Acta Informatica (2011) 48:165-189
DOI 10.1007/s00236-011-0135-x

ORIGINAL ARTICLE

MAT learners for tree series: an abstract data type
and two realizations

Frank Drewes - Johanna Hogberg - Andreas Maletti

Received: 16 December 2009 / Accepted: 24 February 2011 / Published online: 18 March 2011
© Springer-Verlag 2011

Abstract We propose abstract observation tables, an abstract data type for learning deter-
ministic weighted tree automata in Angluin’s minimal adequate teacher (MAT) model, and
show that every correct implementation of abstract observation tables yields a correct MAT
learner. Besides the “classical” observation table, we show that abstract observation tables
can also be implemented by observation trees. The advantage of the latter is that they often
require fewer queries to the teacher.

1 Introduction

We study the problem of learning deterministic weighted (bottom-up) tree automata (dwta)
[5,7] over a semifield S. A weighted tree automaton computes a recognizable tree series [4],
i.e., a function that maps trees to values in S. This is accomplished by assigning a weight
in S to every transition. The weight of a computation (also called a run) is the product of
all its transitions, multiplied with an additional final weight that is associated with the final
state reached. Finally, the weight of a tree is the sum of the weights of all its runs. In other
words, the addition of the semifield is used to handle nondeterminism. Ordinary bottom-up

Andreas Maletti is supported by the Ministerio de Educacion y Ciencia (MEC) grant JDCI-2007-760.

F. Drewes (X)) - J. Hogberg

Department of Computing Science, Umea University,
Umed 90187, Sweden

e-mail: drewes @cs.umu.se

J. Hogberg
e-mail: johanna@cs.umu.se

A. Maletti

Departament de Filologies Romaniques, Universitat Rovira i Virgili,
Av. Catalunya 35, Tarragona 43002, Spain

e-mail: andreas.maletti @urv.cat

@ Springer

166 F. Drewes et al.

tree automata correspond to the special case obtained by choosing the Boolean semifield as
S. We recommend [14] for an introduction to recognizable tree series.

As mentioned above, this article is devoted to the problem of algorithmically learning dwta,
also called grammatical inference. The general setting considered in grammatical inference
is characterized by a series ¥ (or, in the traditional case, a language) for which, a priori, no
explicit representation is available. The learning algorithm (henceforth called the learner)
only has access to some restricted information. Its goal is to derive, from this information,
an automaton computing .

There exist various learning models that make this general picture more precise. Most of
them fall into one of the following categories: Gold’s learning from examples with identifi-
cation in the limit [16], Valiant’s probably approximately correct (PAC) learning [23], and
Angluin’s query learning [2]. In this article, we focus on the most prominent type of query
learning, proposed in [1], in which the learner has access to an oracle called minimal adequate
teacher (MAT). Angluin’s original model was designed for learning ordinary deterministic
finite automata (dfa). Its first generalization to bottom-up tree automata was proposed by
Sakakibara in [21] and later improved in [12].

In the weighted case, if ¥ is the target tree series, then a MAT is an oracle able to answer
two types of queries. A coefficient query passes a tree ¢ to the MAT and receives v (¢) as
the answer. An equivalence query passes a dwta A, the hypothesis, to the MAT. If A com-
putes v, a special token is returned. Otherwise, the answer is a counterexample, i.e., a tree
t such that A(¢) # ¥ (¢). One of the first extensions of the MAT learner for dfa to stochastic
automata appears in [9]. This algorithm is extended in [20] to certain cancellative semirings
[15], which makes the algorithm applicable to string transducers. The first extension to dwta
is found in [13]. This learner generalizes the learner in [12] from bottom-up tree automata
to ‘all-accepting’ dwta, and was in turn extended to general dwta in [19]. In both cases, the
weight structure is a semifield (i.e., a semiring, in which multiplicative inverses exist). All
those algorithms learn deterministic devices. In [17], the first MAT learner for nondetermin-
istic weighted tree automata over fields was presented. An overview of MAT learners for
weighted and unweighted tree automata can be found in [10].

Typically, MAT learnability results are based on MYHILL-NERODE-like characterizations
of recognizability. In essence, the learner learns (representatives of) equivalence classes,
which it refines in the light of the counterexamples provided by the teacher. This process ter-
minates when the equivalence has converged to the MYHILL-Nerode equivalence. The learn-
ers in [12,13,19] are all very similar. Following Angluin’s original approach, they maintain
an observation table, whose rows are indexed by trees representing the states and transitions
of an automaton. The columns are indexed by contexts (trees with a “hole”) whose pur-
pose is to separate the discovered equivalence classes from each other. From the table, the
learner repeatedly constructs a dwta consistent with the information in the table and asks an
equivalence query. If the MAT accepts the dwta, then the learning process has converged.
Otherwise, the counterexample received is inspected by a technique known as contradiction
backtracking [22]. This will either reveal a tree not yet in the table, that represents a new
transition, or a context that separates previously equivalent trees in the table, thus making
the learner discover a new state.

In [18, Chapter 8], Kearns and Vazirani give a rough description of Angluin’s original
learner (for regular string languages), in which the observation table has been replaced by a
tree-like data structure. As we shall see in Sect. 5, a generalized version of these observation
trees can be used even in the case of dwta, thus yielding an alternative version of the learner
in [19]. In Sect. 6, we shall see that this learner often asks fewer coefficient queries, and thus
promises advantages in practical applications.

@ Springer

MAT learners for tree series: an abstract data type and two realizations 167

Looking at all these different but closely related learners and their correctness proofs, one
cannot but realize that the same algorithms and arguments are repeated over and over again,
with only slight differences. Thus, rather than cloning [19] to come up with a version using
observation trees, we propose an abstract data type, called abstract observation table (aot),
in Sect. 3 of this paper. This captures in a formally precise way the abstract properties of
observation tables that are needed to obtain a correct MAT learner. In this way, we hope to
be able to contribute to a better understanding of the formal basis of MAT learning and the
degrees of freedom one has when implementing it. To obtain a concrete realization of abstract
observation tables, one needs to implement an interface consisting of a few abstract routines
that have to satisfy certain conditions. The learning algorithm itself is hidden within the aot,
and its correctness is established once and for all (depending on the correct implementation of
the interface, of course). In this way, the common parts of the correctness proofs of different
realizations of the learner are encapsulated. What remains to be considered in each individual
case is what is specific to the particular realization at hand.

We provide two such realizations. Firstly, the learner in [19] can easily be seen to be an
instance of the aot. Secondly, in Sect. 5, we instantiate aots as observation trees and give a
correctness proof (which becomes easy thanks to the results of Sect. 3). As mentioned above,
we expect observation trees to have the advantage of requiring fewer coefficient queries than
observation tables, even though the theoretical best and worst cases coincide. To confirm this,
we have implemented both learners and have conducted a set of experiments whose results are
reported in Sect. 6. Finally, we show in Sect. 6 how to optimize the equivalence test derived
from [6, Corollary 5.6] to run in linear time in the product of the number of transitions of the
two dwta. The straightforward algorithm derived from [6, Corollary 5.6] runs in linear time
in the product of the size of the transition tables, which could be exponentionally larger than
the number of actual transitions.

In summary, the structure of this paper is the following. In the next section, the necessary
preliminaries around trees, tree series, and MAT learning are gathered. In Sect. 3, we present
the aot and prove its correctness. This is the first major contribution of this paper. In Sect. 4,
we show briefly that the learner in [19] is an instance of the aot. Sect. 5 introduces the instance
based on observation trees. Together with Sect. 6, which confirms that observation trees often
use fewer coefficient queries than observation tables, this is the second major contribution
of the paper. In addition, Sect. 6 presents the algorithm for deciding the equivalence of dwta
over semifields that we have used in our experiments for the purpose of implementing the
teacher. This represents the final major contribution.

2 Preliminaries

The set of natural numbers (including 0) is denoted by N. For every k € N the set {1, ..., k}
is denoted by [k]. For a set S, the set of all finite sequences (or strings) over S, including
the empty sequence ¢, is denoted by S*. The cardinality of S and the length of w € S* are
denoted by |S| and |w|, respectively.

The index of an equivalence relation = on a set A is the number of equivalence classes
induced by =; i.e., the cardinality of the quotient set A /.

Given a function f: A — B and pairs (aj, by), ..., (an, b,), where the a; are pair-
wise distinct, we let f{aj:=by, ..., a, :=b,) denote the function g: A” — B’ with A’ =
AUlay,...,ap}and B = BU{by, ..., by} such that g(a;) = b; fori € [n], and g(a) =
f(a) foralla € A\{ay, ..., a,}. If f is a function with empty domain, then we also write

(a1:=by1,...,a,:=by,) instead of f(a;:=by,...,a,:=by).

