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Abstract The transitions of a stateless automaton do not depend on internal states but
solely on the symbols currently scanned by its head accessing the input and memory. We
investigate stateless deterministic restarting automata that, after executing a rewrite step,
continue to read their tape before performing a restart. Even the weakest class thus obtained
contains the regular languages properly. The relations between different classes of stateless
automata as well as between stateless automata and the corresponding types of automata
with states are investigated, and it is shown that the language classes defined by the various
types of deterministic stateless restarting automata without auxiliary symbols are anti-AFLs
that are not even closed under reversal.

1 Introduction

One of the fundamental concepts of computing models is that of internal states that evolve at
discrete time steps. At the dawn of automata theory, one of the most important models, the
finite automaton, was obtained by extending single Boolean circuits with a finite number of
states and feedback [15]. The difference between single Boolean circuits and finite automata
is evident. So, the computational power of stateless finite automata (actually, stateless means
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that only a single state is present) is strictly weaker than that of general finite automata. On
the other hand, it is well-known that stateless nondeterministic pushdown automata already
accept all context-free languages, while for deterministic pushdown automata (accepting by
empty pushdown) the computational power strictly increases with the number of states [5].
So, in the case of nondeterministic pushdown automata, the resource ‘pushdown store’ can
compensate for the loss of states, while in the case of deterministic pushdown automata, it
cannot.

Related studies inspired by biologically motivated models of computing were initiated in
[7,16]. Such models as P systems are often stateless, as it is difficult and even unrealistic to
maintain a global state for a massively parallel group of objects appearing in natural phenom-
ena of cell evolutions or chemical reactions. The investigation of stateless multihead finite
automata and stateless multicounter systems in [16] and the successor papers [3,7] show
that the resource ‘heads’ cannot compensate for the loss of states. Due to the deep relations
between certain types of counter machines and P systems [6], further classes of stateless
automata deserve to be investigated. Generally speaking, it is a natural and interesting ques-
tion of how resources given to finite automata relate to the absence or presence of states.
Given some computational model, are states necessary at all?

Recently, stateless two-pushdown automata have been investigated [9]. Shrinking as well
as length-reducing two-pushdown automata accept exactly the growing context-sensitive
languages, and their deterministic counterparts characterize the Church-Rosser languages
[1,13]. It turned out that these characterizations remain valid even for the stateless variants
of these automata.

Restarting automata were introduced as a formal tool to model analysis by reduction,
which is a technique used in linguistics to analyze sentences of natural languages [8]. Many
restricted types of restarting automata have been studied and put into correspondence with
classical families of formal languages (see, e.g., [14] for a recent survey). Restarting automata
in connection with descriptional complexity issues are dealt with in [4,12].

In [9] (see also [11]) stateless restarting automata were introduced and studied that exe-
cute a restart in combination with each rewrite step. It was shown that the expressive power
of stateless restarting automata that are deterministic and/or monotone coincides with that of
the corresponding types of restarting automata with states, if auxiliary symbols are admitted.
However, without auxiliary symbols the stateless types of restarting automata are strictly
weaker than the corresponding types with states. But the weakest model, the stateless deter-
ministic and monotone R-automaton (see Sect. 2 for the definitions of the various types
of restarting automata), is still sufficiently expressive to accept a superclass of the regular
languages.

Here we study the effect that the restriction to a single state has on restarting automata
that, after executing a rewrite step, may continue to read their tape before performing a
restart. These are the so-called RR-automata and their variants. Thus, even after executing
a rewrite operation such an automaton still has the option of accepting or rejecting instead
of performing a restart. Actually we will introduce two variants of stateless RR-automata.
In one variant the automaton cannot distinguish between the part of a cycle before a rewrite
step and the part after a rewrite step. Such an automaton may try to execute a second rewrite
step in a cycle, which is not a legal move. This will then be interpreted as a reject oper-
ation. In the second variant the automaton distinguishes between the two parts of a cycle.
Correspondingly, it will be called a stateless two-phase RR-automaton. We will see that the
stateless two-phase RR-automaton can simulate both of the other stateless types of restarting
automata. Accordingly in the presence of auxiliary symbols the stateless two-phase restarting
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automata that are deterministic and/or monotone are equivalent in expressive power to the
corresponding types of restarting automata with states.

We then concentrate on the various types of stateless deterministic restarting automata
without auxiliary symbols. We compare the expressive power of these automata to each other,
and derive some closure (or rather non-closure) properties for the language classes accepted
by these types of automata. As we will see the classes of languages defined by the various
types of deterministic stateless restarting automata without auxiliary symbols are anti-AFLs
that are not even closed under reversal.

This paper is organized as follows. First we describe in short the basic types of restarting
automata and summarize a few fundamental results on them. In the next two sections we
present two different types of stateless RRWW-automata, concentrating on their expressive
power. Finally in Sect. 5 we present the announced (non-) closure properties. The paper
closes with a short summary and some problems for future work.

2 Restarting automata

We first describe in short the types of automata we will be dealing with.
An RRWW-automaton is a one-tape machine that is described by an 8-tuple

M = (Q,Σ, Γ, c, $, q0, k, δ),

where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet
containing Σ , the symbols c, $ �∈ Γ serve as markers for the left and right border of the work
space, respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size of the read/write window,
and δ is the transition relation that associates a finite set of transition steps to each pair (q, u)

consisting of a state q ∈ Q and a possible content u of the read/write window. There are four
types of transition steps:

– A Move-right step of the form (q ′, MVR) causes M to shift the read/write window one
position to the right and to enter state q ′. However, the window cannot be shifted beyond
the right border marker $.

– A Rewrite step of the form (q ′, v), where q ′ ∈ Q, and v is a string satisfying |v| < |u|,
causes M to replace the content u of the read/write window by the string v, thereby
shortening the tape, and to enter state q ′. Further, the read/write window is placed imme-
diately to the right of the string v. However, some additional restrictions apply in that
the border markers c and $ must not disappear from the tape nor that new occurrences of
these markers are created. Further, if u ends with the $-symbol, then so does v, and in
this situation the window is placed on the $-symbol.

– A Restart step is of the form Restart. It causes M to place the read/write window over
the left end of the tape, so that the first symbol it contains is the left border marker c, and
to reenter the initial state q0,

– and an Accept step is of the form Accept. It causes M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that M rejects
in this situation. There is one additional restriction that the transition relation must satisfy:
ignoring move operations, rewrite steps and restart steps alternate in any computation of M ,
with a rewrite step coming first.

A configuration of M is described by a string αqβ, where q ∈ Q, and either α = ε (the
empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$}; here q represents the
current state, αβ is the current content of the tape, and it is understood that the head scans
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the first k symbols of β or all of β when |β| ≤ k. A restarting configuration is of the form
q0cw$, where w ∈ Γ ∗; if w ∈ Σ∗, then q0cw$ is an initial configuration.

A cycle of M is a part of a computation from one restarting configuration to the next. The
cycle leading from q0cu$ to q0cv$ will be denoted as u 
c

M v. A computation of M consists
of a finite sequence of cycles that is followed by a tail computation, which either accepts or
rejects (see, e.g., [14]). A word w ∈ Γ ∗ is accepted by M , if there is a computation of M
which starts with the configuration q0cw$, and which finishes with an accept instruction. By
LC (M) we denote the language consisting of all words over Γ that are accepted by M . It is
the characteristic language of M , while L(M) = LC (M) ∩ Σ∗, the set of all input words
accepted by M , is the (input) language of M . By S(M) we denote the simple language of M ,
which consists of all words from Σ∗ that M accepts in tail computations, that is, in a single
sweep without executing a restart operation.

In general, an RRWW-automaton is nondeterministic, that is, to some configurations
several different instructions may apply. If that is not the case, then the automaton is called
deterministic. We use the prefix det- to denote deterministic types of restarting automata.
Further types of restarting automata are obtained by combining two other types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the first part of
the class name): RR-denotes no restriction, and R-means that each rewrite step is com-
bined with a restart. Formally R-automata are obtained from RR-automata by requiring
that each rewrite step is immediately followed by a restart step, but it is more convenient
to combine the two operations into a single one.

(b) Restrictions on the rewrite-instructions (expressed by the second part of the class name):
-WW denotes no restriction, -W means that no auxiliary symbols are available (that is,
Γ = Σ), and no W-suffix means that no auxiliary symbols are available and that each
rewrite step simply deletes some symbols.

We write L (X) to denote the family of languages accepted by restarting automata of
some type X . An important property of restarting automata is the following Correctness
Preserving Property.

Definition 1 Let M be a restarting automaton. M is correctness preserving if, for all words
u and v over its input alphabet, u ∈ L(M) and u 
c∗

M v imply that v ∈ L(M), too.

