definition for star-free languages which does not
involve the closure under complementation. For this, we shall need the notion of bounded
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synchronization delay. More precisely, let k ≥ 0 be an integer. A prefix-free set L ⊆ A+
has bounded synchronization delay if uvw ∈ L∗ implies uv,w ∈ L∗ for every u, w ∈ A∗
and v ∈ Lk . The least integer k ≥ 0 satisfying the aforementioned property is called the
synchronization delay of L .

Lemma 59 [24] A prefix-free set of delay 0 is also of delay 1.

It is well-known (cf. for instance Theorem 6.3 p. 378 in [24]) that the class of star-free
languages over A is the smallest class of languages over A containing ∅ and {a} for every
a ∈ A, and it is closed under union, concatenation and star operation restricted to prefix-free
sets with bounded synchronization delay.

For every L , F ⊆ Aω we define the infinitary language (cf. [24])

LUF = {
w ∈ Aω | w = uv where u ∈ A∗, v ∈ F and u′v ∈ L for each non-empty

suffix u′ of u
}
.

It should be clear that supp (0LU0F ) = LU F , where the operation U among two bounded
series r, s ∈ Rmax 〈〈Aω〉〉, is defined for every w ∈ Aω, by

(rUs, w) = sup
i≥0

⎛

⎝
∑

0≤ j<i

dw< j

(
r, w≥ j

)+ dw<i

(
s, w≥i

)
⎞

⎠ .

Lemma 60 Let L ⊆ A+ be a prefix-free set with bounded synchronization delay k ≥ 1. Let
u ∈ A∗, v ∈ L2k , and w ∈ Y ⊆ Aω such that

(i) uvw ∈ Lk Aω, and
(ii) u′vw ∈ Lk+1 Aω ∪ (Aω\Lk Aω) for every suffix u′ of u.

Then uv ∈ L+.

Proof We follow the proof of Lemma 6.11 (p. 383) in [24]. ��
Lemma 61 (Lemma 6.12 in [24]) Let L ⊆ A+ be a prefix-free set with bounded synchro-
nization delay k ≥ 1 and Y ⊆ Aω. Then

(
L+) Y = LY ∪ . . . ∪ L2k−1Y ∪ R

with R = Lk Aω ∩ ((Lk+1 Aω ∪ (Aω \ Lk Aω
))

U L2kY
)
.

The subsequent result is a straightforward conclusion from the last lemma above.

Lemma 62 Let L ⊆ A+ be a prefix-free set with bounded synchronization delay k ≥ 1 and
Y ⊆ Aω. Then

0L+ +d 0Y = max
(
0L +d 0Y , . . . , 0L2k−1 +d 0Y , r

)

with r = 0Lk Aω +
(

0Lk+1 Aω∪(Aω\Lk Aω)U
(
0L2k +d 0Y

))
.

Lemma 63 Let L ⊆ A+ be a star-free language. Then, there exists an integer n > 0 and
Ti ∈ Umi (mi ≥ 0) for every 1 ≤ i ≤ n, such that for every w ∈ Aω and j ≥ 0 we have(
0L , w< j

) = max1≤i≤n (〈Ti , w, j〉).
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Proof We state the proof by induction on the structure of L . For the empty set the tuple
T = (−∞, 0) ∈ U0 satisfies our claim. Let L = {a} for a ∈ A. We consider the tuple
T = (pa, 0) ∈ U0. Then S0 = 0 and since S0 = j − 1 we get that 〈T, w, j〉 = −∞ for
j �= 1. Moreover, 〈T, w, 1〉 = 0 if w(0) = a, and 〈T, w, 1〉 = −∞ otherwise. Therefore
〈T, w, j〉 = (

0a, w< j
)

for every w ∈ Aω, j ≥ 0.
Next, assume that the induction hypothesis holds for the star-free languages L1, L2 ⊆

A+. Then, there exist n,m, li , hk ∈ N, and Ti ∈ Uli , T ′
k ∈ Uhk , (1 ≤ i ≤ n, 1 ≤ k ≤

m) such that for every w ∈ Aω, j ≥ 0 we have
(
0L1 , w< j

) = max1≤i≤n (〈Ti , w, j〉)
and

(
0L2 , w< j

) = max1≤k≤m
(〈

T ′
k , w, j

〉)
. Firstly, let L = L1 ∪ L2. Then

(
0L , w< j

) =(
max

(
0L1 , 0L2

)
, w< j

) = max
(
max1≤i≤n (〈Ti , w, j〉) ,max1≤k≤m

(〈
T ′

k , w, j
〉))