@ Springer

168 F. Drewes et al.

A (commutative) semiring S = (S, +, -, 0, 1) consists of a set S together with binary addi-
tion and multiplication operations + and -, respectively, as well as distinct elements 0, 1 € S
such that (i) (S, 4, 0) and (S, -, 1) are commutative monoids, (ii) multiplication distributes
over addition, and (iii) O is absorbing with respect to multiplication. The productay - ... - ak
of finitely many elements ay, ..., a; € S is denoted by Hle a; or equivalently []; ;@i
(note that the order is irrelevant since we consider only semirings with commutative multipli-
cation). We say that S is a semifield if every element @ € S\ {0} has a multiplicative inverse,
which is denoted by a~! (i.e., a - a~! = 1). Throughout the rest of this paper, we let S be
a semifield, which we simply denote by its domain S. In fact, since we will only consider
deterministic weighted tree automata, we will not need the addition of S. For sequences
a, B € S*, we write o ~ B if B is a multiple of «; i.e., if there exists @ € S\{0} such that
a - o = B (where multiplication is extended to a function on S x S* — S* in the obvious
way). Note that ~ is an equivalence relation due to the fact that S has multiplicative inverses.

2.1 Alphabets, trees, and contexts

A ranked set is a set & = | J; o Zi of labels (also called symbols) consisting of (not neces-
sarily disjoint) subsets Xj. The labels in = are said to have rank k. We write f®) to indicate
that f € Xi. The set Ty, of all trees over X consists of all mappings7: N — ¥ (called trees)
with the following properties:

e The set N of nodes of t is a finite and non-empty prefix-closed subset of N*. Thus, for
every vw € N with v, w € N*, it holds that v € N.
e Forallv e N,thereis k € Nsuchthat(v) € ¥y and {i € N | vi € N} = [k].

Foratreet: N — X, we also write nodes(#) for N. The height of t is denoted by hg(¢); i.e.,
hg(t) = max{|v| | v € nodes(?)}. Given a tree ¢ and a node v € nodes(?), the subtree of t
rooted at v is denoted by #/v. It is defined by nodes(r/v) = {w € N* | vw € nodes(#)} and
(t/v)(w) = t(vw) for all w € nodes(z/v). The set leaves(?) of all leaves of t is the set

leaves(t) = {v € nodes(?) | vl ¢ N}.

We shall denote a tree 7 as f[t1, ..., 7] if r(€) = f® andt/i = t; forall i € [k]. In the
special case where k = 0 (i.e., nodes(t) = {€}), the brackets may be omitted, thus denoting ¢
as f.Foraset T of trees, the set of all trees of the form f[z1, ..., fx] suchthatk e N, f € ¥y,
andt1, ..., € T is denoted by X (7).

We will frequently decompose a tree into a context and a subtree. For this purpose, let
us reserve the special symbol [J of rank 0 (and no other rank) that does not occur in X.
A tree ¢ € Ty in which [occurs exactly once is called a context (over X). The set of
all contexts over X is denoted by Cy. Given a context ¢ € Cyx and a tree ¢, we denote by
ct the concatenation of ¢ and ¢ at J, which is obtained by substituting ¢ for the unique leaf
labelled OJ in ¢. More precisely, if v € nodes(c) is the unique node such that c(v) = O, then
nodes(ct) = nodes(c) U {vw | w € nodes(t)} with ¢t (w) = c¢(w) for all w € nodes(c)\{v},

and ct/v =t.
Foreveryk e N, t,t1,..., 1 € Ty,and vy, ..., vx € nodes(t) such that v; is not a prefix
of vjforanyi, j € [k], we denote by t[v| < t1, ..., vx < f] the tree obtained by replacing

t/v; by t; forevery i € [k].

@ Springer

MAT learners for tree series: an abstract data type and two realizations 169

2.2 Tree series and weighted tree automata

A tree series over S is a mapping ¥ : Ty — S. Its support is

supp(Y) = {t € Tg | ¥ (¢) # 0}.

A tree t € Ty is called live (in) if there exists ¢ € Cyx such that ¢t € supp(y). Such a
context ¢ is also called a sign of life for t (in V).

We now recall the definition of deterministic weighted (bottom-up finite-state) tree auto-
mata [4,5,7] (dwta, for short) over S. Such a dwta is a tuple A = (X, Q, 8, A) where

X is the finite input ranked set,

Q is the finite set of states, considered as symbols of rank 0 and no other rank,
8: 2(Q) — QO x (S\{0}) is the partial transition function, and

A: Q — Sis the final weight mapping.

Intuitively, §(f[q1, - - -, gx]) = (¢, a) determines the behaviour of the dwta in the situation,
in which it processes an occurrence of the symbol f of rank k and the k subtrees ¢1, ..., #%
of f have already been processed in states ¢, . . ., gk, respectively. Then the dwta continues
in state ¢ and charges the weight a.

The transition function § extends to trees in a straightforward way, which yields the partial
function 4 : Txup — Q x (S\{0}) such that S(q) = (g, 1) for every g € Q and, for every
flt1,....txl with f € Zpand 1y, ..., 1 € Tqu:

° IAfS(ti) = (qi, a;) for every i € [k] and 6(f[q1,---,qk]) = (g, a) are all defined, then
S(fln. ...) = (q.a-Tiy ap).
e Otherwise, 6(f[t1, ..., tx]) is undefined.

The tree series computed by A is given as follows. For all ¢ € Ty, if H (t) = (g, a), then
A(t) = a - M(g). Otherwise, A(t) = 0.

Example 1 The following dwta will be used as a running example throughout the paper.
Consider the tropical semifield T = (Z U {—o0o}, min, +, —o0, 0), where ‘min’ and ‘4’ are
ordinary minimum and addition, resp., on Z extended by —oo. Note that ‘4’ is the multiplica-
tive operation in this semifield. Moreover, as mentioned above, the additive operation ‘min’
will not be needed, so we are actually using the group (Z, +, 0) enriched by an absorbing
“error element” —oo0.

Let A = {f®, g ¢} To save space in later discussions of this example, we shall
denote trees and contexts without brackets. Thus, for instance, f[e, g[g[e]] will simply be
denoted as f e gge.

We define the tree series x : To — T as follows. For every t € Ta, we have ¢ € supp(x)
[i.e., (x,1) # —oo] if and only if

(@ t#e,
(b) no node labeled g has an f-labeled node as its child, and
(c) the children of each f-labeled node have equal root labels.

On all trees ¢ that fulfill these conditions, x (¢) is equal to the number of nodes labeled f
whose first subtree equals ge.

The states in a dwta Acount = (A, Q, §, A) recognizing x will have to distinguish between
the tree e, the tree ge, the remaining monadic trees, and the trees having the root f. In other
words, we need four states g, gg, gm, q . The transition function reflects the meaning of

@ Springer

170 F. Drewes et al.

Fig. 1 Illustration of the data of
Example 1. Lines (unbroken or
dashed) to a transition node are
ordered counter-clockwise from
the arrow leading to the target
state. The dashed lines are only
used to increase readability and
carry no special significance

these states. It charges a weight of 0 except when an f-labeled node is processed whose first
subtree is ge, in which case the weight 1 is charged:

) =1(qe,0)

8(gq.) =(q5.0) 8(fgeqe) =(qr.0) 8(faqgqm) =gy, 1)
8(gqg) = (Gm.0) 8(fagqs) =gy, 1) 8(famas) = (qr,0)
8(gqm) = (Gm.0) 8(farqr) =(qr.0) 8(fqmam) = (qr,0).

The final weight of the states gg, g;,, and g7 is 0, while A(g.) = —o0 to make sure that
Acount(e) = —o0. The dwta is illustrated in Fig. 1. Note also that § is undefined on all trees
violating condition (b) or (c). Hence, only trees satisfying all three conditions are in the
support.

Every dwta can be made toral without affecting the tree series computed, where a dwta
A is total if § is a total function. This is achieved by adding a non-final (i.e., final weight 0)
sink state that is the target of all missing transitions (using, for example, weight 1). For the
dwta of Example 1, the corresponding total dwta would have 1 + 5 4+ 52 = 31 instead of 10
transitions. In general, exponentially many (in the number of states or existing transitions)
additional transitions might be required. Thus, making a dwta total can yield an exponential
blow-up.

Throughout the remainder of this paper, let ¥ be a finite ranked set, ¥ : Ty, — Sbe a
tree series, and S = (S, +, -, 0, 1) be a commutative semifield.

Let s,t € Ty. For C € Cyx, we write s =¢ t if there exists a € S\{0} such that
Y(cs) = a - Y(ct) for every ¢ € C. Note that =¢ is an equivalence relation on Ty. The
relation =cy, is simply denoted by =.

Theorem 1 (see [5, Theorems 2 and 3]) The tree series ¥ can be computed by some dwta
if and only if = has finite index. Moreover, any dwta computing \ has at least |L/=| states
where L = {t € Ty | t live in }.