It is easily seen that each deterministic restarting automaton is necessarily correctness
preserving, but nondeterministic restarting automata do in general not have this property.

Concerning the expressive power of the various types of restarting automata the follow-
ing major results have been obtained (see, e.g., [14]). Here a restarting automaton is called
monotone if the distance of the place of rewriting to the right end of the tape does not increase
from one cycle to the next in any computation. We use the prefix mon- to denote monotone
types of restarting automata.

Theorem 1

(a) L (det-mon-R) = L (det-mon-RRWW) = DCFL.

(b) L (mon-RWW) = L (mon-RRWW) = CFL.

(c) L (det-RWW) = L (det-RRWW) = CRL.

(d) L (RRWW) ⊇ L (RWW) � GCSL.

Here CFL (DCFL) denotes the class of (deterministic) context-free languages, CRL
denotes the class of Church-Rosser languages, and GCSL is the class of growing context-
sensitive languages (see, e.g., [1]).
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In [9] the stateless variants of RWW-automata are studied, where an RWW-automaton
M = (Q,Σ, Γ, c, $, q0, k, δ) is called stateless if Q = {q0} holds. Thus, in this case M
can simply be described by the 6-tuple M = (Σ, Γ, c, $, k, δ). In the original definition it
was required that a stateless RWW-automaton may execute an accept instruction only at the
right end of the tape, that is, when it sees the right delimiter $, but this is actually just a
convenience (see [11]). In [9] the following results were obtained on the expressive power of
stateless RWW-automata. Here the prefix stl- is used to denote stateless types of restarting
automata, and REG denotes the class of regular languages.

Theorem 2

(a) L (stl-det-mon-RWW) = DCFL.

(b) L (stl-mon-RWW) = CFL.

(c) L (stl-det-RWW) = CRL.

(d) L (stl-det-mon-R) � REG.

3 Stateless RR-automata

For restarting automata in general, each RR-variant is at least as powerful as the correspond-
ing R-variant, but for stateless automata the situation is not that obvious. The feature of
continuing to read the tape after a rewrite step has been executed is problematic for these
automata, as they cannot distinguish between the phase of a cycle before the rewrite step
and the phase after the rewrite step. Clearly, this distinction is important, since no rewrite
steps may appear in the latter phase. For general restarting automata, this is avoided by using
states, but how to deal with this situation for stateless RR-automata?

We will present two options to deal with this situation in the current and in the next section.
In the current section we regard any additional rewrite step as a rejection of the input. Also
a cycle within which no rewrite step is performed is regarded as a rejection of the input. The
next lemma and example show that for certain languages stateless deterministic R-automata
are better suited than even stateless deterministic RRW-automata.

Lemma 1 The language Laba = { ambm+nan | m, n ≥ 0 } is not accepted by any stateless
deterministic RRW-automaton.

Proof Assume that M = ({a, b}, {a, b}, c, $, k, δ) is a stateless deterministic RRW-automa-
ton accepting Laba . Then for all integers m ≥ 0, the words ambm and bmam are all accepted
by M . For sufficiently large values of m, the accepting computation of M on input ambm

cannot simply be an accepting tail. Thus, it begins with a cycle of the form ambm 
c
M w1. By

the correctness preserving property for M , it follows that w1 is an element of L(M) = Laba ,
which means that w1 is of the form w1 = albl+nan . However, it is not possible to rewrite
w = ambm into a word of this form unless n = 0. Therefore, w1 = am−i bm−i for some
positive integer i satisfying 2i ≤ k. Analogously, the accepting computation of M on input
bmam begins with a cycle of the form bmam 
c

M w2, where w2 is of the form w2 = bm− j am− j

for some positive integer j satisfying 2 j ≤ k. Thus, δ contains rewrite operations of the form
δ(albk−l) = al−i bk−l−i and δ(bl ′ak−l ′) = bl ′− j ak−l ′− j . In addition, M must be able to
move its read/write window across the prefix c · am and across the prefix c · bm , that is, δ

must contain the corresponding move-right operations.
Now consider the computation of M on input amb2mam ∈ Laba . First M will behave

just as it does on the input ambm , that is, it will rewrite the prefix ambm into am−i bm−i ,

123



396 M. Kutrib et al.

which results in the word am−i bm−i bmam , with the read/write window inside the block of
b’s. Then it will move the window to the right until it contains the factor bl ′ak−l ′ , which will
then initiate a second rewrite step within the first cycle, that is, M will perform two rewrite
operations in one cycle. Accordingly, it will reject on input amb2mam . Hence, it follows
that L(M) �= Laba , that is, the language Laba is not accepted by any stateless deterministic
RRW-automaton. 
�

However, the language Laba is accepted by a stateless deterministic R-automaton as shown
by the following example.

Example 1 Let M = ({a, b}, {a, b}, c, $, 4, δ) be the stl-det-R-automaton that is specified
through the following transition function δ:

(1) δ(c · $) = Accept, (6) δ(aaaa) = MVR, (11) δ(c · bba) = MVR,

(2) δ(c · ab · $) = Accept, (7) δ(aaab) = MVR, (12) δ(bbbb) = MVR,

(3) δ(c · ba · $) = Accept, (8) δ(aabb) = ab, (13) δ(bbba) = MVR,

(4) δ(c · aaa) = MVR, (9) δ(c · abb) = c · b, (14) δ(bbaa) = ba.

(5) δ(c · aab) = MVR, (10) δ(c · bbb) = MVR,

The empty word and the words ab and ba are accepted immediately. For input w = a2b3a ∈
Laba, M proceeds as follows, where 
M denotes the single-step computation relation that M
induces on the set of configurations. Here q0 denotes the unique state of M , and we underline
the part of the tape contents that is inside M’s window:

q0caabbba$ 
M cq0aabbba$ 
M q0cabba$ 
M q0cba$ 
M Accept.

In general, a word of the form ambm+nbn is first reduced to bnan , which is then reduced
to ba and accepted. On the other hand, if the given input is not of this form, then M will
eventually detect that and reject. It follows that L(M) = Laba .

Thus, there are languages in L (stl-det-R) that are not accepted by any stateless determin-
istic RRW-automaton. So, the question for the computational power of stateless RR-automata
arises immediately. By a slight modification of the proof of the corresponding result from [9]
it can be shown that at least each regular language is accepted by some stl-det-RR-automaton.

Lemma 2 Each regular language is accepted by a stateless deterministic RR-automaton
that is monotone.

Proof Let L ⊆ Σ∗ be a regular language. Then there exists a complete deterministic finite-
state acceptor A = (Q,Σ, q0, F, φ) for L . Let m := |Q|. Then each word w ∈ Σm can
be written as w = w1w2w3 such that |w2| ≥ 1 and φ(q0, w1w2) = φ(q0, w1). Hence,
φ(q0, w) = φ(q0, w1w2w3) = φ(q0, w1w3), which implies that, for all z ∈ Σ∗, wz ∈ L if
and only if w1w3z ∈ L . In fact, for each word w ∈ Σm , we can fix one such factorization.

Based on this observation we define a stateless RR-automaton with tape alphabet Σ

and window of size k := m + 1 as follows, where Σ<m = {w ∈ Σ∗ | |w| < m } and
Σ≤m = {w ∈ Σ∗ | |w| ≤ m }:
(1) δ(c · w · $) = Accept for all w ∈ Σ<m ∩ L ,

(2) δ(c · w) = c · w1w3 for all w ∈ Σm, where w=w1w2w3 is the chosen factorization,
(3) δ(w) = MVR for all w ∈ Σm+1,

(4) δ(w · $) = Restart for all w ∈ Σ≤m .

Then M is a stateless deterministic RR-automaton, it is obviously monotone, as each
rewrite step is applied on a prefix of the current tape contents, and from the choice of the
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On stateless deterministic restarting automata 397

factorizations it follows that each cycle u 
c
M u′ satisfies the property that u ∈ L if and only

if u′ ∈ L . Hence, L(M) = L . 
�
However, stateless deterministic RR-automata can also accept some non-regular lan-

guages.

Example 2 The stl-det-RR-automaton M on Σ = {a, b} that is given through the following
transition function δ is easily seen to accept the non-regular language { anbn | n ≥ 0 }:

(1) δ(c · $) = Accept (5) δ(aaaa) = MVR, (9) δ(bbb · $) = Restart,
(2) δ(c · ab · $) = Accept, (6) δ(aaab) = MVR, (10) δ(bb · $) = Restart,
(3) δ(c · aaa) = MVR, (7) δ(aabb) = ab, (11) δ(b · $) = Restart,
(4) δ(c · aab) = MVR, (8) δ(bbbb) = Restart, (12) δ($) = Restart.

