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Abstract We give axioms for an operation that describes iteration in various relational
models of computations. The models differ in their treatment of finite, infinite and abort-
ing executions, covering partial, total and general correctness and extensions thereof. Based
on the common axioms we derive separation, refinement and program transformation results
hitherto known from particular models, henceforth recognised to hold in many different mod-
els. We introduce a new model that independently describes the finite, infinite and aborting
executions of a computation, and axiomatise an operation that extracts the infinite executions
in this model and others. From these unifying axioms we derive explicit representations for
recursion and iteration. We show that also the new model is an instance of our general theory
of iteration. All results are verified in Isabelle heavily using automated theorem provers.

1 Introduction

Sequential composition, non-deterministic choice, iteration and recursion are fundamental
operations in many models of computations. Some models describe a computation by relat-
ing the system states before and after its execution. The precision of these relational models
varies concerning finite, infinite and aborting executions (which terminate due to an error,
such as integer division by zero; ‘finite’ means ‘normally terminating’). Some ignore infinite
executions, others describe infinite executions but not aborting ones. Some models unify
aborting executions with infinite executions, and some ignore finite executions in the pres-
ence of infinite ones. Another model discussed in this paper is more precise by independently
representing finite, infinite and aborting executions.

We use algebra for giving structure to this diversity of models and for unifying existing
approaches. The general idea is to investigate key aspects of the computation models, to
describe them by operations of algebraic structures whose elements represent computations,
to find properties of these operations that hold in several models, and to install such properties
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344 W. Guttmann

as axioms of the algebraic structures. Results derived from these common axioms hold in
several computation models. Individual models can be characterised by adding more specific
properties as axioms, resulting in a hierarchy of algebras. Lying at the core of our develop-
ment, semirings are used to represent non-deterministic choice and sequential composition.
They are extended in various ways to describe iteration, recursion and infinite computations.
Our contributions are as follows.

In Sect. 3 we expand semirings by an operation for iteration with axioms that are general
enough to capture the semantics of while-loops in a variety of models including partial, total
and general correctness, yet powerful enough to derive complex results including program
transformations and refinement theorems for all these models. Besides finding the right bal-
ance, the difficulty of giving suitable axioms comes from the fact that in different models
iteration is captured by either least fixpoints, greatest fixpoints or various combinations of the
two. We therefore cannot use the induction and co-induction axioms on which Kleene algebra
and omega algebra are based [10,35] but replace them by simulation properties. Together
with Conway’s sumstar and productstar equations [11] we obtain a new characterisation of
iteration which is valid in several models. Existing iteration operations are instances of this
unified iteration, which allows us to transfer results known from particular models to many
different ones.

In Sect. 4 we introduce a relational model of computations with independent finite, infinite
and aborting executions. It is the most precise model considered in this paper and useful for
situations that need to distinguish infinite and aborting executions reflecting their observable
difference. We present an axiomatic semantics for this model. In particular, we axiomatise
an operation that yields the infinite executions in this and several other models. The oper-
ation is used to derive the semantics of recursive computations. For loops this specialises
to a semantics which satisfies the axioms of iteration given in Sect. 3. All results obtained
there are instantiated by the new model. Similarly to the domain operation of modal Kleene
algebras [41], our new operation induces modal diamond and box operators, which we use
to reason about the infinite executions occurring in finite and infinite iterations.

The above theory is implemented in Isabelle/HOL, making heavy use of the integrated
automatic theorem provers and SMT solvers [6,45]. The technical contents of this paper are
taken from verified Isabelle theory files and adapted only to improve presentation. From more
than 750 new facts contained in the implementation only the most relevant ones are shown
here. Their proofs are omitted and can be found in the theory files, which are available at
http://www.uni-ulm.de/en/in/pm/staff/guttmann/algebra/.

2 Semirings

An idempotent semiring without right zero – called semiring in the remainder of this paper
– is an algebraic structure (S,+, ·, 0, 1) satisfying the axioms

x + (y + z) = (x + y) + z x(y + z) = xy + xz x(yz) = (xy)z
x + y = y + x (x + y)z = xz + yz 1x = x
x + x = x 0x = 0 x1 = x
0 + x = x

where x · y is conventionally abbreviated as xy. In particular, the operation + is idempotent
and 0 is not required to be a right annihilator, that is, x0 = 0 is not an axiom. The semilattice
order x ≤ y ⇔ x + y = y has least element 0, least upper bound + and isotone operations
+ and ·. A semiring is bounded if it has a greatest element � satisfying x + � = �.
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In computation models, the operation + represents non-deterministic choice, the opera-
tion · sequential composition, 0 the computation with no executions, 1 the program which
does not change the state, � the computation with all possible executions, and ≤ the refine-
ment relation where x ≤ y means that x refines y. Omission of the axiom x0 = 0 is essential
as it does not hold in many models.

3 Iteration

An iteration describes the repeated sequential execution of a computation. Being a special
case of recursion, this is typically modelled by fixpoints.

The equational properties of the fixpoint operation, hence in particular iterations, are
thoroughly investigated in [8]. The authors define ‘Conway semirings’ which are semirings
expanded by an operation ∗ satisfying the sumstar axiom (x + y)∗ = (x∗y)∗x∗ and the
productstar axiom (xy)∗ = 1 + x(yx)∗y of Conway [11]. The latter is equivalent to the
conjunction of sliding x(yx)∗ = (xy)∗x and either left unfold 1 + xx∗ = x∗ or right unfold
1 + x∗x = x∗. In Kleene algebras, these well-known regular identities are augmented by
induction axioms to the effect that y∗z is the least fixpoint of λx .yx + z and zy∗ that of
λx .xy + z.

