
Acta Informatica (2010) 47:133–146
DOI 10.1007/s00236-009-0113-8

ORIGINAL ARTICLE

Small universal accepting hybrid networks
of evolutionary processors

Remco Loos · Florin Manea · Victor Mitrana

Received: 30 March 2009 / Accepted: 18 November 2009 / Published online: 18 December 2009
© Springer-Verlag 2009

Abstract In this paper, we improve some results regarding the size complexity of accept-
ing hybrid networks of evolutionary processors (AHNEPs). We show that there are universal
AHNEPs of size 6, by devising a method for simulating 2-tag systems. This result improves
the best upper bound for the size of universal AHNEPs which was 7. We also propose a com-
putationally and descriptionally efficient simulation of nondeterministic Turing machines
with AHNEPs. More precisely, we prove that AHNEPs with ten nodes can simulate any
nondeterministic Turing machine of time complexity f (n) in time O(f (n)). This result
significantly improves the best known upper bound for the number of nodes in a network
simulating in linear time an arbitrary Turing machine, namely 24.

Work is supported by the research grant ES-2006-0146 of the Spanish Ministry of Science and Innovation
and the Romanian Ministry of Education and Research (PN-II Program, Projects GlobalComp, SEFIN and
SELF). The work of Florin Manea is also supported by the Alexander von Humboldt Foundation.

R. Loos
EMBL, European Bioinformatics Institute, Wellcome Trust Genome Campus,
Hinxton, Cambridge CB10 1SD, UK
e-mail: remco.loos@ebi.ac.uk

F. Manea · V. Mitrana (B)
Faculty of Mathematics and Computer Science, University of Bucharest,
Academiei 14, 010014 Bucharest, Romania
e-mail: mitrana@fmi.unibuc.ro

F. Manea
Faculty of Computer Science, Otto-von-Guericke University of Magdeburg,
PSF 4120, 39016 Magdeburg, Germany
e-mail: flmanea@gmail.com

V. Mitrana
Department of Information Systems and Computation, Technical University of Valencia,
Camino de Vera s/n, 46022 Valencia, Spain

123

134 R. Loos et al.

1 Introduction

The computational model considered in this paper was introduced in [7]. It is a bio-inspired
model based on an architecture considered in [4]. An AHNEP consists in a graph such that
a very simple processor, a so-called evolutionary processor, is placed in every node of the
graph. By an evolutionary processor we mean a processor which is able to perform very sim-
ple operations, namely point mutations in a DNA sequence (insertion, deletion or substitution
of a pair of nucleotides). More generally, each node may be viewed as a cell having genetic
information encoded in DNA sequences which may evolve by local evolutionary events, that
is point mutations. Each node is specialized just for one of these evolutionary operations.
Furthermore, the data in each node is organized in the form of multisets of strings (each string
appears in an arbitrarily large number of copies), and all copies are processed in parallel such
that all the possible events that can take place do actually take place. The reader interested
in a more detailed discussion about the model is referred to [5,7].

Here, we focus on the descriptional complexity of AHNEPs. We aim to improve some
results reported in [1,2,5,6]. More precisely, we are looking for a small size universal
AHNEP, where the size of an AHNEP is defined as the number of nodes of the network.
In [5] it was shown that ten nodes are sufficient to obtain a universal AHNEPs. In a recent
contribution, Alhazov et al. [2] obtained a sharper bound of 7. We further improve this bound
to 6, via a simulation of 2-tag systems introduced in [10]. Note that in [2] it is also shown that
AHNEPs of two nodes are not universal, suggesting this bound is approaching the absolute
upper bound.

Also, we are interested in finding a way to design concise AHNEPs simulating compu-
tationally efficient nondeterministic Turing machines. From the simulation of a tag system
we can obtain a concise universal AHNEP, but the above problem is not necessarily solved.
Indeed, a 2-tag system can efficiently simulate any deterministic Turing machine but not non-
deterministic ones. To this aim, we propose a simulation of nondeterministic Turing machines
with AHNEPs of size 10 which maintains the working time of the Turing machine. That is,
every language accepted by a one-tape nondeterministic Turing machine in time f (n) can
be accepted by an AHNEP of size 10 in time O(f (n)). This result considerably improves
the best known bound, of 24, reported in [6] for the size of AHNEPs simulating nondeter-
ministic one-tape Turing machines in linear time. Though smaller AHNEPs that can be used
to simulate Turing machines are known, like those in [1,2] of size 10 and 7, respectively,
these simulations need quadratic time, and are thus less efficient from a computational point
of view.

2 Basic definitions

We start by summarizing the notions used throughout the paper; for all unexplained notions
the reader is referred to [12]. An alphabet is a finite and nonempty set of symbols. The car-
dinality of a finite set A is written card(A). Any sequence of symbols from an alphabet V is
called word(string) over V . The set of all words over V is denoted by V ∗ and the empty word
is denoted by ε. The length of a word x is denoted by |x | while alph(x) denotes the minimal
alphabet W such that x ∈ W ∗. For a word x ∈ W ∗, xr denotes the reversal of the word.

We consider here the following definition of 2-tag systems that appears in [11]. This type
of tag-system, namely the type T2 2-tag-systems that appear in Sect. 8 of [11], is slightly
different but equivalent to those from [8,10]. A 2-tag system T = (V, φ) consists of a finite
alphabet of symbols V , containing a special halting symbol H (denoted in [11] with STOP)