An easy but important observation for the learning algorithms considered in this paper
concerns the question how one can establish that # # ¢’ for trees 7, ¢’ € Ty, having a common

@ Springer

MAT learners for tree series: an abstract data type and two realizations 171

sign of life ¢. Let ¥ (ct’) = a - ¥ (ct). By definition, t = ¢ is equivalent to saying that
Y(c't") = a -y (c't) forall ¢’ € Cx. In other words, we have the following lemma, that we
will usually make use of without explicitly mentioning this fact.

Lemma?2 Let t,t € Ty have a common sign of life c. Then t = t' if and only if, for all
¢ €Cs,

Y Yt

Ve et

Example 2 (cont’d) In our running example, one of the (infinitely many) common signs of
life for the trees e and ge is the context ¢ = g[. Taking ¢/ = OJ, we find that x (¢’e) — x (ce) =
—00—0#£0—-0= x(c'ge) — x(cge), which shows that e # ge.

2.3 The minimal adequate teacher

In the following, we will consider grammatical inference of yr. The aim is to build a dwta
computing ¥ (if such a dwta exists) using an appropriately extended version of Angluin’s
minimal adequate teacher (MAT) as the source of information about ¥ (cf. [1-3]).

A learning algorithm that infers a dwta computing v will henceforth be called a learner.
Such a learner may ask coefficient and equivalence queries to the MAT (and the MAT will
answer them correctly):

Coefficient: Given a tree ¢ € Ty, (provided by the learner), what is ¥ (¢)?
Equivalence: Given a dwta A (provided by the learner), does A compute ¥ ? If so, the
teacher returns the token L indicating that A = 1. Otherwise, a counter-
example is returned; i.e., a tree t € Ty, such that A(¢) # ¥ (¢).

The algorithms presented in this paper are all supposed to have access to a MAT. In par-
ticular, this implies that these algorithms can obtain ¥ (¢) for ¢ € Ty, by asking a coefficient
query. Thus, the reader should bear in mind that every mention of v (¢) in our algorithms
indicates that a coefficient query is asked unless ¥ (¢) has already been provided earlier, in
which case a reasonable implementation would have memorized the value.

3 An abstract data type for MAT learners

In this section, we will develop an abstract data type specification, called abstract obser-
vation table, for MAT learners [1-3]. The commonly used ‘observation table’ [1,12,13,19]
will be an instance of this specification, but in the next section we will present another data
type, called observation tree, that avoids (in our experiments) some of the coefficient queries
typically asked when the learner fills the observation table.

In essence, our abstract data type manages the two sets S and T of trees, which are related
by S € T C %(S). Eventually, S and T will respectively correspond to the states and
the transitions of the deterministic weighted tree automaton that we construct. Moreover, our
abstract data type maintains two mappings,sol: § — Cy andp: T — S, which assign a sign
of life (in ¢) for each tree in S and a tree of S to each tree r € T, respectively. This tree p(¢) is
called the representative of # and eventually encodes the transition target § () = p(t), where
§ is the transition function of the constructed dwta. The name ‘representative’ is justified by
the fact that only p(#) of all trees in S can be =-equivalent to 7.

@ Springer

172 F. Drewes et al.

To simplify the notation (and to avoid some parentheses), we write tp instead of p(¢) for
every t € T.Letus present a mathematical definition of the universal invariant of an abstract
observation table.

Definition 3 (c¢f. [19, Definition 8]) Let S € T C X(S) be finite subsets of Ty, sol: § —
Cy,and p: T — S.Then (S, T, sol, p) is an abstract observation table (with respect to V)
if

1. sol(tp) = O forevery t € T Nsupp(¥) (trivial sign of life for support)
2. sol(tp)t € supp(¢) foreveryt € T (sol(tp) sign of life for 7 in ¥)
3. t#sforeveryt € T and s € S\{rp} (t distinct from other states)

In the following, we will abbreviate sol(zp) by sol(¢) for t € Ty whenever appropriate.
Thus, with this convention in mind, the first condition becomes sol(z) = O for every ¢t €
T N supp(¥), and the second becomes sol(¢)t € supp(y) foreveryr € T.

Note that the third condition yields sp = s forevery s € S because trivially s = s. In addi-
tion, this implies that 51 s s, for all distinct s, s> € S. Finally, foreveryt € T, t € supp(¥)
if and only if 7p € supp(yr), which can be seen as follows. If ¢ € supp(y) or tp € supp(¥),
then sol(#) = O by the first condition and thus ¢ € supp(yr) and ¢tp € supp(¥/) by the second
condition.

Conceptually, we note that all known variants of Angluin’s original algorithm (at least
those we are aware of) maintain a set of contexts for the purpose of distinguishing between the
equivalence classes of trees in 7. In our abstract version, the only contexts that are explicitly
required to be maintained are the signs of life for the trees in 7. Thus, it might, in principle,
be possible to implement abstract observation tables without managing additional contexts.
The difficulty is, of course, to make sure that the third condition is satisfied, because this is
usually what separating contexts are used for (cf. the definition of =).

In the following, we will use the following interface to manipulate an abstract obser-
vation table. To simplify the description of the semantic properties, let (S, T, sol, p) and
(8', T', sol’, p) be the abstract observation table before and after execution, respectively.

e INITIALIZE (constructor)
— Post-condition: §' =T’ = {J
e ADDTRANSITION(?, ¢) with t € X(S) and ¢ € Cyx (add new transition)

— Pre-conditions: ¢ ¢ T and ct € supp(y)
— Post-conditions: S € S’ and T U {t} C T’

e ADDSTATE(t, c) witht € T and ¢ € Cyx (add new state)

tion: D 4 _ueup)
~ Pre-condition: FGGyn 7 ytsoltn aen

— Post-conditions: SU{t} € S’and T C T’

In the next definition, it is shown how to construct a dwta A,ot = (X, S, 8, A) from an
abstract observation table (S, 7', sol, p). The motivation for the pre-conditions of ADDTRAN-
SITION and ADDSTATE are closely related to this definition. As we shall see, the trees in §
will be turned into the states of A,o, whereas the trees in 7 will give rise to its transitions.
As a consequence, §(¢) and 5 (t) are undefined for trees t € X (S)\T. In other words, a tree
t that fulfills the pre-conditions of ADDTRANSITION is not live in Ao, Whereas the second
part of the pre-condition states that it, in fact, is live in y. Thus, the tree must be added (as
a transition) to 7. The pre-condition of ADDSTATE is motivated by the fact that A,,x maps

@ Springer

MAT learners for tree series: an abstract data type and two realizations 173

Fig. 2 Illustration of the dwta of
Example 3. As before, lines to a f/l O
transition node are ordered
counter-clockwise from the
arrow leading to the target state

t and 7p to the same state (namely 7p), while the pre-condition expresses that sol(z) and ¢
separate 7p from ¢t (by Lemma 2). Hence, ¢ should rather be mapped to a new state.

Definition 4 (cf. [5, Definition4 andp. 9]) Letaot = (S, T, sol, p) be an abstract observation
table. Let Y40t : T — S be such that forevery t € T

Y (sol(7)1)
¥ (sol(1)(tp))

We construct the deterministic weighted tree automaton A, = (%, S, §, A) with

waot (t) =

e A(s) =Y (s) forevery s € S,
e (1) = (tp, Yaor(t)) forevery t € T, and
e §(¢) is undefined for all t € X (S)\T.

Example 3 (cont’d) Let S = {e, ge} and T = {e, ge, fee, f ge ge}, where

seS sols) sp teT\S tp
e g0 e fee ge
ge O ge fgege ge

Then aot = (S, T, sol, p) is an abstract observation table. The dwta A, has the states e and
ge, where

8(e) =(e,0) 8(ge) =(ge,0) 8(fee)=1(ge,0) 8(fgege)=(ge,).

The final weights are A(e) = —oo and A(ge) = 0. Figure 2 illustrates A,o. This dwta still
computes some wrong weights. For example, it computes weight 2 for f f ge ge ge, but it
computes the correct weight for all trees ¢ € T (namely 1 if 1 = f ge ge and 0 otherwise).
As we shall see next, this is not a coincidence.

We observe some easy properties of the automaton Ag. First, note that ¥,0(s) = 1 for
every s € S (as sp = s). Second, A,y computes ¥ on all trees of 7', which we prove in the
next lemma.

Lemma 5 (see [19, Lemma 12]) Let aot = (S, T, sol, p) be an abstract observation table.
Then Auoi(t) = Y (t) foreveryt € T.

Proof Let Ayor = (2, S, 8, A). First, we claim that S(t) = (tp, Yot (1)) forevery t € T by
inductionont. Since S € T C X (S), this induction is possible and wehave t = f[s1, ..., sk]
for some k € N, f € ¥4, and 51, ..., sx € S. The induction base corresponds to the case
k = 0 and is contained in the induction step. The induction hypothesis is 5 (s;) = (55, 1)

@ Springer

174 F. Drewes et al.

Algorithm 1 Learn a minimal deterministic weighted tree automaton for
Post-conditions: returned automaton computes ¥

aot.INITIALIZE // initialize data structure
2: loop
t < EQUAL?(Aaot) / ask equivalence query
4. if t = 1 then
return Aot /[return the approved automaton
6: aot < EXTEND(aot, t) // extend the data structure

because s; p = s; (sinces; € S)and Y0t (s;) = 1foreveryi € [k].Since §(t) = (2p, VYaot (1)),
we obtain

k
5(t) = (rp, Vaor) - [| 1) = (1, Yaor ().

i=1

This proves the claim. Now we can prove the statement as follows.

