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Abstract In this paper, we propose a hierarchy of families of languages generated by
networks of evolutionary processors where the filters belong to several special classes of
regular sets. More precisely, we show that the use of filters from the class of ordered, non-
counting, power-separating, circular, suffix-closed regular, union-free, definite, and combina-
tional languages is as powerful as the use of arbitrary regular languages and yields networks
that can generate all the recursively enumerable languages. On the other hand, the use of
filters that are only finite languages allows only the generation of regular languages, but not
every regular language can be generated. If we use filters that are monoids, nilpotent lan-
guages, or commutative regular languages, we obtain one and the same family of languages
which contains non-context-free languages but not all regular languages. These results seem
to be of interest because they provide both upper and lower bounds on the families of lan-
guages that one can use as filters in a network of evolutionary processors in order to obtain
a complete computational model.
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1 Introduction

An important part of theoretical computer science is the study of problems and processes
connected with regular sets. In the last years, a lot of papers appeared in which, for such
problems and processes, the effect of going from arbitrary regular sets to special regular sets
was studied. We here mention four such topics.

– It is a classical result that any non-deterministic finite automaton with n states can be
transformed into a deterministic one with 2n states, which accepts the same language,
and that this exponential blow-up with respect to the number of states is necessary in the
worst cases. In [2], this problem is studied if one restricts to the case that the automata
accept special regular languages only. It is shown, that the situation does not change
for suffix-closed and star-free regular languages; however, for some classes of definite
languages, the size of the deterministic automaton is bounded by 2n−1 + 1.

– A number α, n ≤ α ≤ 2n , is called magic (w. r. t. n), if there is no non-deterministic
finite automaton with n states such that the minimal deterministic finite automaton has α
states. It is known that no magic numbers exist if n ≥ 3. This situation changes if one
considers subregular families of languages. For instance, only the values α which satisfy
the condition n + 1 ≤ α ≤ 2n−1 + 1 are possible for prefix-free regular languages
(see [15]).

– In the last 20 years the behaviour of the (non-deterministic) state complexity under opera-
tions is intensively studied, i. e., it is asked for the size of the minimal (non-)deterministic
finite automaton for the language obtained from languages with given sizes. For many
operations, the worst case is exactly determined. It has been shown that one gets smaller
sizes if one restricts to special regular languages (see [3,12,13], and [16]).

– In order to enlarge the generative power, some mechanisms connected with regular lan-
guages were introduced, which control the derivations in context-free grammars. For
instance, the sequence of applied rules in a regularly controlled grammar, the current
sentential form in a conditional grammar and the levels of the derivation tree in a tree
controlled grammar have to belong to given regular languages. In the papers [7–9], and
[10], the change in the generative power, if one restricts to special regular sets, is inves-
tigated.

In this paper, we continue the research along this direction. We consider the effect of
special regular filters for networks of evolutionary processors as language generators.

Networks of language processors have been introduced in [6] by E. Csuhaj- Varjú and
A. Salomaa. Such a network can be considered as a graph where the nodes are sets of
productions and at any moment of time a language is associated with a node. In a deriva-
tion step, any node derives from its language all possible words as its new language. In a
communication step, any node sends those words to other nodes where the outgoing words
have to satisfy an output condition given as a regular language (called output filter) and any
node takes words sent by the other nodes if the words satisfy an input condition also given
by a regular language (called input filter). The language generated by a network of language
processors consists of all (terminal) words which occur in the languages associated with a
given node.

Inspired by biological processes, in [4] a special type of networks of language processors
was introduced which are called networks with evolutionary processors because the allowed
productions model the point mutation known from biology. The sets of productions have to
be substitutions of one letter by another letter or insertions of letters or deletion of letters;
the nodes are then called substitution node or insertion node or deletion node, respectively.
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Results on networks of evolutionary processors can be found, e. g., in [4,5,17]. For instance.
in [5], it was shown that networks of evolutionary processors are complete in that sense that
they can generate any recursively enumerable language.

Modifications of evolutionary networks with evolutionary processors concern restrictions
in the type of the nodes and the mode of applying a rule. In [1], it is investigated how
the generative power behaves if one restricts to networks with at most two types of nodes
only. Moreover, in the case that one allows that some insertions and deletions can only be
performed at the begin or end of the word one has also restricted to special regular filters
given by random context conditions.

In this paper, we modify the filters. We require that the filters have to belong to a special
subset of the set of all regular languages. We show that the use of filters from the family of
ordered, non-counting, power-separating, circular, suffix-closed regular, union-free, definite
and combinational languages is as powerful as the use of arbitrary regular languages and yields
networks that can generate all the recursively enumerable languages. On the other hand, the
use of filters that are only finite languages allows only the generation of regular languages,
but not all regular languages can be generated. If we use filters that are monoids, nilpotent
languages or commutative regular languages, we obtain the same family of languages which
contains non-context-free languages but not all regular languages. These results seem to be
of interest because they provide both upper and lower bounds on the families of languages
that one can use as filters in a network of evolutionary processor in order to obtain a complete
computational model.

2 Definitions

We assume that the reader is familiar with the basic concepts of formal language theory (see
e.g. [18]). We here only recall some notations used in the paper.

Let V be an alphabet. By V ∗ we denote the set of all words (strings) over the alphabet V
(including the empty word λ). The length of a word w is denoted by |w|. By V + we denote
the set of all non-empty words. For a natural number k, we denote by V k the set of all words
over the alphabet V with length k. We write Vk for the set of all words over V with a length
of at most k:

Vk =
k⋃

i=0

V i .

A phrase structure grammar is specified as a quadruple G = (N , T, P, S) where N is a
set of non-terminals, T is a set of terminals, P is a finite set of productions which are written
as α → β with α ∈ (N ∪ T )∗\T ∗ and β ∈ (N ∪ T )∗, and S ∈ N is the axiom.

By REG, CF, and RE we denote the families of regular, context-free, and recursively
enumerable languages, respectively.

For a language L over V , we set

Comm(L) = {ai1 . . . ain | a1 . . . an ∈ L , n ≥ 1, {i1, i2, . . . , in} = {1, 2, . . . , n}},
Circ(L) = {vu | uv ∈ L , u, v ∈ V ∗},
Suf (L) = {v | uv ∈ L , u, v ∈ V ∗}.

We consider the following restrictions for regular languages. Let L be a language and
V = alph(L) the minimal alphabet of L . We say that L is
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– combinational iff it has the form

L = V ∗ A

for some subset A ⊆ V ,
– definite iff it can be represented in the form

L = A ∪ V ∗ B

where A and B are finite subsets of V ∗,
– nilpotent iff L is finite or V ∗\L is finite,
– commutative iff

L = Comm(L),

– circular iff

L = Circ(L),

– suffix-closed (or fully initial or multiple-entry language) if the relation xy ∈ L for some
x, y ∈ V ∗ implies y ∈ L or equivalently,

L = Suf (L),

– non-counting (or star-free) iff there is an integer k ≥ 1 such that, for any x, y, z ∈ V ∗,
xyk z ∈ L if and only if xyk+1z ∈ L ,

– power-separating iff for any x ∈ V ∗ there is a natural number m ≥ 1 such that either
J m

x ∩ L = ∅ or J m
x ⊆ L where J m

x = {xn | n ≥ m},
– ordered iff L is accepted by some finite automaton A = (Z , V, δ, z0, F) where (Z ,�)

is a totally ordered set and, for any a ∈ V , z � z′ implies δ(z, a) � δ(z′, a),
– union-free iff L can be described by a regular expression which is only built by product

and star.

It is obvious that combinational, definite, nilpotent, ordered and union-free languages
are regular, whereas non-regular languages of the other types mentioned above exist. In this
paper, we consider among the commutative, circular, suffix-closed, non-counting, and power-
separating languages only those that are also regular. So we do not necessarily mention the
regularity then.

By COMB, DEF, NIL, COMM, CIRC, SUF, NC, PS, ORD, and UF we denote the families
of all combinational, definite, nilpotent, regular commutative, regular circular, regular suffix-
closed, regular non-counting, regular power-separating, ordered, and union-free languages,
respectively. Moreover, we add the family MON of all languages of the form V ∗, where
V is an alphabet (languages of MON are target sets of monoids; we call them monoidal
languages). We set

G = {FIN,MON,COMB,DEF,NIL,COMM,CIRC, SUF,NC,PS,ORD,UF}.
The relations between families of G are investigated e.g. in [14] and [20] and their set-theoretic
relations are given in Fig. 1.

In [11], networks were studied where all the filters belong to a set of languages that are
accepted by deterministic finite automata with a fixed number of states. By REGi for i ≥ 1,
we denote the family of languages that are accepted by deterministic finite automata with
exactly i states.
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Fig. 1 Hierarchy of subregular languages (an arrow from X to Y denotes X ⊂ Y and if two families are not
connected by a directed path then they are incomparable)

We call a production α → β a

– substitution if |α| = |β| = 1,
– deletion if |α| = 1 and β = λ.

The productions are applied like context-free rewriting rules. We say that a word v derives
a word w, written as v �⇒ w, if there are words x, y and a production α → β such that
v = xαy and w = xβy. In order to indicate also the applied rule p, we write v �⇒p w.

We introduce insertion as a counterpart of deletion. We writeλ → a, where a is a letter. The
application of an insertion λ → a derives from a word w any word w1aw2 with w = w1w2

for some (possibly empty) words w1 and w2.
We now introduce the basic concept of this paper, the networks of evolutionary processors

(NEPs for short).