, as wanted.
Next, let L = L1L2. Then 0L1 L2 = 0L1 +d 0L2 . For every 1 ≤ i ≤ n and 1 ≤ k ≤ m we

derive from Ti , T ′
k the tuple Ti,k ∈ Uli +hk by applying the Composition algorithm. Then, we

get

(
0L1 +d 0L2 , w< j

) = max
0≤p≤ j

((
0L1 , w<p

)+ dw<p

(
0L2 ,

(
w≥p

)
< j−p

))

= max
0≤p≤ j

(
max

1≤i≤n
(〈Ti , w, p〉)+ dw<p

(
max

1≤k≤m

(〈
T ′

k , w≥p, j − p
〉)
))

= max
0≤p≤ j

(
max

1≤i≤n,1≤k≤m

(〈Ti , w, p〉 + dw<p

〈
T ′

k , w≥p, j − p
〉))

= max
1≤i≤n,1≤k≤m

(
max

0≤p≤ j

(〈Ti , w, p〉 + dw<p

〈
T ′

k , w≥p, j − p
〉))

= max
1≤i≤n,1≤k≤m

(〈
Ti,k, w, j

〉)

for every w ∈ Aω, j ≥ 0.
Finally, let L be a prefix-free set with bounded synchronization delay k ≥ 0 satisfying the

induction hypothesis. By Lemma 59, it suffices to consider the case k ≥ 1. We will prove
our claim for L+. By Lemma 62, for Y = Aω, we get

0L+ +d 0Aω = max
(

0L +d 0Aω , . . . , 0L2k−1 +d 0Aω , 0Lk Aω

+
(

0Lk+1 Aω∪(Aω\Lk Aω)U
(
0L2k +d 0Aω

)))
.

We denote 2k simply by p. By what we have shown above, the induction hypothesis, and
same arguments with the ones used in the previous inductive step, we get that for every
1 ≤ h ≤ p there exists an nh ∈ N, so that the following hold. For every 1 ≤ i ≤ nh there
exist an mi ≥ 0 and a Th,i ∈ Umi with

(
0Lh , w< j

) = max1≤i≤nh

(〈
Th,i , w, j

〉)
, for every

w ∈ Aω, j ≥ 0.
Let ϕ′, ϕ̃ ∈ bLTL (Rmax, A) with semantics 0Lk Aω , 0Lk+1 Aω∪(Aω\Lk Aω), respectively. We

set ϕ = ϕ′ if ϕ′ ∈ stLTL (©, 0,∧) and ϕ = 0 ∧ ϕ′, otherwise. Clearly, ϕ′ and 0 ∧ ϕ′ are
equivalent and 0∧ϕ′ ∈ stLTL (©, 0,∧). We fix an 1 ≤ i ≤ n p , and we denote for simplicity
Tp,i ,Umi (where Tp,i ∈ Umi ) with T,Um , respectively. Let

T = ((ψ0, l0) , (ϕ1, ψ1, l1) , . . . , (ϕm, ψm, lm))

and define the tuple T ′ ∈ Um+1 by

T ′ = ((ϕ, 0) , (ϕ̃, ψ0, l0) , (ϕ1, ψ1, l1) , . . . , (ϕm, ψm, lm)) .
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Then, for every w ∈ Aω, j > l0 + . . .+ lm we have
〈
T ′, w, j

〉

= max
0≤q< j−(l0+...+lm )

⎛

⎝(‖ϕ‖ , w)+
∑

0≤h<q

dw<h

(‖ϕ̃‖ , w≥h
)+ dw<q

〈
T, w≥q , j − q

〉
⎞

⎠ (1)

and
〈
T ′, w, j

〉 = −∞ for every j ≤ l0 + . . .+ lm . We repeat the same procedure for every
1 ≤ i ≤ n p and we get the corresponding (mi + 1)-tuple T ′

p,i .
Now we show that for every w ∈ Aω, j ≥ 0 we have

(
0L+ , w< j

) = max

(
max

1≤h≤p−1

(
max

1≤i≤nh

(〈
Th,i , w, j

〉)
)
, max

1≤i≤n p

(〈
T ′

p,i , w, j
〉))

.

To this end, let w< j ∈ L+, hence either w< j ∈ ⋃
1≤h≤p−1 Lh, or w< j ∈ ⋃

h≥p Lh . In the

first case max1≤h≤p−1
((

0Lh , w< j
)) = 0 and so max1≤h≤p−1

(
max1≤i≤nh

(〈
Th,i , w, j

〉)) =
0. In the latter case, ∃u ∈ L∗, v ∈ L p such that w< j = uv. Since v = (

w≥|u|
)
<|v|

and (0L p , v) = 0, by induction hypothesis, we get that max1≤i≤n p

(〈
Tp,i , w≥|u|, |v|

〉) =
max1≤i≤n p

(〈
Tp,i , w≥|u|, j − |u|〉) = 0. Then, by the proof of Lemma 6.12 (p. 372) in

[24], we get that for every suffix u′ of u we have u′vw≥ j ∈ Lk+1 Aω ∪ (
Aω \ Lk Aω

)
.

