
Acta Informatica (2014) 51:129–163
DOI 10.1007/s00236-013-0182-6

ORIGINAL ARTICLE

Strategy synthesis for multi-dimensional quantitative
objectives

Krishnendu Chatterjee · Mickael Randour ·
Jean-François Raskin

Received: 24 January 2013 / Accepted: 25 June 2013 / Published online: 23 July 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Multi-dimensional mean-payoff and energy games provide the mathematical foun-
dation for the quantitative study of reactive systems, and play a central role in the emerging
quantitative theory of verification and synthesis. In this work, we study the strategy synthesis
problem for games with such multi-dimensional objectives along with a parity condition,
a canonical way to express ω-regular conditions. While in general, the winning strategies
in such games may require infinite memory, for synthesis the most relevant problem is the
construction of a finite-memory winning strategy (if one exists). Our main contributions are
as follows. First, we show a tight exponential bound (matching upper and lower bounds) on
the memory required for finite-memory winning strategies in both multi-dimensional mean-
payoff and energy games along with parity objectives. This significantly improves the triple
exponential upper bound for multi energy games (without parity) that could be derived from
results in literature for games on vector addition systems with states. Second, we present an
optimal symbolic and incremental algorithm to compute a finite-memory winning strategy
(if one exists) in such games. Finally, we give a complete characterization of when finite
memory of strategies can be traded off for randomness. In particular, we show that for one-
dimension mean-payoff parity games, randomized memoryless strategies are as powerful as
their pure finite-memory counterparts.

K. Chatterjee
IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
e-mail: krishnendu.chatterjee@ist.ac.at

M. Randour (B)
Computer Science Department, Université de Mons (UMONS), Place du Parc, 20, 7000 Mons, Belgium
e-mail: mickael.randour@umons.ac.be

J.-F. Raskin
Département d’Informatique, Université Libre de Bruxelles (U.L.B.),
Avenue Franklin Roosevelt, 50, 1050 Brussels, Belgium
e-mail: jraskin@ulb.ac.be

123
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1 Introduction

Two-player games on graphs provide the mathematical foundation to study many important
problems in computer science. Game-theoretic formulations have especially proved useful
for synthesis [22,37,39], verification [3], refinement [33], and compatibility checking [23]
of reactive systems, as well as in analysis of emptiness of automata [41].

Games played on graphs are repeated games that proceed for an infinite number of rounds.
The state space of the graph is partitioned into player 1 states and player 2 states (player 2 is
adversary to player 1). The game starts at an initial state, and if the current state is a player 1
(resp. player 2) state, then player 1 (resp. player 2) chooses an outgoing edge. This choice is
made according to a strategy of the player: given the sequence of visited states, a pure (resp.
randomized) strategy chooses an outgoing edge (resp. probability distribution over outgoing
edges). This process of choosing edges is repeated forever, and gives rise to an outcome of
the game, called a play, that consists of the infinite sequence of states that are visited. When
randomized strategies are used, there is in general not a unique outcome, but a set of possible
outcomes, as the choice of edges is stochastic rather than deterministic.

Traditionally, games on graphs have been studied with Boolean objectives such as reach-
ability, liveness, ω-regular conditions formalized as the canonical parity objectives, strong
fairness objectives, etc [28,29,31,32,41,44]. While games with quantitative objectives have
been studied in the game theory literature [27,35,45], their application in synthesis and other
problems in verification is quite recent. The two classical quantitative objectives that are most
relevant in verification and synthesis are the mean-payoff and energy objectives. In games
on graphs with quantitative objectives, the game graph is equipped with a weight function
that assigns integer-valued weights to every edge. For mean-payoff objectives, the goal of
player 1 is to ensure that the long-run average of the weights is above a threshold. For energy
objectives, the goal of player 1 is to ensure that the sum of the weights stays above 0 at all
times. In applications of verification and synthesis, the quantitative objectives that typically
arise are (i) multi-dimensional quantitative objectives (i.e., conjunction of several quantita-
tive objectives), e.g., to express properties like the average response time between a grant
and a request is below a given threshold ν1, and the average number of unnecessary grants is
below threshold ν2; and (ii) conjunction of quantitative objectives with a Boolean objective,
such as a mean-payoff parity objective that can express properties like the average response
time is below a threshold along with satisfying a liveness property. In summary, the quanti-
tative objectives can express properties related to resource requirements, performance, and
robustness; multiple objectives can express the different, potentially dependent or conflict-
ing objectives; and the Boolean objective specifies functional properties such as liveness or
fairness. The game theoretic framework of multi-dimensional quantitative games and games
with conjunction of quantitative and Boolean objectives has recently been shown to have
many applications in verification and synthesis, such as synthesizing systems with quality
guarantee [6], synthesizing robust systems [7], performance aware synthesis of concurrent
data structure [13], analyzing permissivity in games and synthesis [11], simulation between
quantitative automata [18], generalizing Boolean simulation to quantitative simulation dis-
tance [14], etc. Moreover, multi-dimensional energy games are equivalent to a decidable
class of games on vector addition systems with states (VASS). This model is equivalent to
games over multi-counter systems and Petri nets [12].

In literature, there are many recent works on the theoretical analysis of multi-dimensional
quantitative games, such as, mean-payoff parity games [11,20], energy-parity games [16],
multi-dimensional energy games [19], and multi-dimensional mean-payoff games [19,43].
Most of these works focus on establishing the computational complexity of the problem of
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deciding if player 1 has a winning strategy. From the perspective of synthesis and other related
problems in verification, the most important problem is to obtain a witness finite-memory
winning strategy (if one exists). The winning strategy in the game corresponds to the desired
controller for (or implementation of) the system in synthesis, and for implementability a finite-
memory strategy is essential. In this work we consider the problem of finite-memory strategy
synthesis in multi-dimensional quantitative games in conjunction with parity objectives, and
the problem of existence of memory-efficient randomized strategies for such games. These are
some of the core and foundational problems in the emerging theory of quantitative verification
and synthesis.

Our contributions In this work, we give an extended presentation of the results of Chat-
terjee et al. [21], the first study of multi-dimensional energy and mean-payoff objectives in
conjunction with parity objectives. Conjunction of parity objectives with multi-dimensional
quantitative objectives had never been considered before [21]. Since we consider the syn-
thesis of finite-memory strategies, it follows from the results of Chatterjee et al. [19] that
both the problems (multi-dimensional energy with parity and multi-dimensional mean-payoff
with parity) are equivalent. Our main results for finite-memory strategy synthesis for multi-
dimensional energy parity games are as follows. (i) Optimal memory bounds. We first show
that memory of exponential size is sufficient in multi-dimensional energy parity games.
Our result is a significant improvement over the result that can be obtained naively from
the results known in literature that yields a triple exponential bound, even in the case of
multi-dimensional energy games without parity. Second, we show a matching lower bound
by presenting a family of game graphs where exponential memory is necessary in multi-
dimensional energy games (without parity), even when all the transition weights belong to
{−1, 0,+1}. Thus we establish optimal memory bounds for the finite-memory strategy syn-
thesis problem. (ii) Symbolic and incremental algorithm. We present a symbolic algorithm
(in the sense of Doyen and Raskin [25], i.e., using a compact antichain representation of
sets by their minimal elements) to compute a finite-memory winning strategy, if one exists,
for multi-dimensional energy parity games. Our algorithm is parameterized by the range of
energy levels to consider during its execution. So, we can use it in an incremental approach:
first, we search for finite-memory winning strategies with a small range, and increment the
range only when necessary. We also establish a bound on the maximal range to consider
which ensures completeness of the incremental approach. In the worst case the algorithm
requires exponential time. Since exponential size memory is required (and also the decision
problem is coNP-complete [19]), the worst case exponential bound can be considered as
optimal. Moreover, as our algorithm is symbolic and incremental, in most relevant problems
in practice, it is expected to be efficient. (iii) Randomized strategies. We also consider when
the (pure) finite-memory strategies can be traded off for conceptually much simpler random-
ized strategies. We show that for energy objectives randomization is not helpful (as energy
objectives are similar in spirit with safety objectives), even with only one player, neither it
is for two-player multi-dimensional mean-payoff objectives. However, randomized memo-
ryless strategies suffice for one-player multi-dimensional mean-payoff parity games. For the
important special case of mean-payoff parity objectives (conjunction of a single mean-payoff
and parity objectives), we show that in games, finite-memory strategies can be traded off for
randomized memoryless strategies.

Related works This paper extends the results presented in its preceding conference version
[21] and gives a full presentation of the technical details. Games with a single mean-payoff
objective have been studied in [27,45], and games with a single energy objective in [15]; their
equivalence was established in [10]. One-dimensional mean-payoff parity games problem

123



132 K. Chatterjee et al.

has been studied in [20]: an exponential algorithm was given to decide if there exists a
winning strategy (which in general was shown to require infinite memory); and an improved
algorithm was presented in [11]. One-dimensional energy parity games problem has been
studied in [16]: it was shown that deciding the existence of a winning strategy is in NP
∩ coNP, and an exponential algorithm was given. It was also shown in [16] that, for one-
dimensional energy parity objectives, finite-memory strategies with exponential memory
are sufficient, and the decision problem for mean-payoff parity objective can be reduced to
energy parity objective. Games on VASS with several different winning objectives have been
studied in [12], and from the results of Brázdil et al. [12] it follows that in multi-dimensional
energy games, winning strategies with finite memory are sufficient (and a triple exponential
bound on memory can be derived from the results). The complexity of multi-dimensional
energy and mean-payoff games was studied in [19,43]. It was shown in [19] that in general,
winning strategies in multi-dimensional mean-payoff games require infinite memory, whereas
for multi-dimensional energy games, finite-memory strategies are sufficient. Moreover, for
finite-memory strategies, the multi-dimensional mean-payoff and energy games coincide,
and optimal computational complexity for deciding the existence of a winning strategy was
established as coNP-complete [19,43]. Multi-dimensional mean-payoff games with infinite-
memory strategies were studied in [43], and optimal computational complexity results were
established. Various decision problems over multi-dimensional energy games were studied
in [30].

2 Preliminaries

We consider two-player game structures and denote the two players by P1 and P2.

Multi-weighted two-player game structures A multi-weighted two-player game structure
is a tuple G = (S1, S2, sini t , E, k, w) where (i) S1 and S2 resp. denote the finite sets of states
belonging to P1 and P2, with S1 ∩ S2 = ∅; (ii) sini t ∈ S = S1 ∪ S2 is the initial state; (iii)
E ⊆ S × S is the set of edges s.t. for all s ∈ S, there exists s′ ∈ S s.t. (s, s′) ∈ E ; (iv) k ∈ N

is the dimension of the weight vectors; and (v) w : E → Z
k is the multi-weight labeling

function. The game structure G is one-player if S2 = ∅. A play in G is an infinite sequence
of states π = s0s1s2 . . . s.t. s0 = sini t and for all i ≥ 0, we have (si , si+1) ∈ E . The prefix
up to the n-th state of play π = s0s1 . . . sn . . . is the finite sequence π(n) = s0s1 . . . sn . Let
First(π(n)) and Last(π(n)) resp. denote s0 and sn , the first and last states of π(n). A prefix
π(n) belongs to Pi , i ∈ {1, 2}, if Last(π(n)) ∈ Si . The set of plays of G is denoted by
Plays(G) and the corresponding set of prefixes is denoted by Prefs(G). The set of prefixes
that belong to Pi is denoted by Prefsi (G). The energy level vector of a sequence of states
ρ = s0s1 . . . sn s.t. for all i ≥ 0, we have (si , si+1) ∈ E , is EL(ρ) = ∑i=n−1

i=0 w(si , si+1)

and the mean-payoff vector of a play π = s0s1 . . . is MP(π) = lim infn→∞ 1
n EL(π(n)).

Parity A game structure G is extended with a priority function p : S → N to the struc-
ture G p = (S1, S2, sini t , E, k, w, p). Given a play π = s0s1s2 . . . , we define Inf(π) =
{s ∈ S | ∀m ≥ 0, ∃ n > m s.t. sn = s}, the set of states that appear infinitely often along π .
The parity of a play π is defined as Par(π) = min {p(s) | s ∈ Inf(π)}. In the following
definitions, we denote any game by G p with no loss of generality.

Strategies Given a finite set A, a probability distribution on A is a function p : A → [0, 1]
s.t.

∑
a∈A p(a) = 1. We denote the set of probability distributions on A by D(A).

A pure strategy for Pi , i ∈ {1, 2}, in G p is a function λi : Prefsi (G p) → S s.t.
for all ρ ∈ Prefsi (G p), we have (Last(ρ), λi (ρ)) ∈ E . A (behavioral) randomized
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strategy is a function λi : Prefsi (G p) → D(S) s.t. for all ρ ∈ Prefsi (G p), we have
{(Last(ρ), s) | s ∈ S, λi (ρ)(s) > 0} ⊆ E . A pure strategy λi for Pi has finite memory if
it can be encoded by a deterministic Moore machine (M, m0, αu, αn) where M is a finite set
of states (the memory of the strategy), m0 ∈ M is the initial memory state, αu : M × S → M
is an update function, and αn : M × Si → S is the next-action function. If the game is in
s ∈ Si and m ∈ M is the current memory value, then the strategy chooses s′ = αn(m, s) as
the next state of the game. When the game leaves a state s ∈ S, the memory is updated to
αu(m, s). Formally, 〈M, m0, αu, αn〉 defines the strategy λi s.t. λi (ρ · s) = αn(α̂u(m0, ρ), s)
for all ρ ∈ S∗ and s ∈ Si , where α̂u extends αu to sequences of states as expected. A pure
strategy is memoryless if |M | = 1, i.e., it does not depend on history but only on the current
state of the game. Similar definitions hold for finite-memory randomized strategies, s.t. the
next-action function αn is randomized, while the update function αu remains determinis-
tic. We resp. denote by Λi ,Λ

P F
i ,ΛP M

i ,ΛRM
i the sets of general (i.e., possibly randomized

and infinite-memory), pure finite-memory, pure memoryless and randomized memoryless
strategies for player Pi .

