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Received: 6 September 2011 / Accepted: 30 April 2012 / Published online: 6 June 2012
© Springer-Verlag 2012

Abstract Stochastic game logic (SGL) is a new temporal logic for multi-agent systems
modeled by turn-based multi-player games with discrete transition probabilities. It combines
features of alternating-time temporal logic (ATL), probabilistic computation tree logic and
extended temporal logic. SGL contains an ATL-like modality to specify the individual coop-
eration and reaction facilities of agents in the multi-player game to enforce a certain winning
objective. While the standard ATL modality states the existence of a strategy for a certain
coalition of agents without restricting the range of strategies for the semantics of inner SGL
formulae, we deal with a more general modality. It also requires the existence of a strategy
for some coalition, but imposes some kind of strategy binding to inner SGL formulae. This
paper presents the syntax and semantics of SGL and discusses its model checking problem
for different types of strategies. The model checking problem of SGL turns out to be unde-
cidable when dealing with the full class of history-dependent strategies. We show that the
SGL model checking problem for memoryless deterministic strategies as well as the model
checking problem of the qualitative fragment of SGL for memoryless randomized strategies
is PSPACE-complete, and we establish a close link between natural syntactic fragments of
SGL and the polynomial hierarchy. Further, we give a reduction from the SGL model check-
ing problem under memoryless randomized strategies into the Tarski algebra which proves
the problem to be in EXPSPACE.
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1 Introduction

Traditional temporal logics, such as linear temporal logic (LTL) or computation tree logic
(CTL) are widely used to specify properties of parallel systems [14]. In the classical approach,
the semantics of LTL and CTL relies on an operational model (transition system) where the
paths represent the possible interleavings of the processes running in parallel and formu-
lae assert conditions on all paths (LTL) or on the branching structure of states (CTL). This
approach is adequate for closed systems where the transition system describes the potential
system behaviors from a global perspective. In contrast, the semantics of open systems relies
on a game-based view where the individual components are considered as players (also called
agents) that interact with each other and their environment. Alur et al. [2] introduced alternat-
ing-time temporal logic (ATL) as a variant of CTL with modalities expressing the existence
of strategies for coalitions of agents that enforce a certain event. More precisely, ATL extends
CTL by formulae of the form 〈〈A〉〉ATLϕ and ||A||ATLϕ where A is a set of cooperating players
(agents) and ϕ an ATL path formula. 1 Intuitively, the formula 〈〈A〉〉ATLϕ asserts that there
is a strategy for the agents in A such that the event specified by ϕ holds, no matter how
the opponents (i.e., the other agents) behave. The dual operator, denoted by || · ||ATL, can be
understood as universal quantification over strategies. That is, formula ||A||ATLϕ states that ϕ
holds along at least one path under all strategies for A. Stated differently, ||A||ATLϕ asserts
the absence of a strategy for the coalition A to avoid ϕ to hold. The ATL semantics relies
on the standard CTL-like approach where all subformulae are interpreted over the “full”
structure. That is, the ATL modalities 〈〈·〉〉ATL and || · ||ATL do not restrict the range of strategies
for nested 〈〈·〉〉ATL and || · ||ATL modalities. For instance, the formula 〈〈A〉〉ATL�〈〈B〉〉ATL♦p asserts
the existence of a strategy α for the agents in A such that 〈〈B〉〉ATL♦p holds (in the “full” game)
for all states s that can be reached when the agents in A make their decisions according to
α, i.e., from these states s the agents in B have a strategy β in the original game (neglecting
the strategy α) which ensures that a state where p holds is reached. 2 Thus in ATL a strategy
chosen by the 〈〈·〉〉ATL operator is not propagated to the inner ATL state formulae. Therefore,
properties stating that a certain agent can react on the choices made by another agent are not
expressible in ATL. Several variants of ATL have been proposed that contain modalities for
strategy quantification imposing certain bindings of strategies to inner formulae. Examples
are game logic [2], ATL with strategy contexts [1,9], or strategy logic of [12] that contains
first-order quantification over strategies.

In this paper, we introduce a probabilistic variant of ATL, called SGL for short. It serves
to specify properties of multi-agent systems where actions can have a probabilistic effect.
More precisely, we deal with finite-state turn-based games where the game arena is based on
a graph structure with several annotations. Each state is either a game configuration where a
single agent is declared to choose a successor state (based on some deterministic or random-
ized strategy) or a probabilistic state where the next state is chosen randomly according to
some fixed probabilistic distribution. The logic SGL contains a variant of the ATL-modality
for reasoning about the existence of strategies for a coalition of agents A, denoted by 〈〈A〉〉,
to achieve a certain objective. The dual modality to 〈〈A〉〉 is denoted by ||A|| in SGL. The
difference between the ATL-modalities 〈〈A〉〉ATL and ||A||ATL and the SGL modalities 〈〈A〉〉 and
||A|| becomes apparent when these operators are nested. Following the approach of [4,8,22],

1 Our logic SGL uses other modalities for existential and universal quantification over strategies. To avoid
notation overloading, we use the notation 〈〈A〉〉ATL and ||A||ATL to denote the standard ATL modalities, while
〈〈A〉〉 and ||A|| will be used for the SGL-modalities. Later on, we will explain how the ATL-modalities can be
derived from 〈〈A〉〉 and ||A||.
2 � and ♦ denote the “always” and “eventually” operator, respectively.
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Stochastic game logic 205

the semantics of the SGL formula 〈〈A〉〉Φ is defined differently. The operator 〈〈A〉〉 imposes
a binding of the strategy α chosen by the agents in A in the same way as first-order quanti-
fication ∃xφ binds the variable x . The scope of the binding is the full formula Φ including
its subformulae. However, the nested 〈〈A′〉〉 operators can revise the binding for the agents in
A ∩ A′.

In SGL, the objectives of coalitions of agents can be linear-time or branching-time prop-
erties with qualitative or quantitative probability bounds. For this purpose, the SGL syntax
combines features of probabilistic computation tree logic (PCTL) for Markov decision pro-
cesses [6] with features of extended temporal logic (ECTL∗) [13,27,30]. More precisely,
the SGL-operators 〈〈·〉〉 and || · || can be used in combination with qualitative or quantitative
probability bounds on path-events that are specified by finite-state ω-automata. For technical
convenience, we use deterministic Rabin automata to describe path properties.

With this concept we can formalize typical multi-player game properties such as “the
agents in A have a strategy such that whatever strategy the agents in B choose, the agents
in C can react to that strategy so that the winning condition holds”. This is formalized by
SGL formula

〈〈A〉〉||B||〈〈C〉〉“the winning condition holds”,

where ||B||Φ = ¬〈〈B〉〉¬Φ. This property might or might not be expressible in ATL, depend-
ing on the winning condition and whether the game is turn-based or concurrent. In general,
the SGL formulae 〈〈A〉〉||B||〈〈C〉〉“win.cond.” and 〈〈A ∪ C〉〉“win.cond.” and not equivalent,
because C’s strategies can depend on B’s decisions.

To illustrate the advantages of strategy binding and revision, consider the following sce-
nario. A broker (coalition B) has a certain amount of money (say 1 Mio Dollars) to work
with. The broker’s goal is to design a strategy (of buying and selling stock, fixed-term deposit,
subscription warrants, etc.) for the upcoming months that guarantees with a given probability
(e.g., 90 %) the earnings to become larger than 100.000 Dollars in the next year. Further, the
broker must act so that his potential losses caused by unpredictable events (e.g., earthquake or
oil embargo) are acceptable. That is, if some unpredictable event happens, the broker should
be able to change his behaviour (depending on the actual event) so that he has at least 500.000
Dollars at his/her disposal within a day, no matter what happens to the rest of the money.
Let us assume that the unpredictable events are fired by a coalition E of players. Then the
appropriate SGL formula formalizing the above requirements is

〈〈B〉〉(Earn ∧ Safe)

where

Earn ≡ P≥0.9
(
♦≤365(earnings ≥ 100.000)

)

Safe ≡ P≥1
(
� ||E || 〈〈B〉〉P≥1(X (available money ≥ 500.000))

)

Here, � denotes the “always” operator, ♦≤365 denotes the “in at most 365 steps” operator,
and X represents the next operator (see Sect. 3). One step corresponds to one day.