As the stateless RR-automaton M in the above example is also monotone, we have the
following proper inclusion.

Corollary 1 REG � L (stl-det-mon-RR).

Currently the exact relationship between the class of languages that are accepted by
stl-det-R(W)-automata and those that are accepted by stl-det-RR(W)-automata remains
open. Observe, however, that the following characterizations follow in the same way as the
corresponding results for stateless RWW-automata, as the proofs given in [11] easily extend
to stateless RRWW-automata.

Theorem 3

(a) L (stl-det-mon-RRWW) = DCFL.

(b) L (stl-mon-RRWW) = CFL.

(c) L (stl-det-RRWW) = CRL.

On the other hand, we see below that simple languages of deterministic stateless
RR-automata are not necessarily strictly locally testable in contrast to the situation for state-
less R(W)(W)-automata [9].

Example 3 Let M = ({a, b}, {a, b}, c, $, 2, δ) be the stateless deterministic RR-automaton
that is given through the following transition function δ:

(1) δ(c · a) = MVR, (3) δ(ab) = a,

(2) δ(aa) = MVR, (4) δ(a · $) = Accept.

Then L(M) = S(M) = a+ ∪ a+ · b · a+, which is not strictly locally testable. Observe that
on input w ∈ {a, b}+ satisfying |w|b ≥ 2, M will either get stuck (and so reject), or it will
perform two rewrite steps successively (and so reject as well).

Thus, stateless (deterministic) RR(W)(W)-automata are more expressive than stateless
(deterministic) R(W)(W)-automata with respect to the simple languages they accept.

In [11] it is shown that we may require that a stateless RWW-automaton executes accept
instructions only at the right end of its tape. Does a corresponding normalization result also
hold for stateless RRWW-automata? The same question can be stated for the position of
restart operations. However, here we have the following negative results.

Lemma 3 (a) Stateless deterministic RRW-automata are strictly less expressive when they
are required to perform accept operations only at the right end of the tape.
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(b) Stateless deterministic RRW-automata are strictly less expressive when they are
required to perform restart operations only at the right end of the tape.

Proof (a) Let Σ = {a, b, c}, let Lacc = { anbn | n ≥ 1 } ∪ { amcu | m ≥ 0 and u ∈ Σ∗ },
and let M = (Σ,Σ, c, $, 4, δ) be the stateless deterministic RR-automaton that is specified
by the following transition function δ:

(1) δ(c · u · $) = Accept for all u ∈ {ab, ac, c, ca, cb, cc},
(2) δ(c · u) = Accept for all u ∈ {a2c} ∪ ac · Σ ∪ c · Σ2,

(3) δ(c · u) = MVR for all u ∈ {a3, a2b},
(4) δ(u) = MVR for all u ∈ {a4, a3b},
(5) δ(a2b2) = ab,

(6) δ(b4) = MVR,

(7) δ(br · $) = Restart for all r ∈ {0, 1, 2, 3},
(8) δ(a3c) = Accept.

Obviously, M accepts each word w ∈ Lacc, |w| ≤ 2, immediately by using transition (1).
Further, an input w = anbn, n ≥ 2, is reduced to an−1bn−1 by transitions (3) to (7), and
so it is eventually reduced to ab and accepted. Finally, an input of the form w = amcu is
accepted as soon as the prefix amc has been read. On the other hand, if a word w ∈ Σ∗ is
accepted by M , then it either has a prefix of the form amc, or it is of the form anbn for some
n ≥ 1. Thus, we see that L(M) = Lacc holds.

Now let M ′ be a stateless deterministic RRW-automaton of window size k that is required
to perform accept instructions only at the right end of the tape. Consider an input of the
form w1 = anbn for a large integer n. Clearly, M ′ cannot accept w in a tail computation,
since then it would also accept the word anbn+1 that does not belong to Lacc. Thus, the
accepting computation of M ′ on input w1 begins with a cycle of the form w1 
c

M ′ w2, where
w2 ∈ Lacc. If w2 is of the form amcu, then M ′ must execute the above rewrite step within the
prefix of length n + k of w1. Accordingly, starting with input anbn+1, M ′ would execute the
cycle anbn+1 
c

M ′ amcub. As the latter word belongs to the language Lacc, it follows that M ′
accepts the word anbn+1 �∈ Lacc, that is, L(M ′) �= Lacc. Hence, we see that w2 is necessarily
of the form w2 = an−sbn−s , that is, M ′ executes the rewrite step δ′(ar bk−r ) = ar−sbk−r−s

for some s ≤ r ≤ k − s.
Next consider the input w3 = ancanbk−r anbn ∈ Lacc. As M ′ can execute accept instruc-

tions only at the right end of the tape, it either just moves right across the symbol c, or it
applies a rewrite operation with the symbol c inside its window. In the former case M ′ reaches
the configuration anc · ak · an−kbk−r anbn with the window on the factor ak displayed. As
M ′ is stateless, it will now behave as on input w1, that is, it will move right until its window
contains the factor ar bk−r , which it will then rewrite into ar−sbk−r−s . The resulting config-
uration is ancan−sbk−r−s · ak · an−kbn with the window on the factor ak displayed. Still M ′
will keep on moving to the right, and accordingly, it will execute the same rewrite operation
again on the last factor anbn , in this way rejecting input w3.

If M ′ executes a rewrite operation on encountering the symbol c in w3, then this rewrite
operation is of the form δ′(ai ca j ) = v for some integers i, j ≥ 0 satisfying k = i + j + 1.
Thus, the resulting configuration will be of the form an−iv · ak · an−k− j bk−r anbn . As above
M ′ will now behave as on input w1, that is, it will execute the rewrite operation δ′(ar bk−r ) =
ar−sbk−r−s on the factor an−k− j bk−r , in this way rejecting input w3. It follows in either case
that L(M ′) �= Lacc holds.

(b) Let Σ = {a, b, c}, let Lrs = { anbnc | n ≥ 1 } · {a, b, c}∗, and let M =
(Σ,Σ, c, $, 5, δ) be the stateless deterministic RR-automaton that is specified by the
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following transition function δ:

(1) δ(c · u) = MVR for all u ∈ {a4, a3b},
(2) δ(c · a2b2) = c · ab,

(3) δ(u) = MVR for all u ∈ {a5, a4b},
(4) δ(a3b2) = a2b,

(5) δ(u) = Restart for all u ∈ {b, c} · (Σ4 ∪ Σ≤3 · $),

(6) δ(c · abcx) = Accept for all x ∈ Σ,

(7) δ(c · abc · $) = Accept.

It is easily seen that L(M) = Lrs holds.
On the other hand, let M ′ be a stateless deterministic RRW-automaton that is required

to perform restart operations only at the right end of the tape. First consider the input w1 =
anbnc, where n is a large positive integer. Clearly, M ′ cannot accept w1 in a tail computation,
since then it would also accept the word anbn+1c that does not belong to Lrs . Thus, the
accepting computation of M ′ on input w1 begins with a cycle of the form w1 
c

M ′ w2, where
w2 ∈ Lrs . Hence, we see that w2 is necessarily of the form w2 = an−sbn−sc, that is, M ′
executes the rewrite step δ′(ar bk−r ) = ar−sbk−r−s for some s ≤ r ≤ k − s. Now consider
the input w3 = anbncanbn ∈ Lrs . Again M ′ cannot accept w3 in a tail computation, that is,
the accepting computation of M ′ on input w3 begins with a cycle of the form w3 
c

M ′ w4.
As M ′ is deterministic, we see that within this cycle, the prefix anbn of w3 is rewritten into
an−sbn−s , that is, w4 = an−sbn−scanbn . After performing this rewrite operation, M ′ needs
to make a restart. By assumption it can execute a restart operation only at the right end of
the tape, and so it must move its read/write window across the suffix bn−k+r canbn of w4.
This, however, means that it will perform another rewrite step on the suffix anbn , in this way
rejecting input w3. It follows that L(M ′) �= Lrs , that is, the language Lrs is not accepted by
any stateless deterministic RRW-automaton that is required to execute restart steps only at
the right end of the tape. 
�

4 Stateless two-phase RR-automata

The above problems with the stateless RRWW-automaton are a consequence of the fact that
such an automaton is unable to remember whether or not it has already executed a rewrite
operation in the current cycle. Here we consider a variant of stateless RRWW-automata that
can distinguish between these two cases.