Definition 1 Let X be a family of regular languages.

i) A network of evolutionary processors (of size n) with filters from the family X is a tuple

N = (V, N1, N2, . . . , Nn, E, j)

where

– V is a finite alphabet,
– for 1 ≤ i ≤ n, Ni = (Mi , Ai , Ii , Oi ) where

– Mi is a set of rules of a certain type: Mi ⊆ {a → b | a, b ∈ V } or
Mi ⊆ {a → λ | a ∈ V } or Mi ⊆ {λ → b | b ∈ V },

– Ai is a finite subset of V ∗,
– Ii and Oi are languages from X over V ,

– E is a subset of {1, 2, . . . , n} × {1, 2, . . . , n}, and
– j is a natural number such that 1 ≤ j ≤ n.

ii) A configuration C of N is an n-tuple C = (C(1),C(2), . . . ,C(n)) where C(i) is a
subset of V ∗ for 1 ≤ i ≤ n.

iii) Let C = (C(1),C(2), . . . ,C(n)) and C ′ = (C ′(1),C ′(2), . . . ,C ′(n)) be two configu-
rations of N . We say that C derives C ′ in one
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– evolutionary step (written as C �⇒ C ′) if, for 1 ≤ i ≤ n, C ′(i) consists of all words
w ∈ C(i) to which no rule of Mi is applicable and of all words w for which there
are a word v ∈ C(i) and a rule p ∈ Mi such that v �⇒p w holds,

– communication step (written as C � C ′) if, for 1 ≤ i ≤ n,

C ′(i) = (C(i)\Oi ) ∪
⋃

(k,i)∈E

(C(k) ∩ Ok ∩ Ii ).

The computation of an evolutionary network N is a sequence of configurations Ct =
(Ct (1),Ct (2), . . . ,Ct (n)), t ≥ 0, such that

– C0 = (A1, A2, . . . , An),
– for any t ≥ 0, C2t derives C2t+1 in one evolutionary step,
– for any t ≥ 0, C2t+1 derives C2t+2 in one communication step.

iv) The language L(N ) generated by N is defined as

L(N ) =
⋃

t≥0

Ct ( j)

where Ct = (Ct (1),Ct (2), . . . ,Ct (n)), t ≥ 0 is the computation of N .

Intuitively, a network with evolutionary processors is a graph consisting of some, say n,
nodes N1, N2, . . . , Nn (called processors) and the set of edges given by E such that there is
a directed edge from Nk to Ni if and only if (k, i) ∈ E . Any processor Ni consists of a set
of evolutionary rules Mi , a set of words Ai , an input filter Ii and an output filter Oi . We say
that Ni is

– a substitution node if Mi ⊆ {a → b | a, b ∈ V } (by any rule, a letter is substituted by
another one),

– a deletion node if Mi ⊆ {a → λ | a ∈ V } (by any rule, a letter is deleted), or
– an insertion node if Mi ⊆ {λ → b | b ∈ V } (by any rule, a letter is inserted).

Every node has rules from one type only. The input filter Ii and the output filter Oi control the
words which are allowed to enter and to leave the node, respectively. With any node Ni and
any time moment t ≥ 0, we associate a set Ct (i) of words (the words contained in the node at
time t). Initially, Ni contains the words of Ai . In an evolutionary step, we derive from Ct (i)
all words by applying rules from the set Mi . In a communication step, any processor Ni sends
out all words from the set Ct (i)∩ Oi (which pass the output filter) to all processors to which
a directed edge exists (only the words from Ct (i)\Oi remain in the set associated with Ni )
and, moreover, it receives from any processor Nk such that there is an edge from Nk to Ni all
words sent by Nk and passing the input filter Ii of Ni , i. e., the processor Ni gets in addition all
words of Ct (k) ∩ Ok ∩ Ii . We start with an evolutionary step and then communication steps
and evolutionary steps are alternately performed. The language consists of all words which
are in the node N j (also called the output node, j is chosen in advance) at some moment t ,
t ≥ 0.

If two networks of evolutionary processors generate the same language, we say that the
networks are equivalent to each other.

For a family X ∈ G, we denote the family of languages generated by networks of evo-
lutionary processors where all filters are of type X by E(X). By E(REGi ) for i ≥ 1, we
denote the family of languages that are generated by networks where all filters are accepted
by deterministic finite automata over the alphabet of the network and with at most i states.
It is essential that the input alphabets of all the automata in a network are defined over the
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whole alphabet of the network because otherwise it could happen that the acceptance or
rejection of a word is not defined. For example, let a network be defined over the alphabet
{a, b} and consider a node in this network that allows all words that do not contain the letter
b to enter this node and only those words. If the automaton representing this input filter
would be defined only over the alphabet a, then the words containing b could not be handled.
This gives a difference between networks with filters from a family X ∈ G and those where
the filters are represented by automata. In the first situation, the filters of a network can be
arbitrarily chosen from the family X , whereas in the second case, they depend on each other
in that sense that they must have the same input alphabet.

If we compare two networks with respect to the generative capacity and both have filters
that are independent from each other or both have filters represented by automata, then the
following fact is helpful.

Lemma 1 Let X and Y be two families of the set G such that X ⊆ Y or let X = REGi and
Y = REG j for natural numbers i and j with 1 ≤ i ≤ j . Then the inclusion

E(X) ⊆ E(Y )
holds.

Proof Let X and Y be two language families with the properties given in the statement.
Further, let L be a language generated by a network N with all filters from the family X .
Then the network N has also all filters from the family Y . Hence, L ∈ E(Y ), which yields
the inclusion. ��

The following theorem is known (see, e.g., [5]).

Theorem 1 E(REG) = RE.

3 Some general results

We start with some results which hold for every type of filters.

Lemma 2 For every network N of evolutionary processors over an alphabet V , there is a
network N ′ of evolutionary processors over the same alphabet V that generates the same
language as N and has the property that its output node N ′ has the form N ′ = (∅,∅, V ∗, V ∗)
and no edge leaves the output node N ′.
Proof Let N = (V, N1, N2, . . . , Nn, E, j) be a network of evolutionary processors where
the output node N j = (M j , A j , I j , O j ) has not the required property:

N j �= (∅,∅, V ∗, V ∗)

or there is an edge leaving node N j . We define a new network

N ′ = (V, N ′
1, N ′

2, . . . , N ′
n+4, E ′, n + 4)

by

N ′
i = Ni for 1 ≤ i ≤ n,

N ′
i = (Mi , Ai , Ii , Oi ) for n + 1 ≤ i ≤ n + 4,

E ′ = E ∪ {(i, n + 1) | (i, j) ∈ E}
∪ {(n + 1, n + 2), (n + 1, n + 4), (n + 2, n + 4)}
∪ {(n + 2, n + 3), (n + 3, n + 2)}
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where

Mn+1 = ∅, Mn+2 = M j , Mn+3 = ∅, Mn+4 = ∅,
An+1 = A j , An+2 = ∅, An+3 = ∅, An+4 = ∅,
In+1 = I j , In+2 = V ∗, In+3 = V ∗\O j , In+4 = V ∗,
On+1 = V ∗, On+2 = V ∗, On+3 = V ∗, On+4 = V ∗.

The network is illustrated below:

The new output node N ′
n+4 satisfies the condition because N ′

n+4 = (∅,∅, V ∗, V ∗) and no
edge leaves the node N ′

n+4. We now show that L(N ′) = L(N ).
The subnetwork consisting of N ′

1, N ′
2, . . . , N ′

n is the same as N . The initial sets of N ′
j

and N ′
n+1 as well as the input filters and incoming edges coincide. Hence, if a wordw is in N j

at an even moment t , then w is also in this moment in node N ′
j and N ′

n+1. The word is then
sent unchanged to the output node N ′

n+4. Thus, w ∈ L(N ) and w ∈ L(N ′). Additionally, w
is also sent to N ′

n+2 where the same rules as in N j can be applied. Hence, if a word v is
derived in N j (and, hence, v ∈ L(N )) then v is derived in N ′

n+2 and will be sent to the output
node in the next communication step, hence, v ∈ L(N ′). If the word v remains in N j then a
word u ∈ L(N ) will be derived from v in N j . In N ′, the word v will also be sent to N ′

n+3
which takes the word and sends it back to N ′

n+2 where it will be derived to u which will be
sent to the output node afterwards. Hence, as long as a word is modified in N j , the same
word is modified in N ′

n+2 with intermediate communication to N ′
n+3 and all these words also

arrive in the output node. Thus, L(N ) ⊆ L(N ′).
Every word w ∈ L(N ′) came to node N ′

n+4 from node N ′
n+1 or N ′

n+2. If it came from
N ′

n+1 then the word was also in node N j , hence,w ∈ L(N ). If it came from N ′
n+2 then it has

been derived from a word v which came from N ′
n+1 or N ′

n+3. If the word v came from N ′
n+1

then v was also in N j and has derivedw, hence,w ∈ L(N ). If v came from N ′
n+3 then v was

previously in node N ′
n+2 and was derived from a word u. Furthermore, v /∈ O j . If u came

from N ′
n+1 then u was also in N j and has derived v which remained there and derived w,

hence, w ∈ L(N ). If u came from N ′
n+3 then the argumentation can be repeated because for

every word in u in N ′
n+2 there was a word ũ in N ′

n+1 with ũ �⇒∗
M j

u and all words during

this derivation did not belong to O j . Hence, ũ was also in N j where the same derivation of
u took place. Thus, we obtain L(N ′) ⊆ L(N ).

Since L(N ′) = L(N ) the network N ′ has the required properties. ��

In the previous lemma, we stated that a kind of normal form exists where the output node
does not ‘actively’ contribute to the language generated (it only receives words and selects
words according to the input filter but does not modify them nor does it send words to other
nodes).
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We now give another kind of normal form.

Lemma 3 For each network of evolutionary processors over an alphabet V , there is an
equivalent network with the property that all output filters are equal to V ∗ and that the nodes
with input filters different from V ∗ have no evolution rules and no initial words.