Hence, (‖ϕ‖ , w)+∑
0≤h<|u|dw<h

(‖ϕ̃‖ , w≥h
)+ dw<|u|

〈
Tp,i , w≥|u|, j − |u|〉 = 0 for some

1 ≤ i ≤ n p. By this and relation (1), we conclude that max1≤i≤n p

(〈
T ′

p,i , w, j
〉)

=
0. Therefore,

(
0L+ , w< j

) = 0 implies max1≤h≤p−1
(
max1≤i≤nh

(〈
Th,i , w, j

〉)) = 0 or

max1≤i≤n p

(〈
T ′

p,i , w, j
〉)

= 0, as required.

Conversely, assume that max1≤h≤p−1
(
max1≤i≤nh

(〈
Th,i , w, j

〉)) = 0 or max1≤i≤n p(〈
T ′

p,i , w, j
〉)

= 0. If the first one is true, then max1≤h≤p−1
((

0Lh , w< j
)) = 0. Other-

wise, if the latter case holds, then there is an 1 ≤ i ≤ n p such that
〈
T ′

p,i , w, j
〉

= 0. This

implies that j > l0 + . . .+ lmi , and by relation (1) we get
〈
T ′

p,i , w, j
〉

= max
0≤q< j−(l0+...+lmi )

⎛

⎝(‖ϕ‖ , w)+
∑

0≤h<q

dw<h

(‖ϕ̃‖ , w≥h
)+ dw<q

〈
Tp,i , w≥q, j − q

〉
⎞

⎠=0.

Therefore, (‖ϕ‖ , w) = 0, and for some 0 ≤ q < j − (l0 + . . .+ lmi )we have
(‖ϕ̃‖ , w≥h

) =(
0Lk+1 Aω∪(Aω\Lk Aω), w≥h

)
= 0 for every 0 ≤ h < q , and

〈
Tp,i , w≥q, j − q

〉 =
(

0L p ,
(
w≥q

)
< j−q

)
= 0. We set u = w<q , and v = (

w≥q
)
< j−q . Then w = uvw≥ j

and the requirements of Lemma 60 fulfilled. We conclude that w< j = uv ∈ L+, i.e.,(
0L+ , w< j

) = 0, and our proof is completed. ��

By the above inductive proof, we get that for every star-free language L ⊆ A+ we can find
a unique integer n > 0 and a unique (up to formulas’ equivalence) set of tuples (Ti )1≤i≤n ,
with Ti ∈ Umi (mi ≥ 0) for every 1 ≤ i ≤ n, satisfying Lemma 63. More interestingly,
we get that max1≤i≤n (〈Ti , w, j〉) = max1≤i≤n

(〈
Ti , w

′, j
〉)

for every w,w′ ∈ Aω with
w< j = w′

< j .
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Example 64 Let A = {a, b} and L = {ab} . Clearly, L is a prefix-free set with bounded
synchronization delay k = 1. Following the inductive construction of the previous proof we
get: ϕ′ = pa ∧©pb, ϕL2 Aω = pa ∧©pb ∧©2 pa ∧©3 pb, ϕAω\L Aω = ¬ (pa ∧ ©pb) and
ϕ̃ = ϕL2 Aω ∨ ϕAω\L Aω . We set T1 = (

ϕ′, 1
)

and T2 = ((
0 ∧ ϕ′, 0

)
,
(
ϕ̃, ϕL2 Aω , 3

))
. Then,(

0L+ , w< j
) = max (〈T1, w, j〉 , 〈T2, w, j〉) for every w ∈ Aω, j ≥ 0. For instance, for

every w ∈ Aω, 〈T1, w, j〉 = 0 iff ( j = 2 and w<2 = ab) . Let now w = abababu where
u ∈ Aω. Then,

〈T2, w, 6〉 = max
i1∈N

0+i1+3=5

⎛

⎝
(∥∥ϕ′∥∥ , w

)+
∑

0≤ j1<i1

dw< j1

(‖ϕ̃‖ , w≥ j1

)+ dw<i1

(∥∥ϕL2 Aω
∥
∥ , w≥i1

)
⎞

⎠

= (∥∥ϕ′∥∥ , w
)+ (‖ϕ̃‖ , w)+ da

(‖ϕ̃‖ , w≥1
)+ dab

(∥∥ϕL2 Aω
∥
∥ , w≥2

) = 0

= (0L+ , w<6) .