Our contribution The novel logic SGL provides a uniform framework for reasoning about
qualitative and quantitative linear- and branching-time properties of probabilistic multi-agent
systems. We present the syntax and semantics of SGL and study the decidability and complex-
ity of the SGL model checking problem for various types of strategies. As a consequence
of known results for stochastic games with branching-time winning objectives [8,22], we
obtain the undecidability of the SGL model checking problem for history-dependent strate-
gies. However, decidability can be established when restricting the range of the strategies for
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the modalities 〈〈A〉〉 and ||A|| to memoryless ones. We present a classification of SGL formu-
lae into “types” that yield a perfect match with the polynomial hierarchy when dealing with
memoryless strategies only. This also yields PSPACE-completeness of the SGL model check-
ing problem under memoryless deterministic strategies and the model checking problem for
the qualitative fragment of SGL under memoryless randomized strategies. Using an encoding
of the semantics for (arbitrary) SGL formulae in first-order theory of the reals, we obtain
an exponentially space-bounded model checking algorithm for full SGL and memoryless
randomized strategies.

To the best of our knowledge, this paper (and its preceding conference version [3]) repre-
sents the first attempt for defining an ATL-like logic that can express quantitative (PCTL-like)
properties combined with strategy binding. Former approaches with ATL-like modalities for
reasoning about concurrent stochastic games have been studied by de Alfaro et al. [18,19]
in, e.g. However, these papers concentrate on qualitative properties and they do not consider
Boolean combination of qualitative properties or the nesting of 〈〈·〉〉 operators. A probabilis-
tic variant of ATL, denoted by pATL, has been studied in [10]. The logic pATL contains a
modality 〈〈·〉〉p that can express the existence of a strategy for the agents in A that achieves the
satisfaction probability at least p. However, there is no strategy binding in the logic pATL.

The reduction of the SGL model checking problem for memoryless randomized strategies
to Tarski algebra reuses ideas that have been presented in [22] for the synthesis of controller
from PCTL specifications. However, several non-trivial adaptions to our more general logical
framework with potential nestings of ATL-like modalities are required.

Organization Section 2 introduces our model of probabilistic multi-player games (PMG)
and related notions. The syntax and semantics of SGL is introduced in Sect. 3. The model
checking problem for SGL on multi-player games is addressed in Sects. 4, and 5 concludes
the paper.

2 Preliminaries

In this section we briefly explain our model of probabilistic multi-player games (Sect. 2.1)
and summarize the relevant features of deterministic Rabin automata (Sect. 2.2).

2.1 Probabilistic multi-player games

In this paper, we deal with turn-based multi-player games where in each state only one agent
makes a move.

Definition 1 Probabilistic multi-player game (PMG) A probabilistic multi-player game
(PMG) is a tuple M = (Agents, S,→,P,Props, ν) where

– Agents is a finite set of agents,
– S is a set of states, disjointly partitioned into S = Sprob ∪ ⋃

a∈Agents
Sa ,

– → ⊆ S × S is a total transition relation,3 i.e., for every s ∈ S there is t ∈ S such that
s → t ,

– P : Sprob × S → [0, 1] is a probability assignment such that, for all s ∈
Sprob,

∑
u∈S P(s, u) = 1 and P(s, t) = 0 iff s �→ t ,

– Props is a finite set of atomic propositions,

3 In the rest of this paper, we will write s → t instead of (s, t) ∈ →.
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Stochastic game logic 207

– ν : S → 2Props is a labeling function that assigns to each state s the set ν(s) of atomic
propositions which hold in s.
A Markov decision process (MDP) is a PMG where the set of agents is a singleton.

We may regard S as a function that assigns to each agent a a set Sa such that Sa ∩ Sb = ∅

if a �= b. The states s ∈ Sa are called a-states. For an agent set A ⊆ Agents, we write SA

for
⋃

a∈A Sa and refer to the states s ∈ SA as A-states. Note that in the a-states, it is agent’s
a turn to choose a transition s → t . In the probabilistic states s ∈ Sprob, the successor state
is chosen randomly according to P.

So far, no restrictions on M have been made. When addressing the model checking prob-
lem, we consider only finite-state PMG with rational probability assignment (i.e., S is a finite
set and P(s, t) is rational for all (s, t) ∈ Sprob × S).

We write Paths(s) for the set of all infinite sequences s0 s1 s2 . . . ∈ Sω where s0 = s and
si → si+1 for all i ≥ 0. More generally, for a finite sequence w = s0 . . . sk of states we use
Paths(w) to denote the set of all π ∈ Paths(s0) that start with w (note that Paths(w) can be
empty). We denote by Succ(s) the set of all successors of s, i.e., Succ(s) = {t ∈ S | s → t}.
For a path π = s0, s1, . . . and j ≥ 0, we denote by π( j) the state s j of π .

Given a finite or countably infinite set T , let Distr(T ) be the set of all distributions on T ,
i.e., functionsμ : T → [0, 1] such that

∑
t∈T μ(t) = 1. A distributionμ is Dirac ifμ(t) = 1

for some t ∈ T .

Definition 2 Strategy Let A ⊆ Agents. A history-dependent randomized A-strategy
(briefly HR strategy, or simply strategy) is a function α : S∗SA → Distr(S) such that
α(s1 . . . sn s)(t) = 0 if s �→ t . An α-path denotes a path s0 s1 s2 . . . which is consistent
with α’s decisions, i.e., for all i ≥ 0, si ∈ SA implies α(s0 . . . si )(si+1) > 0.

A strategy α is called deterministic (or a HD strategy) if for all s1 . . . sn s ∈ S∗SA, the
distribution α(s1 . . . sn s) is Dirac. We say that α is memoryless (or an MR strategy) if
α(s1 . . . sn s) = α(s) for all state-sequences s1 . . . sn . An MD strategy means a memory-
less deterministic strategy. A special type of HR strategies are finite-memory (FR) strate-
gies, where the decision depends only on the control state entered by some fixed finite-state
automaton after reading the sequence s1 . . . sn s ∈ S∗SA. An FD strategy is a deterministic
FR strategy.

Given a strategy α for all agents and a state s ∈ S, we define the probability space
(Paths(s),F ,Probα) in the standard way, i.e.,

– F is the σ -field generated by all Paths(w) wherew is a finite sequence of states initiated
in s,

– Probα is the unique probability measure such that for all w = s0 . . . sn where s = s0

and n ≥ 1 we have that Probα(Paths(w)) = ∏n−1
i=0 xi . Here xi is equal to P(si , si+1) or

α(s0 . . . si )(si+1), depending on whether si ∈ Sprob or not, respectively.

Sometimes we also need to consider games induced by A-strategies, where A is just
a subset of agents. In particular, this is useful for memoryless strategies. For a given MR
A-strategy α, the game M α induced by α arises from M by fixing the decisions for the
agents in A according to α (note that the A-states of M become probabilistic states in M α).
Formally, we define M α = (Agents � A, S,→α,Pα,Props, ν) where

– s →α t iff s ∈ SA and α(s)(t) > 0, or s �∈ SA and s → t ;
– Pα(s, t) = α(s)(t) if s ∈ SA, and Pα(s, t) = P(s, t) if s �∈ SA is a probabilistic state

of M .
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2.2 Deterministic Rabin automata

The logic SGL introduced in the next section uses ω-regular languages to specify path prop-
erties in the style of the extended computation tree logic ECTL [13]. These languages are
expressed by deterministic Rabin automata. We briefly recall here the basic concepts.

Definition 3 [Deterministic Rabin Automata (DRA)] A deterministic Rabin automaton
(DRA) A is a tuple (Q,Σ, qinit, δ, (Li , Ri )

m
i=1), where

– Q is a finite set of states,
– Σ is a finite alphabet,
– qinit ∈ Q is the initial state,
– δ : Q ×Σ → Q is a transition function, and
– (Li , Ri )

m
i=1 is the acceptance condition, where Li , Ri ⊆ Q for all 1 ≤ i ≤ m.