Because we aim for models which vary in the fixpoints used for iteration, we cannot settle
for the least fixpoint or any other particular fixpoint. This rules out the use of the induction
axioms of Kleene algebra. But we can take from that setting Conway’s suggestion of using
simulation axioms instead [11]. Our new iteration generalises the Kleene star ∗ and is denoted
by ◦ to avoid confusion.

A well-known simulation law in Kleene algebra is zx ≤ yz ⇒ zx◦ ≤ y◦z. It is obtained
by setting w = 0 in the ‘iteration theorem’ zx ≤ yz + w ⇒ zx◦ ≤ y◦(z + wx◦) of omega
algebra [10]. We further generalise this by weakening the antecedent to zx ≤ yy◦z +w. The
resulting, first simulation axiom is zx ≤ yy◦z + w ⇒ zx◦ ≤ y◦(z + wx◦).

The dual simulation law xz ≤ zy ⇒ x◦z ≤ zy◦ holds in Kleene algebra, but it implies
1◦0 ≤ 0 which fails in other target models. First of all, we therefore weaken its consequent
to x◦z ≤ zy◦ + x◦0. Two generalisations make the outcome nearly symmetric to the first
axiom; the resulting, second simulation axiom is xz ≤ zy◦ + w ⇒ x◦z ≤ (z + x◦w)y◦. The
symmetric antecedent zx ≤ y◦z + w cannot be used in the first axiom because this would
imply 1◦ ≤ 0◦ which again fails in some target models.

Additionally to these two simulation axioms we adopt the sumstar and productstar equa-
tions. Thus an itering (S,+, ·, ◦, 0, 1) is a semiring (S,+, ·, 0, 1) expanded by an operation
◦ satisfying the four axioms

(x + y)◦ = (x◦y)◦x◦ zx ≤ yy◦z + w ⇒ zx◦ ≤ y◦(z + wx◦)
(xy)◦ = 1 + x(yx)◦y xz ≤ zy◦ + w ⇒ x◦z ≤ (z + x◦w)y◦

Derived properties of the operation ◦ are shown in the following result.

Theorem 1 Let S be an itering and x, y, z ∈ S. Then ◦ is isotone and

− 0◦ = 1 ≤ (x0)◦ = 1 + x0 ≤ x◦,
− x◦ = x◦x◦ = (x◦x)◦ = 1 + xx◦ = 1 + x◦x,
− x ≤ xx◦ = x◦x ≤ x◦,
− x◦ ≤ x◦1◦ = 1◦x◦ = (1 + x)◦ = x◦◦ = x◦◦◦,
− x◦y◦ ≤ (x + y)◦ ≤ (x◦y◦)◦ = (y◦x◦)◦ = x◦(y◦x◦)◦,
− (yx◦)◦ = y◦ + y◦yxx◦(yx◦)◦ = (yy◦x◦)◦,
− x(yx)◦ = (xy)◦x.
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Moreover y◦z is a fixpoint of λx .yx + z and zy◦ is a fixpoint of λx .xy + z.

Counterexamples generated by Isabelle’s Nitpick [7] witness that none of the inequalities can
be strengthened to an equation and that the induction axioms of Kleene algebra do not follow.
In particular, 0◦ = 1 	= 1◦ = 0◦◦ in some target models. In a bounded itering, �◦ = �.

3.1 Applications: separation and refinement

Four examples show the versatility of iterings. The first generalises two ‘separation theorems’
of omega algebra [10].

Theorem 2 Let S be an itering and x, y ∈ S such that yx ≤ xy◦ or yx ≤ xx◦(1 + y). Then
y◦x◦ ≤ x◦y◦ = (x + y)◦.

In particular, the assumption is satisfied if yx ≤ xy. The weaker bounds xy◦ and xx◦(1 + y)

include infinite iterations in some models.
The second example is Back’s atomicity refinement theorem. Our formulation is adapted

from [46].

Theorem 3 Let S be an itering and a, b, l, r, q, s ∈ S such that

s = sq rb ≤ br rl ≤ lr bl ≤ lb r◦q ≤ qr◦
a = qa qb = 0 al ≤ la ql ≤ lq q ≤ 1

Then s(a + b + r + l)◦q ≤ s(ab◦q + r + l)◦.

The continuity assumption of [3] is expressed by r◦q ≤ qr◦ in our setting.
The other two examples deal with while-programs. To define their semantics we first

introduce tests.

3.2 Tests

In semirings, tests are elements ≤ 1 which represent conditions occurring in computations.
For an arbitrary set S, they are introduced by means of two operations · and ′ with axioms
making the image S′ = {x ′ | x ∈ S} a Boolean algebra with greatest lower bound · and
complement ′ [30]. Any axiomatisation of Boolean algebras can be applied to this end; for
concision we use Huntington’s axioms which lead to the following definition. A test algebra
is a structure (S, ·,′ ) satisfying the axioms

x ′(y′z′) = (x ′y′)z′ x ′ = (x ′′y′)′(x ′′y′′)′
x ′y′ = y′x ′ x ′y′ = (x ′y′)′′

The last axiom states that S′ is closed under the operation · and the remaining ones are asso-
ciativity, commutativity and Huntington’s special axiom. Then (S′,+, ·,′ , 0, 1) is a Boolean
algebra with the order x ′ ≤ y′ ⇔ x ′y′ = x ′, the least upper bound x ′+y′ = (x ′′y′′)′, the least
element 0 = x ′x ′′ for any x , and the greatest element 1 = 0′. The extension (S,+, ·,′ , 0, 1)

thus obtained is also called a test algebra; elements of S′ are tests.
A benefit of this axiomatisation is that it avoids introducing a separate sort for Boolean

elements as, for example, in Kleene algebra with tests [36] without imposing additional
constraints as, for example, in antidomain semirings [17].