Similarly,

〈T2, w, 5〉 = max
i1∈N

0+i1+3=4

⎛

⎝
(∥∥ϕ′∥∥ , w

)+
∑

0≤ j1<i1

dw< j1

(‖ϕ̃‖ , w≥ j1

)+ dw<i1

(∥∥ϕL2 Aω
∥
∥ , w≥i1

)
⎞

⎠

= (∥∥ϕ′∥∥ , w
)+ (‖ϕ̃‖ , w)+ da

(∥∥ϕL2 Aω
∥∥ , w≥1

) = −∞
= (0L+ , w<5) .

It is clear that the values obtained by the semantics of the formulas ϕ′, ϕ̃, ϕL2 Aω appearing
in the computation of 〈T2, w, 6〉 do not depend on the suffix u = w≥6 of w, but only on
the prefix w<6. This implies that

〈
T2, w

′, 6
〉 = 〈T2, w, 6〉 for w′ = abababu′ with u′ �= u

(u′ ∈ Aω). A similar observation can be made for 〈T2, w, 5〉.

Proposition 65 Let L ⊆ A+ be a star-free language and r ∈ Rmax 〈〈A∗〉〉 be a letter-
step series. Then, for every ϕ ∈ ULTL (Rmax, A) the infinitary series

(
0L + r+) +d ‖ϕ‖ is

ω-ULTL-d-definable.

Proof Let r = maxa∈A
(
(ka)a

)
where ka ∈ Rmax for every a ∈ A. We set ζ =∨

a∈A (ka ∧ pa). By the previous lemma there exist an n > 0 and Tq ∈ Umq (mq ≥ 0)
for every 1 ≤ q ≤ n, such that for every w ∈ Aω, j ≥ 0 we have

(
0L , w< j

) =
max1≤q≤n

(〈
Tq , w, j

〉)
. We fix a 1 ≤ q ≤ n and let as assume that

Tq = (
(ϕ0, k0) , (ξ1, ϕ1, k1) , . . . ,

(
ξmq , ϕmq , kmq

))
.

We define the tuple T ′
q ∈ Umq by

T ′
q =

((
ϕ′

0, k0
)
,
(
ξ ′

1, ϕ
′
1, k1

)
, . . . ,

(
ξ ′

mq
, ϕ′

mq
, kmq

))

as follows.

– If mq = 0, then ϕ′
0 = ϕ0 ∧ (∧0≤h≤k0

©h ζ
)
.

– If mq > 0, then ξ ′
l = ξl ∧ ζ for every 1 ≤ l ≤ mq . Moreover, for every 0 ≤ l ≤ mq − 1,

if kl �= 0, then we let ϕ′
l = ϕl ∧

(∧
0≤h≤kl−1 ©h ζ

)
, otherwise ϕ′

l = ϕl . Finally, we set

ϕ′
mq

= ϕmq ∧
(∧

0≤h≤kmq
©h ζ

)
.
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We show that
〈
T ′

q , w, j
〉
= 〈

Tq , w, j
〉+(r+, w< j

)
for everyw ∈ Aω, j ≥ 0. Indeed, assume

firstly that mq = 0. Then, for every j �= k0 + 1 we get
〈
T ′

q , w, j
〉
= 〈

Tq , w, j
〉 = −∞ which

implies that
〈
T ′

q , w, j
〉
= 〈

Tq , w, j
〉+ (

r+, w< j
)
. For j = k0 + 1 we have

〈
T ′

q , w, j
〉
=
⎛

⎝

∥
∥
∥
∥
∥
∥
ϕ0 ∧

⎛

⎝
∧

0≤h≤k0

©h ζ

⎞

⎠

∥
∥
∥
∥
∥
∥
, w

⎞

⎠

= (‖ϕ0‖ , w)+
⎛

⎝

∥
∥
∥
∥
∥
∥

∧

0≤h≤k0

©h ζ

∥
∥
∥
∥
∥
∥
, w

⎞

⎠

= 〈
Tq , w, j

〉+
∑

0≤h≤k0

dw<h

(
max
a∈A

(
(ka)a

)
, w (h)

)

= 〈
Tq , w, j

〉+ (
r+, w< j

)
.

Next let mq > 0. For every j ≤ k0 + . . .+ kmq we have
〈
T ′

q , w, j
〉
= 〈

Tq , w, j
〉 = −∞,

i.e.,
〈
T ′

q , w, j
〉
= 〈

Tq , w, j
〉+ (r+, w< j

)
. Furthermore, for every j > k0 + . . .+ kmq it holds

〈
T ′

q , w, j
〉
= max

i1,i2,...,imq ∈N

Smq = j−1

⎛

⎝(
∥∥ϕ′

0

∥∥ , w
)+

∑

1≤l≤mq

⎛

⎝

∑

0≤ jl<il

dw<Sl−1+ jl

(∥∥ξ ′
l

∥∥ , w≥Sl−1+ jl

)

+dw<Sl−1+il

(∥∥ϕ′
l

∥∥ , w≥Sl−1+il

)

⎞

⎠

⎞

⎠ .