123

Small universal accepting hybrid networks 135

and a finite set of rules φ : V \{H} → V + such that |φ(x)| ≥ 2 or φ(x) = H . Further-
more, φ(x) = H for just one x ∈ V \{H}. A halting word for the system T is a word that
contains the halting symbol H or whose length is <2. The transformation tT (called the tag
operation) is defined on the set of non-halting words as follows: if x is the leftmost symbol
of a non-halting word w, then tT (w) is the result of deleting the leftmost 2 symbols of w

and then appending the word φ(x) at the right end of the obtained word. A computation by
a 2-tag system as above is a finite sequence of words produced by iterating the transforma-
tion t , starting with an initially given non-halting word w and halting when a halting word
is produced. A computation is not considered to exist unless a halting word is produced in
finitely-many iterations. Note that in [11] the halting words are defined a little bit different, as
the words starting with the only symbol y such that φ(y) = H , or the words whose length is
<2. However, our way of defining halting words is equivalent to that in [11], in the sense that
there exists a bijection between the valid computations obtained in each of these two cases.
Indeed, if we consider the stopping condition from [11], and obtain in a valid computation
a word starting with y, thus a halting word, it is enough to apply once more tT on this word
to obtain a word containing H , a halting word according to our definition, and transform the
initial valid computation in a valid computation according to our definition. Conversely, if
a word containing H , a halting word for our definition, is obtained in a valid computation,
then the halting symbol could not have appeared in that word in other way than by applying
tT on a word starting with y, a halting word for the definition from [11], therefore, we have a
corresponding valid computation, by that definition. As shown in [11], such restricted 2-tag
systems are universal.

A nondeterministic Turing machine is a construct M = (Q, V, U, δ, q0, B, F), where Q
is a finite set of states, V is the input alphabet, U is the tape alphabet, V ⊂ U , q0 is the initial
state, B ∈ U\V is the “blank” symbol, F ⊆ Q is the set of final states, and δ is the transition
mapping, δ : (Q\F) × U → 2Q×(U\{B})×{R,L}. In this paper, we assume without loss of
generality that any Turing machine we consider has a semi-infinite tape (bounded to the left)
and makes no stationary moves; the computation of such a machine is described in [3,9,12].
An input word is accepted if and only if after a finite number of moves the Turing machine
enters a final state. The language accepted by the Turing machine is a set of all accepted
words. We say a Turing machine decides a language L if it accepts L and moreover halts
on every input. The reader is referred to [3,9] for the classical time and space complexity
classes defined for Turing machines.

We say that a rule a → b, with a, b ∈ V ∪ {ε} is a substitution rule if both a and b are
not ε; it is a deletion rule if a �= ε and b = ε; it is an insertion rule if a = ε and b �= ε. The
set of all substitution, deletion, and insertion rules over an alphabet V are denoted by SubV ,
DelV , and I nsV , respectively.

Given a rule σ as above and a word w ∈ V ∗, we define the following actions of σ on w:

• If σ ≡ a → b ∈ SubV , then σ ∗(w) =
{ {ubv : ∃u, v ∈ V ∗ (w = uav)},

{w}, otherwise

• If σ ≡ a → ε ∈ DelV , then σ ∗(w) =
{ {uv : ∃u, v ∈ V ∗ (w = uav)},

{w}, otherwise

σ r (w) =
{ {u : w = ua},

{w}, otherwise
σ l(w) =

{ {v : w = av},
{w}, otherwise

• If σ ≡ ε → a ∈ I nsV , then

σ ∗(w) = {uav : ∃u, v ∈ V ∗ (w = uv)}, σ r (w) = {wa}, σ l(w) = {aw}.

123

136 R. Loos et al.

α ∈ {∗, l, r} expresses the way of applying a deletion or insertion rule to a word, namely at
any position (α = ∗), in the left (α = l), or in the right (α = r) end of the word, respectively.
For every rule σ , action α ∈ {∗, l, r}, and L ⊆ V ∗, we define the α-action of σ on L by
σα(L) = ⋃

w∈L σα(w). Given a finite set of rules M , we define the α-action of M on the
word w and the language L by:

Mα(w) =
⋃
σ∈M

σα(w) and Mα(L) =
⋃
w∈L

Mα(w),

respectively. In what follows, we shall refer to the rewriting operations defined above as
evolutionary operations since they may be viewed as linguistic formulations of local DNA
mutations.

For two disjoint subsets P and F of an alphabet V and a word w over V , we define the
predicates:

ϕ(s)(w; P, F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
ϕ(w)(w; P, F) ≡ alph(w) ∩ P �= ∅ ∧ F ∩ alph(w) = ∅.

The construction of these predicates is based on random-context conditions defined by the
two sets P (permitting contexts/symbols) and F (forbidding contexts/symbols). Informally,
the first condition requires that all permitting symbols are present in w and no forbidding
symbol is present in w, while the second one is a weaker variant of the first, requiring that at
least on permitting symbol appears in w and no forbidding symbol is present in w. For every
language L ⊆ V ∗ and β ∈ {(s), (w)}, we define:

ϕβ(L , P, F) = {w ∈ L | ϕβ(w; P, F)}.
An evolutionary processor over V is a tuple (M, PI, FI, PO, FO), where:

• M is a set of substitution, deletion or insertion rules over the alphabet V . Formally:
(M ⊆ SubV) or (M ⊆ DelV) or (M ⊆ I nsV). The set M represents the set of evolution-
ary rules of the processor. As one can see, a processor is “specialized” in one evolutionary
operation, only.

• P I, F I ⊆ V are the input permitting/forbidding contexts of the processor, while P O,

F O ⊆ V are the output permitting/forbidding contexts of the processor. Informally, the
permitting input/output contexts are the set of symbols that should be present in a word,
when it enters/leaves the processor, while the forbidding contexts are the set of symbols
that should not be present in a word in order to enter/leave the processor.

We denote the set of evolutionary processors over V by E PV . Obviously, the evolution-
ary processor described here is a mathematical concept similar to that of an evolutionary
algorithm, both being inspired from the Darwinian evolution. The rewriting operations we
have considered might be interpreted as mutations and the filtering process described above
might be viewed as a selection process. Recombination is missing but it was asserted that
evolutionary and functional relationships between genes can be captured by taking only local
mutations into consideration [13]. Furthermore, we are not concerned here with a possible
biological implementation of these processors, though a matter of great importance.

An accepting hybrid network of evolutionary processors (AHNEP for short) is a 7-tuple
� = (V, U, G, N , α, β, xI , xO), where:
• V and U are the input and network alphabets, respectively, V ⊆ U .
• G = (XG , EG) is an undirected graph, with the set of nodes XG and the set of edges

EG . G is called the underlying graph of the network. In this paper, we consider complete

123

Small universal accepting hybrid networks 137

AHNEPs, i.e. AHNEPs having a complete underlying graph denoted by Km , where m is
the number of nodes. We say that m is the size of � and denote it by si ze(�).