Given an infinite wordπ = π1 π2 . . . ∈ Σω over the alphabetΣ , we call r(π) = q1 q2 q3 . . .

where q1 = qinit and qi+1 = δ(qi , πi ) the run of A for the input word π . By

lim(r(π)) = {q ∈ Q | q j = q for infinitely many j}
we denote the limit of r(π), i.e., the set of states that occur infinitely often in r(π). We say
that a set of states T ⊆ Q is accepting iff there exists an index j ∈ {1, . . . ,m} such that
T ∩ L j �= ∅ and T ∩ R j = ∅. The language accepted by the Rabin automaton A is defined
as

L(A ) = {π ∈ Σω | lim(r(π)) is accepting}.
In this paper (particularly in Sect. 4), we rely on well-known results about optimal

values in maximizing and minimizing MDPs with DRA objectives (see [16,17] or Chap-
ter 10 in [5]). To make this paper self-contained, we briefly recall these results (in a
form which suits our purposes). Let M = ({a}, S,→,P,Props, ν) be an MDP and A =
(Q,Σ, qinit, δ, (Li , Ri )

m
i=1) a DRA whereΣ = 2Props. For every infinite path π = s1 s2 . . .,

let π̂ = ν(s1) ν(s2) . . . be the corresponding infinite word overΣ . For every s ∈ S, we define
its upper and lower A -value as follows:

val+(A , s) = sup
α

Probα({π ∈ Paths(s) | π̂ ∈ L(A )}),
val−(A , s) = inf

α
Probα({π ∈ Paths(s) | π̂ ∈ L(A )}).

Here α ranges over all HR strategies of the only agent a.
The next proposition says that val+(A , s) and val−(A , s) correspond to components of

the least solution of efficiently constructible systems of linear (in)equalities.

Proposition 1 (see [5,6,16,17]) Let M = ({a}, S,→,P,Props, ν) be an MDP and A =
(Q,Σ, qinit, δ, (Li , Ri )

m
i=1) a DRA where Σ = 2Props. There are systems 
acc, 
rej of lin-

ear (in)equalities over the set of variables Var = {xs,q | s ∈ S, q ∈ Q}, constructible in
polynomial time, such that for every s ∈ S we have that

– val+(A , s) = μ[
acc](xs,qinit ),
– val−(A , s) = 1− μ[
rej](xs,qinit ).

Here μ[
acc] and μ[
rej] denote the least solution of 
acc and 
rej in [0, 1], and
μ[
acc](xs,q) andμ[
rej](xs,q) denote the value of xs,q inμ[
acc] andμ[
rej], respectively.
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Stochastic game logic 209

Proof (sketch) First, we construct the synchronized product of M and A , which is an MDP
M ×A = ({a}, S × Q,→⊗,P⊗,Props⊗, ν⊗), where

– (S × Q)a = Sa × Q, (S × Q)Prob = SProb × Q,
– (s, q)→⊗ (s′, q ′) iff s → s′ and δ(q, ν(s)) = q ′,
– P⊗((s, q), (s′, q ′)) is equal either to P(s, s′) or 0, depending on whether (s, q) →⊗

(s′, q ′) or not, respectively.
– Props⊗ = Props,
– ν⊗(s, q) = ν(s).
An end component of M ×A is a set U ⊆ S × Q such that

– for all (s, q) ∈ U and (s′, q ′) ∈ S × Q such that s ∈ SProb and (s, q) →⊗ (s′, q ′) we
have that (s′, q ′) ∈ U , i.e., U is closed under successors of probabilistic vertices;

– for every (s, q) ∈ U , where s ∈ Sa , there is (s′, q ′) ∈ U such that (s, q)→⊗ (s′, q ′) and
(s′, q ′) ∈ U ;

– U is strongly connected, i.e., for each pair of states of U we have that the first state is
reachable from the second state by a finite path leading only through the states of U .

Obviously, for each end component U , there is a strategy α for the only agent a such that
each state of U is visited infinitely often with probability one, assuming that we start in a
state of U . For a given end component U , we use QU to denote the set {q ∈ Q | (s, q) ∈
U for some s ∈ S}. We say that a given end component U is accepting if there is 1 ≤ i ≤ m
such that QU ∩ Li �= ∅ and QU ∩ Ri = ∅. Similarly, we say that U is rejecting if for all
1 ≤ i ≤ m we have that QU ∩ Li = ∅ or QU ∩ Ri �= ∅. The systems 
acc and 
rej are
constructed as follows:

(1) If (s, q) belongs to some accepting/rejecting end component, we add to 
acc/
rej the
equality xs,q = 1;

(2) otherwise, we add to 
acc/
rej either

the equality xs,q = ∑

(s,q)→⊗(s′,q ′)
P⊗((s, q), (s′, q ′)) · xs′,q ′ , if s ∈ SProb;

the inequality xs,q ≥ xs′,q ′ for every transition (s, q)→⊗ (s′, q ′), if s ∈ Sa .

It follows from the results of [5,6,16,17] that val+(A , s) = μ[
acc](xs,qinit ) and
val−(A , s) = 1 − μ[
rej](xs,qinit ). Further, the systems 
acc and 
rej are constructible
in time polynomial in the size of M and A , because the condition of (1) is solvable in
polynomial time. ��

3 The logic SGL

For specifying properties of probabilistic multi-player games, we introduce a new temporal
logic called “stochastic game logic” (SGL). The logic SGL borrows ideas from ATL (and the
ATL-like formalisms for stochastic games [18,19]), extended computation tree logic ECTL
[13], and the game logic GL of [2]. The probabilistic fragment of SGL contains a PCTL-like
probabilistic operator which allows to reason about the probabilities forω-regular properties,
expressed by a deterministic Rabin automaton.

We start with the syntax of SGL (Sect. 3.1), then present its formal semantics by interpret-
ing SGL formulae over the states of a probabilistic multi-player game (Sect. 3.2) and then
discuss the expressiveness of SGL (Sect. 3.3).
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3.1 SGL syntax

Throughout the paper, let AP and AG be countably infinite sets of atomic propositions and
agents, respectively.

The abstract syntax of SGL formulae is given by the following equation:

Φ ::= p
∣
∣
∣ ¬Φ

∣
∣
∣ 〈〈A〉〉Φ

∣
∣
∣P��λ(A ;Φ1, . . . , Φk)

Here p and A range over AP and finite subsets of AG, respectively, �� ∈ {<,≤,>,≥} is a
comparison operator, λ ∈ [0, 1] is a rational probability bound, and A is a DRA over the
alphabet 2{1,...,k}.

Note that SGL does not contain the usual Boolean connectives such as∧, ∨, etc. This is no
restriction, because, as we shall see in the next section,Φ1 ∧Φ2 is semantically equivalent to
P>0(A∧;Φ1, Φ2), where A∧ is the fixed DRA of Example 1. Hence, we can freely use Bool-
ean connectives in SGL formulae as symbolic abbreviations without influencing the upper
complexity bounds for the SGL model checking problem presented in Section 4. The same
can be said about the standard PCTL operators P��λ(X (Φ)) and P��λ(Φ1U Φ2) which are
equivalent to P��λ(AX ;Φ1) and P��λ(AU ;Φ1, Φ2), respectively (see Example 1).

The real power of DRA becomes apparent when dealing with more complicated path
properties. Since DRA can accept an arbitrary ω-regular language, the class of path prop-
erties expressible in SGL is exactly the class of all ω-regular properties, and hence SGL is
strictly more expressive than PCTL∗ even on purely probabilistic systems. The idea of auto-
mata connectives is borrowed from the logic ECTL∗ [13,27,30]. For our purposes, it is more
convenient to use DRA (rather than non-deterministic Büchi automata), because this yields a
better match with standard complexity classes. Alternatively, we could also use deterministic
Müller or deterministic Street automata.

An important syntactic fragment of SGL is qualitative SGL where the constant λ in the
probabilistic operator P��λ may only take the value 0 or 1.