For representing conditional statements and while-loops it is necessary to take the com-
plement of tests. We do not make the whole set S a Boolean algebra because some models
of programs are not closed under complements [25,32].
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The Isabelle implementation defines a class for test algebras including the definite descrip-
tion 0 = (THE x .(∀y.x = y′y′′)). It introduces 0 without imposing the uniqueness property
x ′x ′′ = y′y′′ which can be derived from the axioms above. The defining property 0 = x ′x ′′
is then proved from the definite description and uniqueness.

In the remainder of this paper, the symbols p, q, r denote tests. A test itering is a
structure (S,+, ·, ◦,′ , 0, 1) whose reduct (S,+, ·, ◦, 0, 1) is an itering and whose reduct
(S,+, ·,′ , 0, 1) is a test algebra. It follows that tests are preserved by and can be imported
into iterations.

Theorem 4 Let S be a test itering and let x ∈ S and p ∈ S′ such that px ≤ xp. Then
px◦ = px◦ p = p(px)◦.

The assumption px ≤ xp is equivalent to px = pxp.

3.3 Applications: transformation of while-programs

In test iterings we define the semantics of while-programs by

x ; y = xy
if p then x else y = px + p′y

if p then x = px + p′
while p do x = (px)◦ p′

A while-program is in normal form if it has the form x ; while p do y with while-free x and
y. An element x preserves the test p if both px ≤ xp and p′x ≤ xp′ hold. An element x
assigns p to q if x = x(pq + p′q ′) holds.

The third example is a split/merge loop theorem of Back and von Wright [3].

Theorem 5 Let S be a test itering and let x, y ∈ S and p, q ∈ S′ such that p′y ≤ yp′. Then
while p + q do (if p then x else y) = (while p do x) ; (while q do y).

While the original proof takes two pages of calculation, the Isabelle proof boils down to only
two calls to the SMT solver Z3.

The fourth example is Kozen’s algebraic version of the while-program normal form theo-
rem [36]. Its proof uses the following program transformations to move while-programs out
of each kind of program construct and hence into normal form.

Theorem 6 Let S be a test itering and let x1, x2, y1, y2, z1, z2 ∈ S and p, q, r1, r2 ∈ S′.
− Let z1 assign p to q and let x1, x2, y1, y2 preserve q. Then

z1 ; if p then (x1 ; while r1 do y1) else (x2 ; while r2 do y2) =
z1 ; (if q then x1 else x2) ; while qr1 + q ′r2 do (if q then y1 else y2).

− Let z1 assign p to q and let x1, y1 preserve q. Then

z1 ; while p do (x1 ; while r1 do y1) =
z1 ; (if q then x1) ; while q(p + r1) do (if r1 then y1 else x1).

− Let z1 assign r1 to q and let z2 assign q to p and let z1z2 = z2z1. Let x2, y2, z2 preserve
q and let y1, z1, x2, y2 preserve p. Then

x1 ; z1 ; z2 ; (while r1 do y1 ; z1) ; x2 ; (while r2 do y2) =
x1 ; z1 ; z2 ; (if q then (y1 ; z1 ; if q ′ then x2) else x2) ;
while q + r2 do (if q then (y1 ; z1 ; if q ′ then x2) else y2).
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By repeatedly applying these program transformations it can be shown that every while-
program, suitably augmented with assigning elements, is equivalent to a while-program in
normal form under certain preservation assumptions.

The transformations explicitly state the source and target programs, the positions where
assigning elements are inserted in them and the preservation assumptions. Also included is
the commutativity assumption z1z2 = z2z1 for the assigning elements, which is not obvious
in previous proofs. The Isabelle proofs are fairly extensive, requiring 40 calls to the SMT
solver Z3 and the automatic theorem prover Metis.

3.4 Models

The generality of iterings is demonstrated by giving six models. We describe these models
and the kinds of executions they can represent. The axiom x0 = 0 is again omitted in the
following semiring-based structures.

The first model is that of Kleene algebras [35] which are semirings expanded by an
operation ∗ satisfying the axioms

1 + yy∗ ≤ y∗ z + yx ≤ x ⇒ y∗z ≤ x
z + xy ≤ x ⇒ zy∗ ≤ x

The operation ∗ thus axiomatised satisfies the axioms of ◦. In this model, which is typical
for partial-correctness approaches [37,41], the operation ◦ is characterised as a least fixpoint.
Partial-correctness semantics describes only finite executions; infinite and aborting ones are
ignored.

To benefit from our general results about test iterings and while-programs, Kleene alge-
bras can be extended by tests using either the test algebras of Sect. 3.2, a second sort [36] or
(anti)domain operations [14], see below.

All subsequent models are based on Kleene algebras and therefore share the above instance
of ◦, but each of them has another instance of ◦, too. This implies that ◦ is not determined
uniquely by its axioms.