• N : XG −→ E PU is a mapping which associates with each node x ∈ XG the evolution-
ary processor N (x) = (Mx , P Ix , F Ix , P Ox , F Ox).

• α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on the words
existing in that node.

• β : XG −→ {(s), (w)} defines the type of the input/output filters of a node. More pre-
cisely, for every node, x ∈ XG , the following filters are defined:

input filter: ρx (·) = ϕβ(x)(·; P Ix , F Ix),

output filter: τx (·) = ϕβ(x)(·; P Ox , F Ox).

That is, ρx (w) (resp. τx) indicates whether or not the word w can pass the input (resp.
output) filter of x . More generally, ρx (L) (resp. τx (L)) is the set of words of L that can
pass the input (resp. output) filter of x .

• xI and xO ∈ XG is the input node, and the output node, respectively, of the AHNEP.

We say that card(XG) is the size of �. Generally, the AHNEPs considered in the
literature, and in this paper as well, have complete underlying graphs, namely graphs without
loops in which every two nodes are connected.

A configuration of an AHNEP � as above is a mapping C : XG −→ 2V ∗
which associates

a set of words with every node of the graph. A configuration may be understood as the sets of
words which are present in any node at a given moment. A configuration can change either
by an evolutionary step or by a communication step.

When changing by an evolutionary step each component C(x) of the configuration C
is changed in accordance with the set of evolutionary rules Mx associated with the node
x and the way of applying these rules α(x). Formally, we say that the configuration C ′ is
obtained in one evolutionary step from the configuration C , written as C �⇒ C ′, if and only
if C ′(x) = Mα(x)

x (C(x)) for all x ∈ XG .

When changing by a communication step, each node processor x ∈ XG sends one copy
of each word it has, which is able to pass the output filter of x , to all the node processors
connected to x and receives all the words sent by any node processor connected with x
providing that they can pass its input filter. Formally, we say that the configuration C ′ is
obtained in one communication step from configuration C , written as C � C ′, if and only if
C ′(x) = (C(x) − τx (C(x))) ∪ ⋃

{x,y}∈EG
(τy(C(y)) ∩ ρx (C(y))) for all x ∈ XG . Note that

words which leave a node are eliminated from that node. If they cannot pass the input filter
of any node, they are lost.

Let � be an AHNEP, the computation of � on the input word w ∈ V ∗ is a sequence of
configurations C (w)

0 , C (w)
1 , C (w)

2 , . . . , where C (w)
0 is the initial configuration of � defined

by C (w)
0 (xI) = {w} and C (w)

0 (x) = ∅ for all x ∈ XG , x �= xI , C (w)
2i �⇒ C (w)

2i+1 and

C (w)
2i+1 � C (w)

2i+2, for all i ≥ 0. By the previous definitions, each configuration C (w)
i is

uniquely determined by the configuration C (w)
i−1. Otherwise stated, each computation in an

AHNEP is deterministic. A computation as above immediately halts if one of the following
two conditions holds:

(i) There exists a configuration in which the set of words existing in the output node xO is
non-empty. In this case, the computation is said to be an accepting computation.

(ii) There exist two identical configurations obtained either in consecutive evolutionary
steps or in consecutive communication steps.

123

138 R. Loos et al.

In the aforementioned cases the computation is said to be finite. The language accepted
by � is

La(�) = {w ∈ V ∗ | the computation of � on w is an accepting one}.
We say that an AHNEP � decides the language L ⊆ V ∗, and write L(�) = L if and only if
La(�) = L and the computation of � on every x ∈ V ∗ halts.

Let � be an AHNEP deciding the language L . The time complexity of the finite compu-
tation C (x)

0 , C (x)
1 , C (x)

2 , . . . , C (x)
m of � on x ∈ L is denoted by T ime�(x) and equals m. The

time complexity of � is the function from N to N,

T ime�(n) = sup{T ime�(x) | |x | = n}.
For a function f : N −→ N we define

TimeAH N E Pp (f (n)) = {L | L = L(�) for an AHNEP � of size at most phalting on

every input, such that T ime�(n)≤ f (n) for some n ≥ n0}.
Moreover, we write PTimeAH N E Pp = ⋃

k≥0 TimeAH N E Pp (n
k) for all p ≥ 1 as well as

PTimeAH N E P = ⋃
p≥1 PTimeAH N E Pp .

We can easily derive the following result from [2]:

Theorem 1 NP = PTimeAH N E P7 .

3 Decreasing the size of universal AHNEPs

In the following we show how a 2-tag system can be simulated by an AHNEP of size 6.

Theorem 2 For every 2-tag system T = (V, φ) there exists a complete AHNEP � of size 6
such that L(�) = {w | T halts on w}.
Proof Let V = {a1, a2, . . . , an, an+1} be the alphabet of the tag system T with an+1 = H
and V ′ = V \{H}. We consider the AHNEP � = (V ′, U, K6, N , α, β, 1, 6) with the 6 nodes
1, 2, . . . , 6. The working alphabet of the network is defined as follows:

U = V ∪ {
a′

0, a′′
0

} ∪ {a′, a′′, a◦ | a ∈ V ′} ∪ {[x], 〈x〉,≺x�| x ∈ X},
where X = {x ∈ (V ∪ {a0})∗, |x | ≤ max{|φ(a)| | a ∈ V ′}. The processors placed in the six
nodes of the network are defined as follows:

• The node 1:

– M = {a → [φ(a)], a → a◦ | a ∈ V ′},
– P I = V ′, F I = U\V ′, P O = {a◦ | a ∈ V ′}, F O = {an+1},
– α = ∗, β = (w).

• The node 2:

– M = {
ε → a′

0

}
,

– P I = {≺a0x �, [x] | x ∈ X\{ε}}, F I = {a′, a′′ | a ∈ V ′ ∪ {a0}}, P O = U ,
F O = ∅,

– α = r , β = (w).