A stateless two-phase RRWW-automaton, stl-2-RRWW-automaton for short, is describ-
ed by a 7-tuple M = (Σ, Γ, c, $, k, δ1, δ2), where δ1 is the transition relation that specifies
the behavior of M during the first phase of each cycle, which ends with the execution of a
rewrite instruction, while δ2 is the transition relation that specifies the behavior of M after
executing a rewrite. Accept instructions can occur in both δ1 and δ2. In the former case they
correspond to accepting tail computations in which no rewrite step is executed, while in the
latter case they correspond to accepting tail computations in which a rewrite step is executed.

For each type X ∈ {WW, W, ε}, we can simulate each stl-RX-automaton and each
stl-RRX-automaton cycle by cycle by a stl-2-RRX-automaton. For the former the simulating
stl-2-RRX-automaton simply has to restart immediately upon entering the second phase of a
cycle. For the latter the δ1-function of the simulating stl-2-RRX-automaton is obtained from
the δ-function of the stl-RRX-automaton being simulated by deleting all restart steps, and its
δ2-function is obtained from δ by deleting all rewrite steps, in this way turning these rewrite
steps into reject operations. Thus, we have the following inclusion results.
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Proposition 1 For each X ∈ {WW, W, ε},
(a) L (stl-(det)-RX) ⊆ L (stl-(det)-2-RRX).

(b) L (stl-(det)-RRX) ⊆ L (stl-(det)-2-RRX).


�
This yields the following consequences from Theorem 3.

Corollary 2

(a) L (stl-det-mon-2-RRWW) = DCFL.

(b) L (stl-mon-2-RRWW) = CFL.

(c) L (stl-det-2-RRWW) = CRL.

On the other hand, by using essentially the same arguments as in the proof of Lemma 2
of [9], the following negative result can be established.

Lemma 4 The deterministic linear context-free language

Ld = { canbn | n ≥ 0 } ∪ { danb2n | n ≥ 0 }
is not accepted by any stateless two-phase RRW-automaton.

Proof Assume that M = (Σ,Σ, c, $, k, δ1, δ2) is a stateless 2-RRW-automaton such that
L(M) = Ld holds, where Σ := {a, b, c, d}. Then M has an accepting computation for the
word w := danb2n , where n > k. Obviously, this computation cannot be an accepting tail,
that is, it begins with a cycle of the form w 
c

M w′. As we consider an accepting computation,
it follows that w′ ∈ Ld , which means that w′ = dan−i b2n−2i for some i ≤ k/3. Thus, M
contains the rewrite operation al−i bk−l−2i ∈ δ1(albk−l) for some l ≥ i , and after executing
this rewrite operation M performs a restart on the suffix b2n−k+l$ of the tape contents. Next,
M also has an accepting computation for the word z := canbn . Finally, consider the word
v := canbn+i that does not belong to Ld . Starting with input v, M cannot simply reject as
it cannot distinguish between v and z before it has seen the tape content completely. Thus,
the computation of M on input v begins by moving the read/write window of M to the bor-
der between the factors an and bn+i . However, at that place M can apply the above rewrite
operation, which yields the configuration ccan−i bk−l−2i q0bn+i−k+l$, where q0 denotes the
unique state of M . As M is stateless, it cannot distinguish the suffix bn+i−k+l$ from the
suffix b2n−k+l$ above, and so it will also perform a restart on the former, thus completing
the cycle v = canbn+i 
c

M can−i bn−i . This, however, means that together with the word
can−i bn−i ∈ Ld , M will also accept the word v �∈ Ld , contradicting our assumption that
L(M) = Ld holds. Thus, Ld is not accepted by any stateless two-phase RRW-automaton.


�
It follows that without auxiliary symbols, stateless two-phase restarting automata are

strictly less expressive than their counterparts with states, that is, L (stl-(det)-2-RRX) �

L ((det)-RRX) holds for all X ∈ {W, ε}. In the sequel we will repeatedly utilize the witness
language L(1)

expo:

L(1)
expo = { a2n | n ≥ 0 } ∪ { ai ba j | i, j ≥ 0, and ∃ m ≥ 1 : i + 2 · j = 2m }.

Lemma 5 L(1)
expo ∈ L (stl-det-2-RRW).
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Proof Let M = ({a, b}, {a, b}, c, $, 5, δ1, δ2) be the stateless deterministic two-phase RRW-
automaton that is specified through the following transition functions:

(1) δ1(c · x · $) = Accept, for all x ∈ {a, a2, ba, a2b, ba2},
(2) δ1(c · a4) = MVR, (6) δ1(a4b) = ba2,

(3) δ1(c · a2ba) = c · a2, (7) δ1(a4 · $) = ba2 · $,

(4) δ1(c · ba3) = c · a3, (8) δ2(a5) = MVR,

(5) δ1(a5) = MVR, (9) δ2(ai · $) = Restart, for all 0 ≤ i ≤ 4.

Let w ∈ {a, b}∗. If |w| ≤ 4, then it is easily seen that M will accept on input w if and only
if w ∈ L(1)

expo holds. Thus, assume that |w| ≥ 5. If |w|b ≥ 2, then M will get stuck on reading
w. If w = ai ba j , then M rejects immediately if i = 1 or if i = 3. If i = 0 or i = 2, then M
immediately executes a rewrite operation that transforms w into the word w1 = ai/2+ j and
restarts, and if i ≥ 4, then it rewrites w into the word w1 = ai−4ba j+2 and restarts. Finally,
if w = am , then w is rewritten into w1 = am−4ba2. Thus, in each case w1 belongs to L(1)

expo

if and only if w does. It follows that L(M) = L(1)
expo holds. 
�

Next we will see that stateless RW- and RRW-automata are less expressive.

Lemma 6 L(1)
expo �∈ L (stl-RW) ∪ L (stl-det-RRW).

Proof Assume that M = ({a, b}, {a, b}, c, $, k, δ) is a stateless RW-automaton such that
L(1)

expo = L(M) holds. Consider the word w = ba2n ∈ L(1)
expo, where n is sufficiently large. If

M accepts w in a tail computation, then it will also accept the word wa = ba2n+1 �∈ L(1)
expo.

On the other hand, if an accepting computation of M on input w begins with a cycle of
the form w 
c

M w1, then w1 must be an element of L(1)
expo. As each rewrite step of M is

length-reducing, it follows that w1 = a2n
, that is, M rewrites the prefix c · bak−1 into the

word c · ak−1. Now consider the word z = ba2n
ba2n−1 �∈ L(1)

expo. On input z, M can execute

the cycle z = ba2n
ba2n−1 
c

M a2n
ba2n−1 ∈ L(1)

expo, which implies that z ∈ L(M). It follows

that L(M) �= L(1)
expo.

Now assume that M ′ = ({a, b}, {a, b}, c, $, k, δ) is an stl-det-RRW-automaton such that
L(1)

expo = L(M ′) holds. Consider the word w = ba2n ∈ L(1)
expo, where n is sufficiently large.

As above it follows that the accepting computation of M ′ on input w begins with a cycle of
the form w 
c

M ′ w1, which means that w1 ∈ L(1)
expo. As each rewrite step of M ′ is length-

reducing, it follows that w1 = a2n
, that is, M ′ rewrites the prefix c · bak−1 into the word

c · ak−1. Further, this cycle ends with a restart operation of the form δ(ak) = Restart or
of the form δ(a j · $) = Restart for some j ≤ k − 1. In the former case M ′ can execute
the cycle ba2n

ba2n−1 
c
M ′ a2n

ba2n−1 ∈ L(1)
expo, which would imply that M ′ accepts on input

ba2n
ba2n−1

, although ba2n
ba2n−1 �∈ L(1)

expo. Thus, a restart operation is executed at the right
delimiter $, that is, M ′ moves its read/write window across the suffix a2n−k+1 of the word w

and performs a restart operation on encountering the symbol $.
Next consider the word w′ = a2n ∈ L(1)

expo. Again, if M ′ accepts w′ in a tail computation,

then it will also accept the word w′a = a2n+1 �∈ L(1)
expo. Thus, the accepting computation

of M ′ on input w′ begins with a cycle w′ 
c
M ′ w′

1, where w′
1 ∈ L(1)

expo. It follows that
w′

1 = a2n−2i bai holds for some i, 2 ≤ i < k/2, that is, M ′ rewrites the suffix ak−1 · $ into
the word ak−1−2i bai · $ and performs a restart afterwards. Thus, on the suffix a2n−k+1 · $ of
w′, M ′ has two possible sequences of steps: it can either rewrite ak−1 · $ into ak−1−2i bai · $
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and restart, or it can just move right across the suffix a2n−k+1 and restart on reaching the
$-symbol without performing a rewrite step (see above). This, however, contradicts our
assumption that M ′ is deterministic. It follows that L(M ′) �= L(1)

expo. 
�
Together with Proposition 1, Lemmas 5 and 6 yield the following proper inclusions.