The second model is that of omega algebras [10] which are Kleene algebras expanded by
an operation ω satisfying the axioms

yyω = yω x ≤ z + yx ⇒ x ≤ yω + y∗z

Every omega algebra is bounded by � = 1ω and the law xω� = xω holds. The itering
axioms follow by instantiating x◦ = xω0 + x∗. In this model, which is typical for general-
correctness approaches [20,40,42], the operation ◦ is a combination of a least and a greatest
fixpoint [21–23]. General-correctness semantics describes finite and infinite executions inde-
pendently; aborting executions are ignored or treated as non-terminating ones.

For handling two kinds of iteration in a uniform way, the notation x ◦ y is used in [10]
to denote either x∗y or xω + x∗y. This corresponds to x◦y and illustrates that two different
itering structures are present in omega algebras. Our subsequent instances show that itering
structures are present in other models as well.

The third model is that of omega algebras extended by the axiom �x = � making � a left
annihilator. In this case, every element xω is a left annihilator by xω y = xω�y = xω� = xω.
Thus the itering axioms follow by instantiating x◦ = xω + x∗. In this model, which is typical
for total-correctness approaches [13,28,29,39], the operation ◦ is characterised as a greatest
fixpoint. Total-correctness semantics ignores finite executions in the presence of infinite ones;
aborting executions are again ignored or treated as non-terminating ones.
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The fourth model is that of demonic refinement algebras [46] which are Kleene algebras
expanded by an operation Ω satisfying the axioms

1 + yyΩ = yΩ x ≤ z + yx ⇒ x ≤ yΩ z
yΩ0 + y∗ = yΩ

The operation Ω thus axiomatised satisfies the axioms of ◦. Demonic refinement algebras
also model total correctness; in fact they are interdefinable with the previous model of omega
algebras extended with �x = � [33].

The fifth model is that of extended designs [25,31] which are elements of omega algebras
expanded by (anti)domain operations a and d satisfying the axioms [17]

d(x) = a(a(x)) a(x)x = 0
a(xd(y)) = a(xy) d(x) + a(x) = 1

and an element L satisfying the axioms

d(x0)L ≤ x d(L0) = 1 xL ≤ x0 + L

The domain operation d represents the states in which a computation is enabled, that is, the
states from which it can be executed [14]. These states are tests and the antidomain a is the
Boolean complement of d . (The absence of executions from a state may be interpreted as
an error in some models, but in general indicates partial relations, such as those described
by [43].) The element L represents the endless loop, that is, the computation which has only
infinite executions.

The test itering axioms follow by instantiating x◦ = d(xω)L+x∗ and x ′ = a(x). Extended
designs go beyond general correctness by distinguishing finite, infinite and aborting execu-
tions, but like total correctness they ignore finite and infinite executions in the presence of
aborting ones.

The sixth model, which we introduce in Sect. 4, lifts this restriction by treating finite,
infinite and aborting executions independently. The following result summarises the above
discussion.

Theorem 7 Iterings have the following models:

1. Every Kleene algebra is an itering using x◦ = x∗.
2. Every omega algebra is an itering using x◦ = xω0 + x∗.
3. Every omega algebra with �x = � is an itering using x◦ = xω + x∗.
4. Every demonic refinement algebra is an itering using x◦ = x�.
5. Extended designs form a test itering using x◦ = d(xω)L + x∗.

All these instances have been proved in Isabelle using the subclass and sublocale mecha-
nisms. As a consequence all results derived for iterings are automatically available in all of
these models. In particular, this includes Theorems 1–6.

4 Finite, infinite and aborting executions

In this section we discuss a model of computations which independently describes finite, infi-
nite and aborting executions. This model reflects the observable difference between infinite
and aborting executions, facilitates the statement of separate preconditions for these execu-
tions [26] and supports reasoning in situations where aborting executions are acceptable but
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infinite ones are not or vice versa. An operational semantics of computations with indepen-
dent finite, infinite and aborting executions is given in [2]. The present paper contributes a
relational model and an axiomatic semantics. We show that it satisfies the axioms of iteration
given in Sect. 3, whence all results derived in that general setting carry over.

4.1 Relational models of computations

First we introduce a relational model of computations having independent finite, infinite
and aborting executions. More precisely, a computation is represented as a matrix of rela-
tions, following [20,25,29,39]. We describe in this model the operations +, ·, ∗ and ω of
omega algebra, an approximation order for the semantics of recursion, and an operation n
that extracts the infinite executions of a computation. We also discuss connections to the
models of Sect. 3.4 which impose restrictions on the executions they can represent.

Let Z be the set of states a computation can be in, for example, given by the possible
values of program variables. A simple model of a computation is a relation over Z , that is, a
subset R of the Cartesian product Z × Z . The intuition is that (x, y) ∈ R if and only if there
is an execution of the computation R that starts in the state x and terminates in the state y.
Relations are used instead of functions for the purpose of non-deterministic computations.
This simple model represents finite executions but not infinite or aborting ones. It is there-
fore suitable for a partial-correctness semantics. Relations with an operation for reflexive
transitive closure form a Kleene algebra.

To model finite, infinite and aborting executions, we use 3 × 3 matrices whose entries are
relations over Z . The matrices have the following, fixed structure:

(P|Q|R) =
⎛
⎝

� 0 0
0 � 0
P Q R

⎞
⎠

The first two rows contain as constant entries the universal relation � = Z × Z and the
empty relation 0 = ∅. Moreover the relations P and Q in the third row must be vectors, that
is, P;� = P and Q;� = Q where ; denotes relational composition. A vector relates a state
x ∈ Z either to all states or to none, whence it corresponds to a set of states. No restriction
is placed on the relation R in the matrix.