123

Small universal accepting hybrid networks 139

• The node 3:

– M = {[ak x] → 〈ak−1x〉,≺ak x �→ 〈ak−1x〉,≺a0ak x �→ 〈ak−1x〉 | x ∈ X, 1 ≤
k ≤ n + 1} ∪ {

a′
k → a′′

k | 0 ≤ k ≤ n + 1
}
,

– P I = {
a′

0

} ∪ {≺x�| x ∈ X\(a0V ∗)}, F I = ∅, P O = {〈x〉 | x ∈ X}, F O = ∅,
– α = ∗, β = (w).

• The node 4:

– M = {
a′′

k−1 → a′
k | 1 ≤ k ≤ n + 1

}∪{
a′′

k−1 → ak | 1 ≤ k ≤ n + 1
}∪{〈x〉 →≺x�|

x ∈ X},
– P I = {

a′′
k | 0 ≤ k ≤ n + 1

}
, F I = {[x],≺x�| a ∈ V, x ∈ X}, P O = U , F O ={

a′′
k | 0 ≤ k ≤ n + 1

}
,

– α = ∗, β = (w).

• The node 5:

– M = {≺a0�→ ε} ∪ {a◦ → ε | a ∈ V ′},
– P I = {≺a0�}, F I = {a′, a′′ | a ∈ V ′ ∪ {a0}}, P O = U , F O = {a◦, | a ∈ V ′},
– α = l, β = (w).

• The node 6

– M = ∅,
– P I = {an+1}, F I = U\V , P O = F O = ∅,

– β = (w).

We show that � accepts a word w that does not contain H if an only if T eventually halts
on w.

Let w = aby, a, b ∈ V, y ∈ V ∗ be a word that does not contain H such that T eventually
halts on w. We show how w can be accepted by �. At the beginning of the computation w

is found in node 1, where the first symbol a can be replaced with [φ(a)] but the new string
cannot pass the output filter of 1. In the next step, we can rewrite b as b◦, getting the new
word [φ(a)]b◦y which is sent out. It can only enter node 2 where the symbol a′

0 is inserted
to its right end obtaining [φ(a)]b◦ya′

0. This word can only enter node 3.
Let φ(a) = ai x , for some 1 ≤ i ≤ n + 1 and x ∈ X . In node 3, [ai x]b◦ya′

0 is first con-
verted into [ai x]b◦ya′′

0 , which remains in 3, and then into 〈ai−1x〉b◦ya′′
0 . This string is sent

out and can only enter node 4, where it is rewritten as ≺ai−1x� b◦ya′
1 via ≺ai−1x� b◦ya′′

0 .
If i > 1, this string first returns to node 3, resulting in 〈ai−2x〉b◦ya′′

1 , and then returns to
node 4. This process back and forth between nodes 3 and 4 continues until a string of the
form 〈a0x〉b◦ya′′

i−1 is obtained in node 3. Now the current word is sent to node 4 where it
can be rewritten into ≺a0x� b◦yai . This string can only enter node 2, where a symbol a′

0 is
inserted at the right end.

The resulting string 〈a0x〉b◦yai a′
0 is sent to node 3, where the same process recom-

mences, with the only difference of a first rule ≺a0ak x�→ 〈ak−1x〉 used in order to elimi-
nate the a0 while decreasing the counter.

Finally, we will reach a string of the form ≺a0� b◦yφ(a) in node 4. This string can only
enter node 5, where the symbol ≺a0� is deleted, yielding b◦yφ(a). This string cannot leave
the node, and in the next step, the symbol b◦ is deleted to give yφ(a). It is easy to see that
we have correctly simulated the transition a → φ(a) in the tag system.

Note that as soon as the current word contains H it enters the output node and input w is
accepted. Otherwise, that is φ(a) �= H , then the current word enters again node 1, where the
simulation of the next transition in T is performed.

123

140 R. Loos et al.

We now argue why the above simulation is the only possible derivation in T , so that it
halts on a word w if and only if w is accepted by �. In many steps, the derivation stated
above is the only possible derivation. However, there are a few cases we need to consider
more closely.

First of all, in node 1, only one substitution a → a◦ can be performed before the string
is sent out, but potentially zero or more than one a → [φ(a)] substitutions. If no such sub-
stitution is performed, the resulting string cannot pass any input filter, so it is lost. If the
outgoing word contains more than one symbol [x], x ∈ X , then only one of them will be
rewritten in node 3. The string is then sent out and also lost because it cannot pass any input
filter.

Thus, an accepting computation is only possible if exactly one of each of the
symbols a◦ and [x] are present when leaving node 1. However, both symbols could be
on any position of the string. Assume that they do not occupy the first two positions in
the way described above. The simulation would then go on as described, until a string
y1 ≺ a0 � y2b◦y3 or y1b◦y2 ≺ a0 � y3, y1, y2, y3 ∈ (V \{H})∗ is reached. The string
will then enter node 5, where a symbol is only deleted at the left end of the string. If the
leftmost symbol is in V ′, no deletion can be performed and the word remains trapped in
node 5. If the leftmost symbol is of the type a◦, it is deleted and the word is sent out.
Since this word still contains a symbol ≺ a0 �, it cannot pass any input filter, and is
lost. Finally, if the leftmost symbol is of the type ≺ a0 �, but the second one is not of
type a◦, then ≺a0 � can be deleted, after which the word remains trapped as in the first
case.

In each of the nodes 3 and 4, two rules are applied. If the rules are applied in a different
order than described above, the derivation cannot lead to acceptance. Indeed, suppose that
in node 3, we apply a rule ≺ak x�→ 〈ak−1x〉 to the incoming word ≺ai x� b◦ya′

j , giving
〈ai−1x〉b◦ya′

j . This word is sent out of the node, but cannot enter node 4 nor any other node,
and it is lost. Similarly, in node 4, if we first apply a rule a′′

k−1 → a′
k , we obtain a word of

the form 〈ai x〉b◦ya′
j , which leaves the node but does not enter any other node. Then, in node

4, a symbol a′
i can be rewritten as ai+1 while the created ≺a j x� have j �= 0. The resulting

string can pass the output filter, and then it can enter node 3; however, here no symbol a′′
can be obtained, meaning that after conversion of the symbol ≺a j x� to 〈a j x〉, the string is
sent out and lost. Similarly, in node 4 symbol a′

i can be rewritten as a′′
i+1, together with the

appearance of ≺a0x�. Again, the resulting string can pass the output filter, but none of the
input filters.