Proof The property stated in the lemma can be achieved in the following way. Let N be a
network of evolutionary processors with a working alphabet V and let Ni = (Mi , Ai , Ii , Oi )

be a node of the network. This node can be simulated by the following network:

The incoming edges now arrive at node Ni,1, the outgoing edges leave from node Ni,4.
The evolution in this network is the same as in the original node Ni . A word that arrives in
node Ni also arrives in node Ni,2 via Ni,1. A word that leaves the node Ni also leaves the
network via Ni,4, and a word that remains in Ni (because it does not pass the output filter)
is sent from Ni,2 to Ni,3 and is then returned unchanged to node Ni,2. All output filters are
equal to V ∗ and nodes with input filters (possibly) different from V ∗ have no evolution rules
and no initial words.

From the construction in the proof of the previous lemma can be seen that if the input
filters of the original network belong to a family X which is closed under complement then
the input filters of the constructed network also belong to the family X .

The Lemmas 2 and 3 are useful when we want to construct an equivalent network with
certain properties from a given network in such a way that the new network simulates the
original one. Since the set V ∗ for an alphabet V belongs to every considered language family
except FIN , we can often leave nodes with such filters as they are. Those nodes that have to
be changed do not contain rules or initial words. Hence, these lemmas allow us to concentrate
on simulating the input filters only (and furthermore, the output node – which has a special
role – does not need to be considered).

We now continue with some lower bounds for language families.

Theorem 2 Let X ∈ G ∪ {REGi |i ≥ 1}. Then each language L ∈ X can be generated by a
NEP N with at most two nodes and with filters from X.

Proof Let X = FIN . Let L be a finite set over V . Then the evolutionary network

(V, (∅, L ,∅,∅),∅, 1)

with all filters from FIN generates the language L .
Let X �= FIN and let L ∈ X be a language over an alphabet V . We construct the NEP

N = (V, N1, N2, E, 2) given as
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Every word w ∈ V + will be derived in node N1 and will be communicated to node N2

which accepts all words that also belong to the language L . The language generated by the
network N is

L(N ) = A2 ∪ (V + ∩ L) = L .

All filters are of type X . ��
The previous theorem yields the following more general result.

Corollary 1 For each family X ∈ G ∪ {REGi |i ≥ 1}, we have X ⊆ E(X).
Any monoidal language can be generated by a network of evolutionary filters where all

filters belong to a subregular family of languages considered in this paper.

Corollary 2 For each family X ∈ G ∪ {REGi |i ≥ 1}, we have MON ⊆ E(X).
Proof By the relations given in Figure 1 and the statement of Corollary 1, it is sufficient to
show the inclusions

MON ⊆ E(FIN) and MON ⊆ E(REG1).

Let V be an alphabet and L = V ∗. Then the evolutionary network

(V, ({λ → a|a ∈ V }, {λ},∅,∅),∅, 1)

generates the language L . Moreover, the filters are finite and acceptable by a deterministic
finite automaton over the alphabet V with one state. Thus, any monoidal language L = V ∗
belongs to the families E(FIN) and E(REG1). ��

4 Computationally complete cases

In this section, we present the computational completeness of some families E(X).
A network of evolutionary processors with arbitrary regular filters can be changed to a

network that generates the same language but has filters only that are all either suffix-closed
or circular. This yields the following statement.

Theorem 3 E(SUF) = RE and E(CIRC) = RE.

Proof It is sufficient to prove that any recursively enumerable language can be generated
by a network of evolutionary processors where all filters are suffix-closed or all filters are
circular regular languages.

First, we show that E(SUF) = RE. Let L be a recursively enumerable language. Let
N = (V, N1, N2, . . . , Nn, E, j) be a network of evolutionary processors with arbitrary
regular filters such that L(N ) = L . For any node Ni = (Mi , Ai , Ii , Oi ), we construct the
sets

I ′
i = {X}Ii {Y } ∪ Suf (Ii ){Y } ∪ {λ},

O ′
i = {X}Oi {Y } ∪ Suf (Oi ){Y } ∪ {λ},
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where X and Y are two new symbols. By definition, I ′
i and O ′

i are suffix-closed. We assume
that the network N has the property N j = (∅,∅, I j , O j ) and no edge leaves the output node
(according to the previous Lemma).

We consider the network

N ′ = (V ∪ {X, Y }, N ′
1, N ′

2, . . . , N ′
n, N ′

n+1, N ′
n+2, E ′, n + 2)

with

N ′
i = (Mi , {X}Ai {Y }, I ′

i , O ′
i ) for 1 ≤ i ≤ n,

N ′
n+1 = ({X → λ, Y → λ},∅, I ′

j , V ∗),
N ′

n+2 = (∅,∅, V ∗,∅),
E ′ = E ∪ {(i, n + 1)|(i, j) ∈ E} ∪ {(n + 1, n + 2)}.

It is obvious that the filters of N ′
n+1 and N ′

n+2 are suffix-closed, too. Thus N ′ is a network
of type SUF.

We now prove that L(N ) = L(N ′). We start with words of the form XwY and as long
as these words are changed according to rules of Mi , 1 ≤ i ≤ n, they can only be sent to
nodes N ′

s , 1 ≤ s ≤ n, and N ′
n+1. Thus we simulate a derivation in N (in N ′ we have an X in

front of and a Y behind the word w occurring in N ) and get into N ′
n+1 exactly those words

XwY whose subword w comes into N j . Now X and Y are removed and the resulting word
w is sent to N ′

n+2. Other words cannot arrive in N ′
n+2 and other words do not appear in N j .

Hence, we have L(N ′) = L(N ).
To show that E(CIRC) = RE, we repeat the previous proof with the following modifica-

tions. We set

I ′
i = Circ({X}Ii {Y }) and O ′

i = Circ({X}Oi {Y }) for 1 ≤ i ≤ n.

This ensures that Circ(F) = F for all filters F of the new network N ′. Then the proof
proceeds as in the case of suffix-closed filters. ��

Any recursively enumerable language can also be generated if we allow only definite
languages as filters.

Theorem 4 E(DEF) = RE.

Proof It is known that any recursively enumerable language can be generated by a phrase
structure grammar in Kuroda normal form, i. e., by a grammar where all productions have
one of the following forms:

AB → C D, A → C D, A → x, where A, B,C, D ∈ N , x ∈ N ∪ T ∪ {λ}.
We construct a network of evolutionary processors with definite filters only that simulates a
phrase structure grammar in Kuroda normal form.

Let G = (N , T, P, S) be a grammar in Kuroda normal form, let V = N ∪ T and
let x1, x2, . . . , xs be the elements of V .

Let p = α → β be a rule of P and wαat at−1 · · · a1 be a sentential form of the grammar
G with w ∈ V ∗ and ai ∈ V for all natural numbers i with 1 ≤ i ≤ t .

The idea of the simulation is to store the letters a1, a2, . . . , at together with their positions
in the suffix somewhere else in the word to obtain the subword α in the end of the word. There
it can be replaced by the right hand side β of the rule (by definite filters it can be checked at
the end of a word that the rule is applied correctly). After that, the letters a1, a2, . . . , at are
restored at their correct positions.
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Since a word can be arbitrarily large, the position of a letter ai can be an arbitrarily
large number and hence cannot be represented by a single symbol from a finite repository.
The trick here is to encode the position by the number of occurrences of a special symbol
representing ai . To be more precise, we encode the position i of a letter a by 2i occurrences of
the symbol [a]. If a symbol a occurs at positions i1, i2, . . . , i p , then the number of occurrences
of the symbol [a] in the word will be 2i1 +2i2 +· · ·+2i p . Hence, the number of occurrences
of a symbol [a] in a word – read as a binary number – indicates by ‘1’ at which positions in
the suffix at at−1 · · · a0 the letter a occurs.

We now construct a network N for simulating a grammar in Kuroda normal form. Let
p1, . . . , pk be the rules of the form A → BC with A, B,C ∈ N (k ≥ 0). Let pk+1, . . . , pm

be the rules of the form AB → C D with A, B,C, D ∈ N (m ≥ k). Let pm+1, . . . , pq be
the rules of the form A → x with A ∈ N and x ∈ V (q ≥ m). Let pq+1, . . . , pn be the rules
of the form A → λ with A ∈ N (n ≥ q).

For each rule pi with 1 ≤ i ≤ m, we define two mappings li and ri as follows:

li : {2} −→ N , if 1 ≤ i ≤ k,

li : {1, 2} −→ N , if k + 1 ≤ i ≤ m,

ri : {1, 2} −→ N , if 1 ≤ i ≤ m.

If pi is a rule A → BC then we set li (2) = A, ri (1) = B, and ri (2) = C . If pi is a rule
AB → C D then we set li (1) = A, li (2) = B, ri (1) = C , and ri (2) = D (the values are
the non-terminals of the left hand side and the right hand side at the respective position). As
intermediate symbols, we introduce symbols 〈i, j〉 where i is the number of a rule (1 ≤ i ≤ m)
and j is a position (1 ≤ j ≤ 2). We collect these symbols into two sets 〈1〉 and 〈2〉:

〈1〉 = {〈i, 1〉|1 ≤ i ≤ m},
〈2〉 = {〈i, 2〉|1 ≤ i ≤ m}.

Further let

V ′ = {x ′|x ∈ V },
[V ] = {[x]|x ∈ V }, and

〈V 〉 = {〈x〉|x ∈ V }
be mutually disjoint sets. We set

V̂ = V ∪ V ′ ∪ [V ] ∪ 〈V 〉 ∪ {I, I′} ∪ 〈1〉 ∪ 〈2〉.
Let F be a symbol that does not occur in the set V̂ .

We define the network N over the alphabet U = V̂ ∪ {F}. The network has the following
structure, where Nout denotes the output node:
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The subnetwork N0 consists of the only node (the initial node) N0 defined by

M0 = ∅, A0 = {S}, I0 = V ∗, O0 = V ∗.

In the cycle consisting of N0 and N1, the simulation of the rules p1, p2, . . . , pm (where
the length of the right hand side is greater than one) is performed. In the cycle of N0 and N2,
the application of the rules pm+1, pm+2, . . . , pq is simulated. In the cycle of N0 and N3, the
erasing rules of P are simulated (if P does not contain such rules, the subnetwork N3 is not
needed).