Corollary 3

(a) L (stl-det-RW) � L (stl-det-2-RRW).

(b) L (stl-det-RRW) � L (stl-det-2-RRW).

To obtain corresponding results for stl-det-2-RR-automata, we consider the following
example language.

Definition 2 Let φ : {a, b}∗ → {a, b}∗ be the morphism that is induced by mapping a �→ ab
and b �→ b. Then φ is an injective mapping, that is, it is an encoding. Now let L(1)

φ be the

language L(1)
φ = φ(L(1)

expo), that is,

L(1)
φ =

{
(ab)2n | n ≥ 0

}
∪

{
(ab)i b(ab) j | i, j ≥ 0, and ∃ m ≥ 1 : i + 2 · j = 2m

}
.

Then the following result holds.

Lemma 7 L(1)
φ ∈ L (stl-det-2-RR).

Proof Let M = ({a, b}, {a, b}, c, $, 9, δ1, δ2) be the stateless deterministic two-phase
RR-automaton that is specified through the following transition functions:

(1) δ1(c · x · $) = Accept, for x ∈ {
ab, (ab)2, b(ab), b(ab)2, (ab)2b, (ab)2b(ab)

}
,

(2) δ1(c · (ab)4) = MVR, (9) δ1(c · b(ab)3a) = c · (ab)3a,

(3) δ1((ab)3b(ab)) = MVR, (10) δ1(c · (ab)2b(ab)a) = c · (ab)2a,

(4) δ1((ab)4a) = MVR, (11) δ1(b(ab)2b(ab)a) = bb(ab)2a,

(5) δ1(b(ab)4) = MVR, (12) δ2((ab)4a) = MVR,

(6) δ1((ab)4b) = MVR, (13) δ2(b(ab)4) = MVR,

(7) δ1(b(ab)3ba) = MVR, (14) δ2(b(ab)i · $) = Restart, 0 ≤ i ≤ 3,

(8) δ1((ab)4 · $) = b(ab)2 · $, (15) δ2((ab)4 · $) = Restart.

Essentially M simulates the stateless deterministic two-phase RRW-automaton from the
proof of Lemma 5. Observe that the rewritten syllable in rules (9), (10) and (11) always ends
with the letter a. This implies that M will never accept a word that contains the factor aa, as
such a factor is not contained in any word accepted in a tail computation (rule (1)), nor can
M ever remove such a factor from the tape. Thus, whenever one of the rules (9) to (11) is
applied within an accepting computation, then the first letter to the right of the place where
the rewriting is executed is necessarily a b. Together with the fact that the rewritten syllables
always end with the letter a, this ensures that M will detect the occurrence of a second copy
of φ(b) in the actual tape content from φ({a, b}∗). Based on this observation it can now be
shown that L(M) = L(1)

φ . 
�

Using essentially the same arguments as in the proof of Lemma 6 it can be shown that L(1)
φ

is neither accepted by a stateless R- nor by a stateless deterministic RR-automaton, which
yields the following separation results.

123



On stateless deterministic restarting automata 403

Corollary 4

(a) L (stl-det-R) � L (stl-det-2-RR).

(b) L (stl-det-RR) � L (stl-det-2-RR).

Finally, we consider the complement L̄(1)
expo = {a, b}∗�L(1)

expo of the language L(1)
expo. Obvi-

ously,

L̄(1)
expo = {w ∈ {a, b}∗ | |w|b ≥ 2 } ∪ { am | m is not a power of 2 }

∪ {
ai ba j | i, j ≥ 0, and i + 2 · j is not a power of 2

}
.

It is not hard to construct a stl-det-2-RRW-automaton M for this language. On words of the
form am or ai ba j , M behaves essentially just like the stateless deterministic RRW-automa-
ton M for the language L(1)

expo from the proof of Lemma 5, only that it accepts on other words
of length at most 3, while it simply accepts on encountering two b’s that are close together in
the first phase of a cycle or on encountering a b in the second phase of a cycle. On the other
hand, we have the following result.

Lemma 8 L̄(1)
expo is not accepted by any stateless deterministic two-phase RRW-automaton

that executes accept instructions only at the right end of the tape.

Proof Assume that there is a stl-det-2-RRW-automaton M = ({a, b}, {a, b}, c, $, k, δ1, δ2)

that executes accept instructions only at the right end of the tape and that accepts the language
L̄(1)

expo.

First consider the input w1 = ba2m+1 ∈ L̄(1)
expo, where m > 0 is a large integer. Given

w1 as input, M will accept, but it cannot accept in a tail computation, since then it would
also accept the word ba2m

that does not belong to the language L̄(1)
expo. Hence, the accepting

computation of M on input w1 begins with a cycle of the form w1 
c
M w2. In this cycle M

executes a rewrite step δ1(u) = v such that either u = c · bak−2, or u = bak−1, or u = ak ,
or u = a j · $ for some 1 ≤ j ≤ k − 1. Accordingly, c · w2 = va2m+3−k , or w2 = va2m+2−k ,
or w2 = bva2m+1−k , or w2 · $ = ba2m+1− jv. As M is stateless, it will execute a cor-
responding cycle for the input word w1a2m−1 = ba2m+1 ∈ L(1)

expo, resulting in the word

c · w3 = va2m+1+2−k , or w3 = va2m+1+1−k , or w3 = bva2m+1−k , or w3 · $ = ba2m+1− jv.
The correctness preserving property for M requires that w2 ∈ L̄(1)

expo, while w1a2m−1 ∈ L(1)
expo

implies that w3 ∈ L(1)
expo.

If |u|b = 0 = |v|b, then the above rewrite operation simply removes j ≥ 1 occurrences
of the symbol a, where j ≤ k. As m is large, this implies that w3 ∈ L̄(1)

expo, a contradiction.
If |v|b ≥ 2, or if |u|b = 0 and |v|b = 1, we obtain the same contradiction.

Next consider the case that |u|b = 1 and |v|b = 1. Then the above rewrite operation is
of the form δ1(c · bak−2) = c · ai bak−2−r or δ1(bak−1) = ai bak−1−r for some i, r ≥ 0
satisfying i < r ≤ k − 2 (respectively, i < r ≤ k − 1). However, this implies that w3 =
ai ba2m+1−r ∈ L̄(1)

expo, again giving the same contradiction.
Finally, assume that |u|b = 1 and |v|b = 0, that is, the rewrite operation above is of the

form δ1(c·bak−2) = c·ak−2− j or δ1(bak−1) = ak−1− j for some j ≥ 0. Then w3 = a2m+1− j ,
which again yields the same contradiction as above if j > 0. It follows that j = 0. Now
consider the input w4 = ba2m+1

ba2m ∈ L̄(1)
expo. On input w4, M will accept, but the corre-

sponding accepting computation begins with an application of the above rewrite operation.
Thus, w4 = ba2m+1

ba2m
is rewritten into the word a2m+1

ba2m ∈ L(1)
expo. After executing this

rewrite operation M will scan the remaining tape. On encountering the second occurrence
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of the letter b, it “knows” that the given input w4 belongs to the language L̄(1)
expo, but accord-

ing to our assumption M cannot accept at that point. Instead it has to scan the remaining
suffix a2m

. Now on encountering the right delimiter $, M does not remember that it has
seen two occurrences of the letter b, that is, it cannot distinguish between w4 and the input
w5 = ba2m �∈ L̄(1)

expo. Thus, M either accepts, that is, it accepts both w4 and w5, or it makes a

restart, which means that it executes the cycle w4 
c
M a2m+1

ba2m ∈ L(1)
expo, contradicting the

correctness preserving property for M . As this covers all cases, it follows that L(M) �= L̄(1)
expo.


�
It can further be shown that the language L̄(1)

φ = {a, b}∗�L(1)
φ is not accepted by any

stl-det-2-RR-automaton that executes all its accept instructions at the right end of the tape,
but that an (unrestricted) stl-det-2-RR-automaton can accept this language. Thus, by restrict-
ing stl-det-2-RR(W)-automata to execute accept instructions only at the right end of the
tape we decrease their expressive power properly. This contrasts the situation for stateless
RW-automata.

5 Closure properties

Finally we consider closure properties of those language families that are specified by the var-
ious types of stateless deterministic restarting automata without auxiliary symbols. Closure
under certain operations indicates a certain robustness of the language families considered,
while non-closure properties may serve, for example, as a valuable basis for extensions.

As it turns out all language families considered here form non-reversal closed anti-AFLs,
and some of them are not even closed under complementation. This is somewhat surprising
for language classes defined by deterministic models of automata. Anti-AFLs are sometimes
referred to as “unfortunate families of languages,” but there is linguistical evidence that such
language families might be of crucial importance, since the family of natural languages is an
anti-AFL, too [2]. Hence, the quest for uncommon automata models that induce anti-AFLs
seems to be worthwhile. Our results are summarized in Table 1 at the end of the paper.