3.2 SGL semantics

Let M = (Agents, S,→,P,Props, ν) be a PMG where Agents ⊆ AG, Props ⊆ AP, and
XY a class of strategies (i.e., XY is either MD, MR, HD, or HR). We define a satisfaction
relation

s, A, α |�XY Φ

where s is a state in M , A ⊆ Agents, α is an XY A-strategy, andΦ is an SGL formula such
that for every 〈〈B〉〉 operator used in Φ we have that B ⊆ Agents. The intuitive meaning is
that s satisfies Φ in the game induced by α. The A and α on the left-hand side of |�XY are
used to keep track of the strategy decisions already made. Note that SGL is parametrized by
the strategy class XY that can be used by the agents whose strategy choice

The formal rules for the satisfaction relation are given below, followed by a more detailed
explanation of the newly employed symbols.

s, A, α |�XY p iff p ∈ ν(s)
s, A, α |�XY ¬Φ iff s, A, α �|�XY Φ

s, A, α |�XY 〈〈B〉〉Φ iff there is an XY B-strategy β such that
s, A ∪ B, (α← β) |�XY Φ

s, A, α |�XY P��λ(A ;Φ1, . . . , Φk) iff for all HR strategies β for Agents � A we have that

Probα←β
({π ∈ Paths(s) | π̃Φ1,...,Φk

A,α;XY ∈ L(A )}) �� λ
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The semantics of p and ¬Φ is standard. The formula 〈〈B〉〉Φ requires the existence of an
XY B-strategy β such that the subformulaΦ is satisfied in the game induced by α and β. For
the agents in A ∩ B, the previous decisions made by α are changed by β. That is, (α ← β)

denotes the strategy for the agents in A ∪ B such that the agents in A � B behave according
to the strategy α and the agents in B behave according to the strategy β. Formally, given a
path π = s1, . . . , sn , we put

(α← β)(π) =
{
α(π) if sn ∈ SA � SB

β(π) if sn ∈ SB

Finally, the P��λ(A ;Φ1, . . . , Φk) formula has the standard PCTL∗ semantics, meaning
that for all unrestricted (i.e., HR), strategies β of the “remaining” agents in Agents � A, the
probability measure of all paths accepted by the automaton A in the Markov chain induced
by combining the “current” strategy α with β matches the probability bound λ. Here, a path
is accepted by the automaton A if its projection to words over 2{1,...,k} indicating which of
the formulaeΦ1, . . . , Φk are satisfied in each of the states of the path, is in L(A ). Formally,
π̃
Φ1,...,Φk
A,α;XY ∈ (2{1,...,k})ω is defined as follows:

π̃
Φ1,...,Φk
A,α;XY (i) = {

j | 1 ≤ j ≤ k and π(i), A, α |�XY Φ j
}
.

Given a formula Φ, we denote by SatXY (Φ) the set of all states of M that satisfy Φ, i.e.,

SatXY (Φ) =
{
s ∈ S | s,∅, α∅ |�XY Φ

}
.

Note that the class of strategies for agents that explicitly appear in some 〈〈·〉〉 operator is
restricted to XY, while the remaining agents can always use unrestricted (i.e., HR) strate-
gies. Intuitively, this is because the remaining agents are usually interpreted as unpredictable
intruders, and hence their worst possible behaviour must be taken into account. On the other
hand, the strategy for cooperating agents should be as simple as possible, because imple-
menting memory/randomization might be costly. The results in [4] yield that the satisfaction
relations |�HD, |�HR, |�MD, and |�MR are pairwise distinct. For example, it can happen that
s,∅, α∅ �|�M D 〈〈B〉〉Φ and s,∅, α∅ |�M R 〈〈B〉〉Φ, which means that the agents of B can
achieve the property Φ without memory but need to randomize.

Example 1 As we already mentioned, the syntax of SGL does not contain the standard
Boolean connectives and temporal operators such as “NextStep” (denoted by X ), “Always”
(denoted by �), or “Until” (denoted by U ). It is perhaps worth noting how to express
these operators in SGL. For example, the formula P��λ(�Φ1) can be expressed in SGL as
P��λ(A�;Φ1), where the DRA A� is shown in Fig. 1 (together with DRA for some other
connectives).

3.3 The relationship between SGL and other logics

In this paragraph we show that formulae of other well-known logics such as CTL, CTL∗,
PCTL, PCTL∗, ATL, ATL∗, etc., can effectively be translated into SGL. The translation is
linear for CTL, PCTL, and ATL; for CTL∗, PCTL∗, and ATL∗, there is an exponential blowup
caused by translating LTL properties into deterministic Rabin automata.

The standard (non-probabilistic) CTL is expressible in SGL. CTL is interpreted over
labelled transition systems (Kripke structures) which can be seen as a PMG with no probabi-
listic states and only one agent. In the CTL semantics each path quantifier ∃,∀ is interpreted
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Fig. 1 DRA implementing some Boolean and modal connectives. The initial state is q0

over the “full” system. Since in SGL strategies chosen by the 〈〈{1}〉〉 operator can be over-
written by another 〈〈{1}〉〉 operator, we can embed CTL as follows. Given a labelled transition
system T and a CTL formulaΦ, letΦ ′ be the SGL formula obtained fromΦ by substituting
each occurrence of the existential quantifier ∃(·) by 〈〈{1}〉〉P≥1(·), and each occurrence of
the universal quantifier ∀(·) by ||{1}||P≥1(·). Then,

SatCT L(Φ) = SatM D(Φ
′).

In the proof of the above equality, one has to realize that if there is a path which satisfies/vio-
lates a formula of the formΦ1U Φ2, then there is also a path with the same property obtained
by fixing exactly one outgoing transition in every state. Also note that Φ ′ does not strictly
conform to our SGL syntax as it uses temporal operators like “Always” and “NextStep”
instead of Rabin automata to express path properties. But, as indicated in Example 1, the
formula Φ ′ can be transformed into an equivalent SGL formula.

The same transformation embeds CTL∗ into SGL, but in this case, the SGL formula
has to be interpreted over HD strategies. That is, given a CTL∗ formula Φ, it holds that
SatCT L∗(Φ) = SatH D(Φ

′). As CTL∗ uses LTL path formulae, we need more complicated
automata than the ones introduced in Example 1. However, this does not pose any real prob-
lems as the languages expressible by LTL formulae are ω-regular, and deterministic Rabin
automata are as expressive as ω-regular languages [25,28,29].

The standard PCTL (interpreted over Markov decision processes (MDP)) can also be
embedded into SGL. Each Markov decision process M can be seen as a PMG with only
one agent. In PCTL, there are no path quantifiers like ∃ and ∀. The semantics of the PCTL
P��λ(·) operator implicitly quantifies over all strategies in the given MDP M . This is the
same as in our SGL semantics. Moreover, given a formula

P��λ(A ;Φ1, . . . , Φk),

the formulae Φ1, . . . , Φk are interpreted over the same system as the formula P��λ
(A ;Φ1, . . . , Φk). Hence, we do not need a transformation from PCTL to SGL as in the
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CTL case above; we only need the transformation from LTL path formulae to deterministic
Rabin automata. Given a PCTL formula Φ and an MDP M , it holds that

Sat PCT L (Φ) = SatM D(Φ).

Again, the temporal operators have to be substituted by the appropriate automata.
Similarly, PCTL∗ embeds into SGL. Let M be an MDP andΦ be a PCTL∗ formula. Then,

Sat PCT L∗(Φ) = SatH D(Φ).

Remark 1 Let M be an MDP (which can be understood as PMG with one agent 1), and letΦ
be an SGL formula that is obtained from some PCTL∗ formula in the way indicated above.
In particular, note thatΦ does not contain the 〈〈·〉〉 operator. Assume thatΦ has nested P��λ(·)
operators, so it might look like this: P��λ(. . .P��′λ′(. . .) . . .). LetΦ ′ be the formula obtained
from Φ by substituting each occurrence of P��λ(·) by ||{1}||P��λ(·). Then,

SatXY (Φ) = SatH D(Φ
′) for each strategy class XY , whereas

SatH D(Φ) �= SatH D(||{1}||Φ) in general.

This is because although in Φ ′ the ||{1}|| operator of the outermost P��λ(·) operator fixes a
strategy for the only agent, this strategy can be overwritten by the ||{1}|| operator of a nested
P��λ(·) operator. Thus, we get the standard PCTL semantics. On the other hand, the formula
||{1}||Φ fixes a strategy α by the ||{1}|| operator and evaluates the outermost P��λ(·) operator
on the Markov chain Mα . This means that also the nested P��λ(·) operators are evaluated
over Mα which gives the above inequality.

Even ATL is expressible in SGL. In standard ATL, the 〈〈·〉〉ATL operator is followed by a path
formula. The ATL semantics of the formula 〈〈A〉〉ATLϕ yields the existence of an HD strategy
for the A-agents such that for all HD strategies of the agents not in A, the path formula ϕ
holds for the unique path that is determined by the chosen strategies. As already mentioned,
the strategy chosen for the A-agents is not propagated to the subformulae. Given a PMG M
without any probabilistic states and an ATL formula Φ, let Φ ′ be the SGL formula obtained
from Φ by substituting each occurrence of 〈〈A〉〉ATLϕ by 〈〈A〉〉||Agents\A||P≥1(ϕ). It holds
that

Sat AT L(Φ) = SatH D(Φ
′).