The subnetwork N2 consists of the node N2 defined by

M2 = {pm+1, pm+2, . . . , pq},
A2 = ∅, I2 = V ∗, O2 = V ∗.

The subnetwork N3 consists of the node N3 defined by

M3 = {pq+1, pq+2, . . . , pn},
A3 = ∅, I3 = V ∗, O3 = V ∗.

The rules pm+1, . . . , pn may lead to a terminal word (in contrast to the rules p1, . . . , pm).
Therefore, terminal words can only be produced in the nodes N2 and N3. The words from
these nodes are also sent to the output node Nout, which takes all incoming terminal words:

Mout = ∅, Aout = ∅, Iout = T ∗, Oout = U∗.

All words that arrive in this node form the language that is generated by the network.
The subnetwork N1 has the form

where the node N1 is defined by

M1 = {x → x ′|x ∈ V } ∪ {li (2) → 〈i, 2〉|1 ≤ i ≤ n},
A1 = ∅, I1 = V̂ ∗, O1 = V̂ ∗.

This node marks a symbol for removing from the end or for replacing according to a
rule. If the marked symbol is not the right-most symbol, the word will be lost in the next
communication step because no adjacent node allows the word to enter. If the right-most
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symbol is marked for deleting, exactly one of the subnetworks N1,i for 1 ≤ i ≤ s will take
the word, delete the last symbol, and store its information somewhere in the word.

In each subnetwork N1,i for 1 ≤ i ≤ s, the relocation (elimination and storage of its
information somewhere else) of the last symbol is performed if it is equal to x ′

i . In the
subnetwork N4, the application of a rule is simulated. The node N5 is defined by

M5 = ∅, A5 = ∅, I5 = V̂ ∗, O5 = V̂ ∗.

In each subnetwork N2,i for 1 ≤ i ≤ s, the letter xi is restored at the end of the current
word if it has been there originally.

For 1 ≤ i ≤ s, the subnetwork N1,i checks whether the last symbol of the word is the
letter x ′

i . If this is not the case, then the word is lost. Otherwise, the symbol ‘I’ is inserted
which indicates the position of the last letter in the original suffix at at−1 · · · a1 (the number of
occurrences of the symbol ‘I’ is equal to the index of the last letter in the suffix). For example,
let the current suffix be at at−1 · · · a j+1a′

j . Let xi be the letter a j . Then the subnetwork N1,i

(and no other subnetwork N1,l ) processes the word. After inserting the symbol ‘I’, the word
contains exactly j occurrences of this symbol. Then the symbol [xi ] (which is equal to [a j ])
is inserted 2 j times (one symbol is inserted and then the number of occurrences is doubled
as many times as the symbol ‘I’ appears). Finally, the marked letter a′

j is deleted.
The network N1,i has the following form (1 ≤ i ≤ s) — the initial set is empty in each

node:
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In the subnetwork N4, the application of a rule pi with 1 ≤ i ≤ m is simulated. This
subnetwork has the following form (the initial set is empty in each node):

The nodes N4,1 and N4,2 take the word if its last symbol has been marked for the simulation
of a rule by a symbol of the set 〈2〉. Then a symbol of the set 〈1〉 is produced (inserted, if the
marking stands for a rule of the form A → BC , or obtained by substitution, if the marking
stands for a rule of the form AB → C D). The third node N4,3 checks whether at both places
the same rule was chosen and whether the markings are in the correct order (whether the
word ends with a subword 〈i, 1〉〈i, 2〉 for some rule pi with 1 ≤ i ≤ n. If it is correct, the
intermediate symbols are replaced by the respective symbols of the right hand side of the
rule, otherwise the word is lost.

If the rule was simulated, the word is sent to node N5 from where it is distributed to every
subnetwork N2,i for 1 ≤ i ≤ s. Each subnetwork N2,i checks whether the letter xi has to
be restored at the end of the word. Let j be the number of occurrences of the symbol ‘I’.
If the symbol [xi ] occurs 2 j times in the word, then a j = xi and xi is restored, otherwise,
the word is lost in this network because, at some moment, the only applicable rule is a rule
which introduces the ‘fail’ symbol F (but for every number j between t and 1, the condition
a j = xi is satisfied for some letter xi and, hence, that subnetwork succeeds). When all
letters of the suffix have been restored, the word sent from node N5 to the node N0 does not
contain auxiliary symbols. Hence, it is taken by this node and the simulation of a rule pi with
1 ≤ i ≤ n is finished.

The subnetwork N2,i has the following form for 1 ≤ i ≤ s (the initial set is empty in each
node):
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The network N constructed above for an arbitrary phrase structure grammar has only
filters that are definite languages. This proves the claim. ��

Even if we restrict the filters to combinational languages, any recursively enumerable
language can be generated.

Theorem 5 E(COMB) = RE.

Proof The network N constructed in the proof of Theorem 4 with definite filters has—up to
one exception – only combinational filters. The exception is node N4,3 where the input filter
V̂ ∗{〈i, 1〉〈i, 2〉|1 ≤ i ≤ n} is not combinational.

We now replace the node N4,3 by the following network (the initial set is empty in each
node):
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We note that all filters of the constructed network are combinational languages.
On the path of the nodes N4,3,1,i and N4,3,2,i for 1 ≤ i ≤ n, the incoming word is checked

for the suffix 〈i, 1〉〈i, 2〉. A word enters node N4,3,3 if and only if it enters node N4,3. In
both nodes, it is changed in the same manner. Hence, a word leaves the subnetwork if and
only if it leaves node N4,3. Thus, the subnetwork simulates the behaviour of node N4,3 and
we obtain a network with combinational filters only that generates the same language as the
network N .

This yields the relation E(COMB) = E(DEF) and, together with the equality E(DEF) =
RE (Theorem 4), we obtain the equality E(COMB) = RE. ��

With the help of the previous theorem, we show the next one.

Theorem 6 E(UF) = RE.

Proof By Theorem 1, the relations of Fig. 1, and Lemma 1, we have the inclusion E(UF) ⊆
RE.

Let L ∈ RE. By Theorem 5 we can assume that L is generated by an evolutionary
network N with combinational filters and L = L(N ). Let U be the alphabet of the network.
Furthermore, let N be a node of the network. Then N has the form

N = (M, A, V ∗
1 {a1, a2, . . . , an}, V ∗

2 {b1, b2, . . . , bm})

with V1 ⊆ U , ai ∈ V1 for 1 ≤ i ≤ n, V2 ⊆ U , and b j ∈ V2 for 1 ≤ j ≤ m. Let c1, c2, . . . , ck

be the other letters of V2: {c1, c2, . . . , ck} = V2\{b1, b2, . . . , bm}. We replace the node N by
the subnetwork given in the following figure
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where the nodes are defined as follows:

N a
i = (∅,∅, V ∗

1 {ai },U∗) for 1 ≤ i ≤ n,

N ′ = (M, A,U∗, V ∗
2 ),

N b
i = (∅,∅,U∗, V ∗

2 {bi }) for 1 ≤ i ≤ m,

N c
i = (∅,∅,U∗, V ∗

2 {ci }) for 1 ≤ i ≤ k.

Every edge from a node K to the node N is replaced by edges from K to every node N a
i

for 1 ≤ i ≤ n. Every edge from the node N to a node K is replaced by edges from every
node N b

i for 1 ≤ i ≤ m to A.
Then a word w passes the node N if and only if it passes the subnetwork defined above.

Indeed, w enters the subnetwork if and only if it passes the input filter of one of the nodes
N a

i , which is equivalent to passing the input filter of N . Then a rule is applied to it; this is
simulated in the subnetwork in the node N ′, where every string that entered the subnetwork
enters after an evolutionary and a communication step. Further, the string exits the node N
if it belongs to the set V ∗

2 and its last letter is one of the bi with 1 ≤ i ≤ m; equivalently,
in the subnetwork, the word remains in the node N ′ if it does not belong to V ∗

2 , otherwise
it is communicated to the nodes N b

i for 1 ≤ i ≤ m and N c
i for 1 ≤ i ≤ k and exits the

subnetwork if it passes the output filter of one of the nodes N b
i . If it does not pass such an

output filter, then it passes the output filter of one of the nodes N c
i and is returned to node N ′

(which simulates that it remains in the node N as well).
If we replace all nodes of the network N as described above, we obtain a network N ′

which also generates the language L . Moreover, if V = {x1, x2, . . . , x p}, then

V ∗{a} = ({x1}∗{x2}∗ · · · {x p}∗)∗{a}.

Therefore all filters of the constructed network N ′ are union-free. Hence we get L ∈ E(UF).
This proves the other inclusion RE ⊆ E(UF). ��

By the relations shown Fig. 1, Lemma 1, and Theorem 1, we obtain the following theorem.

Theorem 7 E(ORD) = E(NC) = E(PS) = RE.
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5 Finite filters

In this section, we discuss the case of finite filters.
We first show that we can assume without loss of generality that the output node has no

outgoing edges. Let N ′ = (V, N1, N2, . . . , Nn, E ′, j) be a network with finite filters only.
We first add a node Nn+1 that is almost the same node as the output node N j but has no
outgoing edges and declare this node to be the new output node. This yields a new network
N = (V, N1, N2, . . . , Nn, Nn+1, E, n + 1) with

Nn+1 = (M j , A j , I j , O j ) and E = E ′ ∪ {(i, n + 1)|(i, j) ∈ E ′}.

Now the output node only collects words and modifies them according to its rules (like the
original output node) but does not bring them back to circulation in the network. However,
at each moment, the nodes N j and Nn+1 contain the same words. Thus, the networks N ′ and
N generate the same language.

Corollary 3 For each network with finite filters only, there is an equivalent network with
only finite filters and the property that the output node has no outgoing edges.