5.1 Boolean operations

First we explore the closure properties under the Boolean operations union, intersection, and
complementation. The languages Ld,1 = { canbn | n ≥ 0 } and Ld,2 = {

danb2n | n ≥ 0
}

are easily seen to be accepted by stl-det-R- as well as by stl-det-RR-automata. As shown in
Lemma 4, their union Ld = Ld,1 ∪ Ld,2 is not accepted by any stl-det-2-RRW-automaton.
This yields the following non-closure results.

Theorem 4 The families L (stl-det-R(R)(W)) and L (stl-det-2-RR(W)) are not closed
under union.

Let M be a stateless deterministic R(W)-automaton or a stateless deterministic two-phase
RR(W)-automaton accepting a language L ⊆ Σ∗. Then by switching accepting and reject-
ing (that is, undefined) transition steps we obtain an automaton of the same type as M that
accepts the language L̄ = Σ∗ � L . This gives our only closure properties.

Theorem 5 The families L (stl-det-R(W)) and L (stl-det-2-RR(W)) are closed under com-
plementation.

This result contrasts with the following negative result.
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Theorem 6 The families L (stl-det-RR(W)) are not closed under complementation.

Proof Consider the language Lr = {
wcwR | w ∈ {a, b}∗ }

, and let Mr be the stl-det-RR-
automaton that is given through the following transition function, where x ∈ {a, b, c} and
y, z ∈ {a, b, ε}:

(1) δ(c · c · $) = Accept, (5) δ(abx) = MVR, (9) δ(bcb) = c,
(2) δ(c · ax) = MVR, (6) δ(bax) = MVR, (10) δ(yz · $) = Restart.
(3) δ(c · bx) = MVR, (7) δ(bbx) = MVR,

(4) δ(aax) = MVR, (8) δ(aca) = c,

Given an input w ∈ {a, b, c}+, Mr accepts immediately, if w = c. Otherwise it moves right
until it discovers a factor of the form aca or bcb, which it then replaces by c. If no such factor
is discovered, then Mr rejects on input w, as it either gets stuck on encountering a factor of
the form acb, bca, or c · $, or, if |w|c = 0, then Mr simply moves across w and performs a
restart at the right border marker, that is, it makes a restart without executing a rewrite step,
and so it rejects according to our definition (see the second paragraph of Sect. 3). Finally,
if after executing a rewrite step another factor of the form aca or bcb is encountered, then
Mr executes another rewrite step in the same cycle, and thus, it rejects the input. In fact, if
|w|c > 1, then Mr will not be able to execute a single successful cycle. It now follows easily
that L(Mr ) = Lr holds.

On the other hand, the complement L̄r of Lr is not accepted by any stl-det-RRW-autom-
aton. Assume that M = (Σ,Σ, c, $, k, δ) is a stl-det-RRW-automaton that accepts the
complement L̄r of Lr , and let w ∈ {a, b}∗ be some word that contains all words from {a, b}k

as factors. Assume first that δ(c · u) = c · v for some words u and v. Then we consider the
accepting computation of M on input uwwcwRu R . Clearly, this cannot just be a tail com-
putation. Hence, it begins with the cycle uwwcwRu R 
c

M vwwcwRu R , where M restarts
either while reading the first w, or with c in its window, or on encountering the right delim-
iter $, as w contains all words of length k over {a, b} as infixes. Therefore, M also executes
the cycle uwcwRu R 
c

M vwcwRu R ∈ L̄r . This, however, contradicts our assumption that
L(M) = L̄r , as uwcwRu R ∈ Lr . Next assume that δ(u) = v for some words u and v. Since
M cannot rewrite at the left end of the tape, we obtain a contradiction for the input uu ∈ L̄r ,
on which M will execute two rewrite steps, thus rejecting it. Finally, assume that the only
rewrite transitions of M are of the form δ(u · $) = v · $ for some words u and v. Since M
cannot rewrite without reading the right endmarker, we obtain a contradiction because of the
cycle u RwcwRu 
c

M u RwcwRv, since u RwcwRv ∈ L̄r , while u RwcwRu ∈ Lr . It follows
that L̄r is indeed not accepted by any stl-det-RRW-automaton. 
�

From Lemmas 5, 7, and 8 we see that the families L (stl-det-2-RR(W)) would not be
closed under complementation, either, if stateless two-phase RRW-automata were required
to execute accept steps only at the right of the tape.

For the stateless deterministic R(W)- and 2-RR(W)-automata non-closure under inter-
section is now immediate. However, we even have the following stronger result.

Theorem 7 The families L (stl-det-R(R)(W)) and L (stl-det-2-RR(W)) are not closed
under intersection with regular languages.

Proof According to [9] the language

Lexpo =
⎧⎨
⎩ ai0 bai1 b · · · ain−1 bain | n ≥ 0, i0, . . . , in ≥ 0, and ∃ m ≥ 0 :

n∑
j=0

2 j · i j = 2m

⎫⎬
⎭ ∪ b∗
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is accepted by a stl-det-RW-automaton, while Lexpo ∩ a∗ = { a2m | m ≥ 0 } is not accepted

by any RRW-automaton. Analogously, the language L(φ)
expo = φ(Lexpo) is accepted by a

stl-det-R-automaton, while L(φ)
expo ∩ (ab)∗ = { (ab)2n | n ≥ 0 } is not accepted by any

RRW-automaton, where φ is the encoding from Definition 2.
The language Lexpo ∩ a∗ is Church-Rosser, and hence, it is accepted by some stl-

det-RRWW-automaton M = ({a}, Γ, c, $, k, δ). Now let M1 be the stl-det-RRW-autom-
aton that is obtained from M by declaring all symbols of Γ to be input symbols. Then
L(M1) ∈ L (stl-det-RRW), but L(M1) ∩ a∗ = { a2m | m ≥ 0 } �∈ L (RRW).

In [14] an encoding ϕ : Γ ∗ → {a, b, c, d}∗ is presented that depends on M1 such that
the image ϕ(L(M1)) is accepted by a deterministic RR-automaton M2. In fact, M2 simu-
lates each step of M1 by a sequence of steps that mirror each action of M1 on the encoded
tape contents. Using this encoding it is easily seen that M2 is stateless, if M1 is. Thus,
ϕ(L(M1)) ∈ L (stl-det-RR). However, ϕ(L(M1)) ∩ ϕ(a∗) = {ϕ(a2n

) | n ≥ 0 }, which is
not accepted by any RR-automaton. This completes the proof of Theorem 7. 
�

Since all language families considered include the regular languages, this proves in par-
ticular that none of them is closed under intersection.

5.2 Reversal

Next we consider the closure under reversal.

Theorem 8 None of the families L (stl-det-R(R)(W)) or L (stl-det-2-RR(W)) is closed
under reversal.

Proof First we consider the case of stateless deterministic R(W)-automata. A stl-det-R-
automaton M for the language Lacab = { amcnan+r bm+r | m, n ≥ 1, r ≥ 0 } proceeds as
follows. In a first phase it performs cycles in which the window is moved across the lead-
ing a’s and c’s until it sees the factor ccaa, from which it deletes the factor ca. The first
phase is completed when there is only one c left. Now the remaining input is of the form
amcaar bm+r . In a second phase, M performs cycles in which the window is moved across
the leading a’s followed by caar until it sees the factor aabb, from which it deletes the factor
ab. The second phase is completed when there is only one a in between the c and the b’s.
Now the remaining input is of the form amcabm . In a final phase, M performs cycles in
which the window is moved across the leading a’s until it sees two a’s followed by cabb. It
now deletes the second a and the first b. This phase is completed when the input is reduced
to acab, which is accepted. M can distinguish between these phases based on the contents
of its window.

Next, assume that MR = (Σ,Σ, c, $, k, δ) is a stl-det-RW-automaton accepting the
reversal of Lacab. Given an input bm+r an+r cnam with large m, n, r , MR cannot accept in a
tail computation. Furthermore, it cannot rewrite just one type of symbols without violating
the correctness preserving property. Now assume that δ(bi a j ) = bi−la j−l , where i + j = k
and l ≥ 1. Then after at most r + 1 cycles the correctness preserving property is violated,
as a word of the form bm−san−scnam is obtained for some s ≥ 1. Therefore, MR cannot
rewrite in this situation, which means that MR can never delete one of the leading b’s and,
thus, cannot check the correct suffix length m. We obtain a contradiction, showing that the
reversal of the language Lacab is not accepted by any stl-det-RW-automaton.