Given a prefix ρ ∈ Prefsi (G p) belonging to player Pi , and a strategy λi ∈ Λi

of this player, we define the support of the probability distribution defined by λi as
Suppλi

(ρ) = {s ∈ S | λi (ρ)(s) > 0}, with λi (ρ)(s) = 1 if λi is pure and λi (ρ) = s. A
play π is said to be consistent with a strategy λi of Pi if for all n ≥ 0 s.t. Last(π(n)) ∈ Si ,
we have Last(π(n + 1)) ∈ Suppλi

(π(n)). Given two strategies, λ1 for P1 and λ2 for P2,
we define OutcomeG p (λ1, λ2) = {

π ∈ Plays(G p) | π is consistent with λ1 and λ2
}
, the

set of possible outcomes of the game. Note that if both strategies λ1 and λ2 are pure, we
obtain a unique play π = s0s1s2 . . . s.t. for all j ≥ 0, i ∈ {1, 2}, if s j ∈ Si , then we have
s j+1 = λi (s j ).

Given the initial state sini t and strategies for both players λ1 ∈ Λ1, λ2 ∈ Λ2, we obtain a
Markov chain. Thus, every event A ⊆ Plays(G p), a measurable set of plays, has a uniquely
defined probability [42] (Carathéodory’s extension theorem induces a unique probability
measure on the Borel σ -algebra over Plays(G p)). We denote by P

λ1,λ2
sini t (A) the probability

that a play belongs to A when the game starts in sini t and is played consistently with λ1 and
λ2. Let f : Plays(G p) → R be a measurable function, we denote E

λ1,λ2
sini t ( f ) the expected

value of function f over a play when the game starts in sini t and is played consistently with
λ1 and λ2. We use the same notions for prefixes by naturally extending them to their infinite
counterparts.

Objectives An objective for P1 in G p is a set of plays φ ⊆ Plays(G p). We consider several
kinds of objectives:

– Multi Energy objectives. Given an initial natural energy vector v0 ∈ N
k , the objective

PosEnergyG p
(v0) =

{
π ∈ Plays(G p) | ∀ n ≥ 0 : v0 + EL(π(n)) ∈ N

k
}

requires that
the energy level in all dimensions stays positive at all times.

– Multi Mean-payoff objectives. Given a rational threshold vector v ∈ Q
k , the objective

MeanPayoffG p
(v) = {

π ∈ Plays(G p) | MP(π) ≥ v
}

requires that for all dimension j ,
the mean-payoff on this dimension is at least v( j).

– Parity objectives. Objective ParityG p
= {

π ∈ Plays(G p) | Par(π) mod 2 = 0
}

requires
that the minimum priority visited infinitely often be even. When the set of priorities is
restricted to {0, 1}, we have a Büchi objective. Note that every multi-weighted game
structure G without parity can trivially be extended to G p with p : S → {0}.

– Combined objectives. Parity objectives can naturally be combined with multi mean-
payoff and multi energy objectives, resp. yielding MeanPayoffG p

(v) ∩ ParityG p
and

PosEnergyG p
(v0) ∩ ParityG p

.
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134 K. Chatterjee et al.

Sure, satisfaction and expectation semantics A strategy λ1 for P1 is surely winning for an
objective φ in G p if for all plays π ∈ Plays(G p) that are consistent with λ1, we have π ∈ φ.
When at least one of the players plays a randomized strategy, the notion of sure winning in
general is too restrictive and inadequate, as the set of consistent plays that do not belong to φ

may have zero probability measure. Therefore, it is useful to use satisfaction or expectation
criteria. Let λ1 ∈ Λ1 be the strategy of P1.

– Given a threshold α ∈ [0, 1] and a measurable objective φ ⊆ Plays(G p), α-satisfaction

asks that for all λ2 ∈ Λ2, we have P
λ1,λ2
sini t (φ) ≥ α. If λ1 satisfies φ with probability α = 1,

we say that λ1 is almost-surely winning for φ in G p .
– Given a threshold β ∈ Q

k , a function f : Plays(G p) → Q, β-expectation asks that for

all λ2 ∈ Λ2, we have E
λ1,λ2
sini t ( f ) ≥ β.

Note that energy objectives are naturally more enclined towards satisfaction semantics, as
they model safety properties.

Strategy synthesis problem For multi energy parity games, the problem is to synthesize
a finite initial credit v0 ∈ N

k and a pure finite-memory strategy λ
p f
1 ∈ ΛP F

1 that is surely
winning for P1 in G p for the objective PosEnergyG p

(v0) ∩ ParityG p
, if one exists. So, the

initial credit is not fixed, but is part of the strategy to synthesize. For multi mean-payoff games,
given a threshold v ∈ Q

k , the problem is to synthesize a pure finite-memory strategy λ
p f
1 ∈

ΛP F
1 that is surely winning for P1 in G p for the objective MeanPayoffG p

(v) ∩ ParityG p
,

if one exists. Note that multi energy and multi mean-payoff games are equivalent for finite-
memory strategies, while in general, infinite memory may be necessary for the latter [19].

Trading finite memory for randomness We study when finite memory can be traded for
randomization. The question is: given a strategy λ

p f
1 ∈ ΛP F

1 which ensures surely winning
of some objective φ, does there exist a strategy λrm

1 ∈ ΛRM
1 which ensures almost-surely

winning for the same objective φ? For mean-payoff objectives, one can also ask for a weaker
equivalence, that is: can randomized memoryless strategies achieve the same expectation as
pure finite-memory ones?

3 Optimal memory bounds

In this section, we establish optimal memory bounds for pure finite-memory winning strate-
gies on multi-dimensional energy parity games (MEPGs). Also, as a corollary, we obtain
results for pure finite-memory winning strategies on multi-dimensional mean-payoff parity
games (MMPPGs). We show that single exponential memory is both sufficient and necessary
for winning strategies. Additionally, we show how the parity condition in a MEPG can be
removed by adding additional energy dimensions.

Multi energy parity games A sample game is depicted on Fig. 1. The key point in the upper
bound proof on memory is to understand that for P1 to win a multi energy parity game,
he must be able to force cycles whose energy level is positive in all dimensions and whose
minimal parity is even. As stated in the next lemma, finite-memory strategies are sufficient
for multi energy parity games for both players.

Lemma 1 (Extension of [19, Lemmas 2 and 3]) If P1 wins a multi energy parity game, then
he has a pure finite-memory winning strategy. If P2 wins a multi energy parity game, then he
has a pure memoryless winning strategy.
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Strategy synthesis for multi-dimensional quantitative objectives 135

Fig. 1 Two-dimensional energy parity game and even-parity self-covering tree representing an arbitrary
finite-memory winning strategy. Circle states belong to P1, square states to P2

Proof The first part of the result follows using the standard well-quasi ordering argument
(straightforward extension of [19, Lemma 2]). The second part follows by the classical edge
induction argument: Lemma 3 of [19] and Lemma 3 of [16] show the result using edge
induction for multi energy and energy parity games, respectively. Repeating the arguments
of Lemma 3 of [16], and replacing the part on single energy objectives by the argument of
Lemma 3 of [19] for multi energy objectives, we obtain the desired result. ��

By Lemma 1, we know that w.l.o.g. both players can be restricted to play pure finite
memory strategies. The property on the cycles can then be formalized as follows.

Lemma 2 Let G p = (S1, S2, sini t , E, k, w, p) be a multi energy parity game. Let λ
p f
1 ∈

ΛP F
1 be a winning strategy of P1 for initial credit v0 ∈ N

k . Then, for all λ
pm
2 ∈ ΛP M

2 , the
outcome is a regular play π = ρ · (η∞)ω, with ρ ∈ Prefs(G), η∞ ∈ S+, s.t. EL(η∞) ≥ 0
and Par(π) = min {p(s) | s ∈ η∞} is even.

Proof Recall that both players play with pure finite memory strategies. Therefore, a finite
number of decisions are made and the outcome is a regular play π = ρ · (η∞)ω. Note that
EL(ρ) does not have to be positive, as P1 may have v0 > EL(ρ). Similarly, priorities of states
visited in ρ have no impact on winning as they are only visited a finite number of times. First,
suppose EL(η∞) < 0 on some dimension 1 ≤ j ≤ k. Then, after m > 0 cycles, for some
n > 0, the energy level will be EL(π(n)) = EL(ρ · (η∞)m) = EL(ρ)+ m · EL(η∞). Since
v0 is finite and m → ∞, there exist some m, n > 0, s.t. v0 + EL(π(n)) < 0 on dimension
j and λ1 is not winning. Second, suppose min {p(s) | s ∈ η∞} is odd. Since the set of states
visited infinitely often is exactly the set of states in η∞, this implies that Par(π) is odd, and
thus λ1 is not winning. ��

A self-covering path in a game, straightforwardly extending the notion introduced by
Rackoff [38] for Vector Addition Systems (VAS), is a sequence of states s0s1s2 . . . sm s.t.
there exist two positions i and j that verify 0 ≤ i < j ≤ m, si = s j and EL(s0 . . . si ) ≤
EL(s0 . . . si . . . s j ). In other words, such a path describes a finite prefix followed by a cycle
which has a non-negative effect on the energy level. Ensuring such cycles is crucial to win
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the energy objective. With the notion of regular play of Lemma 2, we generalize the notion
of self-covering path to include the parity condition. We show here that, if such a path exists,
then the lengths of its cycle and the prefix needed to reach it can be bounded. Bounds on the
strategy follow. In [38], Rackoff showed how to bound the length of self-covering paths in
VAS. This work was extended to Vector Addition Systems with States (VASS) by Rosier and
Yen [40]. Recently, Brázdil et al. [12] introduced reachability games on VASS and the notion
of self-covering trees. Their Zero-safety problem with ω initial marking is equivalent to multi
energy games with weights in {−1, 0, 1}, and without the parity condition. They showed that
if winning strategies exist for P1, then some of them can be represented as self-covering trees
of bounded depth. Trees have to be considered instead of paths, as in a game setting all the
possible choices of the adversary (P2) must be considered. Here, we extend the notion of
self-covering trees to even-parity self-covering trees, in order to handle parity objectives.

Even-parity self-covering tree An even-parity self-covering tree (epSCT) for s ∈ S is a
finite tree T = (Q, R), where Q is the set of nodes, Θ : Q �→ S × Z

k is a labeling function
and R ⊂ Q × Q is the set of edges, s.t.

• The root of T is labeled 〈s, (0, . . . , 0)〉.
• If ς ∈ Q is not a leaf, then let Θ(ς) = 〈t, u〉, t ∈ S, u ∈ Z

k , s.t.

– if t ∈ S1, then ς has a unique child ϑ s.t. Θ(ϑ) = 〈t ′, u′〉, (t, t ′) ∈ E and u′ =
u + w(t, t ′);

– if t ∈ S2, then there is a bijection between children of ς and edges of the game
leaving t , s.t. for each successor t ′ ∈ S of t in the game, there is one child ϑ of ς s.t.
Θ(ϑ) = 〈t ′, u′〉, u′ = u + w(t, t ′).

• If ς is a leaf, then let Θ(ς) = 〈t, u〉 s.t. there is some ancestor ϑ of ς in T s.t. Θ(ϑ) =
〈t, u′〉, with u′ ≤ u, and the downward path from ϑ to ς , denoted by ϑ � ς , has minimal
priority even. We say that ϑ is an even-descendance energy ancestor of ς .

Intuitively, each path from root to leaf is a self-covering path of even parity in the game
graph so that plays unfolding according to such a tree correspond to winning plays of
Lemma 2. Thus, the epSCT fixes how P1 should react to actions of P2 in order to win
the MEPG (Fig. 1). Note that as the tree is finite, one can take the largest negative number
that appears on a node in each dimension to compute an initial credit for which there is a
winning strategy (i.e., the one described by the tree). In particular, let W denote the max-
imal absolute weight appearing on an edge in G p . Then, for an epSCT T of depth l, it is
straightforward to see that the maximal initial credit required is at most l ·W as the maximal
decrease at each level of the tree is bounded by W . We suppose W > 0 as otherwise, any
strategy of P1 is winning for the energy objective, for any initial credit vector v0 ∈ N

k .
Let us explicitly state how P1 can deploy a strategy λT

1 ∈ ΛP F
1 based on an epSCT

T = (Q, R). We refer to such a strategy as an epSCT strategy. It consists in following a path
in the tree T , moving a pebble from node to node and playing in the game depending on
edges taken by this pebble. Each time a node ς s.t. Θ(ς) = 〈t, u〉 is encountered, we do the
following.

• If ς is a leaf, the pebble directly goes up to its oldest even-descendance energy ancestor
ϑ . By oldest we mean the first encountered when going down in the tree from the root.
Note that this choice is arbitrary, in an effort to ease following proof formulations, as any
one would suit.
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• Otherwise, if ς is not a leaf,

– if t ∈ S2 and P2 plays state t ′ ∈ S, the pebble is moved along the edge going to the
only child ϑ of ς s.t. Θ(ϑ) = 〈t ′, u′〉, u′ = u + w(t, t ′);

– if t ∈ S1, the pebble moves to ϑ,Θ(ϑ) = 〈t ′, u′〉, the only child of ς , and P1 strategy
is to choose the state t ′ in the game.

If such an epSCT T of depth l exists for a game G p , then P1 can play the strategy λT
1 ∈ ΛP F

1
to win the game with initial credit bounded by l · W .