As we will see in the sequel, the language generated by a network with finite filters only
and with a deleting or substituting output node is finite. We also show how the language can
be computed from the filters. From now on, we assume that the network considered has n +1
nodes N1, N2, . . . Nn+1 where the node Nn+1 is the output node and has no outgoing edges.

If a node is a substitution or insertion node, then words cannot become shorter in this
node. If a word in such a node among the nodes N1, N2, . . . , Nn is longer than any word of
the respective output filter, then it is useless – it cannot move to another node and it cannot
be changed to a word that could leave the node, so neither itself nor a possible modification
can ever enter the output node. We set

mi = max{|w||w ∈ Oi }

as the maximal length of words in the output filter Oi for 1 ≤ i ≤ n + 1. In the computation
of a network, there are two alternating phases: From an even moment to an odd moment,
words are modified in a node according to the node’s rules (evolutionary step). From an odd
moment to an even moment, words are communicated in the network (communication step).
For the generated language, the exact moments are not of importance (only the parity of the
moment).

We consider the cooperation of the nodes N1, N2, . . . , Nn . We take, for each node, all
words that are contained in this node in an even moment and all those present in some odd
moment unless they are useless:

– For i = 1, 2, . . . , n, if Ni is deleting, we set

Le
t (i) =

t⋃

m=0

C2m(i) for t ≥ 0 and

Lo
t (i) =

t⋃

m=0

C2m+1(i) for t ≥ 0.
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– For i = 1, 2, . . . , n, if Ni is substituting or inserting, we set

Le
t (i) = Vmi ∩

t⋃

m=0

C2m(i) for t ≥ 0 and

Lo
t (i) = Vmi ∩

t⋃

m=0

C2m+1(i) for t ≥ 0.

All these sets are monotonically increasing with the time t . In a deleting node Ni , a word
cannot be longer than

max{|w||w ∈ Ai ∪ Ii }.
For a substituting or inserting node Ni , a word in any of the sets Lo

t (i) and Le
t (i) for t ≥ 0

cannot contain more than mi letters. Thus, all these sets are finite. Hence, there is a moment
t∗ such that none of these sets changes anymore (for 1 ≤ i ≤ n, we have Le

t∗(i) = Le
t∗+1(i)

and Lo
t∗(i) = Lo

t∗+1(i)). This moment can be computed as well as the sets Le
t∗(i) and Lo

t∗(i)
for 1 ≤ i ≤ n.

If the output node is deleting, then the language generated is

L(N ) = Le
t∗(n + 1) ∪ Lo

t∗(n + 1).

The set is finite and can be computed.
If the output node is substituting or inserting, then the language generated consists of all

words that are present in the output node at the beginning of the computation, all words that
are communicated to this node at some moment, all words that are derived from those words,
and all words that are derived from words contained in the node that do no leave the node in
a communication step. The language generated can be obtained successively as follows:

L1 = An+1 ∪
⋃

m≥1

⋃

(k,n+1)∈E

(C2m−1(k) ∩ Ok ∩ In+1),

L2 = L1 ∪ {v|∃w ∈ L1 ∃r ∈ Mn+1 : w �⇒r v},
Ll = Ll−1 ∪ {v|∃w ∈ Ll−1\On+1 ∃r ∈ Mn+1 : w �⇒r v} for l ≥ 3,

L(N ) =
⋃

i≥1

Li .

The set L1 can also be written as

L1 = An+1 ∪
⋃

(k,n+1)∈E

⎛

⎝
( ⋃

m≥1

C2m−1(k)
)

∩ Ok ∩ In+1

⎞

⎠

due to commutativity and distributivity. If a node Nk is deleting, then
⋃

m≥1

C2m−1(k) = Lo
t∗(k).

If a node Nk is substituting or inserting, then

Lo
t∗(k) =

⎛

⎝
⋃

m≥1

C2m−1(k)

⎞

⎠ ∩ Vmk
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and, since Ok ⊆ Vmk , we obtain
⎛

⎝
⋃

m≥1

C2m−1(k)

⎞

⎠ ∩ Ok = Lo
t∗(k) ∩ Ok .

This yields for the language L1

L1 = An+1 ∪
⋃

(k,n+1)∈E

(
Lo

t∗(k) ∩ Ok ∩ In+1
)
. (1)

The language is finite and computable.
If the output node is substituting, then, from set L2 on, no word can occur that is longer

than any word of L1 (when deriving, the length does not change). Hence, there is a number
l ≥ 1 such that Ll+1 = Ll and then

L(N ) =
l⋃

i≥1

Li .

Thus, the language generated is finite and computable.

Corollary 4 The language generated by a network with finite filters only and with a deleting
or substituting output node is finite and can be computed from the filters.

If the output node is inserting, we continue as follows. We compute all words of the
generated language up to the length of mn+1 + 1. Words with that length cannot leave the
output node anymore. From those words on, any word belongs to the generated language that
can be obtained by successively applying rules of the node.

By L<

i we denote the set of all words of Li that have a length less than mn+1 + 1; by L=
i

we denote the set of all words of Li that have a length of mn+1 + 1; by L>

i we denote the set
of all words of Li that have a length greater than mn+1 + 1 for i ≥ 1:

L<

i = Li ∩ Vmn+1 ,

L=
i = Li ∩ V mn+1+1,

L>

i = Li \Vmn+1+1.

The sets L<

i for i ≥ 1 are all subsets of the finite set Vmn+1 . By construction of these sets, we
know that the equality L<

i = L<

i+1 implies the equality of all further languages: L<

i+1 = L<

i+2.
Hence, all the languages L<

i for i ≥ 1 are finite and computable.
Let

K (N ) =
⋃

i≥1

L<

i (2)

be the set of all words generated by the network N that have a length of at most mn+1 letters.
The sets L=

i for i ≥ 1 are all subsets of the finite set V mn+1+1. By construction of these
sets, we know that the equality L=

i = L=
i+1 implies the equality of all further languages:

L=
i+1 = L=

i+2. Hence, all the languages L=
i for i ≥ 1 are finite and computable. For the sets

L>

i with i > 1, we obtain

L>

i = L>

i−1 ∪ {v|∃w ∈ L=
i−1 ∪ L>

i−1 ∃r ∈ Mn+1 : w �⇒r v}.
The union of all those sets consists of all words that are in L1 and have a length greater than
mn+1 + 1, all words that are derived (in at least one step) from these words by rules of the
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set Mn+1, as well as all words that are derived (in at least one step) from the words of length
mn+1 + 1 contained at some moment in the output node. Let S(N ) denote the set

S(N ) = L>

1 ∪
⋃

i≥1

L=
i (3)

and let D(N ) be the set of all words that are derived in one or more steps from the words of
the set S(N ). Since the output node is inserting, no word from the set S(N ) or D(N ) can
leave the output node (because the words are longer than the longest word in the output filter
On+1). Let U be the set of all letters that can be inserted by this node:

U = {a|λ → a ∈ Mn+1}.
Then we obtain

D(N ) = {u1w1u2w2 . . . ulwl ul+1|w1w2 . . . wl ∈ S(N ), u1u2 . . . ul+1 ∈ U+} (4)

is the set of all words that are obtained by inserting at least one symbol from the set U into
a word from the set S(N ). Since the set S(N ) is finite and computable, the language D(N )
is regular and computable. This yields for the language generated by the network

L(N ) =
⋃

i≥1

L<

i ∪
⋃

i≥1

L=
i ∪ L>

1 ∪
⋃

i≥2

L>

i .

Corollary 5 The language generated by a network with finite filters only and with an insert-
ing output node can be computed from the filters and is the union

L(N ) = K (N ) ∪ S(N ) ∪ D(N )
of the sets K (N ), S(N ), and D(N ) defined above (Eqs. 2, 3, and 4).

The language generated by the network is regular and computable from the filters of the
network, because the united sets are regular (K (N ) and S(N ) even finite) and computable.

Corollary 6 E(FIN) ⊆ REG.

There is a regular language that cannot be generated by a network with finite filters only.

Lemma 4 The language L = {a}∪{an |n ≥ 3} can not be generated by a network with finite
filters only.

Proof Suppose the language L is generated by a network with only finite filters. According
to the considerations above, the output node is an inserting node (otherwise, only finite
languages are generated). Hence, the rule set is M = {λ → a}. Since the letter a belongs to
the language generated, it belongs to the initial language of the output node or it arrives there
by communication. In both cases, the word aa is obtained by evolution in the output node
and belongs to the language generated which is a contradiction.

Hence, there is no network with only finite filters that generates the language L . Thus,
L /∈ E(FIN). ��

The previous statement yields the proper inclusion.

Theorem 8 E(FIN) ⊂ REG.

Proof From Corollary 6, we have the inclusion E(FIN) ⊆ REG. By Lemma 4, we know that
the regular language L = {a} ∪ {an |n ≥ 3} does not belong to the family E(FIN). Hence,
the inclusion is proper. ��
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We now continue with certain normal forms for networks with finite filters.

Lemma 5 For each NEP N with only finite filters, we can construct a NEP N ′ with only
one processor and finite filters that generates the same language as N .

Proof Let N = (V, N1, N2, . . . , Nn, E, j) be a NEP with finite filters. We assume that the
output node has no outgoing edges what can always be achieved due to Corollary 3.

The set of all words that arrive in the output node is

B =
⋃

(k, j)∈E

(
Lo

t∗(k) ∩ Ok ∩ I j
)

according to Eq. 1.
If we add the words of the set B to the initial language of the output node, we can remove

all incoming edges from the output node, hence, we can delete all other nodes from the
network without changing the language generated. Thus, the network N ′ = (V, N ′

1,∅, 1)
with the node N ′

1 = (M j , A j ∪ B,∅, O j ) has only one node with finite filters and generates
the same language as N . ��
Lemma 6 For each NEP N over an alphabet V with only finite filters, we can construct an
equivalent NEP N ′ with two processors where every filter is equal to V ∗.