_ _ Yol
Aot (1) = Yraot (1) - A(tp) = U (s0l (1) (ip)) ¥ (tp)
_ |y - wap) it e supp(y)

0 otherwise

=¥,

where the penultimate equality uses the first condition of Definition 3.

The principal structure of the MAT learner [12,13,19] is shown in Algorithm 1. Note
that we only adapted it to work with our abstract observation table. We start with the ini-
tial empty data structure ‘aot’ and iteratively query the teacher for counterexamples to our
current hypothesis (the current deterministic weighted tree automaton A,), which is con-
structed from the current abstract observation table (see Definition 4). We update our abstract
data structure with the returned information (using EXTEND), and if the teacher eventually
approves our dwta, then we simply return it.

Example 4 (cont’d) Let us consider a run of Algorithm 1 using an unknown but correct
implementation of abstract observation tables. After initialization, an equivalence query
is asked, passing the empty dwta as a parameter. The teacher may return the counterex-
ample f ge gge. In EXTEND this yields a call to either ADDTRANSITION(e, f g[J gge) or
ADDTRANSITION(e, f ge ggJ). Thus, we may obtain the new abstract observation table

(e}, fgeggD),

where we denote an abstract observation table as the set of pairs (p~1(s), sol(s)) withs € S
and the element s € p~!(s) is printed in boldface. In addition, we drop the outermost set
braces.

Let us assume that the teacher returns the same counterexample as long as it is not treated
correctly.! Then three more calls of ADDTRANSITION lead to the addition of ge, gge, and
f ge ge to the table, all of which have the sign of life (J. Hence, the table may become

({e}, fgegel), ({ge,gge, f gege},).

L' An optimized learner can check this without asking equivalence queries; see [11].

@ Springer

MAT learners for tree series: an abstract data type and two realizations 175

Note that there are some other possible outcomes as well, such as the table {({e}, f ge gg[J),
({ge, gge}, O), ({f ge ge}, O)}. The result depends on the particular implementation of the
used abstract observation table.

Since a transition for processing f e e is missing, the teacher may return a counterexample
containing this subtree, which may lead to the table

({e}, fgeggl), ({ge, gge, fee, fgege},U).

However, the resulting dwta assigns the weight O to gf e e, so this tree, which is outside
supp(x), may be the next counterexample. This results in the first call of ADDSTATE, namely
ADDSTATE(f e e, g[0), where g[J is the context that separates f e e from ge. As a conse-
quence, the table may become

({e}, fgeggl), ({ge, gge},0), ({fee, fgege}, D).

The next problem is the counterexample f ggge ge, to which the dwta assigns the weight
1 rather than 0. Processing this counterexample leads to the call ADDSTATE(gge, f O ge)
and subsequently to a call of ADDTRANSITION. The result is

({e}, fgeggd) , ({ge}. O) . ({gge, ggge}.O) ., ({fee, f gege}, D).

It remains to discover the four missing transitions, all of which are revealed by the coun-
terexample f f f gge ge f gge gge f ge gge. Repeatedly processing this counterexample
leads to the final table

(fe}, fgeggl)), ({ge}, D), ({gge, gggel. 1)),
({fee, fgege, fggege, [ggegge, fgegge, [fee fee},U).

We say that an algorithm works correctly if whenever the pre-conditions are met at the
beginning of the algorithm, then (i) the algorithm terminates and (ii) the post-conditions
hold at the point of return. For the next statements, we additionally assume that a correct
implementation of our abstract observation table is used.

Theorem 6 (see [19, Theorem 13]) If EXTEND works correctly (see the pre- and post-
conditions given in Algorithm 2) and can be computed by some dwta, then Algorithm 1
terminates and returns a minimal dwta computing .

Proof Suppose that ¢ can be computed by some dwta. Then = has finite index by
Theorem 1. Let n = |Tx/=|. Clearly, by the third condition in Definition 3, the set S of
an abstract observation table (S, T, sol, p) contains at most n elements. Trivially, EXTEND is
always called with a counterexample, because the counterexample is provided by the teacher.
Since | S| and |T| are uniformly bounded and each call to EXTEND increases |S| + |T'|, there
can only be finitely many calls to EXTEND, which yields that Algorithm 1 terminates. More-
over, the returned dwta A, was approved by the teacher, so A, trivially computes . By
the construction of A, (see Definition 4), we know that it has at most n states. Since all
states (recall that they are trees) of Ayo are live in Ao, this shows that it is a minimal dwta
computing ¥ by Theorem 1.

Finally, let us discuss the function EXTEND, which is displayed in Algorithm 2. Given the
counterexample ¢, it searches for a minimal subtree of ¢ that is still a counterexample, using
a technique called contradiction backtracking [22]. Let aot = (S, T, sol, p) be the abstract
observation table and ¢ € Ty, be the counterexample; i.e., a tree ¢ such that Ayo () # ¥ (2).
We decompose ¢ into a context ¢ € Cyx and a tree u that is itself not in S but whose direct

@ Springer

176 F. Drewes et al.

subtrees are all in S. In some sense, this is a minimal subtree that could possibly be offending,
because A,or computes the correct coefficient on all trees in 7 by Lemma 5. Moreover, such
a subtree must exist, because ¢ ¢ S (since 7 is a counterexample).

Now, we distinguish two cases. If u was already seen (i.e.,u € T), then by Lemma 5, Ayot
returns v (u) if applied to u#. Thus an error is made when processing the context c. To this
end, we test whether the context ¢ separates u and up; the latter is the state that represents u.
Provided that ¢ does not distinguish between u# and up, then we continue our search for an
error with the simplified counterexample c(up). In the other cases, either # and up could
be separated or u was not seen before. Consequently, we either add u as a new state (in the
former case) or as a new transition (in the latter case). Overall, the post-condition of the
algorithm is trivially met.

It is clear that the pre-conditions of aot. ADDSTATE and aot. ADDTRANSITION are met as
well. It remains to prove that the recursive call of EXTEND meets the pre-conditions of
EXTEND. To this end, we need to prove that c(up) is also a counterexample in line 6. This is
shown in the next lemma.

Lemma 7 (cf. [19, Lemma 16]) Let aot = (S, T, sol, p) be an abstract observation table,
t € T, and c € Cyx, such that

vle) _ _ ylcp))
Y (sol()r) Y (sol(t)(tp))’

If Agor(ct) # Y (ct), then also Ago(c(1p)) # Y (c(1p)).

ey

Proof Let Agor = (2, S, 8,). By the claim in the proof of Lemma 5 it follows that S (1) =
(tp, Yaot (¢)) and S(tp) = (tp, 1) because t € T. Trivially, the former yields that S(ct) is
defined if and only if S(c(t,o)) is defined. Moreover, if they are defined, then there exists € S
and a € S\{0} such that S(ct) = (5,a - Yaot(t)) and g(c(tp)) = (s, a). Now we distinguish
three cases:

e First, let ¢t ¢ supp(Aaot). Then clearly also c(tp) ¢ supp(Aaor), because Ayor(t) =
¥(t) # 0. Since ct is a counterexample, we have ¢t € supp(y) and thus also c(tp) €
supp(y/) by (1), which proves that Aaot(c(p)) # ¥ (c(1p)).

e Second, let ct ¢ supp(v). Since ct is a counterexample by assumption, we obtain that
ct € supp(Aaor) and thus also c(zp) € supp(Aaot). Moreover, Eq. (1) yields that c(zp) ¢
supp (), which again proves that Aao(c(2p)) # Y (c(tp)).

e Third, let ¢t € supp(Aaor) N supp(y). By the same reasoning as in the previous cases,
this yields that c(zp) € supp(Aaot) N supp(y¥). The observation g(ct) = (s5,a - Yat(t))

Algorithm 2 Function EXTEND(¢) for aot = (S, T, sol, p)

Pre-conditions: ¢t € Ty with Ayot(?) # V(1)
Post-conditions: return an abstract observation table aot’ = (S, T/, sol’, p’) such that § € §’ and T € T’
and one inclusion is strict

Decompose ¢ into t = cu where ¢ € Cy and u € Z(S)\S
2:if u ¢ T then

return aot.ADDTRANSITION(u, ¢) /! u not reachable so far; add transition
Lo Ylcu) ¥ (c(up))
4 GrTwm 7 Flsolwey hen
return aot.ADDSTATE(u, ¢) // add new state u
6: return EXTEND(aot, c(up)) // normalize and continue

@ Springer

MAT learners for tree series: an abstract data type and two realizations 177

stated in the first paragraph allows us to conclude that

_ Yol
Aaot(ct) = a - Yaot(t) - A(s) = ¥ (s0l(1) (1)) Agot(c(tp))
Y (ct)
= ——— - Ano
) t(c(tp))

by (1). Since all factors are nonzero, we obtain

Agot(ct) _ Aaot(c(tp))
Y (ct) Y(c@tp)

o
By assumption, the left-hand side is different from 1, which proves that Aao(c(1p)) #

v (c(tp)).