Bounding the depth of epSCTs Consider a multi energy game without parity. Then, the
priority condition on downward paths from ancestor to leaf is not needed and self-covering
trees (i.e., epSCTs without the condition on priorities) suffice to describe winning strategies.
One can bound the size of SCTs using results on the size of solutions for linear diophantine
equations (i.e., with integer variables) [9]. In particular, recent work on reachability games
over VASS with weights {−1, 0, 1}, Lemma 7 of [12], states that if P1 has a winning strategy
on a VASS, then he can exhibit one that can be described as a SCT whose depth is at most
l = 2(d−1)·|S| · (|S| + 1)c·k2

, where c is a constant independent of the considered VASS and
d its branching degree (i.e., the highest number of outgoing edges on any state). Naive use
of this bound for multi energy games with arbitrary integer weights would induce a triple
exponential bound for memory. Indeed, recall that W denotes the maximal absolute weight
that appears in a game G p = (S1, S2, sini t , E, k, w, p). A straightforward translation of a
game with arbitrary weights into an equivalent game that uses only weights in {−1, 0, 1}
induces a blow-up by W in the size of the state space, and thus an exponential blow-up by
W in the depth of the tree, which becomes doubly exponential as we have

l = 2(d−1)·W ·|S| · (W · |S| + 1)c·k2 = 2(d−1)·2V ·|S| · (W · |S| + 1)c·k2
,

where V denotes the number of bits used by the encoding of W . Moreover, the width of the
tree increases as dl , i.e., it increases exponentially with the depth. So straight application of
previous results provides an overall tree of triple exponential size. In this paper we improve
this bound and prove a single exponential upper bound, even for multi energy parity games.
We proceed in two steps, first studying the depth of the epSCT, and then showing how to
compress the tree into a directed acyclic graph (DAG) of single exponential size.

Lemma 3 Let G p = (S1, S2, sini t , E, k, w, p) be a multi energy parity game s.t. W is the
maximal absolute weight appearing on an edge and d the branching degree of G p. Sup-
pose there exists a finite-memory winning strategy for P1. Then there is an even-parity
self-covering tree for sini t of depth at most l = 2(d−1)·|S| · (W · |S| + 1)c·k2

, where c is a
constant independent of G p.

Lemma 3 eliminates the exponential blow-up in depth induced by a naive coding of
arbitrary weights into {−1, 0, 1} weights, and implies an overall doubly exponential upper
bound. Our proof is a generalization of [12, Lemma 7], using a more refined analysis to
handle both parity and arbitrary integer weights. The idea is the following. First, consider
the one-player case. The epSCT is reduced to a path. By Lemma 2, it is composed of a finite
prefix, followed by an infinitely repeated sequence of positive energy level and even minimal
priority. The point is to bound the length of such a sequence by eliminating cycles that are
not needed for energy or parity. Second, to extend the result to two-player games, we use an
induction on the number of choices available for P2 in a given state. Intuitively, we show
that if P1 can win with an epSCT TA when P2 plays edges from a set A in a state s, and if
he can also win with an epSCT TB when P2 plays edges from a set B, then he can win when
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P2 chooses edges from both A and B, with an epSCT whose depth is bounded by the sum
of depths of TA and TB .

Proof The proof is made in two steps. First, we consider the one-player case, where S2 = ∅.
Second, we use an induction scheme over the choice degree of P2 to extend our results to
the two-player case.

We start with S2 = ∅, the one-player game. By Lemma 2, a winning play is of the form
π = ρ · ηω∞ s.t. EL(η∞) ≥ 0 and Par(π) = min {p(s) | s ∈ η∞} is even. Notice that such a
play corresponds to the epSCT defined above, as it reduces to an even-parity self-covering path
〈sini t , (0, . . . , 0)〉 � 〈s, u〉 � 〈s, u′〉 with u′ ≥ u. Therefore its existence is guaranteed and
it remains to bound its length. Given such a path, the idea is to eliminate unnecessary cycles,
in order to reduce its length while maintaining the needed properties (i.e., positive energy and
even minimal priority). First, notice that cycles in the sub-path 〈sini t , (0, . . . , 0)〉 � 〈s, u〉
can be trivially erased as they are only visited a finite number of times and thus (a) the initial
credit can compensate for the loss of their potential positive energy effect, and (b) they do
not contribute in the parity. Now consider the sub-path 〈s, u〉 � 〈s, u′〉. Since it induces a
winning play, its minimal priority is even. Let pm be this priority. We may suppose w.l.o.g.
that p(s) = pm , otherwise it suffices to shift this sub-path to 〈s′, v〉 � 〈s′, v′〉 for some state
s′ s.t. p(s′) = pm and v′ ≥ v, and add the sub-path 〈s, u〉 � 〈s′, v〉 to the finite prefix. Now
we may eliminate each cycle of 〈s, u〉 � 〈s, u′〉 safely in regards to the parity objective as
they only contain states with greater or equal priority. Thus, we only need to take care of
the energy, and fall under the scope of [12, Lemma 15] for the special case of weights in
{−1, 0, 1}, where an upper bound h (|S|, k) = (|S| + 1)c·k2

on the length of such a path is
shown.

We claim that for a one-player game G, with weights in {−W,−W + 1, . . . , W − 1, W },
an upper bound h (W, |S|, k) = (W · |S| + 1)c·k2

is obtained. Indeed, one can translate
G p = (S1, S2, sini t , E, k, w, p) into an equivalent game G ′

p′ =
(
S′1, S2, sini t , E ′, k, w′, p′

)

s.t. each edge of G p is split into at most W edges in G ′
p′ , with at most (W − 1) dummy

states in between, so that each edge of G ′
p′ only uses weights in {−1, 0, 1}. Let Sd denote

the set of these added dummy states. We define this translation Tr : G p �→ G ′
p′ with

Tr(S1) = S1 ∪ Sd , Tr(S2) = S2, Tr(sini t ) = sini t , Tr(E) = ⋃
(s,t)∈E Tr((s, t)), Tr(k) =

k, Tr(w) = w′ : E ′ → {−1, 0, 1}k , Tr(p) = p′ : S′ → N s.t. for all (s, t) ∈ E s.t. m =
max {w(s, t)( j) | 1≤ j≤k}−1, we have that Tr ((s, t))=

{
(s, s1

d ), (s1
d , s2

d ), . . . , (sm−1
d , sm

d ),

(sm
d , t)

}
s.t.

(
∀ j > 0, s j

d ∈ Sd ∧ p′(s j
d ) = p(s)

)
∧

∑

(q,r)∈Tr((s,t))

w′(q, r) = w(s, t).

To be formally correct, we have to add that for all sd ∈ Sd , we have degreein(sd) =
degreeout (sd) = 1, and for all s �∈ Sd , we have p′(s) = p(s). This translation does not
hinder the outcome of the game as each edge in G p has a unique corresponding path in G ′

p′
that preserves the weights and the visited priorities, and that offers no added choice to P1.
Since G p possesses |E | ≤ |S|2 edges, and for each edge of G p , we add at most (W − 1)

dummy states in G ′
p′ , we have |S′| ≤ |S|+ |S|2 · (W −1) ≤ |S|2 ·W . Therefore, by applying

[12, Lemma 15] on G ′
p′ , we obtain the following upper bound:

h (W, |S|, k) = h
(|S′|, k

) = (|S|2 · W + 1
)c·k2 = (W · |S| + 1)c′·k2

for some constant c′ that is independent of G p .
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Now, consider S2 �= ∅. (I) We extend [12, Lemma 16] for parity. This will help us to
establish an induction scheme over the choice degree of P2. Suppose s ∈ S2 has more than
one outgoing edge. Let τ = (s, t) ∈ E be one of them and R ⊂ E denote the nonempty
set of other outgoing edges. Let Gτ

p (resp. G R
p ) be the game induced when removing R

(resp. τ ) from G p . Suppose that (a) s is winning for P1 in G R
p for initial credit vR ∈ N

k ,
and (b) there exists some state s′ ∈ S s.t. s′ is winning for P1 in Gτ

p for initial credit

vτ ∈ N
k . We claim that s′ is winning in G p for initial credit v0 = vτ + vR . Indeed, let

λτ
1 and λR

1 resp. denote winning strategies for P1 in Gτ
p and G R

p . Let P1 use the following
strategy. Player P1 plays λτ

1 as long as P2 does not play any edge of R. If such an edge
is played, then P1 switches to strategy λR

1 and plays it until edge τ is played again by P2,
in which case P1 switches back to λτ

1, and so on. In this way, the outcome of the game is
guaranteed to be a play π = s′ . . . s . . . s . . . s . . . resulting from a merge between a play
consistent with λτ

1 over Gτ
p (whose energy level is bounded by −vτ at all times), and a play

consistent with λR
1 over G R

p (whose energy level is bounded by −vR at all times). Therefore,
the combined overall energy level of any prefix ρ of this play is bounded by (−vτ − vR) as
positive cycles in Gτ

p and G R
p do remain positive in G p . Furthermore, the parity condition is

preserved in G p . Indeed, suppose it is not. Thus, there exists a state visited infinitely often
in the outcome s.t. its priority is minimal and odd. However, as the outcome results from
merging plays resp. consistent with λτ

1 and λR
1 , this implies that one of those strategies yields

an odd minimal priority, which contradicts the fact that they are winning. This proves the
claim.

(II) We apply the induction scheme of [12, Lemma 18] on r = |{(s, t) ∈ E | s ∈
S2}|−|S2| ≤ (d−1) · |S|, the choice degree of P2. Notice that our translation Tr : G p �→ G ′

p′
maintains this choice degree unchanged. The claim is that for a winning state s′, there is an
epSCT of depth bounded by 2r · h(W, |S|, k). We have proved that for the base case r = 0,
similar to S2 = ∅, this claim is true. So assume it holds for r , it remains to prove that it is
preserved for r+1. Let s ∈ S2 be s.t. P2 has at least two outgoing edges. As before, we define
Gτ

p and G R
p . Clearly, the choice degree of P2 is at most r in both games. Let s′ be a winning

state in G p . As P2 has less choices in both Gτ
p and G R

p , clearly s′ is still winning in those
games. If an epSCT in either of them (which are guaranteed to exist and have depth bounded
by 2r · h(W, |S|, k) by hypothesis) do not contain the state s, then the claim is verified. Now
suppose we have two epSCTs for games Gτ

p and G R
p s.t. they both contain state s. Notice

that s is winning in those two games and as such, is the root of two respective epSCTs of
depth less than 2r · h(W, |S|, k). Applying (I) on states s′ and s, we get an epSCT for s′ in
G p of depth 2 · 2r · h(W, |S|, k), which concludes the proof. ��

From multi energy parity games to multi energy games Let G p be a MEPG and assume
that P1 has a winning strategy in that game. By Lemma 3, there exists an epSCT whose
depth is bounded by l. As a direct consequence of that bounded depth, we have that P1, by
playing the strategy prescribed by the epSCT, enforces a stronger objective than the parity
objective. Namely, this strategy ensures to “never visit more than l states of odd priorities
before seeing a smaller even priority” (which is a safety objective). Then, the parity condition
can be transformed into additional energy dimensions.

While our transformation shares ideas with the classical transformation of parity objectives
into safety objectives, first proposed in [5] (see also [26, Lemma 6.4]), it is technically
different because energy levels cannot be reset (as it would be required by those classical
constructions). The reduction is as follows. For each odd priority, we add one dimension.
The energy level in this dimension is decreased by 1 each time this odd priority is visited,
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and it is increased by l each time a smaller even priority is visited. If P1 is able to maintain
the energy level positive for all dimensions (for a given initial energy level), then he is clearly
winning the original parity objective; on the other hand, an epSCT strategy that wins the
original objective also wins the new game.

Lemma 4 Let G p = (S1, S2, sini t , E, k, w, p) be a multi energy parity game with priorities
in {0, 1, . . . , 2 · m}, s.t. W is the maximal absolute weight appearing on an edge. Then we
can construct a multi energy game G with the same set of states, (k + m) dimensions and a
maximal absolute weight bounded by l, as defined by Lemma 3, s.t. P1 has a winning strategy
in G iff he has one in G p.

Proof Let G p = (S1, S2, sini t , E, k, w, p) be a MEPG with priorities in {0, 1, . . . , 2·m}. Let
G = (

S1, S2, sini t , E, (k + m), w′) be the MEG obtained from the following transformation:
∀ (s, t) ∈ E,∀ 1 ≤ j ≤ k, w′((s, t))( j) = w((s, t))( j), and (a) if p(t) is even, ∀ k < j ≤
p(t)

2 , w′((s, t))( j) = 0 and ∀ p(t) < j ≤ k + m, w′((s, t))( j) = l, or (b) if p(t) is odd,

∀ k < j ≤ k +m, j �= p(t)
2 , w′((s, t))( j) = 0 and w′((s, t))( p(t)

2 ) = −1. We have to prove
both ways of the equivalence.

First, suppose λ1 ∈ ΛP F
1 is a winning strategy for P1 in the MEPG G p . By Lemma 3,

there is an epSCT of depth at most l for sini t . Thus, we know that in every repeated sequence
of l states, the minimal visited priority will be even. Therefore, for all additional dimensions,
ranging from k + 1 to k +m, the effect of a sequence of l states will be bounded from below
by −1 · (l − 1) + l, which is positive. Thus strategy λ1 is also winning in G (with initial
credit bounded by l on additional dimensions).

Second, suppose λ1 ∈ ΛP F
1 is a winning strategy for P1 in the MEG G, as defined

above. Since λ1 is winning, it yields a SCT (epSCT without the parity condition) of bounded
depth s.t. P1 is able to enforce positive energy cycles. By definition of weights over G, this
cannot be the case if the minimal priority infinitely often visited is odd. Thus this strategy is
winning for parity on G p , and stays winning for energy over dimensions 1 to k as weights
are unchanged. ��
Bounding the width Thanks to Lemma 4, we continue with multi energy games without
parity. In order to bound the overall size of memory for winning strategies, we consider the
width of self-covering trees. The following lemma states that SCTs, whose width is at most
doubly exponential by application of Lemma 3, can be compressed into directed acyclic
graphs (DAGs) of single exponential width. Thus we eliminate the second exponential blow-
up and give an overall single exponential bound for memory of winning strategies.