The matrix (P|Q|R) represents the following computation. The entry P captures the set
of states from which there are aborting executions. The entry Q does likewise for infinite
executions. The entry R contains the state transitions effected by finite executions.

The matrix is structured so that many program constructs can be defined in terms of famil-
iar matrix operations. For example, sequential composition is obtained by the matrix product,
and the Kleene star is obtained by the standard automata-based construction [11]. These and
further operations are elaborated in the following.

The non-deterministic choice between two computations (P1|Q1|R1) and (P2|Q2|R2) is
given by componentwise union of the involved relations:

(P1|Q1|R1) + (P2|Q2|R2) = (P1 ∪ P2 | Q1 ∪ Q2 | R1 ∪ R2)

By taking the componentwise subset order we obtain the semilattice order that models refine-
ment of computations. Thus (P1|Q1|R1) refines (P2|Q2|R2) if and only if

(P1|Q1|R1) ≤ (P2|Q2|R2) ⇔ P1 ⊆ P2 ∧ Q1 ⊆ Q2 ∧ R1 ⊆ R2

The least element of the semilattice order is the computation (0|0|0) and (�|�|�) is its
greatest element.
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Sequential composition is given by the matrix product resulting in

(P1|Q1|R1) · (P2|Q2|R2) = (P1 ∪ R1;P2 | Q1 ∪ R1;Q2 | R1;R2)

The precedence of ; is higher than that of ∪. For example, P1 ∪ R1;P2 describes that a sequen-
tial composition aborts if the first computation aborts or the first computation terminates in
a state from which the second computation aborts. Thus aborting and infinite executions are
not affected by subsequent computations. In particular, sequential composition has a number
of left annihilators, one of which is L = (0|�|0) representing the computation that has only
infinite executions, the endless loop. The neutral element is the computation (0|0|1), using
the identity relation 1 over Z , which always terminates without changing the state.

Part of the structure of relations is thus lifted to the matrices. A crucial difference is that
sequential composition of computations has no right annihilator, despite R;0 = 0 for every
relation R. For example, L · (0|0|0) = L. Nevertheless the computations with the operations
+ and · form a semiring thanks to omission of the axiom x0 = 0. They even form a Kleene
algebra and an omega algebra using

(P|Q|R)∗ = (R∗;P | R∗;Q | R∗)
(P|Q|R)ω = (Rω ∪ R∗;P | Rω ∪ R∗;Q | Rω)

These operations are derived using standard and typed matrix constructions [11,24]. On the
right-hand side, R∗ is the reflexive transitive closure of R and Rω is the greatest fixpoint of
λX.R;X . The latter is a vector representing the states from which infinite R-transition paths
exist.

For recursion we need the approximation order on computations, which is the following
variant of the Egli-Milner order:

(P1|Q1|R1) � (P2|Q2|R2) ⇔ Q2 ⊆ Q1 ∧ P1 ⊆ P2 ⊆ P1 ∪ Q1 ∧ R1 ⊆ R2 ⊆ R1 ∪ Q1

Thus infinite executions may be removed and aborting and finite executions may be added
provided there are infinite executions. Instantiating this order with P1 = P2 gives the original
Egli-Milner relation Q2 ⊆ Q1 ∧ R1 ⊆ R2 ⊆ R1 ∪ Q1 [12,18,43] which does not consider
aborting executions and thus applies to the general-correctness model discussed below.

For algebraically capturing the approximation order we use the operation n that extracts
the infinite executions Q of a computation (P|Q|R). The set of states in the vector Q shall
be represented as a test, that is, we want n((P|Q|R)) = (0|0|Q ∩ 1). Recall that tests are
elements below the identity (0|0|1). In particular, sequential composition of a test n(x) with
a computation y restricts the executions of y to those starting in the set represented by n(x).
A reason why we choose the test (0|0|Q ∩ 1) instead of the vector (0|Q|0) is that the latter
can be obtained from the former by sequential composition with L, but not vice versa without
an additional operation such as domain.

In the above model, the aborting, infinite and finite executions of a computation, given by
the entries P, Q and R of its matrix, can be chosen independently of each other. Another
model, namely extended designs, is obtained by replacing the constants in each matrix as in

⎛
⎝

� � �
0 � 0
P Q R

⎞
⎠

and imposing the restrictions P ⊆ Q and P ⊆ R [25,31]. The entries P and Q are again
required to be vectors. The main effect of the additional restrictions is that an aborting execu-
tion cannot be enforced, but entails all finite and infinite executions starting in the same state.
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For example, the computation (�|0|0) which has only aborting executions cannot be repre-
sented as an extended design.

Yet another model is obtained by restriction to computations of the form (0|Q|R), that is,
by imposing P = 0. This is general correctness, which has no notion of aborting executions,
but can describe finite and infinite executions independently [4,9,12,18–20,34,39,42–44].
In this case, computations may also be represented by the 2 × 2 matrix

(� 0
Q R

)

A total-correctness model [29,32,39] is obtained by replacing the constants in such matrices
as in (� �

Q R

)

and imposing the restriction Q ⊆ R. Then an infinite execution entails all finite executions
starting in the same state.

The intuition underlying the choice of matrices for the individual models is explained in
[20,25,29,39].