Consequently, the recursive call of EXTEND is correct. An easy size argument (counting
the subtrees of ¢ that are not in 7') can be used to show that the recursion terminates (see [13,
Lemma 5.3]). Thus we obtain the main statement of this section.

Corollary 8 (of Theorem 6) If Y can be computed by some dwta, then Algorithm 1 termi-
nates and returns a minimal dwta computing .

4 Observation tables

Let us briefly present the “classical” implementation of our abstract observation table: the
‘observation table’. Several similar implementations exist; the one presented here corresponds
to the one in [19].

Definition 9 (see [19, Definition 8]) Let T € X(T) and C D {D} be ﬁmte subsets of Ty

and Cyx, respectively. An observation table is a (T x C)-matrix P with P(t c) = Y(ct) for

every t € T and c¢ € C such that, for every t € T, there exists ¢ € C with P (t,c) #0.
Given aset S C T, the pair (S, f’) is an S-observation table, if

e SCX(9),
e 51 #c s forall sy, 50 € S, and (no =c-equivalent rows in S)
e foreveryt € T there exists s € S such thatr =¢ . (no new rows in T)

Note that t =¢ t’ for trees 7, ¢’ € T means that the row indexed by 7 is a multiple of the
one indexed by ¢’ (L)y anonzero factor). It has essentially been shown in [12,13,19] that every
observation table P can be turned into an S-observation table by choosing an appropriate set
S C T, and that the operations of our abstract observation table can be implemented with
the help of observation tables. Let us quickly show how this works.

Lemma 10 Observation tables implement abstract observation tables.

Proof Let (S, P:TxC — S) bg an S-observation table. The abstract observation table
(8, T, sol, p) represented by (S, P) is given follows:

o T'=TNX(S),

e foreverys e S,

O ifs € supp(yr)
¢ otherwise, for some ¢ € C such that cs € supp(y)

sol(s) = ‘

(by Definition 9, such an element exists for every s € S), and

@ Springer

178 F. Drewes et al.

e tp = s where s € S is such that 1 =¢ s (by the second and third condition for
S-observation trees s exists and is unique).

To verify the conditions of our abstract observation table, letr € T’.

1. Ift € supp(y) then tp € supp(y) because t =¢ tp. Consequently, sol(z) = O.

2. By definition, sol()(tp) € supp(¥). Again t =c¢ tp and since sol(t) € C, we obtain
sol(#)t € supp(¥).

3. Lets € S\{tp}. By the definition of p and the first condition of Definition 9, t =¢ tp
and tp #c s. Since =c is an equivalence relation and = C =¢ (see remarks below [19,
Definition 7]), this yields t #¢ s and t # s. O

It remains to define INITIALIZE, ADDTRANSITION, and ADDSTATE. Of course, INITIALIZE
returns (¥, Pc), where 1;6 is the empty matrix (i.e., T =C= #). The function ADDTRAN-
SITION simply adds 7 to T and ¢ to C (and extends P by means of coefficient queries).?
If necessary, it completes S by adding elements of 7 U {¢} to it until the third condition
of Definition 9 is fulfilled. Similarly, ADDSTATE adds ¢ to S and ¢ to C, updates f’ and
completes S. For both ADDTRANSITION and ADDSTATE, it is straightforward to check that
the resulting pair (5, P’) is an S’-observation table, and that the abstract observation table
it represents fulfills the post-condition of the respective function.

Example 5 (cont’d) Re-using the first counterexample in Example 4 as long as possible may
lead to the following observation table:

0 fgeggl fgeghD fgel

e —oo 1 1 —00
ge 0 1 1 1
gge 0 1 1 1
fgege 1 —00 —00 —00

Thetree f ge ge hasbeen separated from the others “by chance”. Hence, the table corresponds
to

({e}, f geggl), ({ge, gge},0), ({fgege},0)
rather than to {({e}, f ge gg[), ({ge, gge, f ge ge}, O)}.

5 Observation trees

We are now going to show that the abstract data type proposed in the previous section can
alternatively be implemented by an observation tree. For MAT learning of regular string lan-
guages, this idea has roughly been described earlier by Kearns and Vazirani in [18, Chapter 8].
The expected advantage of observation trees over observation tables is that they require a
smaller number of coefficient queries to be asked. This is important if we want to make
practical use of MAT learners for recognizable tree series, because such practical use nor-
mally requires an (exact or approximate) simulation of the teacher, which means that the
complexity of answering coefficient and equivalence queries cannot be neglected.

To understand the idea behind observation trees, it is useful to have a loqk at Definition 9
and the proof of Lemma 10. Intuitively, the major purpose of the matrix P is to be able to
guarantee that condition (iii) of Definition 3 holds. In other words, the collected contexts

2 In fact, C can be left unchanged if it already contains a sign of life for 7.

@ Springer

MAT learners for tree series: an abstract data type and two realizations 179

Algorithm 3 Function ADDTRANSITION(z, ¢) for an abstract observation table (S, T, sol, p)
represented by (S, 7)

Pre-conditions: 1 € ¥(S)\7 and ¢ € Cyx, with ¢t € supp(y)
Post-conditions: return an S’-observation tree (S, /) such that S € §" and T U {t} € T (t’), representing
an abstract observation table aot’ = (S, T’, sol’, p’)

v < nody (1)
2: if T = () then

return ({¢}, O[c[{t}]]) Maot" = ({1}, {1}, (t:=c'), (t:=1)), ¢ € {c,}
4: if v € leaves(t) then
return (S, t[v < t(v) U{r}]) /l aot’ = (S, T U ({t}, sol, p{t:=s))
1/ where S N 7(v) = {s}
6: lett/v =c'[t1,..., 7] and u = c[{t}]
if {¢(dr) | d € Cr(v)} # {0} then
8 c<«dyu<{t} // sign of life ¢ not needed
return (SU {t}, r[v < /[, ..., 7, ull) /laot’ = (SU{r}, T U {z},

// sol(t:=c), p(t:=t))

provide explicit evidence that trees ¢, ¢’ with 1p # t’p belong to distinct congruence classes.
Suppose that, at some stage of the algorithm, there are trees ¢, t' € T such thatrp = s = t'p,
but the teacher provides the learner with a counterexample that, via EXTEND, reveals a sep-
arating context c¢. The addition of ¢ to the table divides the set 7' = p~1(s) into subsets
Tl/ s Tk’ with k > 2. The addition of ¢ may also subdivide some of the other sets o1 (s)
with s € S\{s} as a side effect. A similar effect may occur when a transition is added; see
Example 5. Although these effects are welcome (because they speed up convergence), they
have the disadvantage of forcing us to query the teacher for all the coefficients ¥ (ct’) with
t' € T. To avoid the latter, we may organize our data in a tree, where the internal nodes are
contexts and the leaves are the sets in 7'/ ker(p).3 In the situation considered above, when the
new context ¢ has been discovered, the leaf 7" would be replaced with [T}, ..., T/]. Then,
only the coefficients v/ (ct’) for all t' € T’ need to be asked for.

Formally, let 2 be the infinite ranked set such that Qo = fin(Tyx) and ; = Cyx, for every
k> 1.Foratreet € Tg and v € nodes(t)\leaves(t), we let C; (v) denote the set of contexts
on the path from the root of 7 to v, including the latter. In other words, if vy =€, ..., v, =v
are the prefixes of v, then C; (v) = {r(vy), ..., T(v,)}. Below, we also use the notation 7' (7)
to designate the set |, cjeaves(z) T(V)-

Definition 11 A tree T € Tq is an observation tree if

1. t(e) € {O, 0},

2. forall v € nodes(t)\leaves(7), if 7/v = ¢[7y, ...,], then
T(t/v)/c,wy =A{T(r1), ..., T (%)}, and

3. forall v € leaves(r) and 7 € t(v), C;(v) contains a sign of life for 7.

Given a set S such that S C T'(7) € X(S), the pair (S, 7) is an S-observation tree if T =
or |t(v) N S| =1 forall v € leaves(t).

Let us now see how observation trees can implement abstract observation tables. For this,
let (S,) be an S-observation tree. We define the abstract observation table (S, T, sol, p)

3 T /xer(p) denotes the quotient of 7 under the equivalence {(z, t') e T2 | tp = t'p}. For technical conve-
nience, we let T'/ker(p) = {#} in the special case where T = ¢.