Lemma 5 Let G = (S1, S2, sini t , E, k, w) be a multi energy game s.t. W is the maximal
absolute weight appearing on an edge and d the branching degree of G. Suppose there exists
a finite-memory winning strategy for P1. Then, there exists λD

1 ∈ ΛP F
1 a winning strategy

for P1 described by a DAG D of depth at most l = 2(d−1)·|S| · (W · |S| + 1)c·k2
and width

at most L = |S| · (2 · l · W + 1)k , where c is a constant independent of G. Thus the overall
memory needed to win this game is bounded by the single exponential l · L.

The sketch of this proof is the following. By Lemma 3, we know that there exists a tree T ,
and thus a DAG, that satisfies the bound on depth. We construct a finite sequence of DAGs,
whose first element is T , so that (1) each DAG describes a winning strategy for the same
initial credit, (2) each DAG has the same depth, and (3) the last DAG of the sequence has its
width bounded by |S| · (2 · l · W + 1)k . This sequence D0 = T, D1, D2, . . . , Dn is built by
merging nodes on the same level of the initial tree depending on their labels, level by level.
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Fig. 2 Merge between comparable nodes

The key idea of this procedure is that what actually matters for P1 is only the current energy
level, which is encoded in node labels in the self-covering tree T . Therefore, we merge nodes
with identical states and energy levels: since P1 can essentially play the same strategy in both
nodes, we only keep one of their subtrees.

It is possible to further reduce the practical size of the compressed resulting DAG by
merging nodes according to a “greater or equal” relation over energy levels rather than
simply equality (Fig. 2). This improvement is part of the algorithm that follows, and it has a
significant impact on the practical width of DAGs as it can then be bounded by the number
of incomparable labeling vectors instead of unequivalent ones.

The remainder of this subsection is dedicated to the proof of Lemma 5. We need to
introduce some notations and two intermediate lemmas. If he so wishes, the reader may
directly proceed to the next subsection and Lemma 8 for results on lower memory bounds.

We first introduce some notations. Let T = (Q, R) be a self-covering tree (i.e., epSCT
without the parity condition). We define the partial order � on Q s.t. for all ς1, ς2 ∈ Q
s.t. Θ(ς1) = 〈t1, u1〉 and Θ(ς2) = 〈t2, u2〉, we have ς1 � ς2 iff t1 = t2 and u1 ≤ u2.
We denote the equivalence by � s.t. ς1 � ς2 iff ς1 � ς2 and ς2 � ς1. For all ς ∈ Q, let
Anc and EnAnc resp. denote the set of ancestors and energy ancestors of ς in T : Anc(ς) =
{ϑ ∈ Q \ {ς} | ϑ � ∃♦ς}, where we use the classical CTL notation to denote that there exists
a path from ϑ to ς in T , and EnAnc(ς) = {ϑ ∈ Anc(ς) | ϑ � ς}.

We build a sequence of DAGs (Di )0≤i≤n ≡ D0 = T, D1, D2, . . . , Dn s.t. for all 0 <

i ≤ n, Di is obtained from Di−1 by merging two equivalent nodes of the same minimal level
(i.e., closest to the root) of Di−1. The sequence stops when we obtain a DAG Dn = (Qn, Rn)

s.t. for all level j of Dn , there does not exist two distinct equivalent nodes on level j . This
construction induces merges by increasing depth, starting with level one. Moreover, if a DAG
Di of the sequence is the result on merges up to level j , then it has the tree property (i.e.,
every node has a unique father) for levels greater than j . As the depth and the branching
degree of T are finite, the defined sequence of DAGs is finite (and actually bounded).
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Let us give a formal definition of the merge operation. Consider such a DAG Di =
(Qi , Ri ). Let j the minimal level of Di that contains two equivalent nodes. Let ς1, ς2 ∈ Qi ( j)
(i.e., nodes of level j) be two nodes s.t. ς1 �= ς2 and ς1 � ς2. We suppose w.l.o.g. an arbitrary
order on nodes of the same level so that ς1, ς2 are the two leftmost nodes that satisfy this
condition. We define Di+1 = (Qi+1, Ri+1) = merge(Di ) as the result of the following
transformation:

– Qi+1 = Qi\({ς2} ∪ {ςd ∈ Qi | ς2 ∈ Anc(ςd)}),
– Ri+1 = (Ri ∩ (Qi+1 × Qi+1)) ∪ {(ϑ, ς1) | (ϑ, ς2) ∈ Ri }.

Thus, we eliminate the subtree starting in ς2 and replace all edges that point to ς2 by edges
pointing to ς1. This follows the idea that the same strategy can be played in ς2 as in ς1 since
the present state and the energy level are the same.

Let Di = (Qi , Ri ) be a DAG of the sequence (Di )0≤i≤n . Given ς ∈ Qi , ϑ ∈ Anc(ς),
we denote by ϑ � ς an arbitrary downward path from ϑ to ς in Di . Given a leaf ς ∈ Qi ,
we denote its oldest energy ancestor by oea(ς). Recall that a strategy is described by such
a DAG according to moves of a pebble. Given a leaf ς ∈ Qi and one of its energy ancestors
ϑ ∈ EnAnc(ς), we represent the pebble going up from ς to ϑ by ς � ϑ . Given α, β ∈
(Qi )

∗, α � β naturally extends this notation s.t. we have Last(α) � First(β). We consider
energy levels of paths in the tree by refering to their counterparts in the game. Note that given
ϑ, ς ∈ Qi ,Θ(ϑ) = 〈t, u〉,Θ(ς) = 〈t ′, u′〉, we have EL(ϑ � ς) = u′ − u. We start with
two useful lemmas.

Lemma 6 Let Di = (Qi , Ri ) be a DAG of (Di )0≤i≤n. For all nodes ς1, ς2 ∈ Qi s.t. ς1 � ς2,
we have that ∀ϑ ∈ Anc(ς1) ∩ Anc(ς2), EL(ϑ � ς1) = EL(ϑ � ς2).

Proof The proof is straightforward. ��
Lemma 7 Let Di = (Qi , Ri ) be a DAG of (Di )0≤i≤n. Let ς, ϑ, ν, ξ ∈ Qi be four nodes s.t.
ς and ξ are leafs, ν is the deepest common ancestor of ς and ξ , and ϑ is an ancestor of ν.
Let the oldest energy ancestor of ξ be an ancestor of ς , i.e., oea(ξ) ∈ Anc(ς). We have that
EL(ϑ � ς) ≤ EL(ϑ � ν � ξ � oea(ξ) � ς).

This lemma states that we can extract pebble cycles, which have positive energy levels,
from a given path, in order to obtain some canonical path whose energy level is lower or
equal (Fig. 3).

Fig. 3 Cycles have positive
energy levels
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Proof Let χ = oea(ξ) and ρ = ϑ � ν � ξ � χ � ς . Since χ ∈ Anc(ς) ∩ Anc(ξ),
we have χ ∈ Anc(ν) ∪ {ν}. Therefore, and applying Lemma 6, four cases are possible:
χ ∈ Anc(ϑ), χ = ϑ, χ ∈ Anc(ν)\ (Anc(ϑ) ∪ {ϑ}), and χ = ν. Consider the first case,
χ ∈ Anc(ϑ). Then ρ = ϑ � ν � ξ � χ � ϑ � ν � ς . We have EL(ρ) = EL(ϑ � ν)+
EL(ν � ξ)+EL(χ � ϑ)+EL(ϑ � ν)+EL(ν � ς) = EL(χ � ϑ � ν � ξ)+EL(ϑ �
ς). By definition of χ = oea(ξ), the first term is positive. Thus, EL(ρ) ≥ EL(ϑ � ς).
Arguments are similar for the other cases. ��

We proceed with the proof of Lemma 5.

Proof (Lemma 5) Let (Di )0≤i≤n be the sequence of DAGs defined above. We claim that (i)
each DAG describes a winning strategy for the same initial credit, (ii) each DAG has the same
depth l, and (iii) the last DAG of the sequence has its width bounded by |S| · (2 · l ·W + 1)k .

(i) First, recall that P1 can play a strategy λT
1 ∈ ΛP F

1 based on edges taken by a pebble
on T . Notice that moving the pebble as we previously defined is possible because nodes
belonging to P1 have only one child, and nodes of P2 have childs covering all his choices
once, and only once. Fortunately, the merge operation maintains this property. Therefore, it
is straightforward to see that P1 can also play a strategy λ

Di
1 ∈ ΛP F

1 for a DAG Di resulting
of some merges on T . However, while this would be a valid strategy for P1, we have to prove
that it is still a winning one, for the same initial credit v0 as λT

1 . Precisely, we claim that

∀ i ≥ 0, we have that λ
Di
1 is winning for v0.

We show it by induction on Di . The base case is trivial as D0 = T : the strategy λT
1 is

winning for v0 by definition. Our induction hypothesis is that our claim is valid for Di−1,
and we now prove it for Di , by contradiction. Let ς1, ς2 ∈ Qi−1( j) be the merged nodes,
for some level j of Di−1. Suppose λ

Di
1 is not winning for v0. Thus there exists a finite path

ζ of the pebble in Di , which corresponds to a strategy λ
Di
2 ∈ ΛP F

2 of P2, s.t. it achieves a
negative value on at least one dimension m, 1 ≤ m ≤ k. We have that (v0 + EL(ζ )) (m) < 0.
We aim to find a similar path η in Di−1 s.t. EL(η) ≤ EL(ζ ), thus yielding contradiction, as
it would witness that λ

Di−1
1 is not winning for v0.

We denote by ςm the father of ς2 in Di−1. The only edge added by the merge operation is
(ςm, ς1). Obviously, if ζ does not involve this edge, then we can take η = ζ and immediately
obtain contradiction. Thus, we can decompose the witness path

ζ = α(1) ςmς1 β(1) � α(2) ςmς1 β(2) � . . . � α(q) ςmς1 ξ,

for some q ≥ 1 s.t. for all 1 ≤ p ≤ q , we have that α(p), β(p), ξ ∈ (Qi ∪ {�})∗
are valid paths of the pebble in Di (and Di−1); they do not involve edge (ςm, ς1), i.e.,
{ςmς1} �⊆ α(p), β(p), ξ ; and β(p) ∩ (

AncDi (ςm)\AncDi−1(ς1)
) = ∅, Last(β(p)) is a leaf

and oea(Last(β(p))) ∈ AncDi (ςm).
Intuitively, ζ is split into several parts in regard to q , the number of times it takes the added

edge (ςm, ς1). Each time, this transition is preceded by some path α. It is then followed by
some path β where all visited ancestors of ςm were already ancestors of ς1 in Di−1 (thus, β

paths can be kept in η). Finally, after the q-th transition ςmς1 is taken, the path ζ ends with
a finite sub-path ξ .

We define the witness path η in Di−1 as η = κ(1)β(1) � κ(2)β(2) � . . . � κ(q)ξ, with
the following transformation of sub-paths α(p) ςmς1:

– κ(1) = r �Di−1 ς1,
– ∀ 2 ≤ p ≤ q, κ(p) = oea(Last(β(p − 1))) �Di−1 ς1,

where �Di−1 denotes a valid path in Di−1. Note that given preceding definitions, this indeed
constitutes a valid path in Di−1. We have to prove that EL(η) ≤ EL(ζ ). We have
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EL(η) =
∑

1≤p≤q

EL(κ(p))+
∑

1≤p≤q−1

EL(β(p))+ EL(ξ),

and

EL(ζ ) =
∑

1≤p≤q

EL(α(p) ςmς1)+
∑

1≤p≤q−1

EL(β(p))+ EL(ξ).

Thus, it remains to show that
∑

1≤p≤q

EL(κ(p)) ≤
∑

1≤p≤q

EL(α(p) ςmς1).

In particular, we claim that for all 1 ≤ p ≤ q , we have EL(κ(p)) ≤ EL(α(p) ςmς1).
Indeed, notice that κ(p) and α(p) share their starting and ending nodes and that α(p) contains
a finite number of pebble cycles. Let ϑ denote the common starting node of both κ(p) and
α(p). Applying Lemma 7 on α(p), we can eliminate cycles one at a time, without ever
increasing the energy level, and obtain a path ϑ �Di ςmς1 s.t. EL(ϑ �Di ςmς1) ≤
EL(α(p)). Since ς1 � ς2, we have by Lemma 6 that EL(ϑ �Di ςmς1) = EL(ϑ �Di−1

ςmς2) = EL(ϑ �Di−1 ς1), implying the claim.
Consequently, we obtain EL(η) ≤ EL(ζ ), which witnesses that Di−1 was not winning.

This contradicts our induction hypothesis and concludes our proof that for all 0 ≤ i ≤ n, λ
Di
1

is winning for v0.
(ii) Second, the merge operation only prunes some parts of the tree T , without ever

adding any new state, and added edges are on existing successive levels. Therefore, each Di

has noticeably the same depth l.
(iii) Third, the last DAG of the sequence, Dn , is s.t. for all level j , for all ς1, ς2 ∈ Qn( j),

we have (ς1 �= ς2) ⇒ (ς1 �� ς2). Therefore the width of this DAG is bounded by the number
of possible non-equivalent nodes. Recall that two nodes are equivalent if they have the same
labels, i.e., they represent the same state of the game and are marked with exactly the same
energy level vector. Since the maximal change in energy level on an edge is W , and the depth
of the DAG is bounded by l = 2(d−1)·|S| · (W · |S| + 1)c·k2

thanks to Lemma 3, we have
possible vectors in {−l ·W,−l ·W + 1, . . . , l ·W − 1, l ·W }k for each state. Consequently,
the width of Dn is bounded by

|S| · (2 · l · W + 1)k = |S| ·
(

2d·|S| · (W · |S| + 1)c·k2 · W + 1
)k

,

which is still single exponential. ��
Lower bound In the next lemma, we show that the upper bound is tight in the sense that there
exist families of games which require exponential memory (in the number of dimensions),
even for the simpler case of multi energy objectives without parity and weights in {−1, 0, 1}
(Fig. 4). Note that for one-dimension energy parity, it was shown in [16] that exponential
memory (in the encoding of weights) may be necessary.