Proof Let N = (V, N1, N2, . . . , Nn, E, j) be a NEP with finite filters. We assume that the
output node has no outgoing edges what can always be achieved due to Corollary 3.

If the output node is substituting or deleting, the network generates a finite language L
according to Corollary 4. Hence, the network

N ′ = (V, N ′
1,∅, 1)

with

N ′
1 = (∅, L , V ∗, V ∗)

also generates the language L and has all filters from the family REG1.
If the output node is inserting, then there are finite sets K (N ) and S(N ), such that all

words of the language L(N ) are in one of these sets or belong to the set D(N ) that are
derived from the words of S(N ) (see Corollary 5).

We now construct a network

N ′ = (V, N ′
1, N ′

2, {(1, 2), (1, 1)}, 2)

with the two nodes

N ′
1 = (M j , S(N ), V ∗, V ∗) and N ′

2 = (∅, K (N ) ∪ S(N ), V ∗, V ∗).

The language generated by this network consists of all words of the set K (N ), all words
of the set S(N ), and all words that are derived from words of S(N ) by rules of the original
output node N j .

Hence,

L(N ′) = K (N ) ∪ S(N ) ∪ D(N ) = L(N )
and every filter is equal to V ∗. ��

The previous corollary immediately yields the following inclusion.

Corollary 7 E(FIN) ⊆ E(REG1).
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With the next lemma, we can even prove the strictness of the inclusion.

Lemma 7 The language L = {w|w ∈ {a, b, c}∗ and |w|a = |w|b = |w|c} cannot be gener-
ated by a network with finite filters only.

Proof Let us assume that the language L can be generated by a network with finite filters
only.

According to Lemma 5, there is a network N with one node N and finite filters only that
generates the language L . Since L is infinite and the initial language of the node N contains
only finitely many words, infinitely many words have to be produced by the rules. Since the
numbers of occurrences of the letters a, b, and c are unbounded, the node N has rules for
inserting all three letters. But then, from a word w ∈ L that is longer than any word in the
output filter, also the word aw is obtained which does not belong to the language L which is
a contradiction. Hence, the language L cannot be generated by a network with finite filters
only. ��

In [11], it was shown that the language

L = {w|w ∈ {a, b, c}∗ and |w|a = |w|b = |w|c}
belongs to the family E(REG1). Together with Lemma 7 and the inclusion from Corollary 7,
we obtain the proper inclusion.

Theorem 9 E(FIN) ⊂ E(REG1).

6 Further computationally non-complete cases

The following results show that the use of filters from the language families MON , NIL, or
COMM leads to one class of languages.

Theorem 10 E(MON) = E(COMM).

Proof According to Lemma 1, we have the inclusion E(MON) ⊆ E(COMM). We now show
the converse inclusion E(COMM) ⊆ E(MON).

Let V = {x1, x2, . . . , xr } be an alphabet. Let N be a network of evolutionary processors
with the working alphabet V and where all filters are commutative regular languages. We
assume that N has the property that all output filters are monoidal languages and that the
nodes with non-monoidal input filters have no evolution rules and no initial words (according
to Lemma 3, such a network can always be obtained).

We now show how a node N = (∅,∅, I, O) of the network N with an arbitrary commu-
tative regular input filter (and a monoidal output filter) can be simulated by a network where
all filters are monoidal.

For the alphabet V , we define four sets Ṽ , V ′, Ṽ ′, and V̂ :

Ṽ = {x̃ |x ∈ V },
V ′ = {x ′|x ∈ V },
Ṽ ′ = {x̃ ′|x ∈ V }, and

V̂ = V ∪ Ṽ ∪ V ′ ∪ Ṽ ′.

Furthermore, let h : V ∗ −→ Ṽ ∗ be the isomorphism with h(x) = x̃ for x ∈ V . By L̃ , we
denote the language h(L).
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The idea behind the simulation is as follows: Let w ∈ V be the arriving word. The word
w passes the input filter I if and only if the language Ĩ contains a permutation of the word
h(w). The language Ĩ is like I commutative and regular. The simulating network generates
every word of the language Ĩ scattered over one copy of w each and checks whether the
generated word is letter-equivalent up to the isomorphism h to the word w. If so, then the
language Ĩ contains a permutation of the word h(w) and hence w ∈ I (then the original
word w is restored by deleting all letters of h(w) and is allowed to leave the subnetwork).
If the generated word is not a permutation of the word w, then the whole word will be lost.
If the subnetwork does not generate a permutation of w at all, then no copy of the word w
leaves the network. Hence, the word w passes the subnetwork if and only if it passes the
input filter I .

Let G = (N , Ṽ , P, S) be a regular grammar that generates the language Ĩ . We now create
the informally described network that simulates the grammar G. We assume that all rules
in P have the form A → aB or A → a for non-terminals A, B ∈ N and a terminal symbol
a ∈ Ṽ . Additionally, the rule S → λ is permitted if the axiom S does not occur on the right
hand side of a rule.

For each non-terminal X ∈ N , we set

R(X) = {〈aY 〉|X → aY ∈ P}
as the set of symbols representing the right hand sides of the non-terminating rules,

Tt (X) = {a|a ∈ Ṽ and X → a ∈ P}
as the set of all terminal symbols that are generated by X with terminating,

Npost(X) = {Y |Y ∈ N and ∃a ∈ Ṽ : X → aY ∈ P}
as the set of all non-terminals that are generated by X , and

Tpre(X) = {a|a ∈ Ṽ and ∃Y ∈ N : Y → aX ∈ P}
as the set of all terminal symbols that are generated at the same time as X . The ter-
minating non-terminals (those non-terminals X ∈ N for which a rule X → a ∈ P
exists for a terminal symbol a ∈ Ṽ ) are gathered in the set Nt . Furthermore, we set
R = {〈aY 〉|∃X ∈ N : X → aY ∈ P}.

For every non-terminal X ∈ N , we define two nodes

NX = (MX , AX , IX , OX ) and

NX ′ = (MX ′ , AX ′ , IX ′ , OX ′)

as follows:

MX = {λ → 〈aY 〉|X → aY ∈ P},
AX = ∅,
IX = (V ∪ Ṽ )∗,

OX = (R ∪ V ∪ Ṽ )∗,
MX ′ = {〈aX〉 → a|a ∈ Tpre(X)},
AX ′ = ∅,
IX ′ = ({〈aX〉|a ∈ Tpre(X)} ∪ V ∪ Ṽ )∗,

OX ′ = (V ∪ Ṽ )∗.
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We put an edge from NX to NY ′ if Y ∈ Npost(X) and an edge from NX ′ to NX for
each non-terminal X ∈ N . In these nodes, the application of rules of the form X → aY is
simulated. First, the word is in node NX , then a is inserted somewhere in the word (by NY ′ )
and then the word is in node NY .

For each terminating non-terminal X ∈ Nt , we additionally define a node

NXt = (MXt , AXt , IXt , OXt )

by the sets MXt = {λ → a|a ∈ Tt (X)}, AXt = ∅, and IXt = OXt = (V ∪ Ṽ )∗ and connect
the node NX ′ to this node.

In these nodes, the simulation of the derivation ends. Any resulting word contains now
the word w which entered the subnetwork as a scattered subword and a permutation of a
word of the language Ĩ as a scattered subword. Then it will be checked whether these two
subwords are letter-equivalent. For this purpose, the resulting words move on to a chain of
nodes where one copy of each letter of V and Ṽ is inserted. Let these nodes be

Nxi = ({λ → xi },∅, (V ∪ Ṽ )∗, (V ∪ Ṽ )∗) and

Nx̃i = ({λ → x̃i },∅, (V ∪ Ṽ )∗, (V ∪ Ṽ )∗)

for 1 ≤ i ≤ r . We connect all nodes NXt for X ∈ Nt to Nx1 , every node Nxi to Nx̃i for
1 ≤ i ≤ r , and every node Nx̃i to Nxi+1 for 1 ≤ i ≤ r − 1. This ensures that every letter
of V ∪ Ṽ occurs at least once in a word (we need this for technical reasons in the sequel).
The letter-equivalence is preserved by these insertions. The words obtained move then to
another chain of nodes where it is checked whether the original word (over V – scattered
over the whole word) is letter-equivalent up to the isomorphism h to the word generated by
the grammar G (over Ṽ – also scattered over the whole word). Let these nodes be

Nx ′
i
= ({xi → x ′

i , x ′
i → F},∅, Ix ′

i
, V̂ ∗)

with

Ix ′
i
=

(
i−1⋃

k=1

{x ′
k, x̃ ′

k} ∪
r⋃

k=i

{xk, x̃k, x ′
k, x̃ ′

k}
)∗

and

Nx̃ ′
i
= ({x̃i → x̃ ′

i , x̃ ′
i → F},∅, V̂ ∗, V̂ ∗)

for 1 ≤ i ≤ r . The symbol F is a new symbol that cannot be derived. If this symbol is
introduced then the word is kept inside the node forever.

In the end, we delete the symbols of Ṽ ′ from the word in node

NṼ ′ = ({x̃ ′
i → λ|1 ≤ i ≤ r},∅, (V ′ ∪ Ṽ ′)∗, (V ′)∗)

and replace the primed symbols by their unprimed counterparts in node

NV ′ = ({x ′
i → xi |1 ≤ i ≤ r},∅, (V ′)∗, V ∗).