The corresponding results hold also for ATL∗.
In [2], the authors introduce an extension of ATL called game logic (GL). In contrast to

ATL, where the operator 〈〈·〉〉ATL is followed by a path formula and the semantics implicitly
quantifies over all paths, the 〈〈·〉〉 operator in game logic can also be followed by an existential
path quantifier ∃. A formula of the kind Φ = 〈〈A〉〉(∃�ϕ1 ∧ ∃�ϕ2) is expressible in GL.
Φ asserts the existence of a strategy α for the agents in A, such that for some behavior of
the remaining agents ϕ1 is always true, and for some (possibly different) behavior of the
remaining agents ϕ2 is always true. Thus, the chosen strategy α is propagated to the inner
subformulae. Nevertheless, the semantics of GL does not propagate strategies chosen by 〈〈·〉〉
operators to nested 〈〈·〉〉 operators. For example, the GL formula 〈〈A〉〉〈〈B〉〉Φ is equivalent to
〈〈B〉〉Φ. Hence, the GL semantics is more alike to the standard CTL∗ semantics and differs
crucially from our SGL semantics. Therefore, GL fails to express typical game properties
like “player B can react to the strategy chosen by player A”.

ATL-like approaches to reason about stochastic games and qualitative winning objec-
tives have been introduced by de Alfaro et al. [18,19]. They use ATL-like formulae, such as
〈〈A〉〉almostψ or 〈〈A〉〉positiveψ , to formalize the existence of a strategy for agents in A such that
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the condition specified byψ holds almost surely or with positive probability. Our framework
generalizes these concepts to the quantitative setting and allows to express, e.g., properties
asserting that the agents in A can cooperate so that the probability of the event specified byψ is
within a certain interval, or so that a Boolean combination of such PCTL-like formulae holds,
no matter how the other agents behave. The ATL-like formulae 〈〈A〉〉almostψ or 〈〈A〉〉positiveψ

of [18,19] are encoded in SGL by the formulae 〈〈A〉〉P=1(ψ) and 〈〈A〉〉P>0(ψ), respectively.
However, SGL cannot express the limit operator 〈〈A〉〉limit of [19].

4 Model checking SGL

The model checking problem for SGL addresses the question whether for a given finite-state
PMG M , a state s of M , and SGL-formulaΦ it holds that s ∈ SatXY(Φ) for a given strategy
class XY. We analyze the complexity of the model checking problem for SGL and its natural
fragments with respect to HR, HD, FR, FD, MR, and MD strategy classes.

We start by recalling the standard notion of polynomial hierarchy [23,24]. For every � ≥ 0,
the complexity classes 
�, Σ�, and Π� are defined inductively as follows:


0, Σ0, Π0 are equal to P,

i+1 = PΣi , Σi+1 = NPΣi , Πi+1 = coNPΣi .

A complete problem for Σ�, where � ≥ 1, is QBF�. An instance of QBF� is a quantified
Boolean formula (with � quantifier alternations) of the form

∃X1 ∀X2 ∃X3 ∀X4 · · · Q X� ϕ

where the variables which appear in the propositional formula ϕ are disjointly partitioned
into X1, . . . , Xn , and Q is either ∀ or ∃ depending on whether � is even or odd, respectively.
The question is whether the formula is valid. Without restrictions, we may assume that ϕ
takes the form

ϕ =
I∧

i=1
ψi , where I ≥ 1 and

ψi =
Ji∨

j=1
ξi, j , where Ji ≥ 1 and

ξi, j =
Ki, j∧

k=1
�i, j,k, where Ki, j ≥ 1 and

�i, j,k =
Mi, j,k∨

m=1
δi, j,k,m, where Mi, j,k ≥ 1 and

δi, j,k,m =
Ni, j,k,m∧

n=1
Li, j,k,m,n, where Ni, j,k,m ≥ 1 and Li, j,k,m,n is a literal.

(1)

Here, a literal is a propositional variable or its negation. This assumption is safe because
the propositional formula constructed in the proof of Cook’s theorem [15] also has the same
fixed structure.4

4 The propositional formula constructed in the proof of Cook’s theorem is satisfiable iff a given non-determin-
istic Turing machine M running in polynomial time accepts a given input wordw. The formula depends on M
andw, but the nesting depth (and structure) of conjunctions and disjunctions is fixed. An explicit construction
of the formula can be found in, e.g., [21], and a full justification of our assumption about ϕ follows from the
proof of Σ�-hardness of QBF�; see, e.g., [24], Theorem 17.10.
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We show that there is a close correspondence between the polynomial hierarchy and nat-
ural syntactic fragments of SGL. For every SGL formula Φ, we define the “type” of Φ,
denoted by Type(Φ), inductively as follows:

Type(p) = 
0

Type(¬Φ) =
⎧
⎨

⎩


� if Type(Φ) = 
�,
Σ� if Type(Φ) = Π�,
Π� if Type(Φ) = Σ�.

Type(〈〈B〉〉Φ) =
{
Σ�+1 if Type(Φ) = Σ� or Type(Φ) = Π�,
Σ� if Type(Φ) = 
�.

Type(P��λ(A ;Φ1, . . . , Φk)) =
{

�+1 if Max{Type(Φ1), . . . ,Type(Φk)} = Σ�

� if Max{Type(Φ1), . . . ,Type(Φk)} = 
�.

Here Max{Type(Φ1), . . . ,Type(Φk)} denotes the “maximal” type in the set. More pre-
cisely, let � ≥ 0 be the least number such that for every 1 ≤ i ≤ k we have that
Type(Φi ) = � j where j ≤ � and � ∈ {Σ,Π,
}. If for all 1 ≤ i ≤ k such that
Type(Φi ) = �� we have that � = 
, then Max{Type(Φ1), . . . ,Type(Φk)} = 
�. Other-
wise, Max{Type(Φ1), . . . ,Type(Φk)} = Σ�. Note that we do not distinguish between the
types Σ� and Π� when defining the maximal type. Intuitively, this is because the maximal
type is used as an oracle for a deterministic polynomial-time algorithm which checks the
validity of P��λ(A ;Φ1, . . . , Φk), and PΣ� = PΠ� (see Theorem 1).

Now we can define the promised hierarchy of SGL syntactic fragments.

– SGL(
0), SGL(Σ0), and SGL(Π0) consist of all SGL formulae of type 
0, Σ0, and
Π0, respectively.

– SGL(
i+1), SGL(Σi+1), and SGL(Πi+1) consist of all formulae in SGL(
i ) ∪
SGL(Σi ) ∪ SGL(Πi ), and all formulae of type 
i+1, Σi+1, and Πi+1, respectively.

Observe that every SGL formula Φ has the unique type Type(Φ), but there can be formulae
equivalent toΦ whose type is different. For example, the type of 〈〈A〉〉〈〈B〉〉〈〈C〉〉p isΣ2, while
the types of semantically equivalent formulae 〈〈A ∪ C〉〉¬¬〈〈B〉〉p and 〈〈A∪ B ∪C〉〉p areΣ1

and Σ0, respectively. Let us also note that we could alternatively define

Type(〈〈B〉〉Φ) =
{
Σ�+1 if Type(Φ) = Π�,
Σ� if Type(Φ) = 
� or Type(Φ) = Σ�,

without influencing the validity of our results. Perhaps, this alternative variant better corre-
sponds to the standard intuition about theΣ� andΠ� classes, but it also causes complications
in the proof of Lemma 1 and its follow-up arguments. For the sake of technical simplicity,
we decided to keep the original variant.

4.1 MD strategies

In this section we examine the SGL model checking problem with respect to MD semantics.

Lemma 1 Let M = (Agents, S,→,P,Props, ν) be a PMG where Agents ⊆ AG,
Props ⊆ AP, and let Φ be an SGL formula. The problem whether s, A, α |�M D Φ, where
s ∈ S, A ⊆ Agents, and α is an MD A-strategy, is solvable in Type(Φ).

Proof We proceed by induction on the structure ofΦ. The cases whenΦ = p andΦ = ¬Ψ
are immediate.
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If Φ = 〈〈B〉〉Ψ , it suffices to guess an appropriate MD B-strategy β and check whether
s, A∪ B, (α← β) |�M D Ψ . Hence, by applying induction hypothesis, the problem whether
s, A, α |�M D Φ is in NPType(Ψ ), which is equal to Type(Φ) by the definition of Type. Recall
that NP
� = Σ� and NPΣ� = NPΠ� = Σ�+1.