By definition we have

–
(∥∥ϕ′

0

∥∥ , w
) = (‖ϕ0‖ , w)+∑

0≤h≤k0−1dw<h (r, w (h)),
–
(∥∥ξ ′

l

∥∥ , w≥Sl−1+ jl

) = (‖ξl‖ , w≥Sl−1+ jl

) + (r, w (Sl−1 + jl)) for every 1 ≤ l ≤ mq and
0 ≤ jl < il ,

–
(∥∥ϕ′

l

∥∥ , w≥Sl−1+il

)=(‖ϕl‖ , w≥Sl−1+il

)+∑
0≤h≤kl−1d(

w≥Sl−1+il

)

<h

(r, w (Sl−1 + il + h))

for every 1 ≤ l ≤ mq − 1, and

–
(∥∥∥ϕ′

mq

∥∥∥ , w≥Smq −1+imq

)
=
(∥∥ϕmq

∥∥ , w≥Smq −1+imq

)

+∑
0≤h≤kmq

d(
w≥Smq −1+imq

)

<h

(
r, w

(
Smq−1 + imq + h

))
.

Hence
〈
T ′

q , w, j
〉

= max
i1,i2,...,imq ∈N

Smq = j−1

⎛

⎜⎜
⎜⎜⎜
⎝

(‖ϕ0‖ , w)+
∑

1≤l≤mq

⎛

⎝

∑

0≤ jl<il

dw<Sl−1+ jl

(‖ξl‖ , w≥Sl−1+ jl

)

+dw<Sl−1+il

(‖ϕl‖ , w≥Sl−1+il

)

⎞

⎠

+
∑

0≤h≤Smq

dw<h (r, w (h))

⎞

⎟⎟
⎟⎟⎟
⎠

= max
i1,i2,...,imq ∈N

Smq = j−1

⎛

⎝(‖ϕ0‖ , w)+
∑

1≤l≤mq

⎛

⎝

∑

0≤ jl<il

dw<Sl−1+ jl

(‖ξl‖ , w≥Sl−1+ jl

)

+dw<Sl−1+il

(‖ϕl‖ , w≥Sl−1+il

)

⎞

⎠

⎞

⎠+ (
r+, w< j

)

= 〈
Tq , w, j

〉+ (
r+, w< j

)
.
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Therefore, we get
(
0L , w< j

)+ (
r+, w< j

) = max
1≤q≤n

(〈
Tq , w, j

〉)+ (
r+, w< j

)

= max
1≤q≤n

(〈
Tq , w, j

〉+ (
r+, w< j

))

= max
1≤q≤n

(〈
T ′

q , w, j
〉)
.

Now, we define the formula ζq ∈ ULTL (Rmax, A) by

ζq = ϕ′
0 ∧ ©k0

(
ξ ′

1U
(
ϕ′

1 ∧ ©k1
(
ξ ′

2U
(
ϕ′

2 ∧ ©k2
(
. . .U

(
ϕ′

mq
∧ ©kmq +1ϕ

))))))
.

By induction on mq , with straightforward calculations, we can show that
(∥∥ζq

∥
∥ , w

) = sup
j≥0

(〈
T ′

q , w, j
〉
+ dw< j

(‖ϕ‖ , w≥ j
))

for every w ∈ Aω. We repeat the same procedure for every 1 ≤ q ≤ n. We consider the
formula

∨
1≤q≤nζq ∈ ULTL (Rmax, A). Then for every w ∈ Aω we get
⎛

⎝

∥∥∥∥∥∥

∨

1≤q≤n

ζq

∥∥∥∥∥∥
, w

⎞

⎠ =
(

max
1≤q≤n

(∥∥ζq
∥∥) , w

)

= max
1≤q≤n

(

sup
j≥0

(〈
T ′

q , w, j
〉
+ dw< j

(‖ϕ‖ , w≥ j
))
)

= sup
j≥0

(
max

1≤q≤n

(〈
T ′

q , w, j
〉
+ dw< j

(‖ϕ‖ , w≥ j
)))

= sup
j≥0

(
max

1≤q≤n

(〈
T ′

q , w, j
〉)

+ dw< j

(‖ϕ‖ , w≥ j
))

= sup
j≥0

((
0L + r+, w< j

)+ dw< j

(‖ϕ‖ , w≥ j
))

= ((
0L + r+)+d ‖ϕ‖ , w) ,

and our proof is completed. ��
Our next result states that the almost simple ω-d-counter-free series are ω-ULTL-d-

definable, and in fact concludes our theory.

Theorem 66 ω-asCF(Rmax, A, d) ⊆ ω-ULTL(Rmax, A, d).