4.2 Axioms for the infinite executions

We now axiomatise the relational models of Sect. 4.1, in particular the infinite executions of
a computation. An n-semiring (S,+, ·, n, 0, 1, L,�) is a bounded semiring (S,+, ·, 0, 1,�)

expanded by an operation n : S → S and a constant L satisfying the axioms

(n1) n(0) = 0 (n5) n(x) = n(x0)n(x)

(n2) n(�) = 1 (n6) xn(y)L = x0 + n(xy)L
(n3) n(x + y) = n(x) + n(y) (n7) x ≤ x0 + n(xL)�
(n4) n(n(x)y) = n(x)n(y)

The constants 0, 1 and � of the semiring represent the computations (0|0|0), (0|0|1) and
(�|�|�), respectively. The constant L represents the endless loop, that is, the computation
(0|�|0) that has only infinite executions. The element n(x) represents the infinite executions
of the computation x as a test, that is, as an element ≤ 1.

The n-semiring axioms hold in all models described in Sect. 4.1 except the simple partial-
correctness model, and have the following rationale. Axioms (n1) and (n2) express that
the computation 0 has no infinite executions and the computation � has infinite executions
starting from each state, respectively. By axiom (n3), the infinite executions of a non-deter-
ministic choice between two computations are given as the union of the individual infinite
executions. Axiom (n4) expresses that the infinite executions of a computation restricted to
starting states n(x) are given by intersecting with the set n(x).

By axioms (n1)–(n4) the image n(S) = {n(x) | x ∈ S} of the operation n is closed under
0, 1, + and ·. Moreover n is ≤-isotone since it is additive, whence n(x) ≤ 1 and n(x)0 = 0
hold. Therefore (n(S),+, ·, 0, 1) is a bounded semiring with right annihilator 0.

By adding axiom (n5) we obtain n(x)n(x) = n(x). Hence (n(S),+, ·, 0, 1) is a bounded
distributive lattice by Theorem II.10 in Birkhoff’s book [5]. Moreover n(1) = 0 follows.

A consequence of adding axiom (n6) is n(x)L ≤ x . The element n(x)L contains the infi-
nite executions of x , see the characterisation below. By adding axiom (n7) we also obtain
n(L) = 1. It follows that there is a Galois connection n(x)L ≤ y ⇔ n(x) ≤ n(y) between
n(S) and S with lower adjoint λp.pL and upper adjoint n. Its significance is that n(y) is
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the greatest test that, sequentially composed with L, is below y. This is the characterising
property of the infinite executions of y in relational models, which any axiomatisation of n
must satisfy. These and further consequences of n-semirings are summarised in the following
result.

Theorem 8 Let S be an n-semiring and x, y ∈ S. Then (n(S),+, ·, 0, 1) is a bounded se-
miring with right annihilator 0 and a bounded distributive lattice. Moreover n is isotone,
L x = L and

− n(0) = n(1) = 0,
− n(L) = n(�) = 1,
− n(xL) = n(x�),
− n(xy) = n(xn(y)L),
− n(xn(y)) = n(x) = n(x0),
− x0 + n(xL)L = xL ≤ x0 + L,
− n(x) ≤ n(y) ⇔ n(x)L ≤ y.

Axioms (n6) and (n7) are also used to establish that · is isotone with respect to the approxi-
mation order we introduce in Sect. 4.3. Counterexamples generated by Mace4 [38] witness
that each of the axioms (n1)–(n7) is independent of the others and the underlying semiring
axioms.

The operation n facilitates two tasks: to access the infinite executions of a computation
and to represent tests. For several of the models discussed in Sect. 3.4 we could serve these
tasks by using the domain operation instead [20–22,25]. However, domain semirings are not
sufficient to describe computations having independent aborting, finite and infinite execu-
tions. This is because sequential composition, non-deterministic choice and domain cannot
distinguish between aborting and infinite executions, but it is necessary to access the infinite
executions of a computation to define the approximation order used for recursion. (The nec-
essary information happens to be available for extended designs since in that model aborting
executions entail infinite ones.) So while domain could still be used to induce tests, another
operation has to be added for the infinite executions.

4.3 Approximation and recursion

The approximation order � on computations, which instantiates to the variant of the Egli-
Milner order in the model of Sect. 4.1, is defined as follows:

x � y ⇔ x ≤ y + n(x)L ∧ y ≤ x + n(x)�
To obtain an intuition for this definition, consider a computation x that has infinite executions
starting in every state. Then n(x) = 1 and x � y reduces to x ≤ y + L, meaning that y must
have at least the aborting and finite executions of x and may have any infinite executions. On
the other hand, if x has no infinite executions, then n(x) = 0 and x � y reduces to x = y:
no executions may be added or removed.

Theorem 9 Let S be an n-semiring. Then � is a partial order on S with least element L.
Moreover the operations + and · and λx .n(x)L are �-isotone. If S is an itering, the operation
◦ is �-isotone. If S is an omega algebra, the operation ω is �-isotone.

The approximation order is suitable for defining the semantics of recursion in our new model
as well as the extended-design and general-correctness models. Hence any results derived
below also hold in these models. Different approximation orders are required for partial and
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total correctness, namely ≤ and ≥, respectively. A unified treatment of these approximation
orders and recursion which covers partial, total and general correctness is given in [22] and
generalised to extended designs and a model of non-strict computations in [27].

For the semantics of recursion we use a fixpoint theory which derives properties of fix-
points from their existence rather than from completeness of the underlying structure [16].
Let f : S → S be a function. Then μf, ν f and ξ f denote the ≤-least, ≤-greatest and �-
least fixpoints of f , provided they exist. In that case, the elements μf, ν f and ξ f satisfy the
following characterising properties:

f (μf ) = μf f (x) = x ⇒ μf ≤ x
f (ν f ) = ν f f (x) = x ⇒ ν f ≥ x
f (ξ f ) = ξ f f (x) = x ⇒ ξ f � x

In our model of computations, the semantics of the recursion specified by f (x) = x is ξ f ,
that is, the least fixpoint of f in the approximation order.