If Φ = P��λ(A ;Ψ1, . . . , Ψk), we first apply the current MD A-strategy α to M and
construct the PMG M α (see Sect. 2.1). Further, for every state t we compute the set σ(t)
of all j ∈ {1, . . . , k} such that t, A, α |�M D Ψ j . By induction hypothesis, this is achievable
by a deterministic polynomial-time algorithm with Max{Type(Ψ1), . . . ,Type(Ψk)} oracle.
Since the agents in Agents� A are now considered adversarial, we interpret M α as an MDP
where the only agent {a} controls all (Agents�A)-states. Further, we interpret {1, . . . , k} as
the set of atomic propositions of M α , and σ as the corresponding valuation. If �� ∈ {>,≥},
we simply check if val−(A , s) �� λ, where s is considered as a state of M α . Note that this
is achievable in time polynomial in the size of M α and A by solving the linear program of
Proposition 1.

Similarly, if �� ∈ {<,≤}, we check if val+(A , s) �� λ. Hence, the problem whether
s, A, α |�M D P��λ(A ;Ψ1, . . . , Ψk) is in PMax{Type(Ψ1),...,Type(Ψk )} which is equal to
Type(P��λ(A ;Ψ1, . . . , Ψk)) by the definition of Type. ��

Now we prove the corresponding lower complexity bound. For the sake of readability, we
adopt the following abbreviations, where A∨, AX , A�, and AU are the automata of Fig. 1.

Φ1 ⇒ Φ2 =P=1(A∨;¬Φ1, Φ2)

X ��λΦ =P��λ(AX ;Φ)
���λΦ =P��λ(A�;Φ)

Φ1 U ��λΦ2 =P��λ(AU ;Φ1, Φ2)

||A||Φ = ¬〈〈A〉〉¬Φ
We also write 〈〈a〉〉Φ instead of 〈〈{a}〉〉Φ for a single agent a.

Lemma 2 For every � ≥ 0, there is a fixed formula Φ ∈ SGL(Σ�) such that the model
checking problem for Φ is Σ�-hard.

Proof Let ∃X1 ∀X2 ∃X3 ∀X4 · · · Q X� ϕ be a quantified Boolean formula with � quanti-
fier alternations, where the propositional formula ϕ takes the special form (1) introduced at
the beginning of Sect. 4. We construct a PMG M = (Agents, S,→,P,Props, ν), a state
s(ϕ) ∈ S, and a fixed formula Φ ∈ SGL(Σ�) such that ∃X1 ∀X2 ∃X3 ∀X4 · · · Q X� ϕ is
valid iff s(ϕ) ∈ SatM D(Φ).

Let {x1, . . . , xr } be the set of all propositional variables that appear in ϕ. The PMG M is
constructed as follows. We put Agents = {a1, . . . , a�} and Props = {t, f, d, a, e, b}. The
probability assignment P can be chosen arbitrarily (the precise values of transition probabil-
ities do not influence our arguments; note that P is required to be positive by Definition 1).
The states, transitions, and labelling function of M are defined incrementally. For all u ∈
{1, . . . , r}, we put to S a fresh stochastic state Bu which satisfies b and no other proposi-
tion. Further, for every δi, j,k,m subformula of ϕ, we add to M the gadget with initial state δ
depicted in Fig. 2. All states of the gadget are fresh, except for B1, . . . , Br that are shared
by all gadgets (note that the number of outgoing transitions of every Bu is the same and it
is equal to the number of δi, j,k,m subformulae of ϕ). The states p1, . . . , pr are controlled
by the agents, and the other states are stochastic. Intuitively, the agent controlling pu can
set the variable xu to true or false by selecting the transition leading to xu or x̄u , respec-
tively. The state pu satisfies either the atomic proposition e or a, depending on whether xu is
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Fig. 2 The gadget for δi, j,k,m subformula

quantified existentially (i.e., xu ∈ Xi where i is odd) or universally, respectively. For every
i ∈ {1, . . . , �}, the agent ai sets the variables in Xi , i.e., if xu ∈ Xi , then pu is an ai -state.
The propositions t and f are satisfied exactly in x1, . . . , xr and x̄1, . . . , x̄r , respectively, and
the proposition d encodes the structure of δi, j,k,m in the following way: for every variable
xu , where 1 ≤ u ≤ r ,

– if δi, j,k,m contains both xu and ¬xu (as literals), then d �∈ ν(xu) and d �∈ ν(x̄u);
– if δi, j,k,m does not contain xu and ¬xu , then d ∈ ν(xu) and d ∈ ν(x̄u);
– if δi, j,k,m contains xu and does not contain ¬xu , then d ∈ ν(xu) and d �∈ ν(x̄u);
– if δi, j,k,m does not contain xu and contains ¬xu , then d �∈ ν(xu) and d ∈ ν(x̄u).

The other states of the gadget, different from x1, . . . , xr , x̄1, . . . , x̄r , B1, . . . , Br , satisfy d
as well.

Note that in general, agents can play inconsistently by setting the same variable to true
and false in different gadgets. However, this can be easily detected. Consider the following
formulae:

Surelyt = (¬t ∧ ¬ f )U =1 t

Surely f = (¬t ∧ ¬ f )U =1 f

Conse = �=1
(
(X >0b ∧ X >0e) ⇒ (

Surelyt ∨ Surely f

))

Consa = �=1
(
(X >0b ∧ X >0a) ⇒ (

Surelyt ∨ Surely f

))

Let δ be the initial state of some of the constructed gadgets, and let α be an MD Agents-
strategy. We claim that α is consistent iff

δ,Agents, α |�MD Conse ∧ Consa .

The formula Conse encodes the consistency of α with respect to existentially quantified vari-
ables, and the formula Consa does the same for universally quantified variables (the reason
why we treat the existentially/universally quantified variables separately becomes clear later).
To see this, consider, e.g., the choice made by α in the states pu , where xu is quantified univer-
sally. Let q be a predecessor of pu in some gadget. Then q,Agents, α |�MD X >0b ∧X >0a.
If α behaves consistently in all pu , i.e., selects either always the transition to xu or always the
transition to x̄u , then q,Agents, α |�MD Surelyt or q,Agents, α |�MD Surely f , respectively.
On the other hand, if α behaves inconsistently in pu , then q,Agents, α �|�MD Surelyt and
q,Agents, α �|�MD Surely f . These observations are easy to verify by examining the structure
of the gadgets, and also explain the role of Bu states.
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Observe that every assignment μ for the propositional variables x1, . . . , xr determines
a unique consistent MD Agents-strategy αμ, and vice versa. For every assignment μ and
every δi, j,k,m subformula we have that δi, j,k,m is true in μ iff

δ,Agents, αμ |�MD ¬b U =0 ¬d.

This follows directly from the construction of the gadgets.
Now we complete the construction of M by adding the following states and transitions:

– we add a state s(ϕ); further, for every ψi subformula we add a state s(ψi ), for every ξi, j

subformula we add a state s(ξi, j ), and for every �i, j,k subformula we add a state s(�i, j,k);
– we add a transition s(ϕ)→ s(ψi ) for every 1 ≤ i ≤ I ;
– for every ψi subformula, we add a transition s(ψi )→ s(ξi, j ) for all 1 ≤ j ≤ Ji ;
– for every ξi, j subformula, we add a transition s(ξi, j )→ s(�i, j,k) for all 1 ≤ k ≤ Ki, j ;
– for every �i, j,k subformula and every 1 ≤ m ≤ Mi, j,k , we add a transition s(�i, j,k)→ δ

where δ is the initial state of the gadget for δi, j,k,m .

Finally, we define the formula Φ as follows:

〈〈a1〉〉 ||a2|| 〈〈a3〉〉 · · ·
[
a�
]

X =1 X >0 X =1 X >0(¬Consa ∨ (Conse ∧ ¬b U =0 ¬d)
)

Here
[
a�
]

is either 〈〈a�〉〉 or ||a�||, depending on whether � is odd or even, respectively. Observe
that Φ ∈ SGL(Σ�) and Φ is a fixed formula for a fixed �. We claim that

∃X1 ∀X2 ∃X3 ∀X4 · · · Q X� ϕ is valid iff s(ϕ) ∈ SatM D(Φ).