Proof Clearly it suffices to show that whenever A1, . . . ,An−1 are simple cfwa and An is
a simple cfwBa over A and Rmax, then ‖A1‖ +d . . . +d ‖An‖ ∈ ω-ULTL(Rmax, A, d). We
let ri = ‖Ai‖, and denote by ki the initial weight �= −∞ and k(i)a the weight �= −∞ of
the transitions of Ai (1 ≤ i ≤ n) labelled by a ∈ A. Since supp (rn) is an ω-counter-
free language it is also ω-LTL-definable hence, there is formula ϕ ∈ bLTL(Rmax, A) with

‖ϕ‖ = 0supp(rn). We letϕn = kn∧ϕ∧
((∨

a∈Ak(n)a ∧ pa

)
U0
)

and we trivially get rn = ‖ϕn‖.

By construction ϕn ∈ ULTL (Rmax, A). Furthermore, for every 1 ≤ i ≤ n − 1, the language
supp (ri ) \ {ε} ⊆ A+ is counter-free hence, star-free. Since

ri |A+ = 0supp(ri )\{ε} +
(

ki +
(

max
a∈A

((
k(i)a

)

a

))+)
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for every 1 ≤ i ≤ n − 1, and

rn−1|A+ +d rn = kn−1 +
((

0supp(rn−1)\{ε} +
(

max
a∈A

((
k(n−1)

a

)

a

))+)
+d rn

)

,

by applying Proposition 65, we get that
(

0supp(rn−1)\{ε} +
(

max
a∈A

((
k(n−1)

a

)

a

))+)
+d rn ∈ ω-ULTL(Rmax, A, d)

which implies that there exists a ULTL (Rmax, A) formula ϕ+
n−1 such that

(

0supp(rn−1)\{ε} +
(

max
a∈A

((
k(n−1)

a

)

a

))+)
+d rn = ∥

∥ϕ+
n−1

∥
∥ .

Hence, rn−1|A+ +d rn = ∥
∥kn−1 ∧ ϕ+

n−1

∥
∥. We let ϕn−1 = (

kn−1 ∧ ϕ+
n−1

)∨((rn−1, ε) ∧ ϕn) ∈
ULTL (Rmax, A) and we have ‖ϕn−1‖ = rn−1+d rn . Thus rn−1+d rn ∈ ω-ULTL(Rmax, A, d).
We proceed in the same way, and we show that ri +d . . .+d rn ∈ ω-ULTL(Rmax, A, d), for
every 1 ≤ i ≤ n − 2, which concludes our proof. ��

Now we are ready to state the equivalence of ω-rLTL -d-definable, ω-wqFO-d-definable,
ω-d-star-free, and almost simple ω-d-counter-free series. More precisely, by Theorems
18, 45, 56, and 66 we get our main theorem.

Theorem 67 (Main theorem)

ω-rLTL (Rmax, A, d)=ω-wqFO(Rmax, A, d) = ω-SF(Rmax, A, d) = ω-asCF(Rmax, A, d).

8 Weighted MSO logic with discounting revisited

In this last section, we show that the consideration of the discounted existential quantifi-
cation does not increase the power of the weighted MSO sentences which are expressively
equivalent to ω-recognizable series with discounting. In fact, we show that ‖∃d x � ϕ‖ is an
ω-d-recognizable series provided that ‖ϕ‖ is an ω-recognizable step function. This assump-
tion is consistent with the definition of our weakly quantified FO logic fragment. For the
definition of ω-recognizable step functions we refer the reader to [13].

Proposition 68 Let ϕ ∈ MSO(Rmax, A) such that ‖ϕ‖ is an ω-recognizable step function.
Then the series ‖∃d x � ϕ‖ is ω-d-recognizable.

Proof Let W = free(ϕ) ∪ {x} and V = free(∃d x � ϕ) = W \ {x}. In case x /∈ free(ϕ),
by Proposition 28 in [13], we have ‖ϕ‖W = max1≤ j≤n

(
k j + 0L j

)
with ω-recognizable

languages L j ⊆ AωW (1 ≤ j ≤ n). Moreover, L j (1 ≤ j ≤ n) can be considered to be a
partition of AωW .

Consider the alphabet Ã = A × {1, . . . , n}. Then, the elements of ÃV are triples of the
form (a, l, s) ∈ A×{1, . . . , n}×{0, 1}V , and a word in ÃωV can be written as a triple (w, v, σ )
where (w, σ ) ∈ AωV , and v is a mapping from ω to {1, . . . , n}. We fix a 1 ≤ j ≤ n and let

L̃ j = {(w, v, σ ) ∈ ÃωV | ∃i ≥ 0 such that v(i) = j �⇒ (w, σ [x → i]) ∈ L j }.
We show that L̃ j is ω-recognizable. Let A j = (Q, AW , I,
, F) be a (nondeterministic)
Büchi automaton accepting L j . Without any loss we assume that for every q1 ∈ Q, a ∈ A,
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and s ∈ {0, 1}V , there is a state q2 ∈ Q such that (q1, (a, [s → 0]) , q2) ∈ 
. We construct
the Büchi automaton Ã j = (

Q̃, ÃV , Ĩ , 
̃, F̃
)

as follows. First we let Q′ = {q ′ | q ∈ Q} to
be a copy of Q. Then we set Q̃ = Q × (Q ∪ Q′), Ĩ = {(q, q) | q ∈ I }, and F̃ = Q × F ′
where F ′ = {q ′ | q ∈ F}. The set of transitions 
̃ is defined in the following way.