Now we turn to the case of stateless deterministic RR(W)-automata. In the proof of
Theorem 6 it is shown that the language Lr = {

wcwR | w ∈ {a, b}∗} is accepted by a

stl-det-RR-automaton. Here we consider the language L̂r = Lr ∪ (Lr · d · {a, b, c, d}∗),

123



On stateless deterministic restarting automata 407

that is, the union of Lr and the marked concatenation of Lr with {a, b, c, d}∗. The following
extension of the construction from the proof of Theorem 6 gives a stl-det-RR-automaton for
this language. Here x ∈ {a, b, c}, y, z ∈ {a, b, ε}, and p ∈ {aad, abd, bad, bbd, d · $} ∪
ad · {a, b, c, d, $} ∪ bd · {a, b, c, d, $} ∪ d · {a, b, c, d} · {a, b, c, d, $}:

(1) δ(c · c · $) = Accept, (7) δ(aax) = MVR,

(2) δ(c · cd) = Accept, (8) δ(abx) = MVR,

(3) δ(c · ax) = MVR, (9) δ(bax) = MVR,

(4) δ(c · bx) = MVR, (10) δ(bbx) = MVR,

(5) δ(aca) = c, (11) δ(yz · $) = Restart,
(6) δ(bcb) = c, (12) δ(p) = Restart.

Now assume that M is a stl-det-RRW-automaton for L̂ R
r with window size k, and let

w ∈ {a, b}∗ be a word that contains all words from {a, b}k as factors. On input wcwR, M
executes an accepting computation, which cannot just consist of an accepting tail. Thus, it
begins with a cycle of the form wcwR 
c

M z. From the correctness preserving property for M
we see that z = w1w3cwR

3 wR
1 , where w = w1w2 and w3cwR

3 is obtained from w2cwR
2 by the

rewrite step executed in the above cycle. Therefore, on input wcwRwcwRdwcwR ∈ L̂ R
r , M

will execute (at least) two rewrite operations in the first cycle, therewith rejecting this input.
This contradicts our assumption that L(M) = L̂ R

r holds.

Finally we give the proof for stl-det-2-RR(W)-automata. By Lemma 5 the language L(1)
expo

is accepted by a stl-det-2-RRW-automaton. However, its reversal
(

L(1)
expo

)R =
{

a2n | n ≥ 0
}

∪
{

ai ba j | i, j ≥ 0, and ∃ m ≥ 0 : 2 · i + j = 2m
}

cannot even be accepted by a deterministic RRW-automaton with states. Assume that
M = (Q, {a, b}, {a, b}, c, $, q0, k, δ) is a det-RRW-automaton such that (L(1)

expo)
R = L(M)

holds. Consider the word w = a2n ∈ (L(1)
expo)

R , where n > 0 is sufficiently large. As M
cannot accept w in a tail computation, the accepting computation of M on input w starts with
a cycle w 
c

M w1. Then w1 ∈ (L(1)
expo)

R , and it follows from the fact that each rewrite step
of M is length-reducing that w1 = ai ba2n−2i for some i satisfying 2 ≤ i < k/2. Hence,
M transforms a prefix am of w into the word ai bam−2i , where m ≤ 2k. Now consider the
input z = a2n

b ∈ (L(1)
expo)

R . Again M cannot accept z in a tail computation. Thus, the accept-
ing computation of M on input z begins with a cycle z 
c

M z1. As M is deterministic, this
computation begins with the transformation above, which implies that z1 = ai ba2n−2i b. As
z1 �∈ (L(1)

expo)
R , this contradicts our assumption that (L(1)

expo)
R = L(M) holds. It follows that

(L(1)
expo)

R is not accepted by any deterministic RRW-automaton.

By Lemma 7, L(1)
φ is accepted by a stl-det-2-RR-automaton, but by using essentially

the same reasoning as above it can be shown that (L(1)
φ )R is not accepted by any det-RR-

automaton with states. 
�
From the proof above we see that not even the language families L (det-RR(W)) are

closed under reversal.

5.3 Morphisms

This subsection is devoted to disprove the closure of all language families under consider-
ation with respect to morphisms, even non-erasing morphisms, and with respect to inverse
morphisms.
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Theorem 9 None of the families L (stl-det-R(R)(W)) or L (stl-det-2-RR(W)) is closed
under non-erasing morphisms.

Proof We consider the language Ldm = { canc̄bn | n ≥ 0 } ∪ {
dand̄b2n | n ≥ 0

}
, which

is accepted by all types of automata in question. Exemplarily, we present a stl-det-RR-
automaton M for this language:

(1) δ(c · cc̄ · $) = Accept, (13) δ(aad̄b) = MVR,

(2) δ(c · dd̄ · $) = Accept, (14) δ(dad̄b) = MVR,

(3) δ(c · caa) = MVR, (15) δ(aaaa) = MVR,

(4) δ(c · daa) = MVR, (16) δ(aac̄b) = ac̄,
(5) δ(c · cac̄) = MVR, (17) δ(cac̄b) = cc̄,
(6) δ(c · dad̄) = MVR, (18) δ(ad̄bb) = d̄,

(7) δ(caaa) = MVR, (19) δ(bbbb) = Restart,
(8) δ(daaa) = MVR, (20) δ(bbb · $) = Restart,
(9) δ(caac̄) = MVR, (21) δ(bb · $) = Restart,
(10) δ(daad̄) = MVR, (22) δ(b · $) = Restart,
(11) δ(aaac̄) = MVR, (23) δ($) = Restart.
(12) δ(aaad̄) = MVR,

It is easily verified that L(M) = Ldm holds. Now let h be the non-erasing morphism that is
defined by taking h(a) = a, h(b) = b, h(c) = c, h(d) = d, h(c̄) = ab, and h(d̄) = abb.
Then h(Ldm) = { canbn | n ≥ 1 } ∪ { danb2n | n ≥ 1 }, which equals the language Ld

except for the case n = 0 (see Sect. 4). As in the proof of Lemma 4 it can be shown that this
language is not accepted by any stateless 2-RRW-automaton, either, and therewith not by
any automaton of any of the types considered here. 
�

The non-closure of L (stl-det-R) under inverse morphisms has actually already been
shown in Lemma 20 (d) and (e) of [11]. In fact, the language Lexpo is not accepted by any

RR-automaton, while its morphic image L(φ)
expo = φ(Lexpo) even belongs to L (stl-det-R),

where φ : {a, b}∗ → {a, b}∗ is the morphism from Definition 2. Since this morphism is
injective, we obtain the following corollary.

Corollary 5 The families L (stl-det-R) and L (stl-det-2-RR) are not closed under inverse
morphisms.

In fact, none of the language classes studied here is closed under inverse morphisms. First,
we extend this result to stateless deterministic RW-automata and 2-RRW-automata.

Lemma 9 The families L (stl-det-RW) and L (stl-det-2-RRW) are not closed under
inverse morphisms.

Proof We utilize the language

Le = {
c(ac)m(aee)n−mbn | 0 ≤ m ≤ n

} ∪ {
d(ad)m(aee)n−mb2n | 0 ≤ m ≤ n

}
,

which belongs to L (stl-det-RW) by Lemma 20 (a) of [11]. Let h be the morphism that is
defined by h(a) = aee, h(b) = b, h(c) = c, h(d) = d , and h(e) = a. Then h is injective,
and it is easily seen that

h−1(Le) = {
c(ec)man−mbn | 0 ≤ m ≤ n

} ∪ {
d(ed)man−mb2n | 0 ≤ m ≤ n

}
.
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Now assume that h−1(Le) is accepted by a stl-det-RW-automaton M . Then we observe that
the inputs of the form canbn or danb2n (that is, those words for which m = 0 holds) cannot
be rewritten into words of the form c(ec)man−mbn or d(ed)man−mb2n . This follows from the
fact that the corresponding rewrite would have to be applied to the prefix can of canbn or dan

of danb2n , leaving the suffix bn or b2n untouched. However, for all m ≥ 1, c(ec)man−mbn

or d(ed)man−mb2n is strictly longer than canbn or danb2n , respectively. Hence, automaton
M rewrites canbn into can−i bn−i and danb2n into dan− j b2n−2 j for some i, j ≥ 1. Now
modify M into a stl-det-RW-automaton M ′ by requiring that M ′ halts without accepting
as soon as it encounters an occurrence of the symbol e. Then M ′ accepts the language
L(M) ∩ {a, b, c, d}∗ = h−1(Le) ∩ {a, b, c, d}∗ = { canbn | n ≥ 0 } ∪ { danb2n | n ≥ 0 } =
Ld . However, by Lemma 4, Ld is not even accepted by any stateless 2-RRW-automaton.