The “⇒” direction follows by observing that

– if i is even, then the agent ai does not gain anything by using an inconsistent strategy,
because this inevitably makes the subformula ¬Consa valid;

– if i is odd and all of the previous choices of the agents were consistent (i.e., encode an
assignment for the variables in X1 ∪ · · · ∪ Xi−1), then ai simply takes an assignment for
Xi which makes the formula ∀Xi+1 · · · Q X� ϕ valid and encodes this assignment in his
strategy. If some of the previous choices of the agents were inconsistent, then ai can play
arbitrarily.

The “⇒” direction follows similarly. ��
A direct consequence of Lemmas 1 and 2 is the following:

Theorem 1 Let � ≥ 0. Then

– the model checking problem for SGL(Σ�) is Σ�-complete for MD semantics, and the
hardness result holds even for a fixed SGL(Σ�) formula;

– the model checking problem for SGL(Π�) is Π�-complete for MD semantics, and the
hardness result holds even for a fixed SGL(Π�) formula;

– the model checking problem for SGL(
�) is in 
� for MD semantics.

Finally, the model checking problem for SGL is PSPACE-complete for MD semantics.

Observe that PSPACE-hardness of the model checking problem for SGL follows immediately
from the proof of Lemma 2 (we can use the same construction to reduce the QBF problem to
SGL model checking). However, the constructed SGL formula is not fixed anymore because
the quantifier alternation depth in QBF instances is not fixed. In fact, it is unlikely that SGL
model checking is PSPACE-hard for some fixed SGL formula Φ, because this would imply
collapse of the polynomial hierarchy at Type(Φ) level. Let us note that one can also give a
simple direct proof for PSPACE-hardness of SGL model checking which avoids many of the
technicalities presented in the proof of Lemma 1.
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4.2 MR strategies

We start by observing that if we restrict ourselves to the qualitative fragment of SGL
(see Sect. 3.1), then randomization brings only a limited extra power to the agents, and
the corresponding results are the same as for MD strategies.

Theorem 2 Let � ≥ 0. Then

– the model checking problem for qualitative SGL(Σ�) is Σ�-complete for MR semantics,
and the hardness result holds even for a fixed qualitative SGL(Σ�) formula;

– the model checking problem for qualitative SGL(Π�) is Π�-complete for MR semantics,
and the hardness result holds even for a fixed qualitative SGL(Π�) formula;

– the model checking problem for qualitative SGL(
�) is in 
� for MR semantics.

Finally, the model checking problem for qualitative SGL is PSPACE-complete for MR
semantics.

Note that the formulaΦ constructed in the proof of Lemma 2 is qualitative, and the agents do
not gain anything by using randomized strategies. Hence, the proof of Lemma 2 works also
for qualitative SGL(Σ�) and MR strategies without any change, and thus we obtain the lower
bounds of Theorem 2. The upper complexity bounds follow from Lemma 1, which is valid
also for MR strategies and qualitative SGL(Σ�). However, the subcase Φ ≡ 〈〈B〉〉Ψ in the
proof of Lemma 1 requires a slight modification. Realize that for the qualitative fragment of
SGL, the exact values of transition probabilities chosen by the agents do not really matter; it
is only important which of them are chosen with positive/zero probability. Hence, instead of
guessing a single outgoing transition for every B-state, which was enough for MD strategies,
we now guess for every B-state a subset of outgoing transitions that are assigned a positive
probability (and choose an arbitrary positive distribution over the chosen successors). The
rest of the proof of Lemma 1 does not require any modification.

For general SGL formulae, the exact values of transition probabilities are of course rele-
vant, and our decidability proof is based on encoding the SGL model checking problem into
first-order theory of the reals, i.e., (R, ∗,+,≤), which is known to be decidable [26]. Our
proof can be seen as an extension of the previous result [22] where it was shown that the
MR-controller synthesis for MDPs (viewed as 1 1

2 -player games) and PCTL specifications
can effectively be encoded by closed formulae of (R, ∗,+,≤).

In the proof of our next lemma we often construct some finite index set I = {i1, . . . , in}
and then fix a fresh first-order variable Xi for every i ∈ I . To simplify our notation, we define

∃̃X j .ψ = (∃Xi1 ∃Xi2 · · · ∃Xin ).ψ .

Similarly, if J ⊆ I where J = { j1, . . . , jm}, we write just (̃∃X j : j ∈ J ).ψ instead of
(∃X j1 ∃X j2 · · · ∃X jm ).ψ .

Lemma 3 Let M = (Agents, S,→,P,Props, ν) be a PMG where Agents ⊆ AG,
Props ⊆ AP, and let Φ be an SGL formula. For every s ∈ S there is a closed formula
τ(s, Φ) of (R, ∗,+,≤) such that s ∈ SatM R(Φ) iff τ(s, Φ) holds.

Proof For every transition s → t of M , we use Ys,t to denote either the constant whose
value is equal to P(s, t) if s is stochastic, or a fresh first-order variable that encodes the prob-
ability of s → t chosen by the responsible agent. For every subset C of agents, we construct
a closed formula τC (s, Φ) of (R, ∗,+,≤) such that τC (s, Φ) is valid iff s,C, γ |�MR Φ,
where the strategy γ is given by the values of the variables Ys,t for s ∈ SC . Then, we simply
put τ(s, Φ) = τ∅(s, Φ).
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The formula τC (s, Φ) is defined by induction on the structure ofΦ. The first three subcases
are immediate. We put

τC (s, p) =
{

true if p ∈ ν(s),
false otherwise;

τC (s,¬Φ) = ¬τC (s, Φ),

τC (s, 〈〈A〉〉Φ) =
(̃∃Yr,t : r ∈ SA, r → t

)
.

⎛

⎝τC∪A(s, Φ) ∧
∧

r∈SA

Distr

⎞

⎠ ,

where

Distr =
(
∧

r→t

0 ≤ Yr,t ≤ 1

)

∧
(
∑

r→t

Yr,t = 1

)

.

Now let Φ = P��λ(A ;Ψ1, . . . , Ψk), where A = (Q,Σ, qinit, δ, (Li , Ri )
m
i=1). Let us con-

sider the MDP M γ with atomic propositions {1, . . . , k} and a labelling function η such that
η(t) consists of all i where 1 ≤ i ≤ k and t,C, γ |�M

MR Ψi . We need to encode either the
property val+(A , s) �� λ or val−(A , s) �� λ (where s is interpreted as a state of M γ ),
depending on whether �� ∈ {≤,<} or �� ∈ {≥,>}, respectively. According to Proposition 1,
this means to encode

either μ[
acc](xs,qinit ) �� λ or 1− μ[
rej](xs,qinit ) �� λ,

respectively. Note that the first inequality holds iff there exists some solution sol of 
acc in
[0, 1] such that sol(xs,qinit ) �� λ. Realize thatμ[
acc] ≤ sol. Similarly, the second inequality
holds iff there exists some solution sol of 
rej in [0, 1] such that 1− sol(xs,qinit ) �� λ.

For all t ∈ S and q ∈ Q, let Zt,q be a fresh first-order variable. The formula τC (s, Φ)
takes the form

τC (s, Φ) = ∃̃Zt,q .

⎛

⎝
∧

t∈S,q∈Q

0 ≤ Zt,q ≤ 1

⎞

⎠ ∧ Sol ∧ Req

where

Req =
{

Zs,qinit �� λ if �� ∈ {≤,<},
1− Zs,qinit �� λ otherwise.

The subformula Sol says that the variables Zt,q form a solution of 
acc and 
rej in [0, 1],
respectively.

The construction of Sol is not trivial, because the labeling η depends on the concrete form
of Ψ1, . . . , Ψk . Hence, we first need to encode η and the structure of M γ ×A symbolically,
and then we can proceed with encoding the (in)equalities of 
acc and 
rej (cf. the proof of
Proposition 1).

Let us fix a fresh variable Xt,i for all t ∈ S and i ∈ {1, . . . , k}. We construct a formula
Eta which ensures that Xt,i is positive iff t,C, γ |�MR Ψi .

Eta =
∧

t∈S,i∈{1,...,k}

(
Xt,i > 0 ⇔ τC (t, Ψi )

)

Further, we fix a fresh variable T(t,q),(t ′,q ′) for all (t, q), (t ′, q ′) ∈ S × Q where (t, q) �=
(t ′, q ′), and construct a formula Tran which say that T(t,q),(t ′,q ′) is either 1 or 0, depending
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on whether (t, q)→⊗ (t ′, q ′) in M γ × A or not, respectively.