Including an axiom like f (μf ) = μf in Isabelle would force the existence of μf which
is not guaranteed without completeness. Instead we provide the definite description μf =
(THE y. f (y) = y ∧ (∀x . f (x) = x ⇒ y ≤ x)) as a definition. It introduces μf without
imposing its existence. Uniqueness and the characterising properties of μf are then proved
from the definite description and the assumption of existence. A similar handling applies to
the other fixpoints. From these definitions a calculus is developed for least (pre)fixpoints and
greatest (post)fixpoints including diagonal, exchange, fusion, rolling and square rules in the
style of [1] but based on existence rather than completeness.

Denote by x � y the �-greatest lower bound of x and y, provided it exists. The following
result gives conditions on the existence of �-least fixpoints and shows how to calculate them.
It generalises corresponding results for general correctness and extended designs [21,22,25].

Theorem 10 Let S be an n-semiring and let f : S → S be ≤- and �-isotone such that μf
and ν f exist. Then the following are equivalent:

1. ξ f exists.
2. ξ f and μf � ν f exist and ξ f = μf � ν f .
3. ξ f exists and ξ f = μf + n(ν f )L.
4. ν f ≤ μf + n(ν f )�.
5. μf + n(ν f )L � ν f .
6. μf � ν f exists and μf � ν f = μf + n(ν f )L.
7. μf � ν f exists and μf � ν f ≤ ν f .

Condition 3 reduces the calculation of ξ f to that of μf and ν f , which are often easier to
obtain as the semilattice order ≤ is less complex than the approximation order �. It is typ-
ically inferred by establishing condition 4 that characterises the existence of ξ f in terms of
μf and ν f .

4.4 Iteration

A special kind of recursion is the while-loop while p do w, which is the solution to its
unfolding equation x = pwx + p′ using the complement p′ of the condition p. We solve
the more general equation x = yx + z by calculating the �-least fixpoint ξ f of the function
f : S → S given by f (x) = yx + z for y, z ∈ S. To instantiate Theorem 10 for while-loops
an additional assumption is needed that captures the interaction of ∗ and ω with n.

123



Algebras for iteration and infinite computations 355

Theorem 11 Let S be an n-semiring and omega algebra with xω ≤ x∗n(xω)� for each
x ∈ S. Let y, z ∈ S and f (x) = yx + z. Then ξ f = n(yω)L + y∗z.

The proof uses that f is ≤- and �-isotone, μf = y∗z and ν f = yω + y∗z. As yet it is
unknown whether the additional assumption xω ≤ x∗n(xω)� is independent of the other
axioms.

Suggested by the previous result we let y◦ = n(yω)L+ y∗ and obtain ξ f = y◦z. The oper-
ation ◦ thus defined satisfies the itering axioms, whence the new model is another instance
of our general theory of iteration described in Sect. 3.

Theorem 12 Let S be an n-semiring and omega algebra. Then S is an itering using x◦ =
n(xω)L + x∗.

As a consequence all results derived for iterings are available in this model, too. The addi-
tional assumption of Theorem 11 is not required here, just to derive the semantics of iteration
as a special case of recursion.

Further consequences about the interaction of ∗ and ω with n are summarised in the
following result.

Theorem 13 Let S be an n-semiring and omega algebra and let x, y, z ∈ S. Then

− x∗n(x)L = x∗0,
− x∗n(xω)� = x∗0 + n(xω)�,
− n(x) ≤ n(x∗) ≤ n(xω) = n(xω y),
− n(x) ≤ n(z + yx) ⇒ n(x) ≤ n(yω + y∗z).

The last implication is similar to the induction axiom of omega algebra. Whether the dual
n(z + yx) ≤ n(x) ⇒ n(y∗z) ≤ n(x) follows is as yet unknown. This is reversed in omega
algebras with domain, where d(z + yx) ≤ d(x) ⇒ d(y∗z) ≤ d(x) holds [14] but the dual
d(x) ≤ d(z + yx) ⇒ d(x) ≤ d(yω + y∗z) has not been derived, see the additional axiom
for the divergence operation [15]. The reason for this asymmetry is the characterisation of
n(x) as a greatest test and of d(x) as a least test satisfying certain properties.

4.5 Boolean tests

The axioms of n-semirings induce a set of tests n(S) which is a bounded distributive lattice.
To make it a Boolean algebra, so as to inherit our general results about while-programs, we
add the Boolean complement n̄ of n. This is achieved by introducing the operation n̄ : S → S
such that n̄(x) + n(x) = 1 and n̄(x)n(x) = 0. Hence n̄(x) represents the set of states from
which the computation x has no infinite executions.

After adding the complementing axioms to those of n, it is possible to reduce their number,
similarly to the case of (anti)domain [17]. Thus an n̄-semiring (S,+, ·, n̄, n, 0, 1, L,�) is a
bounded semiring (S,+, ·, 0, 1,�) expanded by operations n̄, n : S → S and a constant L
satisfying the axioms

(a1) n̄(x) + n(x) = 1 (a4) n̄(x) = n̄(x0)

(a2) n̄(x + y) = n̄(x)n̄(y) (a5) xn(y)L = x0 + n(xy)L
(a3) n̄(n̄(x)y) = n(x) + n̄(y) (a6) n̄(xL)x ≤ x0

The following result shows that n̄-semirings provide the intended structure.