@ Springer

180 F. Drewes et al.

Algorithm 4 Function ADDSTATE(?, ¢) for an abstract observation table (S, T, sol, p) rep-
resented by (S, 1)

ong: : ¥ (ct) Y (c(tp))
Pre-conditions: 1 € T and ¢ € Cy, with ol #* TREIOIT)

Post-conditions: return an S’-observation tree (S’,) such that S U {t} € 8" and T C T (t’), representing
an abstract observation table aot’ = (S, 77, sol’, p’)

letnod; (f) = v =ui withi e Nand {T1,..., T} = f(”)/Ecr(u)u(c)
2: choose s1 € Ty, ..., sg € Ty, such that {r, 1p} < {s1, ..., sk}
return (SU {sy,...,s¢}, tlv <= c[Ty, ..., Tx]])
laot" = (SU{s1,..., s}, T, sol', p), where
/I sol’ = sol(sy :=sol(z), ..., sg :=sol(t)),
/I o' (t;) =s; fori € [k]and t; € T;, and
I o' (1) = up foru € T\t (v)

represented by (S, 7), as follows. The set T is given by T'(t). By the second condition, for
every tree t € T, there is a unique leaf u# of t such that € tv(u). Henceforth, we denote
u by nod; (t). Now, for every s € S, define sol(s) = 7(v) where v is the shortest prefix of
nod; (s) such that 7 (v) is a sign of life for s. By the third condition, v exists, and by the first
condition it is equal to € (yielding sol(s) =) if s € supp(y). Finally, the definition of p is
straightforward: 7p is the unique element of t(nod,(t)) N S forevery ¢t € T.

It should be clear that the tuple (S, T, sol, p) constructed in this way fulfils the condi-
tions of Definition 3. It remains to give implementations of INITIALIZE, ADDTRANSITION,
and ADDSTATE. Unsurprisingly, INITIALIZE returns (S, v) with S = ¢ and t = ¢J. The func-
tions ADDTRANSITION and ADDSTATE are given in Algorithms 3 and 4, respectively. In their
definitions, we use the following extension of nod;. For a tree t € Ty, let nod,(¢) be the
maximal node v € nodes(t) (with respect to |v|) such that r =c, () ¢’ forall ¢/ € T(z/v)
and all proper prefixes u of v. Note that v is uniquely determined, and that the requirement
“t =c,) t' forallt’ € T(t/v)” isequivalentto “t =c,) t' forat’ € T(t/v)” (both by the
second condition). The latter makes it possible to find nod; (¢) efficiently. The reader should
also notice that the extension of nod; is consistent with the earlier definition of nod; () for
teT.

The last case distinction in ADDTRANSITION is needed only for efficiency reasons;
i.e., to keep the observation tree small. If efficiency is not a concern, then (S, t[v <«
c'[t1, ..., T, c[{t}]]]) can be returned in either case. In fact, a similar case distinction could
be made in line 3, because c is not needed if ¢ € supp(yr).

Example 6 (cont’d) If we use observation trees when processing the counterexamples of
Example 4 (again, always re-using counterexamples as long as possible), we get the sequence
of observation trees depicted in Fig. 3.

Lemma 12 Observation trees implement abstract observation tables.

Proof Tt sufffices to show that ADDTRANSITION and ADDSTATE are correct; i.e., that
they return S’-observation trees (8, t’) with S € 8 and T U {t} € T(z') in case of
ADDTRANSITION, and S U {t} € 8" and T C T (7’) in case of ADDSTATE.

Correctness of ADDTRANSITION. The return statement in line 3 is obviously correct,
because c is a sign of life for ¢. If the condition in line 4 holds, and u is the parent node of
v, then t =c_(, t’ forall /' € 7(v). Hence, it follows that the addition of 7 to 7(v) does not
violate any of the requirements imposed on S-observation trees. Finally, consider the third

@ Springer

MAT learners for tree series: an abstract data type and two realizations 181

O O
fgeggt {ge, gge, f ge ge} fgeggD {ge, gge, f gege, fee}
| |
{e} {e}
(counterexample 1: f ge gge) (counterexample 2: fee)

Od
O / \
e \ fgeggn g
fgeggD 9o | RN
| PN {e} fOge {fgege, fee}
{e} {ge.gge} {fgege fee} /N
(counterexample 3: gf ee) {ge} {gge}
(counterexample 4: f ggge ge)

U

fgeggn = —
{fee, fgege, f ggege,
{e} f/D L(<e [ggegge, fgegge, f feefee}
{ge} {gge}

(counterexample 5: f f f gge ge f gge gge f ge gge)

Fig. 3 Observation trees encountered when using the counterexamples of Example 4

case. By the definition of nod. (), for all #’ € t(v), it holds that t ¢, () t' but #c,) 1’
for all proper prefixes u of v. Consequently, (S U {t}, t[v < c'[t1,..., T, {t}]]) satisfies
all conditions imposed on S-observation trees, with the possible exception of condition 3.
If condition 3 is violated, then (S U {t}, t[v < c'[T1, ..., T, c[{t}]]]) satisfies it, since c is
a sign of life for 7. Clearly, the remaining conditions are not affected by the insertion of c.
Hence, the return statement in line 9 is correct.

Correctness of ADDSTATE. Let (S’, t’) be the pair returned by the algorithm. Concerning
line 1, notice first that v # €, because T # @ and, thus, t(¢) = OJ. The pre-condition ensures

thatt #c, @wyuic) tesie., t € Ty and tp € T; for distinct i, j € [k]inline 1. Hence, s1, ..., Sk
can be chosen as required in line 2, which means that (8’, /) with 8 = S U {s1, ..., s¢}
and v/ = t[v < [T}, ..., T;]] satisfies condition 2 of Definition 11. Further, condition 3

is satisfied since 7 satisfies it, T(t') = T = T (t), and Cyod, (") € Cnod, () forall t’ € T.
Hence, (5, t’) is an $’-observation tree.

Let us roughly compare the size of an observation table P, and the number of coeffi-
cient queries required to build it, with the corresponding numbers for an observation tree 7.
Clearly, the number of rows of P is equal to the cardinality of 7'(t), because both are equal
to |T|. For non-trivial cases, the number K of columns of P lies between 2 and |S|. These
bounds are sharp. On the one hand, two contexts may separate any number of equivalence

@ Springer

182 F. Drewes et al.

classes from each other. On the other hand,JS | contexts may be needed to separate the |S]|
equivalence classes from each other. Thus, P has between 2|7’ | and |S] - |T| cells, requiring
as many coefficient queries.

When using an observation tree 7, the number of coefficient queries required to build
it is determined by the depth d at which the trees of 7' reside in t. More precisely, let
d(t) = |nod ()| for t € T. Since a coefficient query has to be asked for each node v such
that v is a proper prefix of nod, (¢), the overall number of coefficient queries used to build ©
is D(t) = Z,GT d(t). From the observation that d(¢) < |S|+ 1 forall r € T, we obtain the
worst-case estimation D(t) < (|S]| + 1) - |T|, which is essentially the same as above. In the
best case, d(t) =2 forallt € T, again yielding the same estimation as above.

So, why should t have an advantage over P? The reason is that, in most cases, one may
expect the average of all d(¢) to be considerably smaller than the number K of columns of
P. This is because the contexts indexing the columns of P must simultaneously separate all
trees in S from each other, whereas the contexts in C; (1), for a leaf v = ui of 7, only need
to separate the one tree of nod, (v) C S from the remaining ones. In other words, we expect
dyyg = |—}‘ ZteT d(t) to be considerably smaller than K, and thus, D(t) = dayg|T| to be
considerably smaller than K|T|.

Of course, in concrete cases, there are many factors that can affect dyyg. A thorough study
of dyyg and its relation with K is beyond the scope of this article. Such a study should take into
account the properties of the tree series i to be learned and suitable probabilistic assumptions
regarding the behaviour of the MAT.

6 Experiments

As established in Sect. 5, observation trees and observation tables are both proper realiza-
tions of the abstract observation table (aot) of Sect. 3. The termination and correctness of
the learner are thus guaranteed when instantiated with either data structure. As argued in
Sect. 5, observation trees are expected to have an advantage over observation tables as the
former should usually require fewer coefficient queries, but only slightly more equivalence
queries, than the latter. To confirm this expectation, we implemented the relevant data struc-
tures and algorithms in Java and conducted a series of experiments.* In particular, the aot is
implemented as an abstract class, the learner as an algorithm instantiated with an aot, and
the observation tree and observation table as data structures realizing the aot. The teacher is
implemented for various restricted and unrestricted weighted tree automata over semifields.
From here on, we refer to the learner as L'3%'® when instantiated with an observation table,
and as L!"®® when instantiated with an observation tree.