This covers all possible cases, thus proving that if w ∈ L(�) then T will eventually halt
on w. ��

Since 2-tag systems are universal [8], the following corollary is immediate:

Corollary 1 There exists a universal AHNEP with 6 nodes.

This result improves the result reported in [2] where a universal AHNEP with seven nodes
was constructed. In fact, we expect that this bound is very close to the absolute lower bound.
Indeed, it was shown in [1,2] that AHNEPs with two nodes are not universal. Clearly, an
insertion node is necessary to obtain the infinite workspace required for universal compu-
tation. Moreover, we conjecture that also at least one substitution and one deletion node is
needed for universality. Thus, we leave as open questions determining the power of AHNEPs
of size 4 and 5, which would definitively settle this issue.

123

Small universal accepting hybrid networks 141

4 Decreasing the size of AHNEPs efficiently accepting recursively enumerable
languages

Although 2-tag systems efficiently simulate deterministic Turing machines, via cyclic
tag systems (see, e.g., [14]), the previous result does not allow us to infer a bound on the
size of the networks accepting in a computationally efficient way all recursively enumerable
languages. We now discuss how an efficient (from the time and size complexity points of
view) AHNEP accepting (deciding) every recursively enumerable (recursive) language can
be constructed.

Theorem 3 For any recursively enumerable (recursive) language L accepted (decided) by
a Turing machine there exists a complete AHNEP �, of size 10, accepting (deciding) L.
Moreover, if L ∈ N T I M E(f (n)), then T ime�(n) ∈ O(f (n)). (The constant hidden by the
O notation depends on L.)

Proof Let M = (Q, V, W, q0, B, F, δ) be a nondeterministic Turing machine. We regard
the working alphabet W as the ordered alphabet {a1, a2, . . . , an}, such that V = {a1, . . . ,

am} for some m < n and B = an . Also let a0, a′
0, $, $+, #, ⊥, � be symbols not contained

in W . We may assume without loss of generality that the Turing machine M verifies the
property that {(q0, a, X) | a ∈ W, x ∈ {L , R}} ∩ δ(Q, W) = ∅. We consider the AH-
NEP �M = (V, U, G, N , α, β, 1, 10) with ten nodes (labeled with the numbers 1–10). The
working alphabet of the network is defined as follows:

U = {[q1, a, q2, b, X], [q1, a, q2, b, X]◦, [q1, a∗, q2, b, X],
[q1, $, q2, b∗, X], [q1, $, q2, #, X] | q1, q2 ∈ Q, a, b ∈ W, X ∈ {R, L}}
∪{a, a′, a†, a�, a∗, a+, a◦ | a ∈ W } ∪ {

a′
0, $, $+, #,⊥,�

}

The processors placed in the ten nodes of the network are defined as follows (where only
those filters which do not allow all strings to pass are specified):

• The node 1 (the input node of the network):

– M(1) = {
ε → B ′, ε → a′

0

}
,

– α(1) = r , β(1) = (w)

– P I (1) = {B}, F I (1) = U\(W ∪ {[q1, $, q2, b, R] | q1, q2 ∈ Q, b ∈ W }).
• The node 2

– M(2) = {ε → [q0, a, q1, b, X] | q1 ∈ Q, a, b ∈ W, X ∈ {R, L}, (q1, b, X) ∈
δ(q0, a)},

– α(2) = r , β(2) = (w)

– P I (2) = {B ′}, F I (2) = U\(V ∪ {B ′}).
• The node 3:

– M(3) = {B ′ → B} ∪ {a → a∗, a → a� | a ∈ W } ∪ {[q1, a, q2, b, X] →
[q1, a∗, q2, b, X] | q1, q2 ∈ Q, a, b ∈ W, X ∈ {R, L}} ∪ {[q1, $, q2, #, L] →
[q2, a, q3, b, X]◦ | q1, q2, q3 ∈ Q, a, b ∈ W, X ∈ {R, L}, (q3, b, X) ∈ δ(q2, a)} ∪
{[q1, $, q2, #, R] → � | q1 ∈ Q, q2 ∈ F} ∪ {[q1, $, q2, #, L] → �◦ | q1 ∈
Q, q2 ∈ F}∪{[q1, $, q2, #, R] → [q2, a∗, q3, b, X] | q1, q2, q3 ∈ Q, a, b ∈ W, X ∈
{R, L}, (q3, b, X) ∈ δ(q2, a)},

123

142 R. Loos et al.

– α(3) = ∗, β(3) = (w)

– P I (3) = {[q1, a, q2, b, X] | q1, q2 ∈ Q, a, b ∈ W, X ∈ {R, L}} ∪ {
a′

0

}
,

F I (3) = U\(P I (3) ∪ {B ′} ∪ W ∪ {[q1, $, q2, #, X] | q1, q2 ∈ Q, X ∈ {R, L}}),
P O(3) = {a∗, a� | a ∈ W } ∪ {�}, F O(3) = (P I (3) ∪ {B ′} ∪ {[q1, $, q2, #, X] |
q1, q2 ∈ Q, X ∈ {R, L}})\ {

a′
0

}
.