�
The next lemma concludes the investigation of closures under inverse morphisms.

Lemma 10 The families L (stl-det-RR(W)) are not closed under inverse morphisms.

Proof The language

Labam = {
am(bc)m+nan | m, n ≥ 0

} ∪ {
bm(bc)n−man | 0 ≤ m ≤ n

}

is accepted by the following stl-det-RR-automaton M :

(1) δ(c · $) = Accept, (14) δ(abcb) = b,

(2) δ(c · ba · $) = Accept, (15) δ(abc · $) = $,

(3) δ(c · aaa) = MVR, (16) δ(c · bcb) = c · bb,

(4) δ(c · aab) = MVR, (17) δ(c · bca) = c · ba,

(5) δ(c · abc) = MVR, (18) δ(c · bba) = c · b,

(6) δ(c · bbb) = MVR, (19) δ(bbcb) = bbb,

(7) δ(c · bbc) = MVR, (20) δ(bbca) = bba,

(8) δ(aaaa) = MVR, (21) δ(bbaa) = ba,

(9) δ(aaab) = MVR, (22) δ(cbcb) = Restart,
(10) δ(aabc) = MVR, (23) δ(cbca) = Restart,
(11) δ(bbbb) = MVR, (24) δ(caaa) = Restart,
(12) δ(bbbc) = MVR, (25) δ(cbc · $) = Restart,
(13) δ(bbba) = MVR, (26) δ(cai · $) = Restart for all 0 ≤ i ≤ 2,

(27) δ(ai · $) = Restart for all 0 ≤ i ≤ 3.

Given an input w ∈ {a, b, c}∗ as input, M proceeds as follows. If w = ε or w = ba (=
b1(bc)0a1), then M accepts immediately by (1) or (2), and if w = bcbw2 or w = bcaw2,
then M executes a rewrite step that deletes the first occurrence of the symbol c by (16)
or (17). It is, however, easily seen that w = bcbw2 (w = bcaw2) belongs to the lan-
guage Labam if and only if the resulting word bbw2 (baw2) belongs to Labam . In fact, if
w = bcbw2 ∈ Labam , then w2 = c(bc)nan+2, and if w = bcaw2 ∈ Labam , then w2 = ε. In
all resulting cases M performs a restart in the next step. Finally, if w = w1w2 for some prefix
w1 ∈ {a3, a2b, abc, b3, b2c}, then M performs a move-right step using (3) to (7). In fact, if
w1 starts with an a, then M moves right across all leading a’s until it detects the factor abcb
or abc · $, from which it then deletes the prefix abc by (14) or (15). If w ∈ Labam , then so
is the resulting word, and in addition, in all possible cases M performs a restart in the next
step. If no such factor is found, then M either gets stuck (for example, this happens should it
encounter the factor aaac), or it reaches the right sentinal $ and executes a restart, without
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having performed a rewrite step first. In both these cases M is said to reject the input w. By
cycling through these steps, M deletes a prefix of the form am(bc)m from w.

On the other hand, if w1 starts with a b, then M moves right across all leading b’s until
it detects the factor bbcb, bbca, or bbaa. In the first two cases it then deletes the letter c by
(19) or (20), while in the latter case it deletes the factor ab using (21). Again, if w ∈ Labam ,
then so is the resulting word, and in the next step M performs a restart. By cycling though
these steps, M transforms a word of the form bm(bc)san first into the word bm+san , and then
it transforms bm+san into ba, if m + s = n holds. Thus, it follows that L(M) = Labam holds
as claimed.

Now let h be the morphism that is defined by h(a) = a and h(b) = bc. Then h−1(Labam) =
{ ambm+nan | m, n ≥ 0 } = Laba , which is not accepted by any stateless deterministic RRW-
automaton by Lemma 1. Thus, the families L (stl-det-RR) and L (stl-det-RRW) are not
closed under inverse morphisms. 
�
5.4 Catenation operations

We conclude this section by showing that none of the language families considered here is
closed under concatenation or iteration.

Lemma 11 The families L (stl-det-R(W)) and L (stl-det-2-RR(W)) are neither closed
under concatenation nor under iteration.

Proof Consider the language

L f = {
anbn | n ≥ 0

} ∪ a∗ ∪ {
bncn | n ≥ 0

} ∪ c∗,

which is accepted by the stateless deterministic R-automaton, which is obtained by general-
izing the construction from Example 1 as follows:

(1) δ(c · $) = Accept, (12) δ(c · ccc) = MVR,

(2) δ(c · ab · $) = Accept, (13) δ(aaaa) = MVR,

(3) δ(c · a · $) = Accept, (14) δ(aaab) = MVR,

(4) δ(c · aa · $) = Accept, (15) δ(bbbb) = MVR,

(5) δ(c · bc · $) = Accept, (16) δ(bbbc) = MVR,

(6) δ(c · c · $) = Accept, (17) δ(cccc) = MVR,

(7) δ(c · cc · $) = Accept, (18) δ(aabb) = ab,

(8) δ(c · aaa) = MVR, (19) δ(aaa · $) = aa · $,

(9) δ(c · aab) = MVR, (20) δ(bbcc) = bc,
(10) δ(c · bbb) = MVR, (21) δ(ccc · $) = cc · $.

(11) δ(c · bbc) = MVR,

Now we consider the concatenation L f · L f . Assume that M ′ is a stateless determininistic
2-RRW-automaton for this language. An input of the form anbncn with large n cannot be
accepted by M ′ in a tail computation, that is, it has to be rewritten. Because of the correctness
preserving property, the word obtained by this rewrite operation must belong to L f ·L f . Thus,
either a factor of the form ai bi or a factor of the form bi ci for some small integer i > 0 is
deleted. But due to the deterministic behavior of M ′ any such rewrite violates the correctness
preserving property either on input an+1bncn or on input anbncn+1. We therefore conclude
that L f · L f is not accepted by any stateless deterministic 2-RRW-automaton. Hence, the
families L (stl-det-R(W)) and L (stl-det-2-RR(W)) are not closed under concatenation.
Since L f · L f is also a subset of the iteration (L f )

∗, these families are not closed under
iteration, either. 
�
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Table 1 Closure properties of language families specified by stateless deterministic restarting automata

Operation

∪ ∩ ∼ ∩reg R · ∗ h−1 hε

L (stl-det-R) − − + − − − − − −
L (stl-det-RW) − − + − − − − − −
L (stl-det-RR) − − − − − − − − −
L (stl-det-RRW) − − − − − − − − −
L (stl-det-2-RR) − − + − − − − − −
L (stl-det-2-RRW) − − + − − − − − −
+ The language family is closed under the operation under consideration, − that it is not closed

Basically, the reasoning of the next lemma has been used before.

Lemma 12 The families L (stl-det-RR(W)) are neither closed under concatenation nor
under iteration.

Proof In the proof of Theorem 6 it is shown that the language Lr = {
wcwR | w ∈ {a, b}∗ }

is accepted by some stl-det-RR-automaton.
Now assume that the concatenation Lr · Lr is accepted by a stl-det-RRW-automaton M

with window size k, and let x = wcwRwcwR ∈ Lr · Lr be an input, where w ∈ {a, b}∗ is
chosen in such a way that it contains all words from {a, b}k as factors. Certainly M cannot
accept input x in a tail computation, that is, its accepting computation on input x begins
with a cycle x 
c

M y. Within this cycle a rewrite operation can only be performed with
an occurrence of the symbol c inside the window, as a rewrite at any other position would
violate the correctness preserving property for M . By the choice of w this implies that M
actually performs two rewrite operations in the first cycle. Hence, it rejects on input x , that is,
L(M) �= Lr · Lr . Thus, the families L (stl-det-RR(W)) are not closed under concatenation.
Since Lr · Lr is also a subset of the iteration (Lr )

∗, the argument above also shows that these
families are not closed under iteration, either. 
�

6 Concluding remarks

We have studied various different types of stateless deterministic restarting automata. While
for RWW-automata the restriction to stateless variants is straightforward, we have seen that
for RRWW-automata there are different ways of realizing this restriction. To us the two-phase
variants are more appealing, but the other variants remain interesting, as their relationship to
the corresponding stateless RW-automata is still unsolved. For all types of restarting auto-
mata considered, auxiliary symbols can easily compensate for the loss of states, but without
them the stateless deterministic variants are strictly weaker than those with states. In par-
ticular, for all types of stateless deterministic restarting automata without auxiliary symbols
considered, the corresponding language families form anti-AFLs. Table 1 summarizes the
(non-) closure properties that we obtained for these families of languages. It is expected that
many of these results also carry over to the nondeterministic case.
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