Tran =
∧

t,t ′∈S
q,q′∈Q

(
T(t,q),(t ′,q ′) = 1 ∨ T(t,q),(t ′,q ′) = 0

) ∧
∧

t,t ′∈S
q,q′∈Q

t �→t ′

T(t,q),(t ′,q ′) = 0

∧
∧

t,t ′∈S
q,q′∈Q

t �→t ′

⎛

⎜
⎜
⎝T(t,q),(t ′,q ′) = 1 ⇔

∨

A⊆{1,...,k}
δ(q,A)=q′

⎛

⎝
∧

i∈A

Xt,i > 0 ∧
∧

i �∈A

Xt,i ≤ 0

⎞

⎠

⎞

⎟
⎟
⎠

Now we encode the existence of an accepting/rejecting end component of M γ ×A . For all
(t, q) ∈ S × Q, we fix a fresh variable Vt,q . We construct a formula Acc which says that the
set of all (t, q), where Vt,q > 0, forms an accepting/rejecting end component.

AccRej =
∧

t∈SProb∪SC
q∈Q

Vt,q > 0 ⇒

⎛

⎜
⎜
⎝
∧

t ′∈S
q′∈Q

T(t,q)(t ′,q ′) ⇒ Vt ′,q ′ > 0

⎞

⎟
⎟
⎠ (2)

∧
∧

t∈SAgents�C
q∈Q

Vt,q > 0 ⇒

⎛

⎜⎜
⎝
∨

t ′∈S
q′∈Q

T(t,q)(t ′,q ′) ∧ Vt ′,q ′ > 0

⎞

⎟⎟
⎠ (3)

∧
∧

t,t ′∈S
q,q′∈Q

(
Vt,q > 0 ∧ Vt ′,q ′ > 0

)⇒ Reach≤N (t, q)(t ′, q ′) (4)

∧ Rabin (5)

Formula (2) says that the set of states encoded by Vt,q variables is closed under succes-
sors of stochastic states, and (3) says that each non-deterministic state in the set has at least
one successor in the set. The condition of strong connectedness is encoded by (4), where
N = |S| · |Q|, and (5) says that the end component is accepting or rejecting, depending on
whether �� ∈ {≤,<} or �� ∈ {≥,>}, respectively. The formula Reach≤N (t, q)(t ′, q ′) says
that (t, q) can reach (t ′, q ′) by a sequence of at most N transitions, and it is constructed
inductively as follows:

Reach≤0(t, q)(t ′, q ′) =
{

true if t = t ′ and q = q ′,
false otherwise;

Reach≤i+1(t, q)(t ′, q ′) =
∨

t ′′∈S
q′′∈Q

(
Reach≤i (t, q)(t ′′, q ′′) ∧ T(t ′′,q ′′)(t ′,q ′) = 1

)

The formula Rabin is easy to construct. We put either

Rabin =
∨

1≤i≤m

⎛

⎜⎜
⎝
∨

q∈Li
t∈S

(Vt,q > 0) ∧
∧

q∈Ri
t∈S

(Vt,q ≤ 0)

⎞

⎟⎟
⎠
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or

Rabin =
∧

1≤i≤m

⎛

⎜
⎜
⎝
∧

q∈Li
t∈S

(Vt,q ≤ 0) ∨
∨

q∈Ri
t∈S

(Vt,q > 0)

⎞

⎟
⎟
⎠

depending on whether �� ∈ {≤,<} or �� ∈ {≥,>}, respectively. Now we can finally express
that the Zt,q variables form a solution of 
acc or 
rej. Let

Sat =
∧

r∈S
p∈Q

(̃∃Vt,q . (AccRej ∧ Vr,p)
)⇒ (Zr,p = 1)

∧
∧

r∈SProb∪SC
p∈Q

¬ (̃∃Vt,q . (AccRej ∧ Vr,p)
)⇒

⎛

⎜
⎜
⎝Zr,p =

∑

r ′∈S
p′∈Q

T(r,p)(r ′,p′) · Yr,r ′ · Zr ′,p′

⎞

⎟
⎟
⎠

∧
∧

r∈SAgents�C
p∈Q

¬ (̃∃Vt,q . (AccRej ∧ Vr,p)
)⇒

⎛

⎜⎜
⎝
∧

r ′∈S
p′∈Q

T(r,p)(r ′,p′) = 1 ⇒ Zr,p ≥ Zr ′,p′

⎞

⎟⎟
⎠

Now we put

Sol = ∃̃Xt,i . ∃̃T(t,q)(t ′,q ′). (Eta ∧ Tran ∧ Sat).

The correctness of our construction follows by verifying that all subformulae have the
intended meaning, which is straightforward. ��

The following theorem is a direct consequence of Theorem 2 and Lemma 3.

Theorem 3 Let � ≥ 0. Then

– the model checking problem for SGL(Σ�) is in EXPTIME andΣ�-hard for MR semantics;
the hardness result holds even for a fixed SGL(Σ�) formula;

– the model checking problem for SGL(Π�) is in EXPTIME andΠ�-hard for MR semantics;
the hardness result holds even for a fixed SGL(Π�) formula;

– the model checking problem for SGL(
�) is in EXPTIME for MR semantics.

Finally, the model checking problem for SGL is in EXPSPACE and PSPACE-hard for MR
semantics.

The lower bounds of Theorem 3 are just inherited from Theorem 2. The upper bounds are
obtained by analyzing the size and structure of the formula τ(s, Φ) constructed in the proof
of Lemma 3, and applying known results about the complexity of (R, ∗,+,≤) and its frag-
ments. Note that the size of τ(s, Φ) is polynomial in the size of M andΦ, and the quantifier
alternation depth of τ(s, Φ) is fixed for every � ≥ 0 (after pushing all negations inside). The
general upper bound for (R, ∗,+,≤) is EXPSPACE. The existential fragment of (R, ∗,+,≤)
can be decided in polynomial space [11], and every fragment of (R, ∗,+,≤) obtained by
restricting the quantifier alternation depth to some fixed level is solvable is exponential time
[20]. Thus, we obtain the upper bounds of Theorem 3. Also note that for � = 0, the upper
bounds trivially improve to P (cf. Proposition 1), and for � = 1, they improve to PSPACE.
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4.3 FR, FD, HR, and HD strategies

For history-dependent strategies, the SGL model checking problem becomes undecidable.
This follows immediately from the undecidability result for 1 1

2 -player games and PCTL
stated in [8]. More precisely, [8] yields the undecidability of the model checking problem
for PMG with a singleton agent set {a} and SGL formulae of the form 〈〈a〉〉Φ where Φ is a
PCTL formula. This holds for FR, FD, HR, and HD semantics. For HR and HD semantics,
the above problem is even shown to be highly undecidable, i.e., beyond the arithmetical
hierarchy. Thus, we obtain the following:

Theorem 4 The SGL model checking problem is undecidable for FR, FD, HR, and HD
semantics. This result holds even for the SGL(Σ1) and SGL(Π1) fragments.

The results of [8] do not apply to the qualitative fragment of SGL. In [7], it was shown that
the controller synthesis problem for finite-state MDPs and qualitative PECTL∗ objectives is
decidable. Since the underlying argument is quite involved, the question whether this result
can be generalized to qualitative SGL is postponed to future work.

5 Conclusion

We introduced a new SGL interpreted over probabilistic multi-player games (PMG). It com-
bines features of ATL, PCTL and ECTLs. Our logic uses an existential strategy quantifier 〈〈·〉〉
that, unlike in ATL, propagates the chosen strategies to the subformulae. This enables us to
state game properties like “player B can react to the strategy chosen by player A”. Whereas
the ATL model checking problem is known to be solvable by a polynomially time-bounded
algorithm [2], modifying the semantics of the 〈〈·〉〉 operator so that the strategy decisions are
propagated to the subformulae makes the model checking problem PSPACE-hard. The main
results of this paper can be summarized as follows.

The model checking problem for finite-state PMG and (full) SGL is

• undecidable for HR and HD strategies,
• PSPACE-complete for MD strategies,
• PSPACE-hard and in EXPSPACE for MR strategies.
The model checking problem for finite-state PMG and the qualitative fragment of SGL is
PSPACE-complete for MD and MR strategies.

The decidability of the qualitative fragment of SGL with respect to history dependent
strategies remains open.
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