Lemma 8 There exists a family of multi energy games (G(K ))K≥1, = (S1, S2, sini t , E,

k = 2 · K , w : E → {−1, 0, 1}) s.t. for any initial credit, P1 needs exponential memory to
win.

The idea is the following: in the example of Fig. 4, if P1 does not remember the exact
choices of P2 (which requires an exponential size Moore machine), there will exist some
sequence of choices of P2 s.t. P1 cannot counteract a decrease in energy. Thus, by playing
this sequence long enough, P2 can force P1 to lose, whatever his initial credit is.
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Fig. 4 Family of games requiring exponential memory

Proof We define a family of games (G(K ))K≥1 which is an assembly of k = 2 · K gadgets,
the first K belonging to P2, and the remaining K belonging to P1 (Fig. 4). Precisely, we have
|S1| = |S2| = 3 · K , |S| = |E | = 6 · K = 3 · k (linear in k), k = 2 · K , and w defined as:

∀ 1 ≤ i ≤ K , w((◦, si )) = w((◦, ti )) = (0, . . . , 0),

w((si , si,L)) = −w((si , si,R)) = w((ti , ti,L)) = −w((ti , ti,R)),

∀ 1 ≤ j ≤ k, w((si , si,L))( j) =

⎧
⎪⎨

⎪⎩

1 if j = 2 · i − 1

−1 if j = 2 · i

0 otherwise

,

where ◦ denotes any valid predecessor state.
There exists a winning strategy λ

exp
1 for P1, for initial credit v

exp
0 = (1, . . . , 1). Indeed,

for any strategy of P2, for any state ti belonging to P1, it suffices to play the opposite
choice as P2 made on its last visit of si to maintain at all times an energy vector which is
positive on all dimensions. This strategy thus requires to remember the last choice of P2

in all gadgets, which means P1 needs K bits to encode these decisions. Thus, this winning

strategy is described by a Moore machine containing 2K = 2
k
2 states, which is exponential

in the number of dimensions k.
We claim that, for any initial credit v0, there exists no winning strategy λ1 that can be

described with less than 2K states and prove it by contradiction. Suppose P1 plays according
to such a strategy λ1. Then there exists some 1 ≤ x ≤ K s.t. λ1(s1 . . . sx sx,L . . . tx ) =
λ1(s1 . . . sx sx,D . . . tx ), i.e., P1 chooses the same action in tx against both choices of the
adversary. Suppose that P1 chooses to play tx,L in both cases, that is λ1(s1 . . . sx sx,L . . . tx ) =
λ1(s1 . . . sx sx,D . . . tx ) = tx,L . By playing sx,L , P2 can force a decrease of the energy vector
by 2 on dimension 2 · x every visit in gadget x . Similarly, if the strategy of P1 is to play
tx,R, P2 wins by choosing to play sx,R as dimension 2 · x − 1 decreases by 2 every visit.
Therefore, whatever the finite initial vector of P1, P2 can enforce a negative dimension by
playing long enough. This contradicts the fact that λ1 is winning and concludes our proof
that exponential memory is necessary for this simple family of games (G(K ))K≥1. ��

We summarize our results in Theorem 1.

Theorem 1 (Optimal memory bounds) The following assertions hold: (1) In multi energy
parity games, if there exists a winning strategy, then there exists a finite-memory winning
strategy. (2) In multi energy parity and multi mean-payoff games, if there exists a finite-
memory winning strategy, then there exists a winning strategy with at most exponential
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memory. (3) There exists a family of multi energy games (without parity) with weights in
{−1, 0, 1} where all winning strategies require at least exponential memory.

Proof Thanks to [19, Theorem 3], we have equivalence between finite-memory winning for
multi energy and multi mean-payoff games. The rest follows from straightforward application
of Lemmas 1, 4, 5, and 8. ��

4 Symbolic synthesis algorithm

We now present a symbolic, incremental and optimal algorithm to synthesize a finite-memory
winning strategy in a MEG.1 This algorithm outputs a (set of) winning initial credit(s) and
a derived finite-memory winning strategy (if one exists) which is exponential in the worst-
case. Its running time is at most exponential. So our symbolic algorithm can be considered
(worst-case) optimal in the light of the results of previous section.

This algorithm computes the greatest fixed point of a monotone operator that defines the
sets of winning initial (vectors of) credits for each state of the game. As those sets are upward-
closed, they are symbolically represented by their minimal elements. To ensure convergence,
the algorithm considers only credits that are below some threshold, noted C. This is without
giving up completeness because, as we show below, for a game G = (S1, S2, sini t , E, k, w),
it is sufficient to take the value 2 · l · W for C, where l is the bound on the depth on epSCT
obtained in Lemma 3 and W is the largest absolute value of weights used in the game. We
also show how to extract a finite state Moore machine representing a corresponding winning
strategy (states of the Moore machine encode the memory of the strategy) from this set of
minimal winning initial credits and how to obtain an incremental algorithm by increasing
values for the threshold C starting from small values.

A controllable predecessor operator Let G = (S1, S2, sini t , E, k, w) be a MEG, C ∈ N

be a constant, and U (C) be the set (S1 ∪ S2) × {0, 1, . . . , C}k . Let U(C) = 2U (C), i.e., the
powerset of U (C), and the operator CpreC : U(C) → U(C) be defined as follows:

E(V ) = {(s1, e1) ∈ U (C) | s1 ∈ S1 ∧ ∃(s1, s) ∈ E, ∃(s, e2) ∈ V : e2 ≤ e1 + w(s1, s)},
A(V ) = {(s2, e2) ∈ U (C) | s2 ∈ S2 ∧ ∀(s2, s) ∈ E, ∃(s, e1) ∈ V : e1 ≤ e2 + w(s2, s)},

CpreC(V ) = E(V ) ∪ A(V ). (1)

Intuitively, CpreC(V ) returns the set of energy levels from which P1 can force an energy
level in V in one step. The operator CpreC is ⊆-monotone over the complete lattice U(C),
and so there exists a greatest fixed point for CpreC in the lattice U(C), denoted by Cpre∗

C
.

As usual, the greatest fixed point of the operator CpreC can be computed by successive
approximations as the last element of the following finite⊆-descending chain. We define the
algorithm CpreFP that computes this greatest fixed point:

U0 = U (C), U1 = CpreC(U0), . . . , Un = CpreC(Un−1) = Un−1. (2)

The set Ui contains all the energy levels that are sufficient to maintain the energy positive in
all dimensions for i steps. Note that the length of this chain can be bounded by |U (C)| and
the time needed to compute each element of the chain can be bounded by a polynomial in
|U (C)|. As a consequence, we obtain the following lemma.

1 Note that the symbolic algorithm can be applied to MEPGs and MMPPGs after removal of the parity
condition by applying the construction of Lemma 4.
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Lemma 9 Let G = (S1, S2, sini t , E, k, w) be a multi energy game and C ∈ N be a constant.
Then Cpre∗

C
can be computed in time bounded by a polynomial in |U (C)|, i.e., an exponential

in the size of G.

Symbolic representation To define a symbolic representation of the sets manipulated by the
CpreC operator, we exploit the following partial order: let (s, e), (s′, e′) ∈ U (C), we define

(s, e) � (s′, e′) iff s = s′ and e ≤ e′. (3)

A set V ∈ U(C) is closed if for all (s, e), (s′, e′) ∈ U (C), if (s, e) ∈ V and (s, e) � (s′, e′),
then (s′, e′) ∈ V . By definition of CpreC, we get the following property.

Lemma 10 All sets Ui in Eq. (2) are closed for �.

Therefore, all sets Ui in the descending chain of Eq. (2) can be symbolically represented
by their minimal elements Min�(Ui ) which is an antichain of elements for �. Even if the
largest antichain can be exponential in G, this representation is, in practice, often much more
efficient, even for small values of the parameters. For example, with C = 4 and k = 4, we
have that the cardinality of a set can be as large as |Ui | ≤ 625 whereas the size of the largest
antichain is bounded by |Min�(Ui )| ≤ 35. Antichains have proved to be very efficient: see
for example [2,24,25]. Therefore, our algorithm is expected to have good performances in
practice.

Correctness and completeness The following two lemmas relate the greatest fixed point
Cpre∗

C
and the existence of winning strategies for P1 in G. We start with the correctness of

the symbolic algorithm.

Lemma 11 (Correctness) Let G = (S1, S2, sini t , E, k, w) be a multi energy game, let C ∈ N

be a constant. If there exists (c1, . . . , ck) ∈ N
k s.t. (sini t , (c1, . . . , ck)) ∈ Cpre∗

C
, then P1 has

a winning strategy in G for initial credit (c1, . . . , ck) and the memory needed by P1 can be
bounded by |Min�(Cpre∗

C
)| (the size of the antichain of minimal elements in the fixed point).

Given the set of winning initial credits output by CpreFP, it is straightforward to derive a
corresponding winning strategy of at most exponential size. Indeed, for winning initial credit
c ∈ N

k , we build a Moore machine which (i) states are the minimal elements of the fixed
point (antichain at most exponential in G), (ii) initial state is any element (t, u) among them
s.t. t = sini t and u ≤ c, (iii) next-action function prescribes an action that ensures remaining
in the fixed point, and (iv) update function maintains an accurate energy level in the memory.

Proof We denote by c the k-dimensional credit vector (c1, . . . , ck). W.l.o.g. we assume
that states of G alternate between positions of P1 and positions of P2 (otherwise, we split
needed edges by introducing dummy states). From Cpre∗

C
, we construct a Moore machine

M = (QM , q M
0 ,ΔM , ActM ) which respects the following definitions:

– QM = Min�{(t, u) ∈ S1 × {0 . . . C}k | (t, u) ∈ (Cpre∗
C
)}. The set of states of the

machine is the antichain of �-minimal elements that belongs to P1 in the fixed point.
Note that the length of this antichain is bounded by an exponential in the size of the game.

– q M
0 is any element (t, u) in QM s.t. t = sini t and u ≤ c. Note that such an element is

guaranteed to exist as (sini t , c) ∈ Cpre∗
C

.
– For all (t, u) ∈ QM , we define ActM ((t, u)) by choosing any element (t, t ′) ∈ E s.t.

there exists (t ′, u′) ∈ Cpre∗
C

with u′ = u + w(t, t ′). Such an element is guaranteed to
exist by definition of CpreC and the fact that (t, u) ∈ Cpre∗

C
.
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– ΔM : QM × ((S2 × S) ∩ E) �→ QM is any partial function that respects the following
constraint: if ActM ((t, u)) = (t, t ′) then ΔM ((t, u), (t ′, t ′′)) is defined for any (t ′, t ′′) ∈
E and can be chosen to be equal to any (t ′′, u′′) s.t. u′′ ≤ u + w(t, t ′) + w(t ′, t ′′), and
such an u′′ is guaranteed to exist by definition of CpreC and because Cpre∗

C
is a fixed

point.

Now, let us prove that for any initial prefix s0s1 . . . s2n of even length in G, which is compatible
with M , we have that c + EL(s0s1 . . . s2n−1) ≥ 0 and c + EL(s0s1 . . . s2n) ≥ 0. To establish
this property, we first prove the following property by induction on n: c+EL(s0s1 . . . s2n) ≥ u
where u is the energy level of the label of the state reached after reading the prefix s0s1 . . . s2n

with the Moore machine M . Base case n = 0 is trivial. Induction: assume that the property
is true for n − 1, and let us establish it for n. By induction hypothesis, we have that c +
EL(s0s1 . . . s2(n−1)) ≥ u where u is the energy level of the label of state q that is reached
after reading s0s1 . . . s2(n−1) with the Moore machine. Now, assume that ActM (q) = (t, t ′).
So, s2(n−1) = t and the choice of P1 is to play (t, t ′). So, s2(n−1)+1 = t ′. Now for all possible
choices (t ′, t ′′) of P2, we know by definition of M that the energy level u′′ that labels the state
ΔM (q, (t ′, t ′′)) is u′′ ≤ u + w(t, t ′)+ w(t ′, t ′′), which establishes our property. Therefore,
the strategy of P1 based on M is s.t. the energy always stays positive for initial credit c, which
concludes the proof. ��

Completeness of the symbolic algorithm is guaranteed when a sufficiently large threshold
C is used as established in the following lemma.

Lemma 12 (Completeness) Let G = (S1, S2, sini t , E, k, w) be a multi energy game in which
all absolute values of weights are bounded by W . If P1 has a winning strategy in G and
T = (Q, R) is a self-covering tree for G of depth l, then (sini t , (C, . . . , C)) ∈ Cpre∗

C
for

C = 2 · l · W .

Remark 1 This algorithm is complete in the sense that if a winning strategy exists for P1, it
outputs at least a winning initial credit (and the derived strategy) for C = 2·l ·W . However, this
is different from the fixed initial credit problem, which consists in deciding if a particular given
credit vector is winning and is known to be EXPSPACE-hard by equivalence with deciding the
existence of an infinite run in a Petri net given an initial marking [12,30]. In general, there may
exist winning credits incomparable to those captured by algorithm CpreFP. More precisely,
given a constant C ∈ N, the algorithm fully captures all the winning initial credits smaller
than (C, . . . , C). Indeed, the fixed point computation considers the whole range of initial
credits up to the given constant exhaustively, and only removes credits if they do not suffice
to win. By Lemma 12, it is moreover guaranteed that if an arbitrary winning initial credit
exists, then there exists one in the range defined by the constant C = 2 · l · W . Nevertheless,
since our algorithm works in exponential time while the problem of finding all the winning
initial credits is EXPSPACE-hard, there may be some incomparable credits outside that range
that are not captured by the algorithm (comparable credits are captured since we work with
upper closed sets). Indeed, if our algorithm was able to compute exhaustively all winning
credits in exponential time, this would induce that EXPTIME is equal to EXPSPACE. Notice
that defining a class of games for which the algorithm CpreFP proves to be incomplete (in
the sense that uncomparable winning credits exist outside the region captured by constant
C = 2 · l · W ) is an interesting open problem.