In our experiments, we record both the number of coefficient and equivalence queries —
the latter because one may suspect that Liab'e, if it by chance receives contexts separating
many trees from each other, may use fewer equivalence queries than L!¢®,

6.1 Results and discussion

We investigate the performance of L80! and LI®® with respect to several families of tree
series, each parameterized by a natural number. The formal definitions of the families are

given below. To verify that the maximal rank of the underlying alphabet has little influence

4 The source files can be downloaded from http://www.cs.umu.se/~johanna/adt/.

@ Springer

http://www.cs.umu.se/~johanna/adt/

MAT learners for tree series: an abstract data type and two realizations 183

on the relative performance of the learners, the last two families in the list are defined over
variable-rank alphabets.

e The tree series SIZE,,n € N, is defined over the arctic (or max-plus) semiring (N U
{—o0}, max, +, —o0, 0) and the ranked alphabet ¥ = {a(o), f(z)}. Foreveryt € Ty,

n if n = |nodes(?)| , and

SIZE, (1) = ’ —o0 otherwise.

e The tree series NUMBER,,n € N, over R and ¥ = Xy U X, where ¥y = [n] and
Yy = {f}, is such that for every r € Ty,

[T t() if hg(r) >1, and

NUMBER,, (1) = { veleaves(r)
0 otherwise.

o The tree series QUARTER,, n € N, over the field R of reals and ¥ = Xy U X,, where
Yo = [[n/4]] and X, = {f}, is such that for every 7 € Ty,

1 ifr € Tysy, i€ Xo, and hg(z) =1 (mod n), and

QUARTER, (1) = [0 otherwise.

e Thetree series POWER,,, n € N,overRand ¥ = ZqUX,, where £ = 2["and &, = {f},
is such that for every r € Ty,

1 if Uveleaves(t) t(v) =[n], and

POWER,, (1) = [0 otherwise.

e The tree series GIRD,,n € N, over R and ¥ = Xy U X,, where Xy = {a, b} and
¥, = {f}, is such that for every t € Ty,

_)1 if hg(r) =5 and [t|[, =1, nd
GIRD, (1) = [0 otherwise.
e The tree series ORDER,, n € N, over the arctic semiring and ¥ = %o U X,, where

Yo = X, = {f, g}, is such that for every r € Ty,

|t| if #v € nodes(t) and i, j € N such that
ORDER,, (1) = i <j, t(vi)=g, and t(vj)= f,and
0 otherwise.

The number of coefficient and equivalence queries posed by L€ and LI®® when
inferring the tree series are plotted in Figs. 4, 5 and 6. In all experiments, L!"®® requires
fewer coefficient queries than Lf‘ble. The only example in which it makes more equivalence
queries than L€ is given by the tree series POWER. To learn POWER, LI'®® needed 3—4%
more equivalence queries. However, the overall computation time (including the time con-
sumed by the teacher) was still faster than Liable. In our implementation, the overhead of
using observation trees is larger than for observation tables, so although Liree is typically
faster than Lﬁf‘b'e, this was not the case for the tree series NUMBER. Here, the savings in terms
of coefficient queries was too small to make up for the additional overhead, so L!®® ran
slightly slower than L€,

Let us, finally, discuss how we implemented the teacher. In our implementation, it is ini-
tialized with a dwta A computing the target tree series. To answer a coefficient query for a
tree ¢, the teacher simply runs A on 7. To answer an equivalence query; i.e., deciding whether
A is equivalent to some dwta B, the teacher searches for a tree on which A and B disagree.

@ Springer

184 F. Drewes et al.

1600 |- i ‘
70 |
1400 |- <
60 |- <
1200 |- < '
50 |- A
1000 |- o .
800 |- ’ 1 40t |
600 | 1 sl |
400 |- 1
- 20 | 3 /'/ i
200 |
e 10 [i
o bt | | | | P | | | | |
0 20 40 60 80 100 120 10 15 20 25 30 35 40

Fig. 4 The outcome of applying L{P'€ and LI'€€ (o the tree series SIZE (left plor) and NUMBER (right plot).
The x-axis is labeled with the size of the target dwta; the y-axis with the number of queries posed. The curves
are in turn (from above to below): the number of coefficient queries posed by Liable; the number of coefficient
Lgee;

queries posed by and the number of equivalence queries posed by L22/€ and LI®€ (which coincide)

It is easy to see that if A and B are dwta over the Boolean semiring, or are all-accepting
dwta (meaning that every final weight is non-zero) over a semifield, then such a tree can, if it
exists, be found in time O (n"m") where r is the maximum rank of the ranked set, and n and
m are the number of states of A and B, respectively. It was shown in [8] that the equivalence
problem for probabilistic string automata over fields is in time O(|X|(n + m)?). When the
weights are taken from a semifield, the problem can, as we shall see in the subsequent section,
be solved in time O(r"™") by an algorithm based on the pumping lemma of [6, Corollary 5.6].

6.2 Deciding the equivalence problem for dwta over semifields

Let us, finally, discuss how to decide the equivalence problem for dwta over semifields
(and how to obtain a counterexample if the answer is negative), since such an algorithm is
obviously needed to implement the teacher.

In the following, forafunction f: A — B x By, welet f; (i € [2])denote the composition
of f with the projection onto B;. In particular, for a total dwta (2, P, 5§, 1), §1: Z(P) — P
and §2: X(P) — S\{0} are the (total) functions such that §(u) = (81 (u), 62(u)) for every
u e x(P).

Let A = (X,P,8,1) and B = (%, Q,n,v) be total dwta. By [7, Theorem 6.1.6] we
can suppose, without loss of generality, that A and B have Boolean final weights (i.e.,
AP —{0,1}andv: Q — {0, 1}). We first construct the direct product total dwtaA-B~! =

@ Springer

MAT learners for tree series: an abstract data type and two realizations 185

1600 -

2500 - J
1400 +
2000 |- 1 1200 -
1000 -

1500 J
800
1000 + R 600 |-
) 400

500 ,
» 200

0 T — | eii— e R 0 tad L !
10 20 30 40 50 60 70 80 0 50 100 150 200 250

Fig. 5 The outcome of applying L1aPle and LI"®€ (o the tree series QUARTER (left plof) and POWER (right
plot). Curves and labels are as in Fig. 4

80 F T T T T T T T ™3 T T T T)
A/ asof
0 S 1 400} VA
60 L | 350f i
300 | 1
50 | |
250 | |
40| 1 e
200 | |
30 |]
/ 150 1
20+ 1 100} .
wof | 1 50 /
0 2 4 6 8 10 12 14 16 2 4 6 8 10 12

Fig. 6 The outcome of applying L{20'€ and L€ 1o the tree series RANK (left plot) and GIRD (right plot).
Curves and labels are as in Fig. 4

@ Springer

186 F. Drewes et al.

(X, P x Q,8,1) by

§fUPL q1)s -« s (Prsak)]) = (S1(FLP1s -+ » KD m(fLG1s - - -5 qikD))s
&Pty o) - m(flgts - D™

and

1 ifA(p) =1=v(q)
0 otherwise.

V((p.q) = [

This construction (without the inverses) is taken from [6, Definition 3.7]. Next, we observe
that if any state (p, g) with A(p) # v(q) is reachable (i.e., S’l (t) = (p,q) forsomet € Ty),
then clearly A and B are not equivalent because A(t) # B(t) for any tree ¢ that reaches this
state. If such a pair does not exist, we can eliminate all states (p, g) with A(p) # v(g) from
A - B~! without changing the tree series computed. Moreover, in this case, for every t € Tx

0 if A(t) =0 = B(t)

-1 _
(A-B 7)) = [A(t) -B~Y(#) otherwise

(essentially by [6, Lemma 3.8]). Thus, to decide whether A and B are equivalent, it is suf-
ficient to decide whether this reduced total dwta computes a Boolean tree series (i.e., all
coefficients are either O or 1). This can (effectively) be decided by [6, Corollary 6.9].

In practice, we often find ourselves working with partial automata, and in these cases it
is, of course, sensible to use a decision algorithm that avoids processing dead states in the
product automaton (and their associated transitions), because the transition table of a partial
dwta may be exponentially smaller than the corresponding total dwta. We therefore conclude
with an algorithm that operates on the same principle, but iterates over transitions rather than
trees to take advantage of sparsity in the transition table.

In the following, A = (X, P, §,A) and B = (X, Q, n, v) are partial dwta with Boolean
final weights. It is computationally easy to decide if A and B have the same support. Since
we operate in a semifield, the support is regular, so it suffices to test the equality of two regu-
lar languages. Moreover, the involved automata already yield deterministic unweighted tree
automata for the support by setting every nonzero weight to one, so the size of the determin-
istic unweighted automata for the support is the same as the size of the input automata. Thus,
the equality of the supports can be decided by the classical equivalence test for deterministic
tree automata, running in time O(|A| - | B]). Thus, we may henceforth assume that A and B
have the same support, and that A and B have been purged of useless (i.e., unreachable or
dead) states.

Lemma 13 Let A and B be partial dwta that contain no useless states, and are such that
supp(A) = supp(B). The automata A and B are equivalent iff for every p € P and q € Q
there is a constant a, 4 € S, such that, for all t € Bfl(q) N ﬁfl(p),

10!

1) apg = ENOL and

(it) if p (and thus q) is final, then a, 4 = 1.