We connect Nx̃r to Nx ′
1
, every node Nx ′

i
to Nx̃ ′

i
and Nx̃ ′

i
to Nx ′

i
for 1 ≤ j ≤ r , and every

node Nx̃ ′
i

to Nx ′
i+1

for 1 ≤ j ≤ r −1 as well as Nx̃ ′
r

to NṼ ′ and NṼ ′ to NV ′ . In this chain, first
the letters x1 and x̃1 are marked one by one. If the numbers are equal then the word can move
to node Nx ′

2
were the marking of the letters x2 and x̃2 begins. If the numbers of xi and x̃i

are different for some index i then the word cannot move on because the trap symbol F is
introduced. If for 1 ≤ i ≤ r the numbers of xi and x̃i coincide then the word finally arrives
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in node NṼ ′ where the symbols x̃ ′
i are removed and it continues to NV ′ where the original

word is restored. Hence, a word w passes the node N (the input filter I and output filter O
anyway) if and only if there is a computation in the network between the nodes NS′ and NV ′
described above such that the word w finally leaves the node NV ′ .

The network described above is illustrated in the following picture where each node is
represented by its index according to the definition given above:

The filters are all monoidal. The entrance node of the network is NS′ . Hence, the edges
that lead to N now lead to NS′ . The exit node of the network is NV ′ . Hence, the edges that
leave N now leave the node NV ′ .

If this construction is repeated for every node with a non-monoidal input filter, one obtains
a network that generates the same language as N and which has only monoidal filters. Hence,
the inclusion E(COMM) ⊆ E(MON) follows which yields with E(MON) ⊆ E(COMM) the
equality. ��

Theorem 11 E(MON) = E(NIL).

Proof By Lemma 1, we already have the inclusion E(MON) ⊆ E(NIL).
In order to prove the inverse inclusion, we first show that any language of the family

E(NIL) can be generated by an evolutionary network N where all filters are finite languages
or monoidal languages.

Let N be a NEP with a working alphabet V where all filters are nilpotent. The complement
of a nilpotent language is also a nilpotent language. According to the considerations in the
beginning of this section, we can assume that N has the property that all output filters are
V ∗ and that the nodes with non-monoidal input filters have no evolution rules and no initial
words.

We show how to simulate a node with an arbitrary nilpotent input filter by a network
with finite or monoidal filters only. Let N = (∅,∅, I, O) be such a node. If I is finite
or monoidal then the filter has already a desired form. Let I be an infinite, non-monoidal,
nilpotent language. Then I can be expressed as I = V ∗V k+1 ∪ A with A ⊂ Vk for some
natural number k ≥ 0.
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Let F be a symbol not in V and let

V ′ = {a′|a ∈ V },
V̂ = V ∪ V ′,

V̂0 = V̂ ∪ {〈i〉|0 ≤ i ≤ k},
V̂1 = V̂ ∪ {〈i〉|1 ≤ i ≤ k + 1},
V̂2 = V̂ ∪ {〈k + 1〉},
M ′ = {a → a′|a ∈ V } ∪ {〈i〉 → F |0 ≤ i ≤ k},
M ′′ = {a′ → a|a ∈ V },
Ms = {〈i〉 → 〈i + 1〉|0 ≤ i ≤ k}.

We construct the following network simulating the node N (all sets Ai are empty):

Letw be a word of I . Thenw belongs to A or it contains at least k +1 letters. If it belongs
to A, the word can pass the network via node N2. If it contains at least k + 1 letters, the
word can take the other path through the network. In node N3, the symbol 〈0〉 is inserted. In
the cycle of the nodes N4 and N5, a letter a is marked as a′ and the symbol 〈i〉 is increased
alternately until k + 1 letters are primed. Then the word moves to node N6 where the symbol
〈k + 1〉 is removed. It moves on to node N7 where the primed symbols are unmarked again
to obtain the word w.

If in node N4 a rule 〈i〉 → F is applied then the word cannot leave the node anymore. If
a word w does not belong to I , then it does not contain k + 1 letters. The word enters the
node N4 before 〈k + 1〉 has reached and all letters are primed. Then the trap symbol F is
introduced and no word derived fromw can leave the network (note, it does not pass node N2

either).
Hence, the network simulates the node N .
We now replace the nodes with finite input/output filter by nodes with filters, which are

monoidal, and change the graph in an appropriate way. (We note that this construction is not
algorithmic since we do not determine the filters; we only know that they can be chosen in
that form.)
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First let N = (M, A, I, O) be a node with a finite input filter I ⊂ V ∗. Since I is finite,
only a finite set I ′ ⊂ I can enter the node N during the computations. Therefore only the
words of the set A ∪ I ′ ∪ M(A) ∪ M(I ′) occur in the node N . Thus we replace N by the
node N ′ = (∅, A ∪ I ′ ∪ M(A) ∪ M(I ′), V ∗, O) and cancel all ingoing edges. Obviously,
this construction does not change the generated language. Moreover, all input filters of the
obtained network are monoidal.

Now let N = (M, A, I , O) be a node with a finite output filter O ⊂ V
∗
. Then the set

of words which leave N during the computations is a finite subset O
′

of O . If N is not
the output node, we replace N

′ = (∅, O
′
, I, V

∗
) and cancel all ingoing edges. Again, we

obtain an evolutionary network generating the same language as the given network. If N is
the output node, we replace the node N by N

′
as above and add a node N

′′ = (M, A, I, V
∗
)

which has no outgoing edges and there is an edge from a node Z to N
′′

if and only there
is an edge from Z to N . Again it is easy to see that this construction does not change the
generated language. Now, also all output filters are monoidal languages.

Thus the language L(N ) belongs to E(MON). ��
The next lemma states that the language family which is characterized by networks where

all filters are from one of the families MON , COMM, or NIL is not computational complete.

Lemma 8 The language L = {wb|w ∈ {a, b}∗} cannot be generated by a network with
monoidal filters only.

Proof Suppose L ∈ E(MON). Then there is a NEP N which has only filters that belong to
the class MON and which generates the language L . Since L is infinite and networks with
only substitution and deletion nodes generate finite languages, the network N contains an
inserting processor. The number of occurrences of the letter a is unbounded (for each natural
number n, there is a word w ∈ L with more than n occurrences of a). Hence, there are a
natural number s ≥ 0 and letters x0, x1, . . . , xs with xs = a such that the network contains
the rules λ → x0 and xi → xi+1 for 0 ≤ i ≤ s − 1 and there is a word w1aw2 ∈ L which is
derived from a word v1v2 by applying these rules (possibly not only these rules), starting with
the insertion of x0 between v1 and v2. Instead, x0 could also be inserted at the end of v1v2.
All words derived from v1x0v2 are letter-equivalent to those derived from v1v2x0. Thus, if
a word derived from v1x0v2 can pass a filter then also a word that is derived from v1v2x0

in the same manner can pass that filter. Hence, in the same way how w1aw2 is derived and
communicated to the output node, also the word w1w2a is derived and communicated to the
output node. Butw1w2a /∈ L . Thus, the language L cannot be generated by a network where
the filters belong to the family MON . ��

According to the previous lemma, the language family which is characterized by networks
where all filters are from one of the families MON , COMM, or NIL is a proper subset of the
family of all recursively enumerable languages. Due to Theorem 5, it is sufficient to prove
the proper inclusion E(MON) ⊂ E(COMB).

Theorem 12 E(MON) ⊂ E(COMB).

Proof The inclusion E(MON) ⊆ E(COMB) follows from Lemma 1.
Let

L = {wb|w ∈ {a, b}∗}.
The language L can be written as V ∗ B with V = {a, b} and B = {b}. Hence, the language
L is combinational and, by Corollary 1, L ∈ E(COMB).

According to Lemma 8, L /∈ E(MON) and therefore E(MON) ⊂ E(COMB). ��
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We now present some properties of the family E(MON).

Lemma 9 The language L = {a2n |n ≥ 0} belongs to the family E(MON).

Proof Let V = {S, A, F, a} and N = (V, N1, N2, N3, N4, N5, E, 5) be the following
network:

In the beginning, we have the word S in node N1. We consider a word Sn for n ≥ 1 in
node N1 in an even moment (in the beginning or after a communication step). One occurrence
of S is replaced by A, then the word is sent to node N2 where another copy of A is inserted.
This wordw goes back to node N1 and it goes on to node N3 which takes it if no S appears in
the word. If in N1 the rule A → F is applied then the symbol F is introduced which cannot
be replaced. Due to the output filter O1, the word will be trapped in N1 for ever. If, in the
word w, no S is present, then the only rule which can be applied is A → F and the cycle is
stopped. If w still contains an S, then it is replaced by A and N2 inserts another A. So, the
words move between N1 and N2 where alternately an S is replaced by A and an A is inserted
until the word only contains As. The word is then An+1. Hence, the number of letters has
been doubled.

In N3, each A is replaced by S. The word is Sn+1 when it leaves N3. It moves to N1 and
to N4. In N1, the cycle starts again with a word Sm for m ≥ 1. All arriving words in N4 have
the form Sn with n ≥ 2. In order to cover also the case n = 1, the initial language of this
node consists of S. In N4, every letter S is replaced by the symbol a before the word leaves
to node and moves to the output node N5.

Hence, L(N ) = {a2n |n ≥ 0}. ��
The previous lemma implies the following statement.

Lemma 10 The family E(MON) contains a non-semi-linear (hence non-regular and non-
context-free) language.

In [11], it was shown that every recursively enumerable language can be generated by a
network where all the filters belong to a family REGi for i ≥ 2 (every filter is accepted by a
deterministic finite automaton with at most i states and with the alphabet of the network as
input alphabet). Furthermore, it was shown that if the number of states is bounded by one,
then not every regular language but non-context-free languages can be generated.

We now relate the family E(REG1) to other families.

Theorem 13 E(REG1) ⊂ E(MON).

Proof The family of languages that are accepted by deterministic finite automata with exactly
one state consists of the empty set and all monoidal languages V ∗ for an alphabet V .
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Let N be a network over an alphabet V with filters from the set REG1. Then every filter
is either the set V ∗ (if the only state of the representing automaton is accepting) or the empty
set (if the only state is not accepting).