For every
(
(q1, q1), (a, l, s), (q2, q2)

) ∈ Q̃ × ÃV × Q̃, we let
(
(q1, q1), (a, l, s), (q2, q2)

) ∈ 
̃ iff (q1, (a, s[x → 0]), q2) ∈ 

and

– q1 = q1 and q2 = q2, or
– l = j, q1 = q1, q2 = p′ ∈ Q′, and (q1, (a, s[x → 1]), p) ∈ 
, or
– q1 = p′ ∈ Q′, q2 = r ′ ∈ Q′, and (p, (a, s[x → 0]), r) ∈ 
.

We show that L
(Ã j

) = L̃ j , where L
(Ã j

)
stands for the behavior of Ã j . Let (w, v, σ ) ∈

L̃ j . Then, there exists an i ≥ 0 such that v(i) = j and (w, σ [x → i]) ∈ L j , hence
there exists a successful path P(w,σ [x→i]) of A j over (w, σ [x → i]). Let P(w,σ [x→i]) =
((qk, (ak, sk[x → lk]), qk+1))k≥0 with lk = 1 if k = i, and lk = 0 otherwise. Let P̃(w,v,σ ) =((
(qk, qk), (ak, v(k), sk), (qk+1, qk+1)

))
k≥0 be a path of Ã j over (w, v, σ ) defined by

– qk = qk = qk for every 0 ≤ k ≤ i,
– qk = pk ∈ Q for every k > i, where (qi , (ai , si [x → 0]), pi+1) , (pk, (ak, sk[x → 0]),

pk+1) ∈ 
, and
– qk = q ′

k for every k > i.

Since P(w,σ [x→i]) is successful, we get I nQ
(
P(w,σ [x→i])

) ∩ F �= ∅6. Therefore, by con-

struction of P̃(w,v,σ ), we have I nQ′ (
pr2

(
P̃(w,v,σ )

)) ∩ F ′ �= ∅ (pr2 projects every state

in Q̃ to its second component) which implies that I nQ̃
(
P̃(w,v,σ )

) ∩ F̃ �= ∅. We conclude
(w, v, σ ) ∈ L

(Ã j
)
, i.e., L̃ j ⊆ L

(Ã j
)
.

Next, we show the converse inclusion. For this let (w, v, σ ) ∈ L
(Ã j

)
. There exists a suc-

cessful path P̃(w,v,σ ) = ((
(qk, qk), (ak, v(k), sk), (qk+1, qk+1)

))
k≥0 of Ã j over (w, v, σ ).

We have I nQ̃
(
P̃(w,v,σ )

) ∩ F̃ �= ∅, i.e., I nQ′ (
pr2

(
P̃(w,v,σ )

)) ∩ F ′ �= ∅. This implies that
there exists an i ≥ 0 such that v(i) = j and

– qk = qk = qk for every 0 ≤ k ≤ i and (qk, (ak, sk[x → 0]), qk+1) ∈ 
 for every
1 ≤ k < i ,

– qk = pk ∈ Q for every k > i and (qi , (ai , si [x → 0]), pi+1) , (pk, (ak, sk[x → 0]),
pk+1) ∈ 
, and

– qk = q ′
k for every k > i and (qi , (ai , si [x → 1]), qi+1) ∈ 
 and (qk, (ak, sk[x → 0]),

qk+1) ∈ 
 for every k > i + 1.

Consider the path P(w,σ [x→i]) = ((qk, (ak, sk[x → lk]), qk+1))k≥0 of A j over (w, σ [x →
i]) where lk = 1 if k = i, and lk = 0 otherwise. Since I nQ′ (

pr2
(
P̃(w,v,σ )

)) ∩ F ′ �= ∅ we
get I nQ

(
P(w,σ [x→i])

)∩ F �= ∅. Thus P(w,σ [x→i]) is successful, hence (w, σ [x → i]) ∈ L j .

We conclude (w, v, σ ) ∈ L̃ j , as required.
Next we consider the weighted automaton A j = (Q̃, in,wt, F̃) over ÃV and Rmax in the

following way. For every (q, q) ∈ Q̃ we let

in((q, q)) =
{

0 if q = q ∈ I
−∞ otherwise

.