Proof For the “if” direction, we combine conditions (i) and (ii), and thus obtain that if p and
q are final states, then 8,(¢) = 7 (¢) forall t € Sfl(p) al ﬁfl(q).
For the opposite direction, let A and B be equivalent. Consider p € P,q € Q, and

t,u € Sl_l(p) N ﬁl_l(q). To establish (i), we have to show that % = % Since A con-
tains no dead states and supp(A) = supp(B), there is a sign of life ¢ € Cx, for ¢ and u in

@ Springer

MAT learners for tree series: an abstract data type and two realizations 187

both A and B. Moreover,

Sty . 82 (cu) ety .
= = 6 = = d = =
50 2(cp) 50 an P2 () n2(cq)

because 8; (f) = p= 81 (u) and 1 () = g = 71(u). We can now compute as follows:

(1) _ aet) fpleq) _ alen) b e
(1) Sz(cp) 2 (ct) Sz(cu) ma(ct) - fa(u)
8a(ct) - bau) - faleu) ()

falct) - fau) - Salcu) M2(u)

_ aew)
Ma(u)

. A O
because % =1= %C”)) since A and B are equivalent and have Boolean final weights.
o (cu

This last observation also shows that the second condition holds.

Algorithm 5 traverses the transitions of the product automaton A - B~! to compute a
constanta, , € S for each pair of states (p, g) € P x Q thatis reachable; i.e., each pair with
H 1_1 (p)N ﬁl_l () # 9. (Note that the constants a, , for unreachable pairs of states are irrel-
evant, as they can be chosen arbitrarily.) For this purpose, the algorithm maintains a partial
mapping T that assigns to each pair of states (p,g) € P x Q found reachable a constant
in S that is the current candidate for a,, 4. In the algorithm, the domain of 7 is denoted by
dom(t). The algorithm starts with the totally undefined mapping L and terminates when it
discovers a violation of Lemma 13 or has reached a stable state.

Algorithm 5 Decide if A and B are equivalent.

Pre-conditions: A = (X, P, §, 1) and B = (X, Q, n, v) are partial dwta with Boolean final weights, contain
no useless states, and are such that supp(A) = supp(B).
T« 1
2: repeat
unchanged < true
4: for all (p,gq) € P x Q such that 3f € X and (p1,q1),...,(Pr.qx) € dom(r)
with
s1(flp1s---s piD) = pand 71 (flg1...., qk]) = ¢q do
ap,q < &(flp1s---, piD) -m(flqr, -, aD e TUpra) - Tk k)
6: if pis final and ap 4 # 1 then
return false

8: if (p, q) ¢ dom(t) then
t((p,q)) < apq

10: unchanged <« false
elseif 7({p, q)) # ap,q then
12: return false

until unchanged
14: return true

Lemma 14 Algorithm 5 decides if A and B are equivalent.

Proof Termination is obvious, because every execution of the main loop except the last

enlarges dom(7). We show that Algorithm 5 returns zrue if and only if there is, for every

p € Pandg € Q,aconstanta, , € S that fulfills Conditions (i) and (ii) of Lemma 13.
Suppose that Algorithm 5 returns false. This can happen in two cases.

@ Springer

188 F. Drewes et al.

e In the first case (lines 11 and 12), the algorithm has reached the same pair of states (p, q)

on distinct trees s and ¢, such that 5%; #* fég)) . This violates Condition (i) of Lemma 13.

e In the second case (lines 6 and 7), the algorithm has discovered that a pair of final states

(p, q) are reachable on a tree ¢ such that 10} 1, which violates Condition (ii) of
m(7)
Lemma 13.

For the other direction, suppose that the algorithm returns true after some iterations of
the main loop. For a contradiction, assume that there is a minimal tree t = f[t1,..., %] €

gfl(p) n ﬁfl(q) such that iig; # t({p, q)), which includes the possibility that t({p, q))

is undefined. Let p; = 31 (t;) and g; = n1(t;) for all i € [k]. By the minimality assumption,
gi((?, ; = 7({pi, qi)). Now, consider the last execution of the body of the main loop.
At some point during that execution, the body of the for all loop will be executed with the
given choice of (p, q), f, and (p1, q1), - - -, (Pk, qr)- Since neither the condition in line 6
nor the one in line 8 is fulfilled (the latter because dom(z) does not change, according to
the termination condition of the main loop), line 11 is reached. However, since line 12 is not
reached, this means that

we have

=dpg

=wa-wy - t(prg1) TP k)

= (w4 -8o(tr) - &) - (wp - Matr) -+ Mo(t) ™!
0]

=

contradicting the assumption that gi((g =1((p, q)).

Lemma 15 Algorithm 5 executes in time O(|A||B)).

Proof For an efficient implementation, we begin by calculating a sign of life for every state in
the smaller of the two automata. This is done by computing representative trees for each state,
at a cost of O(min(|A|, | B|)) operations, and then searching for the shortest path from each
state to an accepting state, consuming another O@min(|P %, |Q%) < O(min(|A|?, |B|?))
operations. In the worst case, the main loop must traverse every transitionin A- B~!, but since
this is sufficient, the complexity of this loop, and of the entire algorithm, is O(|A - B™!|) =
O(A[- |B]).

We finally note that Algorithm 5 can easily be extended to return a counterexample when-
ever A and B are found to be different. For this, it suffices to store, along with each of the

alpg) 7({p, q}). Then the two return
'72(tp.q)

statements in lines 7 and 12 can be adapted in the obvious way to return a counterexample.

values T({p, g)), a corresponding tree ¢, , such that

Acknowledgments We thank the referees for their useful comments.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87-106 (1987)
2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319-342 (1987)

@ Springer

MAT learners for tree series: an abstract data type and two realizations 189

15.
16.
17.

20.

21.

22.

23.

Angluin, D.: Queries revisited. In: Proceedings of 12th International Conference Algorithmic Learning
Theory, volume 2225 of LNCS, pp. 12-31. Springer (2001)

Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoret. Comput. Sci. 18(2),
115-148 (1982)

Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Proceedings of 7th
International Confernce Developments in Language Theory, volume 2710 of LNCS, pp. 146-158.
Springer (2003)

Borchardt, B.: A pumping lemma and decidability problems for recognizable tree series. Acta Cyber-
net. 16(4), 509-544 (2004)

Borchardt, B.: The theory of recognizable tree series. PhD thesis, Technische Universitit Dresden (2005)
Cortes, C., Mohri, M., Rastogi, A.: L distance and equivalence of probabilistic automata. J. Comput.
Syst. Sci. 18(4), 761-779 (2007)

de la Higuera, C., Oncina, J.: Learning stochastic finite automata. In: Proceedings of 7th International
Colloquium on Grammatical Inference, volume 3264 of LNCS, pp. 175-186. Springer (2004)

Drewes, F.: MAT learners for recognizable tree languages and tree series. Acta Cybernet. 19(2),
249-274 (2009)

. Drewes, F., Hogberg, J.: Extensions of a MAT learner for regular tree languages. In: Proceedings of 23rd

Annual Workshop of the Swedish Artificial Intelligence Society, pp. 35—44 (2006)

Drewes, F., Hogberg, J.: Query learning of regular tree languages: how to avoid dead states. Theory
Comput. Syst. 40(2), 163—-185 (2007)

Drewes, F., Vogler, H.: Learning deterministically recognizable tree series. J. Automat. Lang.
Combinat. 12(3), 332-354 (2007)

Fiilop, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Kuich, W., Droste, M., Vogler,
H. (eds.) Handbook of Weighted Automata, chapter 9, pp. 313—403. Springer, Berlin (2009)

Golan, J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht (1999)

Gold, E.M.: Language identification in the limit. Inf. Cont. 10(5), 447-474 (1967)

Habrard, A., Oncina, J.: Learning multiplicity tree automata. In: Proceedings of 8th International Collo-
quium on Grammatical Inference, volume 4201 of LNCS, pp. 268-280. Springer (2006)

Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cam-
bridge (1994)

Maletti, A.: Learning deterministically recognizable tree series—revisited. In: Proceedings of 2nd Inter-
national Conference on Algebraic Informatics, volume 4728 of LNCS, pp. 218-235. Springer (2007)
Oncina, J.: Using multiplicity automata to identify transducer relations from membership and equiva-
lence queries. In: Proceedings of 9th International Colloquium on Grammatical Inference, volume 5278
of LNCS, pp. 154-162. Springer (2008)

Sakakibara, Y.: Learning context-free grammars from structural data in polynomial time. Theoret.
Comput. Sci. 76(2-3), 223-242 (1990)

Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertation. MIT Press,
Cambridge (1983)

Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134-1142 (1984)

@ Springer

	MAT learners for tree series: an abstract data type and two realizations
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Alphabets, trees, and contexts
	2.2 Tree series and weighted tree automata
	2.3 The minimal adequate teacher

	3 An abstract data type for MAT learners
	4 Observation tables
	5 Observation trees
	6 Experiments
	6.1 Results and discussion
	6.2 Deciding the equivalence problem for dwta over semifields

	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