Proof To establish this property, we first prove that from the set of labels of T , we can
construct a set f which is increasing for the operator CpreC, i.e., CpreC( f ) ⊇ f , and s.t.
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(sini t , (C, . . . , C)) ∈ f . We define f from T = (Q, R) as follows. Let C ∈ N be the smallest
non-negative integer s.t. for all q ∈ Q, with Θ(q) = (t, u), for all dimensions i, 1 ≤ i ≤ k,
we have that u(i)+C ≥ 0. C is bounded from above by l ·W because on every path from the
root to a leaf in T , every dimension is at most decreased l times by an amount bounded by
W , and at the root all the dimensions are equal to 0. For any q ∈ Q, we denote by Θ(q)+C
the label of q where the energy level has been increased by C in all the dimensions, i.e., if
Θ(q) = (t, u) then Θ(q)+C = (t, u + (C, . . . , C)). Note that for all nodes in Q, the label
is at most l · W and thus the shifted label remains under C = 2 · l · W . Now, we define the
set f as follows:

f = {(t, u) ∈ U (C) | ∃ q ∈ Q, Θ(q)+ C � (t, u)}. (4)

So, f is defined as the �-closure of the set of labels in T shifted by C in all the dimensions.
First, note that (sini t , (C, . . . , C)) ∈ f as the label of the root in T is (sini t , (0, . . . , 0)).

Second, let us show that CpreC( f ) ⊇ f . Take any (t, u) ∈ f and let us show that (t, u) ∈
CpreC( f ). We decompose the proof in two cases. (A) t ∈ S1. By definition of f , there exists
q ∈ Q s.t. Θ(q) + C � (t, u). W.l.o.g. we can assume that q is not a leaf as otherwise
there exists an ancestor q ′ of q s.t. Θ(q ′) � Θ(q) (recall the set is described by its minimal
elements). By definition of T , there exists (t, t ′) ∈ E and q ′ ∈ Q s.t. (q, q ′) ∈ R and
Θ(q ′) = Θ(q)+w(t, t ′). Let (t ′, v) = Θ(q ′)+C . By definition of f , we have (t ′, v) ∈ f .
By Eq. (1), it follows that (t, u) ∈ CpreC( f ). (B) t ∈ S2. By definition of f , there exists
q ∈ Q s.t. Θ(q)+C � (t, u). Again, w.l.o.g. we can assume that q is not a leaf as otherwise
there exists an ancestor q ′ of q s.t. Θ(q ′) � Θ(q). By definition of T , for all (t, t ′) ∈ E ,
there is q ′ ∈ Q s.t. (q, q ′) ∈ R and Θ(q ′) = Θ(q)+ w(t, t ′). Let (t ′, v) = Θ(q ′)+ C . By
definition of f , we have (t ′, v) ∈ f . By Eq. (1), it follows that (t, u) ∈ CpreC( f ).

Now, let us show that f ⊆ Cpre∗
C

. This is a direct consequence of the monotonicity of
CpreC: it is well known that for any monotone function on a complete lattice, its greatest fixed
point is equal to the least upper bound of all post-fixed points (points e s.t. e ⊆ CpreC(e)),
i.e., Cpre∗

C
= ⋃{e | e ⊆ CpreC(e)} ⊇ f . As (sini t , (C, . . . , C)) ∈ f , that concludes the

proof. ��
Remark 2 Note that the exponential bound on memory, obtained in Lemma 5, can also be
derived from the Moore machine construction of Lemma 11 as this method is complete
according to Lemma 12. Still, the DAG construction of Lemma 5 is interesting in its own
right, and introduces the concept of node merging, which is underlying to the symbolic
algorithm correctness, while transparent in its use.

Incrementality While the threshold 2 · l ·W is sufficient, it may be the case that P1 can win
the game even if its energy level is bounded above by some smaller value. So, in practice,
we can use Lemma 11, to justify an incremental algorithm that first starts with small values
for the parameter C and stops as soon as a winning strategy is found or when the value of C

reaches the threshold 2 · l · W and no winning strategy has been found.

Application of the symbolic algorithm to MEPGs and MMPGs Using the reduction of
Lemma 4 that allows us to remove the parity condition, and the equivalence between multi
energy games and multi mean-payoff games for finite-memory strategies (given by Chatterjee
et al. [19, Theorem 3]), along with Lemma 9 (complexity), Lemma 11 (correctness) and
Lemma 12 (completeness), we obtain the following result.

Theorem 2 (Symbolic and incremental synthesis algorithm) Let G p be a multi energy (resp.
multi mean-payoff) parity game. Algorithm CpreFP is a symbolic and incremental algorithm
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that synthesizes a winning strategy in G p of at most exponential size memory, if a winning
(resp. finite-memory winning) strategy exists. In the worst-case, the algorithm CpreFP takes
exponential time.

Proof The correctness and completeness for algorithm CpreFP on multi energy games are
resp. given by Lemmas 11 and 12. Extension to mean-payoff games (under finite memory)
is given by Chatterjee et al. [19, Theorem 3], whereas the parity condition can be encoded
as energy thanks to Lemma 4. Exponential worst-case complexity of the algorithm CpreFP
is induced by Lemma 9. ��

Integration in synthesis tools Following the conference version of this paper [21], our results
on strategy synthesis have been used in the Acacia+ synthesis tool. This tool originally
handled the synthesis of controllers for specifications expressed in LTL (Linear Temporal
Logic, a classical formalism for formal specifications [36]) using antichain-based algorithms
and has recently been extended to the synthesis from LTL specifications with mean-payoff
objectives [8]. The addition of multi-mean-payoff objectives to LTL specifications provides a
convenient way to enforce that synthesized controllers also satisfy some reasonable behavior
from a quantitative standpoint, such as minimizing the number of unsollicited grants in
a client-server architecture with prioritized clients. Numerous practical applications may
benefit from this multi-dimension framework.

The authors present an approach in which the corresponding synthesis problem ultimately
reduces to strategy synthesis on a multi-energy game [8, Theorem 26]. Their implementation
uses fixed point computations similar to Eq. (2) and has proved efficient (considering the
complexity of the problem) in practice. It uses antichains to provide a compact representation
of upper-closed sets and implements the incremental approach proposed before (regarding
the constant C). In practical benchmarks, winning strategies can generally be found for rather
small values of C. Hence, the incremental approach overcomes the need to compute up to
the exponential theoretical bound C = 2 · l · W in many cases. Sample benchmarks and
experiments can be found in [8], and the tool can be used online [1].

5 Trading finite memory for randomness

In this section, we answer the fundamental question regarding the trade-off of memory for
randomness in strategies: we study on which kind of games P1 can replace a pure finite-
memory winning strategy by an equally powerful, yet conceptually simpler, randomized
memoryless one and discuss how memory is encoded into probability distributions. Note
that we do not consider wider strategy classes (e.g., randomized finite-memory), nor do we
allow randomization for P2 (which on most cases is dispensable anyway). Indeed, we aim at a
better understanding of the underlying mechanics of memory and randomization, in order to
provide alternative strategy representations of practical use; not exploration of more complex
games with wider strategy classes (Lemma 21 shows a glimpse of it).

We present an overview of our results in Table 1 and summarize them in Theorem 3.
Note that we do not consider the opposite implication, i.e., does there always exist a way of
encoding a randomized memoryless strategy into an equivalent finite-memory one. In general,
this is not the case even for classes of games where we can trade memory for randomness,
and it can easily be witnessed on the one-player multi mean-payoff game depicted on Fig. 5.
Indeed, expectation (1, 1) is achievable with a simple uniform distribution while it is not
achievable with a pure, arbitrary high memory strategy (even infinite).
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Table 1 When pure finite
memory for P1 can be traded for
randomized memorylessness

Multi energy and
energy parity

Multi MP
(parity)

MP parity

One-player × √ √
Two-player × × √

Fig. 5 Randomization can
replace memory, but not the
opposite

We break down these results into three subsections: energy games, multi mean-payoff
(parity) games, and single mean-payoff parity games. We start with energy games.

5.1 Randomization and energy games

Randomization is not helpful for energy objectives, even in one-player games. The proof
argument is obtained from the intuition that energy objectives are similar in spirit to safety
objectives.

Lemma 13 Randomization is not helpful for almost-sure winning in one-player and two-
player energy, multi energy, energy parity and multi energy parity games: if there exists a
finite-memory randomized winning strategy, then there exists a pure winning strategy with
the same memory requirements.

Proof Let G p be a game fitted with an energy objective. Consider an almost-sure winning
strategy λ1. If there exists a single path π consistent with λ1 that violates the energy objective,
then there exists a finite prefix witness ρ to violate the energy objective. Moreover, as the
finite prefix has positive probability (otherwise the play is not consistent), and the strategy
λ1 is almost-sure winning, it follows that no such path exists. In other words, λ1 is a sure
winning strategy. Since randomization does not help for sure winning strategy, it follows
that randomization is not helpful for one-player and two-player energy, multi energy, energy
parity and multi energy parity games. ��

5.2 Randomization and multi mean-payoff (parity) games

Randomized memoryless strategies can replace pure finite-memory ones in the one-player
multi mean-payoff parity case, but not in the two-player one, even without parity. We first note
a useful link between satisfaction and expectation semantics for the mean-payoff objective.

Lemma 14 Let G = (S1, S2, sini t , E, k, w) be a game structure with mean-payoff objective
φ = MeanPayoffG(v) for some threshold vector v ∈ Q

k . Let λ1 ∈ Λ1 be a strategy of P1.
If λ1 is almost-sure winning for φ (i.e., winning for 1-satisfaction), then λ1 is also winning
for v-expectation for the mean-payoff function MP. The opposite does not hold.

Proof We first discuss the claimed implication. Suppose 1-satisfaction is verified. Then, for
all strategy λ2 ∈ Λ2 of P2, the set of consistent plays of value ≥ v has measure 1, while the
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Fig. 6 Memory is needed to
enforce perfect long-term balance

one of value < v has measure 0, by definition. Therefore, the expectation E
λ1,λ2
sini t (MP) is at

least v and v-expectation is verified.
To show that the opposite does not hold, consider the simple one-player game depicted

on Fig. 5. Let λ1 be a simple coin flipping on s1, i.e., λ1(s1)(s2) = 1/2, λ1(s1)(s3) =
1/2, λ1(s2)(s2) = 1 and λ1(s3)(s3) = 1. The expectation of this strategy is v = (1, 1).
Nevertheless, the probability of achieving mean-payoff of at least v is 0 < 1, which shows
that it does not verify 1-satisfaction for MeanPayoffG(v). ��

The fundamental difference between energy and mean-payoff is that energy requires a
property to be satisfied at all times (in that sense, it is similar to safety), while mean-payoff is
a limit property. As a consequence, what matters here is the long-run frequencies of weights,
not their order of appearance, as opposed to the energy case.

Lemma 15 Pure finite-memory winning strategies can be traded for equally powerful ran-
domized memoryless ones for one-player multi mean-payoff parity games, for both satisfac-
tion and expectation semantics. For two-player games, randomized memoryless strategies
are not as powerful, even limited to expectation semantics, no parity condition, and only 2
dimensions.

For the one-player case, we extract the frequencies of visit for edges of the graph from the
regular outcome that arises from the finite-memory strategy of P1. We build a randomized
strategy with probability distributions on edges that yield the exact same frequencies in
the long-run. Therefore, if the original pure finite-memory of P1 is surely winning, the
randomized one is almost-surely winning. For the two-player case, this approach cannot be
used as frequencies are not well defined, since the strategy of P2 is unknown. Consider a game
which needs perfect balance between frequencies of appearance of two sets of edges in a play
to be winning (Fig. 6). To almost-surely achieve mean-payoff vector (0, 0), P1 must ensure
that the long-term balance between edges (s4, s5) and (s4, s6) is the same as the one between
edges (s1, s3) and (s1, s2). This is achievable with memory as it suffices to react immediately
to compensate the choice of P2. However, given a randomized memoryless strategy of P1, P2

always has a strategy to enforce that the long-term frequency is unbalanced, and thus the game
cannot be won almost-surely by P1 with such a strategy. Achieving expected mean-payoff
(0, 0) is also excluded.

Proof We begin with the one-player case. Let G p be a multi mean-payoff parity game.

Let λ
p f
1 ∈ ΛP F

1 be the pure finite-memory strategy of the player. Since it is pure and
finite, its outcome is a regular word π = ρ1 · ρω

2 , with ρ1 ∈ S∗, ρ2 ∈ S+. Let φ =
MeanPayoffG p

(v)∩ParityG p
be the multi mean-payoff parity objective for some threshold

vector v ∈ Q
k . Suppose this strategy verifies α-satisfaction for φ and β-expectation for the

MP function, for some α, β. We claim that there exists a randomized memoryless strategy
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λrm
1 ∈ ΛRM

1 that is also α-satisfying for φ and that satisfies β-expectation for the MP
function; and we show how to build it.

We denote concatenation by the · symbol. Given a finite word ρ ∈ S∗, two states s, s′ ∈ S,
we resp. denote by occ(s, ρ) and occ((s, s′), ρ) the number of occurrences of the state s and
the transition (s, s′) in the word ρ. We add the subscript ◦ when we count the first state of
the word as the successor of the last one (i.e., the word is a cycle in the game graph). That
is, occ◦(∗, ρ) = occ(∗, ρ · First(ρ)).

Let us consider the mean-payoff of the outcome of strategy λ
p f
1 . Recall that for a play

π ∈ Plays(G), π = s1, s2, s3 . . . , we have MP(π) = lim infn→∞ 1
n

∑
1≤i<n w(si , si+1).