• The node 4:

– M(4) = {a∗
i → a+

i−1 | n ≥ i > 1} ∪ {a∗
1 → $+} ∪ {a�

i → a†
i−1 | n ≥ i > 1}

∪ {a�
1 → ⊥†} ∪ {a′

i → a◦
i+1 | n ≥ i > 1} ∪ {a∗

1 → $+} ∪ {[q1, a∗
i , q2, b, X] →

[q1, a+
i−1, q2, b, X], [q1, a∗

1 , q2, b, X] → [q1, $+, q2, b, X] | q1, q2 ∈ Q, b ∈ W,

n ≥ i > 1, X ∈ {R, L}} ∪ {[q1, $, q2, a∗
i , X] → [q1, $, q2, a+

i−1, X], [q1, $, q2,

ai , X] → [q1, $, q2, a+
i−1, X], [q1, $, q2, a∗

1 , X] → [q1, $, q2, #+, X] | q1, q2 ∈
Q, n ≥ i > 1, X ∈ {R, L}} ∪ {[q1, a, q2, b, X]◦ → [q1, a, q2, b, X] | q1, q2 ∈
Q, a, b ∈ W, X ∈ {R, L}} ∪ {�◦ → �},

– α(4) = ∗, β(4) = (w)

– P I (4) = {a∗, a′, a� | a ∈ W }, F I (4) = U\(P I (4)∪ W ∪{�◦,�}∪{[q1, a∗, q2, b,

X] | q1, q2 ∈ Q, a, b ∈ W, X ∈ {R, L}} ∪ {[q1, $, q2, a∗, X], [q1, $, q2, a, X] |
q1, q2 ∈ Q, a ∈ W, X ∈ {R, L}} ∪ {[q1, a, q2, b, X]◦, [q1, a, q2, b, X] | q1, q2 ∈
Q, a, b ∈ W, X ∈ {R, L}}) P O(4) = {a+, a◦, a† | a ∈ W } ∪ {$+,⊥†}, F O(4) =
{[q1, a∗, q2, b, X] | q1, q2 ∈ Q, a, b ∈ W, X ∈ {R, L}} ∪ {[q1, $, q2, a∗, X], [q1, $,

q2, a, X] | q1, q2 ∈ Q, a ∈ W, X ∈ {R, L}}∪{[q1, a, q2, b, X]◦ | q1, q2 ∈ Q, a, b ∈
W, X ∈ {R, L}} ∪ {�◦} ∪ P I (4).

• The node 5:

– M(5) = {a+ → a∗, a† → a�, a◦ → a′, a◦ → a | a ∈ W } ∪ {$+ → $,⊥† →
⊥}∪{[q1, a+, q2, b, X] → [q1, a∗, q2, b, X] | q1, q2 ∈ Q, a, b ∈ W, X ∈ {R, L}}∪
{[q1, $+, q2, b, X] → [q1, $, q2, b, X] | q1, q2 ∈ Q, b ∈ W, X ∈ {R, L}} ∪ {[q1, $,

q2, a+, X] → [q1, $, q2, a∗, X] | q1, q2 ∈ Q, a ∈ W, X ∈ {R, L}} ∪ {[q1, $, q2, #+,

X] → [q1, $, q2, #, X] | q1, q2 ∈ Q, X ∈ {R, L}},
– α(5) = ∗, β(5) = (w)

– P I (5) = {a+, a◦, a† | a ∈ W } ∪ {$+,⊥†}, F I (5) = U\(W ∪ P I (5) ∪ {�,

[q1, a, q2, b, X], [q1, a+, q2, b, X], [q1, $+, q2, b, X], [q1, $, q2, a+, X], [q1, $, q2,

#+, X] | q1, q2 ∈ Q, a, b ∈ W, X ∈ {R, L}}), P O(5) = {[q1, a, q2, b, X], [q1, a∗,
q2, b, X], [q1, $, q2, b, X], [q1, $, q2, a∗, X], [q1, $, q2, #, X] | q1, q2 ∈ Q, a, b ∈
W, X ∈ {R, L}}, F O(5) = P I (5).

• The node 6:

– M(6) = {$ → ε},
– α(6) = l, β(6) = (w)

– P I (6) = {$}, F I (5) = U\({$} ∪ W ∪ {[q1, $, q2, b, X] | q1, q2 ∈ Q, b ∈ W,

X ∈ {R, L}}).
• The node 7:

– M(7) = {ε → a′
0},

– α(7) = l, β(7) = (w)

– P I (7) = {B}, F I (7) = U\(W ∪ {[q1, $, q2, b, L], [q1, $, q2, #, L] | q1, q2 ∈ Q,

b ∈ W }).

123

Small universal accepting hybrid networks 143

• The node 8:

– M(8) = {ε → B},
– α(8) = l, β(8) = (w)

– P I (8) = {[q1, $, q2, b, X] | q1, q2 ∈ Q, b ∈ W, X ∈ {R, L}}, F I (8) = {B, B ′} ∪
(U\(W ∪ P I (8))).

• The node 9:

– M(9) = {⊥ → ε},
– α(9) = r , β(9) = (w)

– P I (9) = {⊥}, F I (9) = U\(W ∪{⊥}∪{[q1, $, q2, #, X] | q1, q2 ∈ Q, X ∈ {R, L}}).
• The node 10 (the output node of the network):

– β(10) = (w), P I (10) = {�}, F I (10) = U\(W ∪ {�}).
Before showing that �M accepts exactly L(M) we describe the meaning of a class of new

symbols that we use: A symbol [q, a, q ′, b, X] shall mean that the Turing machine M is now
in state q and will go to state q ′ by reading a, will write b and move in the direction X . Thus
these symbols store the complete information of a transition of the machine. The simulation
of the machine’s computation will then consist of:

1. First, introducing a blank symbol at the leftmost end of the input word (in order to mark
the beginning of the infinite part, containing only blank symbols, of the Turing machine’s
tape), and then introducing the symbol for a transition starting from the initial state. At
this moment, the string has the general form v1 B[q, a, q ′, b, X]v2, which corresponds
to a configuration of M where the current state is q , the tape content is v2v1 B B . . . and
the head of M reads the first symbol of v1 (or B, if v1 = ε). Of course, initially, v2 = ε

and q is the initial state of M .
2. Checking whether the first letter of the input word is the same as the one read in that

transition, and, if this is true, deleting that letter.
3. Writing the correct letter (the one stored as the fourth component of the symbol encoding

the transition) in the correct position, rotating the string such the first symbol is the one
that will be read by the Turing machine, and, also, replacing the transition’s symbol by
the one of a possible following transition.

4. Repeating the above procedure, from step 2, for the newly obtained string, encoding a
new configuration of the Turing machine M . In other words, we simulate a new step of
the Turing machine.