Theorem 14 Let S be an n̄-semiring and x ∈ S. Then S is an n-semiring and a test algebra
with complement x ′ = n̄(xL). In particular, n(S) = n̄(S) is a Boolean algebra, n̄(x)n(x) = 0
and n̄ is antitone. Moreover n(x) = n̄(n̄(x)L) and n̄(x) = n(n̄(x)L).
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By the following consequence, while-programs can be defined as in Sect. 3.3 and all of the
results shown there also hold in the new model.

Theorem 15 Let S be an n̄-semiring and omega algebra. Then S is a test itering using
x◦ = n(xω)L + x∗ and x ′ = n̄(xL).

4.6 Modal operators

For the domain operation it is possible to define modal diamond and box operators [41].
Given an element x and a test p, the diamond operator yields d(xp). In partial-correctness
models, this captures the set of states from which there is an execution of x to a state in p,
that is, the preimage of p under x . Dually, the box operator yields the states from which all
executions of x go to p, and hence corresponds to the weakest liberal precondition. In other
computation models, box describes the weakest precondition or variants thereof [42,26].

We introduce modal diamond and box operators in n̄-semirings. They are defined by

|x〉y = n(xyL)
|x]y = n̄(xn̄(yL)L)

Typically the second argument of these operators is a test p. Then |x〉p yields the set of states
from which x has infinite executions or finite executions terminating in p. Moreover |x]p
yields the set of states from which all finite executions of x terminate in p and there are no
infinite executions. Diamond and box satisfy the following distribution, duality, induction
and unfold properties.

Theorem 16 Let S be an n̄-semiring and let x, y, z ∈ S and p, q ∈ n(S). Then

|x + y〉z = |x〉z + |y〉z |x + y]z = |x]z · |y]z
|x〉(y + z) = |x〉y + |x〉z |x](pq) = |x]p · |x]q

|xy〉z = |x〉|y〉z = |x〉(yz) |xy]z = |x]|y]z
|x〉y = (|x]y′)′ |x]y = (|x〉y′)′

using y′ = n̄(yL) from the induced test algebra. If S is an omega algebra,

|x]p · q ≤ p ⇒ |xω + x∗]q ≤ p
|xω + x∗]p = p · |px]|xω + x∗]p

|x∗]p = p · |px]|x∗]p
|xω + x∗]p = p · |xω + x∗](p′ + |x]p)

The latter facts can be dualised as well. The last property is a version of Segerberg’s formula
with infinite iterations.

We give several applications that show how to reason about programs using the modal
operators. They are instances of the following general result.

Theorem 17 Let S be an n̄-semiring and omega algebra and let x ∈ S and p, q, r ∈ n(S).
Then

− |x◦〉p = |(p′x)◦〉p = |while p′ do x〉p,
− qpL ≤ xpL ∧ p ≤ q + r ⇒ p ≤ |while q do x〉r ,

using x◦ = n(xω)L + x∗ and p′ = n̄(pL) and while-programs from the induced test itering.

The first property has the following interpretation. Its left-hand side |x◦〉p describes a non-
deterministic iteration to reach a state in p. This can be optimised to the deterministic loop
|while p′ do x〉p which stops as soon as p is reached.
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One instance of the second property is given by the following program x and conditions
p, q, r with two integer variables a and b:

x = (a := a/b) q = (a ≥ 1)

p = (b ≥ 1) r = (a < 1) = q ′

Then qpL ≤ pL ≤ pxpL ≤ xpL holds because pL has only infinite executions starting in
a state with b ≥ 1, and so has pxpL since the assignment a := a/b terminates and does
not change the value of b. Moreover clearly p ≤ 1 = q + q ′ = q + r . By Theorem 17 the
execution of the program while a ≥ 1 do a := a/b in a state with b ≥ 1 does not terminate
or terminates in a state satisfying a < 1. Because the loop is deterministic, this implies that
it does not abort.

Another instance of the second property uses p = (a ≥ 1 ∧ b = 1) and r = 0 while x
and q remain as above. Then qpL ≤ pL = pxpL ≤ xpL because in a state with b = 1 the
assignment a := a/b has no effect. Moreover clearly p ≤ q = q + r . By Theorem 17 the
execution of the program while a ≥ 1 do a := a/b in a state with b = 1 does not terminate.

5 Conclusion

The investigated generalisation of Kleene algebra facilitates the description of iteration and
the unification of program transformations for several relational computation models. This
is achieved by replacing the induction axioms with simulation axioms that can be instanti-
ated by various fixpoints, yet suffice for general laws refining and transforming iterations
and while-programs. Results derived in this setting hold in six computation models includ-
ing partial, total and general correctness and extensions, which represent different kinds of
executions with varying precision.

In one of these models, a computation comprises finite, infinite and aborting executions in
an orthogonal way described by a matrix of relations. This representation makes it possible
to define program constructs in terms of standard matrix operations. Abstracting from this
model, approximation, recursion and iteration are algebraically described using an operation
that extracts the infinite executions of a computation. Its axioms apply to several computation
models enabling a unified treatment. At the same time, this operation is an alternative to the
domain operation for inducing tests, which represent conditions in programs. Related modal
operators describe variants of preimage and weakest preconditions.

Acknowledgments I thank Bernhard Möller, Georg Struth and the anonymous referees for providing helpful
comments.
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