Since the play induced by λ
p f
1 is regular, the limit is well defined and we may express the

mean-payoff in terms of frequencies, that is

MP(π) =
∑

(s,s′)∈E

w(s, s′) · freq∞(s, s′),

where freq∞ denotes the long-term frequency of a transition defined as

∀ (s, s′) ∈ E, freq∞((s, s′)) = occ◦((s, s′), ρ2)

|ρ2| .

We define the randomized memoryless strategy λrm
1 as follows: ∀ s, s′ ∈ S, (s, s′) ∈

E, X = {(s, t) | t ∈ S, (s, t) ∈ (ρ1 · First(ρ2))},

λrm
1 (s)(s′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

|X | if s ∈ ρ1 ∧ s �∈ ρ2,

occ◦((s, s′), ρ2)

occ(s, ρ2)
if s ∈ ρ2,

0 otherwise.

Intuitively, we fix a uniform distribution over transitions of the finite prefix ρ1 as we only
need to ensure reaching the bottom strongly connected component (BSCC) defined by ρ2

with probability 1, and the relative frequencies in ρ1 do not matter (because these weights
and priorities are negligible in the long run). On the contrary, we use the exact frequencies
for transitions of ρ2 as they prevail long-term wise. Note that λrm

1 is a correctly defined
randomized memoryless strategy.

Obviously, λrm
1 yields a Markov chain over states of (ρ1 ∪ ρ2) s.t. states of (ρ1 \ ρ2)

are transient and states of ρ2 constitute a BSCC that is reached with probability one. Thus,
the mean-payoff induced by λrm

1 is totally dependent on this BSCC mean-payoff value. As
a consequence, proving that transition frequencies in the BSCC are exactly the same as
frequencies freq∞ defined by λ

p f
1 will imply the claim on mean-payoff. Moreover, parity

will remain satisfied as the sets of infinitely often visited states will be the same for both the
pure and the randomized strategy. Let T = {t1, t2, . . . , tm} be the set of states that appear
in ρ2. This BSCC is an ergodic Markov chain Me = (T, P) with the following matrix of
transition probabilities:

P =
t1
...

tm

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t1
... tm

occ◦((t1, t1), ρ2)

occ(t1, ρ2)
. . .

occ◦((tm, tm), ρ2)

occ(tm, ρ2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Classical analysis of ergodic Markov chains grants the existence of a unique probability
vector ν s.t. ν P = ν, i.e.

∀ 1 ≤ i ≤ m, νi =
∑

1≤ j≤m

occ◦
(
(t j , ti ), ρ2

)

occ
(
t j , ρ2

) · ν j .

This vector ν represents the occurrence frequency of each state in an infinite run over the
Markov chain. It is easy to see that the unique probability vector ν that satisfies ν P = ν is

ν =
(

occ(t1, ρ2)

|ρ2| , . . . ,
occ(tm, ρ2)

|ρ2|
)

.

Moreover, given a transition of the Markov chain, its frequency is simply the product of the
frequency of its starting state by the probability of the transition when the chain is in this
state: for all t, t ′ ∈ T , we have freqMe∞ ((t, t ′)) = ν(t) · P(t, t ′). By definition of ν and P ,
that is

freqMe∞ ((t, t ′)) = occ◦((t, t ′), ρ2)

|ρ2| = freq∞((t, t ′)),

thus proving that the randomized strategy λrm
1 yields the same mean-payoff and parity as the

pure finite-memory one λ
p f
1 .

Now it remains to show that this does not carry over to two-player games. Indeed, we
show that randomized memoryless strategies cannot replace pure finite-memory ones for
the expectation semantics, even without parity. By Lemma 14, this implies that it cannot be
verified for 1-satisfaction semantics either. Consider the game depicted on Fig. 6. Player P1

has a pure finite-memory strategy λ
p f
1 that ensures MP(π) ≥ (0, 0), for all strategy λ2 of P2.

This strategy is simply to take the opposite choice of P2: λ
p f
1 (∗s2s4) = s6 and λ

p f
1 (∗s3s4) =

s5. Now suppose P1 uses a randomized memoryless strategy λrm
1 s.t. λrm

1 (s4)(s5) = p and
λrm

1 (s4)(s6) = 1− p, for some p ∈ [0, 1]. We claim that whatever the value of p, there exists

a counter-strategy λ2 for P2 s.t. E
λrm

1 ,λ2
s1 (MP) � (0, 0). Suppose p ≥ 1/2 and let λ2(s1) = s2.

Then, we have

E
λrm

1 ,λ2
s1 (MP) = (1,−1)+ [p · (1,−1)+ (1 − p) · (−1, 1)]

4
= 1

2
(p,−p) � (0, 0).

Now suppose p < 1/2 and let λ2(s1) = s3. Then, we have

E
λrm

1 ,λ2
s1 (MP) = (−1, 1)+ [p · (1,−1)+ (1 − p) · (−1, 1)]

4
= 1

2
(p − 1, 1 − p) � (0, 0).

This shows that memory is needed to achieve the (0, 0)-expectation objective and concludes
our proof. ��

5.3 Randomization and single mean-payoff parity games

Randomized memoryless strategies can replace pure finite-memory ones for single mean-
payoff parity games. The proof outline is as follows. We do it in two steps. First, we show
that it is the case for the simpler case of MP Büchi games (Lemma 18). Suppose P1 has a
pure finite-memory winning strategy for such a game. We use the existence of particular pure
memoryless strategies on winning states: the classical attractor for Büchi states, and a strategy
that ensures that cycles of the outcome have positive energy (whose existence follows from
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Fig. 7 Mixing strategies that are
resp. good for Büchi and good for
energy

Fig. 8 Mean-payoff Büchi
requires infinite memory for
optimality

Chatterjee and Doyen[16]). We build an almost-surely randomized memoryless winning
strategy for P1 by mixing those strategies in the probability distributions, with sufficient
probability over the strategy that is good for energy. We illustrate this construction on the
simple game G p depicted on Fig. 7. Let λ

p f
1 ∈ ΛP F

1 be a strategy of P1 s.t. P1 plays
(s1, s1) for 8 times, then plays (s1, s2) once, and so on. This strategy ensures surely winning
for the objective φ = MeanPayoffG p

(3/5). Obviously, P1 has a pure memoryless strategy
that ensures winning for the Büchi objective: playing (s1, s2). On the other hand, he also
has a pure memoryless strategy that ensures cycles of positive energy: playing (s1, s1). Let
λrm

1 ∈ ΛRM
1 be the strategy defined as follows: play (s1, s2) with probability γ and (s1, s1)

with the remaining probability. This strategy is almost-surely winning for φ for sufficiently
small values of γ (e.g., γ = 1/9). Second, we extend this result to MP parity games using
an induction on the number of priorities and the size of games (Lemma 20). We consider
subgames that reduce to the MP Büchi and MP coBüchi cases. For MP coBüchi games, pure
memoryless strategies are known to suffice [20].

Büchi case A particular, simpler case of the parity objective is the Büchi objective.
It corresponds to parity with priorities {0, 1}. We denote a Büchi game by G =
(S1, S2, sini t , E, w, F), with F the set of Büchi states s.t. that a play is winning if it vis-
its infinitely often states of the set F . We first state results on these Büchi objectives, as
they are conceptually simpler to understand. Proof arguments for parity are more involved
and make use of results on Büchi objectives. We sometimes denote the Büchi objective for
the set F by �♦F (where � stands for globally and ♦ for finally), using the classical LTL
formulation [36].

We first introduce the useful notion of ε-optimality. Given a game G p with a one-
dimension2 mean-payoff objective, we define its value as

val = sup
λ1∈Λ1

inf
λ2∈Λ2

{v |OutcomeG p (λ1, λ2) ⊆ MeanPayoffG p
(v)}.

A strategy is said optimal for the mean-payoff objective if it achieves this value. Such a
strategy may not need to exist in general, even in one-player games [11,17,20] (Fig. 8, P1

has to delay its visits of s1 for longer and longer intervals in order to tend towards value 1).
However, it is known that for all ε > 0, ε-optimal strategies (i.e., that achieve value (val−ε))
always exist in one-dimension mean-payoff games, as a consequence of Martin’s theorem
on Borel determinacy [34].

Here, we show finite-memory strategies can be traded off for randomized memoryless
ones for mean-payoff Büchi games. Precisely, we prove that ε-optimality for mean-payoff

2 The multi-dimensional setting gives rise to incomparable outcomes and the need to consider Pareto-
optimality.
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Büchi games can as well be achieved by randomized memoryless strategies. We first need to
state two useful lemmas granting the existence of pure memoryless strategies that are resp.
good-for-energy or good-for-Büchi, in all states that are winning for the mean-payoff Büchi
objective. These strategies will help us build the needed ε-optimal strategies.

Lemma 16 (Extension of [16, Lemma 4]) Let G = (S1, S2, sini t , E, w, F), with F the set
of Büchi states. Let Win ⊆ S be the set of winning states for the mean-payoff Büchi objective
with threshold 0. For all s ∈ Win, P1 has a uniform (i.e., independent of the starting state)
memoryless good-for-energy strategy λ

g f e
1 whose outcome never leaves the set Win, s.t. any

cycle c of this outcome has energy EL(c) ≥ 0.

Lemma 17 (Classical attractor) Let G = (S1, S2, sini t , E, w, F), with F the set of Büchi
states. Let Win ⊆ S be the set of winning states for the mean-payoff Büchi objective with
threshold 0. For all s ∈ Win, P1 has a uniform (i.e. independent of the starting state)
memoryless good-for-Büchi strategy λ

♦F
1 , an attractor strategy for F, whose outcome never

leaves the set Win, s.t. it ensures reaching F in at most |S| steps.

The randomized memoryless strategy of P1 will thus consist in mixing these two strategies,
with a very low probability on the good-for-Büchi strategy. Indeed, the Büchi objective will
be satisfied whatever this probability is, provided it is strictly positive. On the other hand,
by giving more weight to the good-for-energy strategy, P1 can obtain a mean-payoff that is
arbitrary close to the optimum.

Lemma 18 In mean-payoff Büchi games, ε-optimality can be achieved surely by pure finite-
memory strategies and almost-surely by randomized memoryless strategies.

Proof Let G = (S1, S2, sini t , E, w, F), with F the set of Büchi states. We consider the
mean-payoff objective with threshold 0 (w.l.o.g.). Let Win ⊆ S be the set of winning states
for the mean-payoff Büchi objective. By Lemmas 16 and 17, for all s ∈ Win, P1 has two
uniform memoryless strategies λ

g f e
1 and λ

♦F
1 , whose outcomes never leave the set Win, s.t.

λ
g f e
1 ensures that any cycle c of its outcome has energy EL(c) ≥ 0, and λ

♦F
1 , an attractor

strategy for F , ensures reaching F in at most |S| steps.
We first build ε-optimal pure finite-memory strategies based on these two pure memoryless

strategies. Let ε > 0. As usual, W denotes the largest absolute weight on any edge. Let us
define λ

p f
1 s.t. (a) it plays λ

g f e
1 for 2·W ·|S|

ε
− |S| steps, then (b) it plays λ

♦F
1 for |S| steps,

then again (a). This ensures that F is visited infinitely often as λ
♦F
1 is played infinitely many

times for |S| steps in a row. Furthermore, the total cost of phases (a) + (b) is bounded by
−2 · W · |S|, and thus the mean-payoff of the outcome is at least −ε, against any strategy of
the adversary.

Second, we show that based on the same pure memoryless strategies, it is possible to
obtain almost-surely ε-optimal randomized memoryless strategies, i.e.,

∀ ε > 0, ∃ λrm
1 ∈ ΛRM

1 , ∀ λ2 ∈ Λ2,

P
λrm

1 ,λ2
sini t (π � �♦F) = 1 ∧ P

λrm
1 ,λ2

sini t (MP(π) ≥ −ε) = 1.

Note that pure memoryless strategies suffice for P2 as he essentially has to win against the
Büchi or the mean-payoff criterion [11]. Therefore, given ε > 0, we need to build some
strategy λrm

1 ∈ ΛRM
1 s.t.

∀ λ
pm
2 ∈ ΛP M

2 , P
λrm

1 ,λ
pm
2

sini t (π � �♦F) = 1 ∧ P
λrm

1 ,λ
pm
2

sini t (MP(π) ≥ −ε) = 1.
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We build such a strategy as follows:

∀s ∈ S, λrm
1 (s) =

{
λ

g f e
1 (s) with probability 1 − γ,

λ
♦F
1 (s) with probability γ,

for some well-chosen γ ∈ ]0, 1[.
It is straightforward to see that the Büchi objective is almost-surely satisfied for all values

of γ > 0 as at all times, the probability of playing according to λ
♦F
1 for |S| steps in a row,

and thus ensuring a visit of F , is γ |S|, which is strictly positive.
It remains to study if choosing such a constant γ s.t. the MeanPayoffG p

(−ε) objective

is almost-surely satisfied is always possible. Consider such a strategy λrm
1 ∈ ΛRM

1 and some
fixed strategy λ

pm
2 ∈ ΛP M

2 of P2: the game reduces to a Markov chain Mc = (S, δ, w), where
δ : E → [0, 1] is the transition probability function resulting from fixing those strategies.

Suppose λ
pm
2 is winning for P2. Thus, P

λrm
1 ,λ

pm
2

sini t (MP(π) < −ε) > 0. The mean-payoff
depends on limit behavior: the probability measure of plays that do not enter in a bottom
strongly connected component (BSCC) is zero [4], whereas in an BSCC of expected mean-
payoff v, we have probability one of obtaining mean-payoff v. This implies that there exists
some BSCC C in Mc s.t. PMc (♦C) > 0 and EC (MP(π)) < −ε. We claim that it is possible
to choose γ s.t. all BSCCs, in all Markov chains induced by pure memoryless strategies of
P2, have expectation greater or equal to ε, thus proving that strategy λrm

1 is almost-surely
ε-optimal with regard to mean-payoff. Intuitively, the smaller this constant γ is chosen, the
nearer will the expected mean-payoff induced by λrm

1 be to the one induced by λ
g f e
1 , that is

zero. Since the number of pure memoryless strategies of P2 is finite, and so is the number
of BSCCs induced by λrm

1 (regardless of the exact value of γ ∈ ]0, 1[, we obtain the same
BSCCs in terms of states and edges), one can compute a suitable γ for each of them, and
then take the minimum to ensure that the needed property will be satisfied in all possible
cases.