6 We denote by I nQ (P(w,σ [x→i])
)

the set of states in Q that occur infinitely often along the path P(w,σ [x→i])
(cf. [13]).
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The weight assignment mapping wt : Q̃× ÃV×Q̃ → Rmax is defined as follows. For every t ∈(
Q̃ × ÃV × Q̃

)\
̃we let wt(t) = −∞,whereas for every
(
(q1, q1), (a, l, s), (q2, q2)

) ∈ 
̃
we set

wt
((
(q1, q1), (a, l, s), (q2, q2)

)) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if q1 = q1 and q2 = q2

0 if q1, q2 ∈ Q′
k j if q1 = q1, l = j, and q2 ∈ Q′
−∞ otherwise.

Then for every (w, v, σ ) ∈ ÃωV we have7

(∥∥A j
∥
∥ , (w, v, σ )

) = sup
{
dw<i · k j | i ≥ 0, v(i) = j, and (w, σ [x → i]) ∈ L j

}
.

Now, we let the weighted automaton A to be the disjoint union of the weighted automata A j

for all 1 ≤ j ≤ n. For every (w, v, σ ) ∈ ÃωV we have
(∥∥A

∥
∥ , (w, v, σ )

) = max
1≤ j≤n

((∥∥A j
∥
∥ , (w, v, σ )

))

= max
1≤ j≤n

(
sup

{
dw<i · k j | i ≥ 0, v(i) = j, and (w, σ [x → i]) ∈ L j

})

Let h : ÃV → AV be the strict alphabetic epimorphism given by h((a, l, s)) = (a, s) for
every (a, l, s) ∈ ÃV . Then
(
h
(∥∥A

∥∥) , (w, σ )
)

= sup
v:ω→{1,...,n}

((∥∥A
∥∥ , (w, v, σ )

))

= sup
v:ω→{1,...,n}

(
max

1≤ j≤n

(
sup

{
dw<i · k j | i ≥ 0, v(i) = j, and (w, σ [x → i]) ∈ L j

}))

= max
1≤ j≤n

(

sup
v:ω→{1,...,n}

(
sup

{
dw<i · k j | i ≥ 0, v(i) = j, and (w, σ [x → i]) ∈ L j

})
)

= max
1≤ j≤n

(

sup
i≥0

{
dw<i · k j | (w, σ [x → i]) ∈ L j

}
)

= sup
i≥0

(
dw<i · max

1≤ j≤n

((
k j + 0L j , (w, σ [x → i])))

)

= sup
i≥0

(
dw<i · (‖ϕ‖W , (w, σ [x → i])))

= (‖∃d x � ϕ‖ , (w, σ ))
for every (w, σ ) ∈ AωV . The argument above and Proposition 23(b) in [13] imply that the
series ‖∃d x � ϕ‖ is ω-d-recognizable and this completes our proof. ��

The proposition above implies that the expressive power of weighted restricted MSO
sentences over A and Rmax (cf. [13]) remains the same if we add the discounted existential
first-order quantification applied to ω-recognizable step functions.

Corollary 69 The class of ω-d-definable series (over A and Rmax) by weighted restricted
MSO sentences coincides with the class of ω-d-definable series (over A and Rmax) by
weighted restricted MSO sentences equipped with the discounted existential quantification
which is applied to ω-recognizable step functions.

7 Here d is the discounting over ÃV with d(a,l,s) = da for every (a, l, s) ∈ ÃV .
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9 Conclusion

We introduced a weighted LTL, a weighted FO logic, ω-d-star-free series and counter-free
weighted Büchi automata, over the max-plus semiring. We showed the equality of series defin-
able in fragments of the weighted LTL and FO logic, ω-d-star-free series, and almost simple
ω-d-counter-free series. In order to ensure the convergence of infinite sums in the max-plus
semiring, we used the usual method of discounting. For the translation of an almost simple
ω-d-counter-free series to a weighted LTL definable series, we considered the corresponding
boolean result of the translation of a counter-free Büchi automaton to an LTL formula. Our
theory is applied as well into the min-plus semiring Rmin = (R+ ∪ {∞},min,+,∞, 0) by
replacing max and sup with min and inf, respectively. Complexity results for our construc-
tions form an interesting point for future research. In the literature, weighted logics have
been investigated over arbitrary semirings; it is our intention to develop our theory in that
framework. A first approach, to this direction, has been done in [23] for a restricted class of
semirings. Recently, in [12], the authors considered weighted automata and weighted MSO
logics over algebraic structures which are not semirings any more. Such structures, are impor-
tant for concrete practical applications, and the development of our theory in that setup is a
challenge.

Acknowledgments The authors are grateful to an anonymous referee for valuable suggestions.
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