The main technical problems here are matching the input word’s letters with the ones in
the symbols corresponding to transitions, writing the correct new symbol in the corresponding
position, and, if necessary, rotating the string. Because none of the rules have left hand sides
of length two or longer, it is not possible to let one rule application verify these equalities.
Therefore, in the first case, we will verify the equality of the two letters by first marking both
of them and then decreasing them simultaneously according to the order of the alphabet. If
they matched in the beginning, then they will we both transformed into $ in the same cycle,
and only then the computation should proceed. In the second case, the process is quite sim-
ilar: we introduce a′

0 in the correct position (according to the last component of the symbol
encoding the transition of M , which tells us how the head of the machine moves), and, then
we start increasing it while simultaneously decreasing the letter that should be written from
the transition-symbol. Once this last letter is rewritten into # we stop the increasing of the
former one, and we have simulated the writing operation of the Turing machine. Finally, in

123

144 R. Loos et al.

the case of a rotation of the string, we proceed just as in the second case, but now we mark,
and decrease, the letter that should be moved from one end of the string to the other; once we
cannot decrease it anymore, we delete it. Note that in the case of the first verification, as well
as in the case of the rotation, we cannot tell if the letter we picked and decreased is found
at the left end, respectively right end, of the string; thus, we need to verify, when deleting
it, that it really is in the correct position. If any of the above verification fails (that is, the
synchronous decreasing/increasing of the symbols could not be carried out, or the deletion
could not be made because the letters were not in the correct position) then the filters of the
nodes do not allow the string to influence the rest of the computation (i.e., the string is either
lost or blocked).

In the following we show that �M accepts a word w if and only if w ∈ L(M). Note that
in our simulation,

1. L(�M) ⊇ L(M).
Let w be a word from L(M). Assume that w is present in the node 1 at the beginning
of the computation. In this node the string becomes wB ′ and it is communicated in the
network. It can only enter the node 2, where it is transformed into wB ′[q0, a, q1, b, X],
with w = aw′ and (q1, b, X) ∈ δ(q0, a); then, the node is communicated to all the
other nodes of the network, and enters node 3. The string becomes in two evolutionary
steps a∗w′ B[q0, a∗, q1, b, X] and is communicated to the other nodes. The order of the
steps is irrelevant, since in both cases the intermediate product stays in node 3. Now a
so-called Simulation Phase begins; during this phase a move of the Turing machine M is
simulated. Assume that the content of M’s tape is yak x , its current state is q1, and it exe-
cutes the move (q2, at , X) ∈ δ(q1, ak), q1, q2 ∈ Q, 1 ≤ k, t ≤ n, X ∈ {R, L} and x, y ∈
W ∗. Assume, also, that at the beginning of this phase the string a∗

k x[q1, a∗
k , q2, at , X]y,

y ∈ W ∗, is present in node 3 and the network starts the execution of a communication step
(this assumption clearly holds after the first four evolutionary steps). Now the first cycle of
the phase begins. The string enters node 4 where it becomes a+

k−1x[q1, a+
k−1, q2, at , X]y

and then goes to node 5 where it is transformed into a∗
k−1x[q1, a∗

k−1, q2, at , X]y; further,
it goes back to node 4. The string follows repeatedly the path from node 4 to node 5
until it becomes a∗

1 x[q1, a∗
1 , q2, at , X]y and enters node 4. Here it is transformed into

$+x[q1, $+, q2, at , X]y and enters again node 5. Finally, it is transformed in this node
into $x[q1, $, q2, at , X]y and communicated to node 6. Here the leftmost symbol is
deleted if and only if it is $, thus the string becomes x[q1, $, q2, at , X]y. If x = ε, the
string enters node 8 where B is inserted as its leftmost symbol, and the string is com-
municated in the network. In both cases, x �= ε or x = ε, we are at a point when a
string x ′[q1, $, q2, at , X]y (with x ′ having its last symbol B) was communicated in the
network. If X = L this string enters node 7 where a′

0 is inserted as its leftmost sym-
bol; otherwise it enters node 1 where a′

0 is inserted as its rightmost symbol. This string
(a′

0x ′[q1, $, q2, at , L]y or x ′[q1, $, q2, at , R]ya′
0, respectively), is communicated in the

network and enters node 4; here it is transformed into a◦
1 x ′[q1, $, q2, a+

t−1, L]y or, respec-
tively, x ′[q1, $, q2, a+

t−1, R]ya◦
1 and goes to node 5. The second cycle begins with these

moves. Again, the string follows repeatedly the path from node 4 to node 5 and back, until
it becomes a◦

t x ′[q1, $, q2, #+, L]y or, respectively, x ′[q1, $, q2, #+, R]ya◦
t and leaves

node 4. In node 5 this string is transformed into at x ′[q1, $, q2, #, L]y or, respectively,
x ′[q1, $, q2, #, R]yat . The string x ′[q1, $, q2, #, R]yat enters node 3 and here it is trans-
formed into a∗x ′′[q2, a∗, q3, b, X]yat , given that x ′ = ax ′′ and (q3, b, X) ∈ δ(q2, a),
or x ′�yat , if q2 ∈ F ; the Simulation Phase is restarted in the first case, while in the
second case the string exits node 3, enters node 10, the input string being accepted. The

123

Small universal accepting hybrid networks 145

string at x ′[q1, $, q2, #, L]y enters node 7 where it becomes a′
0at x ′[q1, $, q2, #, L]y and

then node 3 where it is transformed into a′
0at x ′[q2, al , q3, b, X]◦y′a�

l , if (q3, b, X) ∈
δ(q2, al), or a′

0at x ′�◦y′a�
l , if q2 ∈ F . In both cases, the string enters node 4 where

it becomes a◦
1at x ′[q2, al , q3, b, X]y′a†

l−1 or a◦
1at x ′�y′a†

l−1. Then it is communicated
in the network, enters node 5, and it is transformed into a′

1at x ′[q2, al , q3, b, X]y′a�
l−1

or, respectively, a′
1at x ′�y′a�

l−1. The third cycle begins with these moves. The string is
processed repeatedly by nodes 4 and 5 until it becomes a′

lat x ′[q2, al , q3, b, X]y′⊥�, or,
respectively, a′

lat x ′�y′⊥� in node 4. Then it enters node 5 where it is transformed into
alat x ′[q2, al , q3, b, X]y′⊥, or, respectively, alat x ′�y′⊥. Now it enters node 9 where the
⊥ symbol is deleted. Further, in the first case, the string enters node 3 where it becomes
a∗

l at x ′[q2, a∗
l , q3, b, X]y′ and the Simulation Phase is restarted, or, in the second case,

it enters the output node of the network, and the input string is accepted. To conclude,
the above show that in one execution of the Simulation Phase, we simulate a move of the
Turing machine M . If M accepts w, in f (w) moves, �M accepts w after the Simulation
Phase is executed for f (|w|) times.