Therefore, let us fix some strategy λ
pm
2 of P2, and some BSCC C of the induced Markov

chain when played against strategy λrm
1 of P1. It remains to show that there exists γ ∗ ∈ ]0, 1[

s.t. for all γ ≤ γ ∗, we have EC(MP(π)) ≥ −ε to conclude this proof. In C, all states bear
two outgoing edges, one from λ

g f e
1 , and one from λ

♦F
1 (we suppose w.l.o.g. that they are

distinct), with respective probabilities 1 − γ and γ . Consider the stochastic process Me

depicting alternation between sequences of edges from λ
g f e
1 and λ

♦F
1 (Fig. 9).

By definition of λ
g f e
1 , a sequence of g f e edges of length k has its energy bounded below

by −W · |S| (i.e., it does not depend on k). Indeed, recall that all cycles have positive energy.
Thus, the energy level of a sequence is a sum of positive terms (cycles), plus a sum of at
most |S| terms bounded from below by −W , as having more than |S| edges produces cycles.
Moreover, each ♦F edge has energy bounded below by −W . Thus the overall mean-payoff
for a play that consists of repeated sequences of k g f e edges followed by one ♦F edge is
−W ·(|S|+1)

k . By putting more probability on lengthy sequences of g f e edges, we will thus be
able to obtain an overall expected mean-payoff that is closer to zero, and particularly, greater
or equal to −ε. Indeed, we decompose the overall expected mean-payoff according to the

Fig. 9 Stochastic process
depicting alternation between

sequences of edges from λ
g f e
1

and λ
♦F
1
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length of g f e sequences before seeing a ♦F edge. Let seqb
a denote a sequence of a edges

of length b. We have:

EC(MP(π)) =
∞∑

k=0

P(seqk
g f eseq1♦F ) · E(MP | seqk

g f eseq1♦F ),

=
∞∑

k=0

(1 − γ )kγ · E(MP | seqk
g f eseq1♦F ).

Now we divide this sum in two parts, according to some value k∗ s.t. for all k ≥ k∗, we
have E(MP | seqk

g f eseq1♦F ) = −W ·(|S|+1)
k+1 ≥ −W ·(|S|+1)

k∗+1 = −η > −ε. It suffices to take

k∗ = W ·(|S|+1)
ε

to achieve this. Notice that the mean-payoff of a play is also trivially bounded
below by −W , the largest negative weight on any edge. We obtain:

EC(MP(π)) ≥
k∗−1∑

k=0

(1 − γ )kγ · (−W )+
∞∑

k=k∗
(1 − γ )kγ · (−η),

≥ k∗γ · (−W )+ (1 − k∗γ ) · (−η).

Thus, one can achieve EC(MP(π)) ≥ −ε by choosing any γ ≤ γ ∗ = −ε+η
k∗(η−W )

. Notice that
such a γ ∗ is indeed present in ]0, 1[ for sufficiently small values of ε, independently of values
of |S| and W . As we are interested in ε arbitrary close to zero, this concludes our proof. ��
Parity Case Given those results for mean-payoff Büchi games, we now consider the more
general case of mean-payoff parity games. We start by introducing the useful notion of
subgames.
Subgame. Let G p = (S1, S2, sini t , E, k, w, p) be a game and A ⊆ S be a subset of states in
G p . If E is such that for all s ∈ A, there exists s′ ∈ A with (s, s′) ∈ E , then we define the
subgame G p ↓ A as (S1 ∩ A, S2 ∩ A, E ∩ (A × A), w′, p′) where w′, p′ are the functions
w, p restricted to the subdomain A. Note that for subgames, we do not consider an initial
state.

Let G p = (S1, S2, sini t , E, k, w, p) and U ⊆ S. We define Attr1(U ) as the set that is
obtained as the limit of the following increasing sequence: U0 = U , and Ui = Ui−1 ∪ {s ∈
S1 | ∃ s′ ∈ Ui−1, (s, s′) ∈ E} ∪ {s ∈ S2 | ∀ s′, (s, s′) ∈ E, s′ ∈ Ui−1}, for i ≥ 1. As this
sequence of sets is increasing, there exists i ≤ |S| such that U j = Ui for all j ≥ i . Attr1(U )

contains all the states in G from which P1 can force a visit to U , and it is well known that
P1 has a pure memoryless strategy to force such a visit from those states. Also, it is clear
that P1 does not have a strategy to leave the states in S \Attr1(U ). Attractors can be defined
symmetrically for P2 and are noted Attr2(·). As direct consequence, we have the following
proposition.

Proposition 1 Let G p = (S1, S2, sini t , E, k, w, p) be a game, let U ⊆ S and Attr1(U ) be
such that B = S\Attr1(U ) is non-empty, then G p ↓ B is a subgame.

The following lemma states that optimal pure memoryless strategies exist for P1 in games
with mean-payoff coBüchi objectives (i.e., parity with priorities {1, 2}). For mean-payoff
Büchi objectives, we showed in Lemma 18 that, for all ε > 0, ε-optimal randomized mem-
oryless strategies exist.

Lemma 19 [20, Theorem 5] Let G p = (S1, S2, sini t , E, k, w, p) be a game with priorities
{1, 2}, and Winp

≥0 be the set of nodes in G p from which P1 wins the mean-payoff coBüchi
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objective for threshold 0 (w.l.o.g.). Then from all states in Winp
≥0, P1 has a pure memoryless

winning strategy for the coBüchi mean-payoff objective for threshold 0.

We now establish that ε-optimal randomized memoryless strategies also exist for mean-
payoff parity games, and thus, can replace pure finite-memory ones.

Lemma 20 Let G p = (S1, S2, sini t , E, k, w, p) and Winp
≥0 be the set of nodes in G p from

which P1 wins the mean-payoff parity objective for threshold 0. Then for all ε > 0, there
exists λrm

1 ∈ ΛRM
1 , s.t. for all s ∈ Winp

≥0 and for all λ2 ∈ Λ2, we have that:

P
λrm

1 ,λ2
s (MP(π) < −ε) = 1 ∧ P

λrm
1 ,λ2

s (Par(π) mod 2 = 0) = 1.

Proof The proof is by induction on the lexicographic order � on games, defined as follows:
G1

p � G2
p if G1

p has less priorities than G2
p or G1

p has the same priorities than in G2
p but less

states. Clearly, this lexicographic order is well-founded.
The base cases are twofold: one for the number of states, and one for priorities. First,

if the game is such that |S| = 1, then obviously, if P1 can win, he can do so with a pure
memoryless strategy, which respects the claim. Second, for two priorities. W.l.o.g., we can
assume that all priorities are either in {0, 1} or in {1, 2}. Those cases resp. correspond to mean-
payoff Büchi and mean-payoff coBüchi games. The result for mean-payoff Büchi games has
been established in Lemma 18, while the result for mean-payoff coBüchi games is a direct
consequence of Lemma 19, as pure memoryless strategies are a special case of randomized
memoryless strategies.

Let us now consider the inductive case. Suppose we have a mean-payoff parity game G p

with m priorities and |S| states. W.l.o.g., we can make the assumption that the lowest priority
in G p is either 0 or 1, otherwise we subtract an even number to all priorities so that we are
in that case. Let U0 = {s ∈ Winp

≥0 | p(s) = 0} and U1 = {s ∈ Winp
≥0 | p(s) = 1}. We

consider the two possible following situations corresponding to U0 empty or not.

1. U0 empty. In that case U1 is not empty. Let us consider A2 = Attr2(U1) the attractor
of P2 for U1. It must be the case that Winp

≥0\A2 is non-empty, otherwise this would
contradict the fact that P1 is winning the parity objective from states in Winp

≥0. Indeed,
if it was not the case, then P2 would be able to force an infinite number of visits to U1

from all states in Winp
≥0, and the parity would be odd as U0 is empty, a contradiction

with the definition of Winp
≥0. (i) Let B = Winp

≥0\A2. First note that, as B is non-empty,
by Proposition 1, G p ↓ B is a subgame. Also, note that from all states in B, it must be
the case that P1 has a winning strategy that does not require visits of the states outside
B, i.e., states in A2, for otherwise this would lead to a contradiction with the fact that
P1 is winning the parity objective in Winp

≥0. So all states in the subgame G p ↓ B are
winning for P1. The game G p ↓ B does not contain states with priority 0, and so we
can apply our induction hypothesis to conclude that P1 has a memoryless randomized
strategy from all states in B, as (G p ↓ B) � G p since it has one less priority. (ii) Now,
let us concentrate on states in A2. Let A1 = Attr1(B). From states in A1, P1 has a pure
memoryless strategy to reach states in B, and so from there P1 can play as in G p ↓ B,
and we are done. Let C = A2 \ A1. If C is empty, we are done. Otherwise, by Proposition
1, G p ↓ C is a subgame (P2 can force to stay within C). We conclude that all states in
this game must be winning for P1. This game has the same minimal priority than in the
original game (i.e., priority 1) but it has at least one state less, and so we can apply our
induction hypothesis to conclude that P1 has a memoryless randomized strategy from all
states in C . Therefore, by (i) and (ii), P1 has a memoryless randomized strategy from all
states in Winp

≥0, which proves the claim in that case.
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2. U0 is not empty. Let us consider A1 = Attr1(U0). (iii) First, consider the case where
A1 = Winp

≥0. In this case, it means that P1 can force a visit to states in U0 from any
states in Winp

≥0. So, we conclude that P1 wins in G p the mean-payoff Büchi game
with threshold 0, and by Lemma 18, we conclude that P1 has a memoryless randomized
strategy from all states in G p for almost surely winning the parity game with mean-payoff
threshold 0 so we are done. (iv) Second, consider the case where B = Winp

≥0 \ A1 is
non-empty. Then by Proposition 1, G p ↓ B is a subgame. So P2 can force to stay within
B in the original game and so we conclude that all states in the game G p ↓ B are winning
for P1. As G p ↓ B does not contain states of priority 0, and thus has at least one less
priority, we can apply the induction hypothesis to conclude that P1 has a memoryless
randomized strategy from all states in B. Therefore, by (iii) and (iv), P1 has a memoryless
randomized strategy from all states in Winp

≥0, which also proves the case.

As we have proved the claim in both possible cases, this concludes the proof. ��

5.4 Summary for randomization

We sum up results for these different classes of games in Theorem 3 (cf. Table 1).

Theorem 3 (Trading finite memory for randomness) The following assertions hold: (1)
Randomized strategies are exactly as powerful as pure strategies for energy objectives. Ran-
domized memoryless strategies are not as powerful as pure finite-memory strategies for
almost-sure winning in one-player and two-player energy, multi energy, energy parity and
multi energy parity games. (2) Randomized memoryless strategies are not as powerful as pure
finite-memory strategies for almost-sure winning in two-player multi mean-payoff games. (3)
In one-player multi mean-payoff parity games, and two-player single mean-payoff parity
games, if there exists a pure finite-memory sure winning strategy, then there exists a random-
ized memoryless almost-sure winning strategy.

Proof (1) For energy games, results follow from Lemma 13. (2) For two-player multi mean-
payoff games, they follow from Lemma 15. (3) For one-player multi mean-payoff games, they
follow from Lemma 15. For two-player single mean-payoff parity, they are direct consequence
of Lemma 20. ��

We close this section by observing that there are even more powerful classes of strategies.
Their study, as well as their practical interest, remains open.

Lemma 21 Randomized finite-memory strategies are strictly more powerful than both ran-
domized memoryless and pure finite-memory strategies for multi-mean payoff games with
expectation semantics, even in the one-player case.

The intuition is essentially that memory permits to achieve an exact payoff by sticking to
a given side, while randomization permits to combine payoffs of pure strategies to achieve
any linear combination in between.

Proof Consider the game G depicted on Fig. 10. Whatever the pure finite-memory strategy
of P1, the only achievable mean-payoff values are (1,−1) (if (s0, s1) is never taken) and
(−1, 1) (if (s0, s1) is taken). This is also true for randomized memoryless strategies: either
the probability of (s0, s1) is null and the mean-payoff has value (1,−1), or this probability is
strictly positive, and the mean-payoff has value (−1, 1) as the probability mass will eventually

123



Strategy synthesis for multi-dimensional quantitative objectives 161

Fig. 10 Randomized finite
memory is strictly more powerful
than randomized memorylessness
and pure finite memory

reach s1. On the contrary, value (0, 0) is achievable by a randomized finite-memory strategy.
Indeed, consider the strategy that tosses a coin in its first visit of s0 to decide if it will play
always play (s0, s0) or if it will play (s0, s1) and then always (s1, s1). This strategy only needs
one bit of memory and one bit to encode probabilities, and still, it is strictly more powerful
than any amount of pure memory or any arbitrary high precision for probabilities without
memory. ��

6 Conclusion

In this work, we considered the finite-memory strategy synthesis problem for games with
multiple quantitative (energy and mean-payoff) objectives along with a parity objective. We
established tight (matching upper and lower) exponential bounds on the memory require-
ments for such strategies (Theorem 1), significantly improving the previous triple exponential
bound for multi energy games (without parity) that could be derived from results in literature
for games on VASS. We presented an optimal symbolic and incremental strategy synthesis
algorithm (Theorem 2). As discussed in Sect. 4, the presented algorithm has been used as
part of the synthesis tool Acacia+ for specifications combining LTL properties and multi-
dimensional quantitative objectives [8] and has proved efficient in practice. Finally, we also
presented a precise characterization of the trade-off of memory for randomness in strategies
(Theorem 3).
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