If the input filter of a node N is the empty set, then no word can enter this node. Thus, we
can remove all edges that lead to the node N and set the input filter to an arbitrary monoidal
language without changing the language generated. All nodes from which no directed path
to the output node exists can be removed, too, because they do not contribute to the language.
After these changes, we have a network N ′ that generates the same language as N but has
only monoidal input filters. If the output filter of a node is the empty set, then no word can
leave this node. If this is the case for a node N which is not the output node, then this node N is
useless in that sense that it does not contribute to the language generated. So, we can eliminate
this node together with all incident edges without changing the language. Again, we can also
remove all nodes that are not connected to the output node anymore. After these changes,
we have a network N ′′ that generates the same language as N , that has only monoidal input
filters, and all nodes different from the output node have monoidal output filters. If the output
node N = (M, A, I, O) has as the output filter O the empty set, then we replace this filter
by the language V ∗, delete all outgoing edges, and add a new edge to this node itself (or to a
new node N ′ = (∅,∅, V ∗, V ∗) and back if loops should be avoided). This yields a network
N ′′′. All words that are present in the output node of one network after a communication step
are also present in the output node of the other network after a communication step. Hence,
the network N ′′′ generates the same language as N and has only monoidal filters.

A witness language for the strictness of the inclusion is the language

L = {a2n |n ≥ 0}.
According to Lemma 9, we have L ∈ E(MON). In [11], it was shown that the length difference
between two words is bounded by a constant. Hence, L /∈ E(REG1). ��
Theorem 14 NIL ⊂ E(REG1).

Proof According to the Theorems 2 and 9, every finite language can be generated by a
network with filters from the family REG1.

Let L be an infinite nilpotent language over an alphabet V . Then L can be expressed as
L = V ∗V k+1 ∪ B for some natural number k ≥ 0 and set B ⊆ Vk . The language L can be
generated by the network N = (V, N1, N2, E, 2) shown in the following picture:

In the node N1, every word of the set V k+1 is generated in the first evolutionary step.
In every further evolutionary step, the length of the words is increased by one. All words
obtained there have a length of at least k + 1 and are sent to the output node which has the
finite language B of words of length at most k belonging to L as its initial language.

Hence, any nilpotent language can be generated by a network with filters from the set
REG1. ��
Theorem 15 COMM ⊂ E(REG1).

Proof Let L be a commutative regular language over an alphabet V . Then there is a regular
Grammar G = (N , T, P, S) that generates the language L and where every rule has the form
A → aB or A → a for non-terminal symbols A, B and a terminal symbol a.
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For any word w = a1a2 . . . an of the language L , also every permutation ai1 ai2 . . . ain

with {i1, i2, . . . , in} = {1, 2, . . . , n} belongs to L . Let us consider a derivation

S �⇒ a1 A1 �⇒ a1a2 A2 �⇒ · · · �⇒ a1a2 . . . an−1 An−1 �⇒ a1a2 . . . an (5)

of the word w. If we insert—starting from the empty word λ—successively the letters
a1, a2, . . . , an at arbitrary positions and keep in mind the current non-terminal symbol (such
that we cannot insert a symbol b from a non-terminal symbol A if there is no rule A → bB
or A → b), then we obtain words of the language, too (namely permutations of the wordw).
Thus, we can consider a rule A → aB in such a way that the terminal symbol a is inserted
somewhere into the current sentential form and B is the new current non-terminal symbol.
Such a derivation process can be simulated by a network of evolutionary processors.

We now construct such a networkN . For each right hand side aB of a rule with B ∈ N∪{λ},
we build a node N〈aB〉 by

N〈aB〉 = ({λ → a}, A〈aB〉, V ∗, V ∗)

where A〈aB〉 = {λ} if aB is the right hand side of a rule for the start symbol S, otherwise
A〈aB〉 = ∅. For each rule A → aB, we connect any node N〈x A〉 (for x ∈ T ) to the node
N〈aB〉. Additionally, we set

N〈〉 = (∅,∅, V ∗, V ∗),

declare this as the output node, and connect every node N〈a〉 for a ∈ T to this node.
Let us consider again the derivation given in (5) for the word a1a2 . . . an . This word can

be obtained in the network N as follows:

λ ∈ C0(〈a1 A1〉) �⇒ a1 ∈ C1(〈a1 A1〉) � a1 ∈ C2(〈a2 A2〉)
�⇒ a1a2 ∈ C3(〈a2 A2〉) � a1a2 ∈ C4(〈a3 A3〉)
...

�⇒ a1a2 . . . an−1 ∈ C2(n−1)−1(〈an−1 An−1〉)
� a1a2 . . . an−1 ∈ C2(n−1)(〈an〉)

�⇒ a1a2 . . . an−1an ∈ C2n−1(〈an〉) � a1a2 . . . an−1an ∈ C2n(〈〉).
Hence, we obtain the inclusion L ⊆ L(N ).

If a wordw is generated by the network, then there is a moment t such thatw ∈ C2t+1(〈〉)
or w ∈ C2t (〈〉). If w ∈ C2t+1(〈〉), then we have also w ∈ C2t (〈〉) because the output node
does not change any word (M〈〉 = ∅). Ifw ∈ C2t (〈〉), thenw ∈ C2t−1(〈a〉) for some terminal
symbol a ∈ T because no word remains in the output node during a communication step.

By induction on the time t , we can show that if a wordw exists in a node N〈a A〉 for a ∈ T
and A ∈ N ∪{λ} at a time 2t +1 for t ≥ 0 (after an evolutionary and before a communication
step), then there exists a permutation v of the wordw such that vA is a sentential form of the
grammar G. In the beginning of the computation, we have {λ} = C0(〈a A〉) for all a ∈ T and
A ∈ N ∪ {λ} such that S → a A is a rule in P and C0(x) = ∅ for all other nodes Nx . Hence,
we have C1(〈a A〉) = {a} for all a ∈ T and A ∈ N ∪ {λ} such that a A is a sentential form of
the grammar G and C1(x) = ∅ for all other nodes Nx . Letw be a word of the set C2t+1(〈a A〉)
for a time t ≥ 0, a terminal symbol a ∈ T , and a symbol A ∈ N ∪{λ}. Let v be a permutation
of the word w such that vA is a sentential form of the grammar G. Then we obtain in the
network that w is communicated to any node N〈bB〉 such that A → bB is a rule of P and
there the symbol b is inserted somewhere into the word w (thus, w1bw2 ∈ C2t+3(〈bB〉)
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for any words w1 and w2 with w1w2 = w) and we have in the grammar G the derivation
vA �⇒ vbB. Hence, for every word w′ in C2t+3(〈bB〉) there is a permutation v′ of w′ such
that v′ B is a sentential form of the grammar G.

We summarize: If a word w is generated by the network, then there is a moment t such
that w ∈ C2t+1(〈a〉) for some terminal symbol a ∈ T and then there exists a permutation v
of the word w such that v is a sentential form of the grammar G (and since v is a terminal
word it is a word of the language L(G)). The language L(G) is commutative and therefore
not only the word v but also the word w itself belong to this language.

Hence, L(N ) ⊆ L which leads together with the converse inclusion to the equality
L = L(N ). Thus, we have shown how one can construct a network which has only filters from
the family REG1 for generating a regular commutative language. This yields the inclusion
COMM ⊆ E(REG1).

The language L = {ab} is finite but not commutative. According to Corollary 1 and
Theorem 9, we have L ∈ E(REG1). Thus, we obtain L ∈ E(REG1)\COMM which yields
the proper inclusion COMM ⊂ E(REG1). ��

Not only regular commutative languages can be generated by networks with filters from
the family REG1 but also arbitrary semi-linear commutative languages.

Theorem 16 Let L be a semi-linear language. Then Comm(L) ∈ E(REG1).

Proof For each semi-linear language L , a regular grammar G can be constructed which
generates a language that is letter-equivalent to L , i. e., ψ(L(G)) = ψ(L) (see [19]). Then
we have

ψ−1(ψ(L(G))) = ψ−1(ψ(L))

and therefore Comm(L(G)) = Comm(L). Thus, for any semi-linear language L , a regular
grammar G can be constructed with Comm(L(G)) = Comm(L). For a regular grammar G,
a network with filters from the family REG1 only that generates the language Comm(L(G))
can be constructed analogously to the construction in the proof of Theorem 15. ��

Finally, we give some incomparability results.

Theorem 17 The language families NIL and COMM are both incomparable to the family
E(FIN).

Proof According to Lemma 4, the language

L = {a} ∪ {an |n ≥ 3}
cannot be generated by a network with finite filters only. Since the language L is nilpotent
and commutative, we obtain NIL �⊆ E(FIN) and COMM �⊆ E(FIN).

Let V be the alphabet {a, b, c}. The language

L = {ckacmbcn |k ≥ 0,m ≥ 0, n ≥ 0}
is neither nilpotent nor commutative but is generated by the NEP N = (V, N1,∅, 1) with
the node N1 = ({λ → c}, {ab},∅,∅). Hence, we also obtain E(FIN) �⊆ NIL and E(FIN) �⊆
COMM.

Theorem 18 The language families REG and CF are both incomparable to E(MON).
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Fig. 2 Hierarchy of the language families generated by networks of evolutionary processors with filters of a
certain subregular set

Proof According to Lemma 8, the regular language

L = {wb|w ∈ {a, b}∗}

does not belong to the family E(MON).
According to Lemma 10, the family E(MON) contains a non-context-free language. ��

As shown in [11], both language families REG and CF are also incomparable to the family
E(REG1).

7 Conclusion

If we combine all the results of the preceding sections and [11], we get the diagram presented
in Fig. 2.

Theorem 19 The relations shown in Fig. 2 hold.

In Fig. 2, an arrow from a language family X to a language family Y stands for the proper
inclusion X ⊂ Y . If two families X and Y are not connected by a directed path, then the
families are incomparable. A label at an edge or equality sign indicates where the inclusion
or equality is shown.
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