2. L(�M) ⊆ L(M).
In most cases the filters ensure that the computation can be performed only as described
above. Moreover, by the mechanism described before the first inclusion (which is, in fact,
quite similar to that in Theorem 2), if the synchronization processes, performed in each
of the three cycles by nodes 4 and 5, are unsuccessful, the resulting strings will be lost or
blocked forever in a node. However, some cases require some closer attention. First, at
the beginning of the computation on w there are two possible insertions that can be made
at the rightmost end of w: we can insert a B ′ symbol, and the computation may continue
as described above, or we can insert an a′

0 symbol. In the latter case, the string obtained
can enter node 3, and after this node processes the string it goes to node 4, or directly
node 4; in both cases, in node 4 a′

0 becomes a◦
1 and the string enters node 5, where it is

blocked since it does not contain a symbol encoding a move of the Turing machine, thus
cannot pass the output filters. Also, if some other time, during the computation, a string
enters node 1 and B ′ is inserted in this string, then it cannot enter any node, and is lost.
Further, assume that, at the beginning of the first cycle of the simulation phase, other
symbol ap , with p ≤ n, than the first symbol of the string communicated in the network
is transformed into a∗

p . This symbol is transformed into $ in p iterations of the cycle,
and the string, communicated by node 5, can enter node 6 only in the case when p = k,
otherwise it cannot enter any node and is lost. Here the $ is not deleted, and the string is,
once again, lost. Also, to see that there cannot be harmful interference between different
cycles, assume that before the execution of the first cycle a symbol ap , p ≤ n, is trans-
formed by node 3 into a�

p . Again, in at most p steps either the string will contain a symbol
[q1, $, q2, b, X] and one of the symbols a�, with a ∈ W , or ⊥, so cannot enter any node
and is lost. Consequently, the only symbols that can be transformed in the first cycle are
the first symbol of the string and the symbol [q1, a, q2, b, X]. Similar arguments show
that if a symbol a is rewritten to a∗, after the second cycle, no accepting computation
can follow, thus the first cycle and the third one cannot interfere. Also, it is not hard
to see that the second cycle cannot interfere with any of the other two. Finally, during
the second cycle, if the string processed by the network becomes a′

t x
′[q1, $, q2, #, L]y,

x ′[q1, $, q2, #, R]ya′
t , at x ′[q1, $, q2, a∗

l , L]y or x ′[q1, $, q2, a∗
l , R]yat , the computation

on this string blocks. These considerations show that only the strings that are processed
during the iterative phase as described in the proof of the inclusion 1 can be accepted by
the network. Thus L(�M) ⊆ L(M) and we have proved that L(�M) = L(M).

123

146 R. Loos et al.

It is clear that if M stops on the input string w, in f (|w|) steps, then �M stops on the
input string w after f (|w|) executions of the Simulation Phase, described above. ��

Acknowledgments We would like to thank the anonymous referees for their comments and suggestions,
which improved the presentation of this paper.

References

1. Alhazov, A., Csuhaj-Varju, E., Martin-Vide, C., Rogozhin, Y.: About universal hybrid networks of evo-
lutionary processors of small size. Lect. Notes Comput. Sci. 5196, 28–39 (2008)

2. Alhazov, A., Csuhaj-Varju, E., Martin-Vide, C., Rogozhin, Y.: On the size of computationally complete
hybrid networks of evolutionary processors. Theor. Comput. Sci. 410(35), 3188–3197 (2009)

3. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Am. Math. Soc. 117,
533–546 (1965)

4. Hillis, W.D.: The Connection Machine. MIT, Cambridge (1985)
5. Manea, F., Martin-Vide, C., Mitrana, V.: On the size complexity of universal accepting hybrid networks

of evolutionary processors. Math. Struct. Comput. Sci. 17(4), 753–771 (2007)
6. Manea, F., Mitrana, V.: All NP-problems can be solved in polynomial time by accepting hybrid networks

of evolutionary processors of constant size. Inf. Proc. Lett. 103(3), 112–118 (2007)
7. Margenstern, M., Mitrana, V., Perez-Jimenez, M.: Accepting hybrid networks of evolutionary systems.

Lect. Notes Comput. Sci. 3384, 235–246 (2005)
8. Minsky, M.L.: Size and structure of universal turing machines using tag systems. Recursive Function

Theory, Symposium in Pure Mathematics, vol. 5, pp. 229–238 (1962)
9. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

10. Post, E.L.: Formal reductions of the general combinatorial decision problem. Am. J. Math. 65, 197–215
(1943)

11. Rogozhin, Y.: Small universal turing machines. Theor. Comput. Sci. 168, 215–240 (1996)
12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I–III. Springer, Berlin (1997)
13. Sankoff, D., et al.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial

genome. Proc. Natl. Acad. Sci. USA 89, 6575–6579 (1992)
14. Woods, D., Neary, T.:On the time complexity of 2-tag systems and small universal Turing machines. 47th

Annual IEEE symposium on foundations of computer science FOCS ’06, pp. 439–448 (2006)

123

	Small universal accepting hybrid networks of evolutionary processors
	Abstract
	1 Introduction
	2 Basic definitions
	3 Decreasing the size of universal AHNEPs
	4 Decreasing the size of AHNEPs efficiently accepting recursively enumerable languages
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

